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Abstract. In the ordinary security model for signature schemes, we consider an adversary that may
forge a signature on a new message using only his knowledge of other valid message and signature
pairs. To take into account side channel attacks such as tampering or fault-injection attacks, Bellare
and Kohno (Eurocrypt 2003) formalized related-key attacks (RKA), where stronger adversaries are
considered. In RKA for signature schemes, the adversary can also manipulate the signing key
and obtain signatures for the modified key. This paper considers RKA security of two established
signature schemes: the Schnorr signature scheme and (a well-known variant of) DSA. First, we show
that these signature schemes are secure against a weak notion of RKA. Second, we demonstrate
that, on the other hand, neither the Schnorr signature scheme nor DSA achieves the standard notion
of RKA security, by showing concrete attacks on these. Lastly, we show that a slight modification
of both the Schnorr signature scheme and (the considered variant of) DSA yields fully RKA secure
schemes.
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1 Introduction

1.1 Background

A signature scheme is a cryptographic public key primitive which guarantees validity of messages. Up
until now, many schemes have been proposed such as the ElGamal signature scheme [18], the Schnorr
signature scheme [31], and DSA [1]. The commonly accepted security notion for a signature scheme is
existential unforgeability against chosen message attacks, which guarantees that even if an adversary can
obtain signatures on arbitrary messages of its choice, the adversary cannot forge a valid signature on a
new message. The Schnorr signature scheme, and two variants of DSA were proven to satisfy this notion
in the random oracle model [27, 29], under the discrete logarithm (DL) assumption.

Related-key attacks (RKA), stronger attacks, were formalized by Bellare and Kohno [5]. RKA security
captures security against practical attacks such as tampering or fault injection, which enable adversaries
to alter a hardware-stored secret key and observe the output of the algorithm using the modified key.
Thus, RKA security captures practical attacks which might cause security issues in practice. Therefore,
it is an important question whether primitives are secure against RKA attacks even if they are already
shown to be secure against ordinary attacks.

RKA for signature schemes allows an adversary to obtain not only valid message and signature pairs,
but also signatures under a modified key. RKA security is defined with respect to the related-key deriving
(RKD) functions with which an adversary is allowed to modify the secret key. For example, we consider
linear functions, affine functions, and polynomial functions. Since RKA considers a broader class of attacks
than ordinary attacks, security against RKA is much stronger than ordinary security.

However, only a few generic constructions for achieving RKA secure signatures have been proposed.
Bellare, Cash, and Miller [4] studied relations between RKA secure primitives, and in particular showed
that an RKA secure pseudorandom function (PRF) can be used to convert a signature scheme secure
against ordinary attacks, into a scheme providing RKA security. The conversion is relatively simple:
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before generating the verification and signing key, apply the PRF to the randomness used by the key
generation algorithm, and then store the randomness instead of the generated signing key. Now, since the
signing key of the original scheme is no longer stored, this has to be re-generated whenever a message
is signed. This is done by applying the PRF to the stored randomness, and then re-running the key
generation algorithm. Bellare, Cash, and Miller [4] showed that, via this conversion, it is possible to lift
the RKA security of the PRF to the signature scheme. Used in combination with the recently proposed
RKA secure PRF by Abdalla et al. [2], which is shown to be secure under the q-Diffie Hellman Inversion
assumption, this allows the conversion of any (ordinary) signature scheme to a scheme which is RKA
secure with respect to polynomial functions.

Goyal et al. [22] showed a similar conversion for achieving RKA secure signatures, but based on a
correlated-input secure (CIS) hash function. Furthermore, Goyal et al. constructed a very efficient CIS
hash function secure under the q-Diffie Hellman Inversion assumption, which would lead to signatures that
are RKA secure with respect to polynomials. However, this construction only achieves selective security;
a weak and non-adaptive security notion that requires the adversary to submit the RKD functions before
seeing the verification key of the signature scheme.

Building upon the work on non-malleable key derivation functions (nm-KDFs) [17], Qin et al. [30]
introduced the notion of continuous nm-KDFs, and used these in a similar conversion to the above
to construct an RKA secure signature scheme with respect to polynomial functions under standard
assumptions. The proposed construction of an nm-KDF can furthermore be extended to provide security
with respect to any RKD function class that has the properties the authors denote “high output entropy”
and “input-output collision resistant”. Interestingly, the transformation into RKA-secure primitives shown
in [13] can be understood as applying an nm-KDF [17, 30] to the secret key.

Since a signature scheme is an essential cryptographic primitive, clarifying the RKA security of various
constructions is of interest from both a practical and a theoretical point of view. Specifically, studying
the RKA security of well-known signatures such as the Schnorr signature scheme and DSA is important
due to their widespread use, in particular in the case of DSA, which is employed in many practical
implementations. However, besides the negative result by Bao et al. [3], who showed that the Schnorr
signature scheme and DSA are not RKA secure against bit flipping attack, it is not known whether either
scheme can provide any form of RKA security. Furthermore, simply applying the above transformations
might not always be desirable due to the relatively high performance penalties these conversions imply.

1.2 Our Contributions

In this paper, we first show that both the Schnorr signature scheme and a DSA variant are secure against
a weak notion of RKA (wRKA) that does not allow messages queried to the RKA signing oracle to be a
part of a forgery. Second, we show that the Schnorr signature scheme and the original DSA are vulnerable
to the standard notion of simple linear RKA. We then construct (standard) RKA secure signature schemes
based on the Schnorr signature scheme and DSA. Specifically, as our main technical results, we show the
following four results:

– The Schnorr signature scheme is secure against wRKA with respect to polynomial functions.
– A well-known variant of DSA by [29] is secure against wRKA with respect to polynomial functions.
– Slightly modifying the signing and verification algorithms of the Schnorr signature scheme yields an

RKA secure scheme with respect to polynomial functions.
– Slightly modifying the signing and verification algorithms of DSA yields an RKA secure scheme with

respect to polynomial functions.

In other words, the Schnorr signature scheme, which is secure against wRKA with respect to polynomial
functions, but not RKA secure even for weak attacks with respect to linear functions, can achieve full
RKA security with respect to polynomial functions by slightly modifying the scheme. While DSA is not
RKA secure with respect to linear functions, the DSA variant from [29] is secure against wRKA, and by
slightly modifying this scheme, full RKA security with respect to polynomial functions can be achieved.
Both the improved Schnorr signature scheme and the improved DSA variant are proven to be RKA secure
with respect to polynomial functions in the random oracle model, under the d-strong discrete logarithm
(d-SDL) assumption. As a corollary, the improved signature schemes are RKA secure with respect to
affine functions under the standard discrete logarithm (DL) assumption, since the 1-SDL assumption is
equivalent to the DL assumption, and polynomials of degree 1 are affine functions.
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Note that our modifications of the Schnorr signature scheme and DSA only increase the computational
cost of signing with a single exponentiation, while the computational cost of verification, signature size,
and key sizes remain unchanged. Hence, in contrast to using a conversion based on continuous nm-
KDF [27, 29] or RKA secure PRFs [4, 2], our modifications maintain the efficiency of the Schnorr signature
scheme and DSA. Furthermore, unlike all of the above mentioned conversions for achieving RKA security,
our modifications of the Schnorr signature scheme and DSA do not require the verification and signing key
to change. This is a virtue for schemes which are already deployed, such as DSA, since key management
and verification key certificates remain unchanged. Lastly, we would like to emphasize that in our proofs
of security for our improved Schnorr signature scheme and the improved DSA, we do not restrict the
number of RKA signing oracle queries or rely on a “self-destruct” mechanism [16, 17] which prevents the
adversary from making any further queries once it is detected that the signing key has been tampered
with.

1.3 Related Work

Gennaro et al. [19] show how to recover the key of almost any cryptographic primitive assuming the
adversary can tamper arbitrarily with the key of the primitive. This implies that RKA security cannot
be achieved for every set of RKD functions. On the other hand, Damg̊ard et al. [12, 13] showed that in
a security model which restricts the number of RKA queries that an adversary is allowed to make, it is
possible to achieve security for arbitrary RKD functions. In contrast to this model, which is denoted the
bounded leakage and tampering model, we will in this paper consider unrestricted adversaries which are
allowed to make an arbitrary number of RKA signing oracle queries. Since Dziembowski, Pietrzak, and
Wichs introduced non-malleable codes [15], they have been studied and found to have a good application in
the construction of RKA secure cryptosystems. While non-malleable codes in themselves are not sufficient
to provide full RKA security, continuous non-malleable codes, which were initiated in [16], enables this.
However, the security of the constructions presented in [16] relies on a self-destruct mechanism that will
prevent an attacker from interacting with the system once it has been detected that the internal state of
the systems is being tampered with. In contrast, the continuous nm-KDF proposed by Qin et al. [30] does
not require a self-destruct mechanism, and can be used to construct RKA secure public key primitives
for a large class of RKD functions. Jafargholi and Wichs [23] defined two factors which yield four levels
of security of continuous nm-KDF depending on (I) whether tampering is applied to the original secret
key persistently or applied to the changed secret key (classified by “persistent” and “non-persistent”),
(II) whether tampering to an invalid codeword causes a “self-destruct” or not. Lastly, Bellare, Cash,
and Miller [4] showed how any RKA secure identity-based encryption scheme leads to an RKA secure
signature scheme, and Goyal et al. [22] showed that the Boneh-Boyen signature scheme [11] satisfied RKA
security with respect to a class of certain polynomial RKD functions.

We note that the signature schemes EdDSA by Bernstein et al. [8] and ECDSA+ by Koblitz and
Menezes [25] resemble our schemes provided in Sect. 5.1 and 6.1, respectively, in the sense that one of
the inputs to the hash function is the verification key. However, the schemes in [8] and [25] are proposed
for a different context and RKA security is not considered.

2 Preliminaries

Here, we review basic notation and definitions of terminology.

2.1 Notation

Throughout the paper, we will use the following notation: For the set of natural numbers N, let λ ∈ N be
a security parameter. Let G be a group of prime order q, where q is a λ-bit prime. Let g be a generator
of G. Let Z∗

q = Zq \ {0}. A function F : N → R is negligible if it vanishes faster than the inverse of any
polynomial. We write Pr[A : B] to denote a probability that the predicate A is true after the event B
occurred. O(·) denotes an order.

2.2 d-Strong Discrete Logarithm Assumption

We recall the d-strong discrete logarithm (d-SDL) assumption introduced by Goyal et al. [22]. Let d be a

natural number. The d-SDL problem is to compute x given an input (g, gx, gx
2

, . . . , gx
d

) ∈ Gd+1, where

x
$← Zq.
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For an adversary A that solves the d-SDL problem over G, we define the advantage as follows:

Advd-sdlA,G (λ) = Pr

[
x′ = x :

x
$← Zq

x′ ← A(g, gx, gx2

, . . . , gx
d

)

]
.

The d-SDL assumption over G says that the advantage Advd-sdlA,G (λ) is negligible for any polynomial time
algorithm A.

It is clear that the 1-SDL assumption is equivalent to the standard DL assumption. Similar to the
d-Strong Diffie-Hellman problem [11], the d-SDL problem is easier than the standard DL problem. In
particular, more efficient solving algorithms, similar to Jao and Yoshida’s algorithm [24] for the d-Strong
Diffie-Hellman problem, can likely be constructed for the d-SDL problem.

2.3 General Forking Lemma

Bellare and Neven [6] generalized the forking lemma that was introduced by Pointcheval and Stern [27,
28] for security proofs of signature schemes.

Lemma 1 ([6]). Fix an integer Q ≥ 1 and a set Z of size q ≥ 2. Let IG be a randomized algorithm
called the input generator that outputs a string X. Suppose that a probabilistic algorithm F on input
X,h1, . . . , hQ outputs a pair of an integer J and a side output V , where h1, . . . , hQ ∈ Z and the integer
J is in the range 0, . . . , Q.

Suppose that acc denotes the following probability:

acc = Pr

J ≥ 1 :

X
$← IG

h1, . . . , hQ
$← Z

(J, V )
$← F(X,h1, . . . , hQ)

 .
The forking algorithm BF associated to F is the randomized algorithm that takes X as input, and proceeds
as follows:

1. Pick randomness ρF for F at random

2. h1, . . . , hQ
$← Z

3. (I, V )← F(X,h1, . . . , hQ; ρF )
4. If I = 0 then return (0,⊥,⊥)
5. h′1, . . . , h

′
Q

$← Z

6. (I ′, V ′)← F(X,h1, . . . , hI−1, h
′
I , . . . , h

′
Q; ρF )

7. If (I = I ′ and hI ̸= h′I) then return (1, V, V ′)

8. Else return (0,⊥,⊥)

Let the probability that BF outputs (1, V, V ′) be

frk = Pr[d = 1 : X
$← IG; (d, V, V ′)

$← BF (X)].

Then

frk ≥ acc ·
(
acc

Q
− 1

q

)
.

2.4 Signature

We recall the syntax of signature schemes, introduce functions with respect to which RKA security is
considered, and lastly define RKA security for a signature scheme.
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Signature Scheme. A signature scheme Σ consists of three algorithms: key generation algorithm,
signing algorithm, and verification algorithm. We write

Σ = (KeyGen, Sign,Verify),

where these algorithms have the following interfaces:

(sk, vk)← KeyGen(1λ),

σ ← Sign(m, sk),

1/0← Verify(m,σ, vk),

and sk, vk, and σ are a signing key, a verification key and a signature, respectively. For any message m
and any key pair (sk, vk) generated by KeyGen, the following correctness should be satisfied:

Verify(m, Sign(m, sk), vk) = 1.

Related-Key Attack. In the ordinary attack model, an adversary is allowed to obtain signatures on
arbitrary messages of its choice. In the RKA model, an adversary is also allowed to modify the signing
key and obtain signatures on arbitrary messages of its choice under the modified signing key.

The RKA model, for instance, captures a realistic attack in which an adversary manipulates a
hardware-stored secret key by electromagnetic radiation and obtains the outputs of the signing algo-
rithm. This is called tampering or a fault injection attack. RKA is formalized as a security game that
also allows an adversary to obtain signatures for modified keys. Thus, an adversary is allowed to query
related-key deriving (RKD) functions [5] as well as messages to the signing oracle.

An RKD function is a function ϕ : K → K, where K is the signing key space. Let Φ be a class of
RKD functions. The RKD function class Φ consists of operations by which an adversary is allowed to
manipulate a signing key. Normally, Φ is assumed to contain the identity function id so that RKA security
implies standard EUF-CMA [21]. We assume that it is easy to check whether a function is contained in
a class Φ, and that RKD functions are efficiently computable.

Following [7], we consider three types of RKD functions: linear functions, affine functions, and poly-
nomial functions. In the following, K is assumed to have an appropriate algebraic structure (group or
finite field). In this paper, we will consider signature schemes whose signing key space is Zq with prime
q, which constitutes a field, as required.

Linear functions. Assume that (K, ∗) is a group. The class of linear functions is defined as follows:
Φlin = {ϕ∆ | ∆ ∈ K}, where ϕ∆(k) = k ∗∆ for a key k ∈ K. Note that “∗” represents addition or
multiplication depending on the group that is considered.

Affine functions. Assume that K is a finite field. The class of affine functions is defined as follows:
Φaff = {ϕα,β | α, β ∈ K}, where ϕα,β(k) = α · k + β for a key k ∈ K.

Polynomial functions. Assume that K is a finite field. The class of polynomial functions is defined as
follows: Φpoly(d) = {ϕf | f ∈ Kd[x]}, where Kd[x] is the set of polynomials over K with degree at
most d, and ϕf (k) = f(k) for a key k ∈ K.

RKA security is getting stronger and harder to achieve, as it moves from linear functions to affine
functions to polynomial functions. In this paper, we only consider such algebraic operations.

Φ-EUF-CM-RKA [4]. We recall existential unforgeability under chosen message and RKA defined by
RKD function class Φ. This security of a signature scheme, which we will denote by Φ-EUF-CM-RKA, is
formalized by the following game between an adversary A and a challenger B.

Initialization. The challenger B runs KeyGen(1λ) to obtain a signing key sk and a verification key vk.
B sets a list M ← ∅. Then, B gives vk to A．

RKA signing oracle query. For adaptive queries (mi, ϕi) by A, B returns the signatures

σi ← Sign(mi, ϕi(sk)),

where ϕi ∈ Φ. If ϕi(sk) = sk, B records mi in the list M .
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Output. Suppose that A outputs (m∗, σ∗). If Verify(m∗, σ∗, vk) = 1 and m∗ ̸∈ M , then B outputs 1.
Otherwise, B outputs 0.

Let F be the event that B’s output is 1 in the above game. We define the advantage of A against
Φ-EUF-CM-RKA security as

AdvΦ-euf-cm-rka
A,Σ (λ) := Pr[F ].

If the advantage AdvΦ-euf-cm-rka
A,Σ (λ) is negligible for any probabilistic polynomial time algorithm A, a

signature scheme Σ is said to be Φ-EUF-CM-RKA secure.
We note that the security definition is strong in the sense that the adversary can reuse the message

mi as the forgery even if (mi, ϕi) has been queried to the RKA signing oracle as long as ϕi(sk) ̸= sk.

Φ-wEUF-CM-RKA. We also consider a weaker variant of the above notion following the traditional
weak existential unforgeability against adaptive chosen-message attacks [21] and the weak existential
unforgeability of message authentication codes against RKA [9]. By requiring that the adversary in the
above security experiment, produces a forgery on a message m∗ which has not previously been submitted
to the RKA signing oracle, we obtain the weaker security notion Φ-wEUF-CM-RKA.

Although it can be argued that, in some scenarios, the weaker notion Φ-wEUF-CM-RKA is sufficient
to guarantee security, we note that the standard notion used in the literature, corresponds to the stronger
notion Φ-EUF-CM-RKA defined above. We will show that the Schnorr signature scheme is Φpoly(d)-wEUF-
CM-RKA secure, but the scheme is vulnerable with respect to Φlin-EUF-CM-RKA as we demonstrate in
Sect. 4.1. The improved Schnorr signature scheme presented in Sect. 5.1 will be proven to be Φpoly(d)-EUF-
CM-RKA secure. We furthermore show that one of the DSA variants from [29] is Φpoly(d)-wEUF-CM-
RKA secure, but the original DSA is vulnerable with respect to Φlin-EUF-CM-RKA as we demonstrate
in Sect. 4.2. Note that it is not known whether the DSA variant is vulnerable to Φpoly(d)-EUF-CM-RKA,
but the improved DSA presented in Sect. 6.1 will be proven to be Φpoly(d)-EUF-CM-RKA secure. For
further details, see Sect. 4, 5, and 6.

We note that, stronger models of RKA security that is often called fault attacks have been considered
for round-based symmetric encryption schemes [10, 14, 20].These models allow the adversary to introduce
faults (i.e. modification of the input or the internal state) in the individual rounds of the encryption
algorithm, which, for example, lead to recovering a secret key. A similar extension, in which the adversary
can choose when in the execution of the signing algorithm it would like to modify the signing key, could be
considered for the RKA security of signature schemes. However, in this paper, we focus on the standard
RKA notion (and its weaker variant) introduced above.

2.5 Schnorr Signature Scheme

The Schnorr signature scheme was proposed by Schnorr in 1989 [31] and was proven to be secure in the
random oracle model based on the discrete logarithm assumption [27]. Recall that G is a group of prime
order q, and g is a generator. The three algorithms, key generation, signing, and verification algorithms,
are defined as follows.

– KeyGen: This algorithm takes 1λ as input, and generates a signing key sk and a verification key vk
as follows.
1. Choose x

$← Zq and let y ← gx.
2. Choose a hash function H : {0, 1}∗ → Zq.
3. Output sk = x, vk = (y,H).

– Sign: This algorithm takes a message m ∈ {0, 1}∗ and the signing key sk as input, and generates a
signature σ as follows.

1. Choose t
$← Zq and let r ← gt.

2. Let h← H(m ∥ r).
3. Let s← x · h+ t mod q.
4. Output σ ← (h, s).

– Verify: This algorithm takes a message m, a signature σ, and the verification key vk as input, and
verifies the signature as follows.
1. Let r′ ← gsy−h.
2. Let h′ ← H(m ∥ r′).
3. If h′ = h, return 1, otherwise return 0.
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2.6 DSA

DSA was proposed as the US Digital Signature Standard [1] in 1994. First, we recall the original DSA
scheme.

Let p and q be primes, where q is a prime factor of p− 1. Let g ∈ Z∗
p be a generator of prime order q.

DSA is defined by the following three algorithms:

– KeyGen: This algorithm takes 1λ as input, and generates a signing key sk and a verification key vk
as follows.
1. Choose x

$← Z∗
q and let y ← gx mod p.

2. Choose a hash function H : {0, 1}∗ → Zq.
3. Output sk = x, vk = (y,H).

– Sign: This algorithm takes a message m ∈ {0, 1}∗ and the signing key sk as input, and generates a
signature σ as follows.

1. Choose t
$← Z∗

q and let r ← (gt mod p) mod q.
2. Let s← t−1(H(m) + x · r) mod q.
3. Output σ ← (r, s).

– Verify: This algorithm takes a message m, a signature σ = (r, s), and the verification key vk = (y,H)
as input, and verifies the signature as follows.
1. Let r′ ← (gH(m)/syr/s mod p) mod q.
2. If r′ = r, output 1, otherwise output 0.

Variants of DSA. While the original scheme has not been proven to be secure, Pointcheval and Vau-
denay [29] proved that two variants of DSA are secure in the sense of standard security in the random
oracle model. The first DSA variant uses one additional random oracle H ′, and the first step of signing
algorithm computes r ← H ′(gt mod p). The second DSA variant’s main difference is that a hash function
takes as input not only a message but also the value r. Looking ahead, we will consider a slight modified
version of this second variant of DSA in Sect. 6.

On the Collision Resistance of the DSA mapping from Z∗
p to Zq. Note that in Step 1 of the

signing algorithm of DSA, we have to map an element gt ∈ Z∗
p to an element r ∈ Zq. In [29], Pointcheval

and Vaudenay considered this mapping an abstract function from G to Zq, where G is a subgroup of
Z∗
p of order q. To prove security of their second variant of DSA, Pointcheval and Vaudenay made the

assumption that this function has a certain collision resistance property. In this paper, we take a similar
approach as [29], and assume this function, which we will denote Fp,q, has the following property:

Let Fp,q : G → Zq be the mapping defined by g 7→ g mod q, where g ∈ G, and G, q, p are the
parameters of the group over which DSA is constructed (i.e. G is a subgroup of Z∗

p of order q). We say
that Fp,q is ϵ-collision-resistant if no probabilistic polynomial time algorithm A can find two distinct
elements g1, g2 ∈ G such that Fp,q(g1) = Fp,q(g2) with probability more than ϵ. When ϵ is negligible in
the security parameter, we simply say that Fp,q is collision resistant.

3 wRKA Security of Signature Schemes

In this section, we show that the Schnorr signature scheme and the second variant of DSA from [29] are
Φpoly(d)-wEUF-CM-RKA secure. We remind the reader that Φpoly(d)-wEUF-CM-RKA security requires
that the message m∗ in the forgery must be new and that it has not been submitted to the RKA signing
oracle.

First, we show the following theorem regarding the Schnorr signature scheme.

Theorem 1. Let d be a positive integer. Under the d-SDL assumption over G, the Schnorr signature
scheme is Φpoly(d)-wEUF-CM-RKA secure in the random oracle model.

More precisely, for any probabilistic polynomial time algorithm A with running time tA, making qS
RKA signing oracle queries, and qH random oracle queries to H, there exists a probabilistic polynomial
time algorithm B with running time tB = 2tA +O(qS + qH) that satisfies the following equation:

AdvΦ
poly(d)-euf-cm-rka

A,Σ (λ) ≤
(
(qH + qS)

(
Advd-sdlB,G (λ) +

2qS + 1

q

))1/2

.
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The proof is very similar to that of Theorem 3 in Sect. 5.2. We highlight the differences between the
two proofs after presenting the proof of Theorem 3.

Next, we show the following theorem regarding the second DSA variant from [29].

Theorem 2. Let d be a positive integer, and assume the mapping Fp,q is collision resistant. Under the
d-SDL assumption over G, the second DSA variant is Φpoly(d)-wEUF-CM-RKA secure in the random
oracle model.

More precisely, assume that Fp,q is ϵ-collision-resistant. Then, for any probabilistic polynomial time
algorithm A with running time tA, making qS RKA signing oracle queries, and qH random oracle queries
to H, there exists a probabilistic polynomial time algorithm B with running time tB = 2tA +O(qS + qH)
that satisfies the following equation:

AdvΦ
poly(d)-euf-cm-rka

A,Σ (λ) ≤
(
(qH + qS)

(
Advd-sdlB,G (λ) +

1

q
+

2ϵ

qH + qS

))1/2

.

Since the proof is quite similar to that of Theorem 4 in Sect. 6.2, the differences between the two
proofs are highlighted after Theorem 4.

4 Related-Key Attacks against Signature Schemes

In this section, we show related-key attacks against the Schnorr signature scheme and DSA. As mentioned
in Sect. 2.4, linear functions as RKD functions can be described as addition or multiplication depending
on the group used as the signing key space.

4.1 Related-Key Attack against Schnorr Signature

We show that the Schnorr signature scheme is not RKA secure with respect to linear functions or addition
by providing a simple and efficient attack. That is, we show that the Schnorr signature scheme is not
Φlin-EUF-CM-RKA secure.

An adversary A forges a signature as follows.

1. Choose an arbitrary message m′ ∈ {0, 1}∗ and an arbitrary value b ∈ Z∗
q .

2. Query (m′, ϕ(x) = x− b) to the RKA signing oracle and obtain the signature (h′, s′) as a response.
3. Output a message m′ and forgery (h′, s′ + b · h′).

Now, let us confirm that the forgery is valid. First, the reply from the RKA signing oracle, (h′, s′), must
have been computed by the following procedure:

– Choose t′
$← Zq and let r′ ← gt

′
.

– Let h′ ← H(m′ ∥ r′).
– Let s′ ← (x− b) · h′ + t′ mod q.

The forged signature (h′, s′ + b · h′) on the message m′ is verified as follows.

r′′ = gs
′+b·h′

y−h′
= g(x−b)·h′+t′+b·h′

y−h′
= g(x−b)·h′+t′+b·h′−x·h′

= gt
′
= r′.

4.2 Related-Key Attack against DSA

We next show that DSA is not RKA secure with respect to linear functions or multiplication by providing
a simple and efficient attack. That is, we show that DSA is not Φlin-EUF-CM-RKA secure.

An adversary A forges a signature as follows.

1. Choose two distinct messages m0,m1 ∈ {0, 1}∗ and let z0 ← H(m0), z1 ← H(m1).

2. Let a← z1
z0

mod q.

3. Query (m1, ϕ(x) = ax) to the RKA signing oracle and obtain the signature (r, s = t−1(z1 + axr)).

4. Output a message m∗ = m0 and the signature (r∗, s∗) = (r,
s

a
mod q).
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Note that even if a is 1, the attack still works.

The forged signature (r,
s

a
mod q) on the message m0 will be verified as follows. First, we compute

w∗:

w∗ = (s∗)−1 =
a

s
=

ta

z1 + axr
=

ta

a · z0 + axr
=

t

z0 + xr
.

Then, we compute u1 = w∗z0 mod q and u2 = rw∗ mod q. Now we can check

r′ = (gH(m0)/s
∗
yr

∗/s∗ mod p) mod q = (gu1yu2 mod p) mod q

= (gw
∗z0yrw

∗
mod p) mod q = (gw

∗z0+xrw∗
mod p) mod q

= (gw
∗(z0+xr) mod p) mod q = (gt mod p) mod q = r.

Thus, the forgery output by A is valid.

5 Improved Schnorr Signature Scheme and Its RKA Security

As described in Sect. 4.1, the original Schnorr signature scheme is not RKA secure with respect to linear
functions. In this section, we show that a slight modification yields an RKA-secure signature scheme with
respect to polynomial functions. We refer to this scheme as the improved Schnorr signature scheme.

5.1 Construction

Our slight modification of the Schnorr signature scheme is as follows. The hash function is modified to
take an extra input, which will correspond to a recalculated value of the verification key. Suppose that
G is a group of prime order q, and g is a generator. The improved Schnorr signature scheme is defined as
follows:

– KeyGen: This algorithm takes 1λ as input, and generates a signing key sk and a verification key vk
as follows.
1. Choose x

$← Zq and let y ← gx.
2. Choose a hash function H : {0, 1}∗ → Zq.
3. Output sk = x and vk = (y,H).

– Sign: This algorithm takes a message m ∈ {0, 1}∗ and the signing key sk as input, and generates a
signature σ as follows.

1. Choose t
$← Zq and let r ← gt.

2. Let ψ ← gx.
3. Obtain h← H(m ∥ r ∥ψ).
4. Let s← x · h+ t mod q.
5. Output σ ← (h, s).

– Verify: This algorithm takes a message m, a signature σ, and the verification key vk as input, and
verifies the signature as follows.
1. Let r′ ← gsy−h.
2. Let h′ ← H(m ∥ r′ ∥ y).
3. If h′ = h, output 1, otherwise output 0.

Note that the second step of the signing algorithm, computation of ψ ← gx, should not be altered
to simply use the verification key y as ψ. That is, the signing algorithm computes ψ = gx each time it
computes a signature.

Given that the verification key is recomputed from the signing key, one might wonder whether RKA
security can be achieved simply by comparing the recomputed verification key with the original (assuming
that the original verification key is available to the signing algorithm). However, for this to work, the
additional assumption that the original verification key is stored and remains unchanged, is required. In
the RKA setting, this seems unlikely to hold since the adversary is assumed to be capable of modifying
the signing key, which should be better protected than the verification key. Furthermore, if the adversary
is capable of modifying the stored signing key, a similar attack to Sect. 4.1 and 4.2 will be possible:
an attacker queries (m′, ϕ(x) = x − b) under the modified verification key yg−b in the second step of
the attack. In contrast, our schemes provided in this section and in Sect. 6.1 can be shown RKA secure
without any additional assumptions regarding stored values.
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5.2 Proof of Security

We prove the following theorem about the improved Schnorr signature scheme.

Theorem 3. Let d be a positive integer. Under the d-SDL assumption over G, the signature scheme in
Sect. 5.1 is Φpoly(d)-EUF-CM-RKA secure in the random oracle model.

More precisely, for any probabilistic polynomial time algorithm A with running time tA, making qS
RKA signing oracle queries, and qH random oracle queries to H, there exists a probabilistic polynomial
time algorithm B with running time tB = 2tA +O(qS + qH) that satisfies the following equation:

AdvΦ
poly(d)-euf-cm-rka

A,Σ (λ) ≤
(
(qH + qS)

(
Advd-sdlB,G (λ) +

2qS + 1

q

))1/2

. (1)

Proof. Let A be any probabilistic polynomial time adversary that attacks the Φpoly(d)-EUF-CM-RKA
security of the improved Schnorr signature scheme making qS RKA signing oracle queries and qH random
oracle queries to H. We will show how the algorithm B that solves the d-SDL problem is constructed,
and then we will show the above inequality between the advantage of A and that of B (Eq. (1)).

First, we specify the following to use the general forking lemma. Suppose that IG is the input generator

that determines G ← (G, q, g), picks x $← Zq, computes y1 ← gx, y2 ← gx
2

, . . . , yd ← gx
d

, and outputs
X = (G, y1, y2, . . . , yd). Let the set Z be Zq, and let the integer Q be qH + qS . Let F be an algorithm
that uses randomness ρF consisting of randomness ρA for A and qS values s1, . . . , sqS ∈ Zq, takes
X = (G, y1, y2, . . . , yd) and h1, . . . , hqH+qS ∈ Zq as input, and internally runs A as follows:

Procedure of F . F sets pp← G and sets vk ← y1. Note that values h1, . . . , hqH will be used for the response
to A’s hash oracle queries, and values s1, . . . , sqS , hqH+1, . . . , hqH+qS will be used for the response to A’s
RKA signing oracle queries.

Initialization. F proceeds as follows.
– Let LH ← ∅,M ← ∅.
– Run A with public parameter pp, input vk ← y, and randomness ρA.

Hash oracle query. For the i-th (1 ≤ i ≤ qH) hash oracle query (mi, ri, yi) from A, F responds as
follows:
– If (mi, ri, yi, h, ·) for some h ∈ Zq is recorded in LH (· is an arbitrary value), F returns h.
– Otherwise, F records (mi, ri, yi, hi,⊥) in the list LH and returns hi.

RKA signing oracle query. For the j-th (1 ≤ j ≤ qS) RKA signing oracle query (mj , ϕj) from A, F
computes the following value.

rj ← gsj (gϕj(x))−hqH+j = gsj−a0·hqH+j{(gx
d

)ad · (gx
d−1

)ad−1 . . . (gx)a1}−hqH+j ,

where ϕj(x) = ad · xd + ad−1 · xd−1 + · · ·+ a1 · x+ a0. Then,

– If there is already an entry of the form (mj , rj , g
ϕj(x), ·, ·) in the list LH , then F gives up and

terminates with output (0,⊥).
– Otherwise, F records (mj , rj , g

ϕi(x), hqH+j , sj) in LH , where hqH+j is a part of F ’s input, and sj
is a part of F ’s randomness ρF , then returns a signature σj = (hqH+j , sj) to A.

Output. When A outputs a message m∗ and a forged signature σ∗ = (h∗, s∗), F verifies it by using the
verification key and the list M . For the forged signature σ∗ = (h∗, s∗) on the message m∗, we assume
that A has made a hash query (m∗, r∗, y), where

r∗ = gs
∗
y−h∗

.

We assume this without loss of generality because we are always able to construct an adversary A′

that queries (m∗, r∗, y) to the hash oracle by using A that might not query (m∗, r∗, y) to the hash
oracle. Note that such an adversary A′ increases hash oracle query only once. Thus, F always finds
(m∗, r∗, y, h, ·) for some h ∈ Zq in the list LH . Let J ∈ {1, . . . , qH} be the index such that h = hJ
found in this process. Then,
– If h∗ = hJ and the last element of (m∗, r∗, y, h∗, ·) is ⊥ (i.e. h∗ has been computed by hash oracle,

but has not been computed by RKA signing oracle), then F outputs (J, V = (h∗, s∗)). Here, the
case means that h∗ satisfies the equation h∗ = H(m∗, r∗, y), and thus σ∗ = (h∗, s∗) is a valid
signature for m∗ in the experiment simulated by F .
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– Otherwise, F outputs (0,⊥).

The above completes the description of F . We observe that the probability that F fails to answer A’s
RKA signing oracle queries is at most qS(qH + qS)/q because of the following reasons. First, A is not
able to compute the hidden value ri = gsi · (gϕ(x))−hi computed by F because si and hi are hidden from
A. Thus the probability that the list LH already contains an entry (mi, ri, g

ϕ(x), ·, ·) when A makes one
RKA signing oracle query is at most (qH + qS)/q, where qH + qS represents the size of LH . Then, since
A makes at most qS RKA signing oracle queries, the probability that F fails to answer A’s RKA signing
queries is at most qS(qH + qS)/q. Here, note that F perfectly simulates the EUF-CM-RKA experiment
for A in the random oracle model unless F fails to answer A’s RKA signing oracle queries. If A succeeds
in outputting a valid forgery pair (m∗, σ∗ = (h∗, s∗)), and F succeeds in answering RKA signing oracle
queries, then F always outputs (J, V = (h∗, s∗)) such that J ≥ 1 and h∗ = hJ . Since the probability that
F outputs such (J, V ) is acc, we obtain

acc ≥ AdvΦ
poly(d)-euf-cm-rka

A,Σ (λ)− qS(qH + qS)

q
.

By the general forking lemma (Lemma 1), we have the following inequality about the probability frk
that BF succeeds in forking (i.e., terminates at Step 7 in the lemma),

frk ≥ acc ·
(

acc

qH + qS
− 1

q

)
.

Thus we have

frk ≥
(AdvΦ

poly(d)-euf-cm-rka
A,Σ (λ))2

qH + qS
− 2qS + 1

q
.

Next, we relate frk with the advantage of another algorithm B that solves the d-SDL problem.

Procedure of B. B takes G and (g, gx, gx
2

, gx
3

, . . . , gx
d

) ∈ Gd+1 as input, and it sets X = (G, (g, gx, gx2

,

gx
3

, . . . , gx
d

)). The algorithm B performs the forking procedure BF corresponding to F as described
above. Let (d, V, V ′) be the output of BF . If d = 0, B gives up and aborts. Otherwise, let V = (h∗(1), s

∗
(1))

and V ′ = (h∗(2), s
∗
(2)). At this point, it is guaranteed that h∗(2) ̸= h∗(1). By using V and V ′, we have

r∗ = gs
∗
(1)y−h∗

(1) = gs
∗
(2)y−h∗

(2) , which implies y = g(s
∗
(1)−s∗(2))/(h

∗
(1)−h∗

(2)). Thus B computes x = (s∗(1) −
s∗(2))/(h

∗
(1) − h

∗
(2)) mod q, and terminates with output x.

The above completes the description of B, and this x is the required discrete logarithm. In other
words, B solves the given instance of the d-SDL problem. The running time of B, tB, is the sum of the
running time of BF , and the time to compute x. Since BF runs F twice, F runs A once, and F answers
A’s RKA signing and hash oracle queries, the running time of B satisfies tB = 2tA + O(qS + qH). B
succeeds in computing the discrete logarithm x such that gx = y whenever BF terminates and outputs
(d, V, V ′) such that d = 1. Therefore, we obtain

Advd-sdlB,G (λ) = frk

and then we obtain

Advd-sdlB,G (λ) ≥

(
AdvΦ

poly(d)-euf-cm-rka
A,Σ (λ)

)2

qH + qS
− 2qS + 1

q
.

Finally, we obtain

AdvΦ
poly(d)-euf-cm-rka

A,Σ (λ) ≤
(
(qH + qS)

(
Advd-sdlB,G (λ) +

2qS + 1

q

))1/2

,

which completes the proof.

We note that the proof of Theorem 1 is obtained by changing the hash oracle query and the components
of the list LH to (mi, ri) and (mj , rj , hqH+j , sj), respectively. Moreover, when the forgery is produced,
the last element of (m∗, r∗, h∗, ·) is ⊥ since the message must not have been submitted to the RKA
signing oracle as required by the security notion Φpoly(d)-wEUF-CM-RKA. In the proof of Theorem 3, on
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the other hand, the last element of the forgery (m∗, r∗, y, h∗, ·) is ⊥ since the message m∗ has not been
submitted to the RKA signing oracle with ϕ such that ϕ(sk) = sk, thus y ̸= gϕ(x).

The 1-SDL assumption is equivalent to the ordinary DL assumption, which leads to the following
result.

Corollary 1. The improved Schnorr signature scheme is RKA secure with respect to affine functions in
the random oracle model under the DL assumption over G.

6 Improved DSA and Its RKA Security

As described in Sect. 4.2, the original DSA is not RKA secure with respect to linear functions. In
this section, we show that a slight modification yields an RKA-secure signature scheme with respect to
polynomial functions. We refer to this scheme as the improved DSA.

6.1 Construction

Based on one of DSA variants (introduced as “second variant” in [29]), we construct an RKA secure variant
of DSA with respect to polynomial functions. The slight modification of DSA variant is as follows. The
hash function is modified to take an extra input, which will correspond to a recalculated value of the
verification key. Suppose that q is a prime, p is a prime such that p−1 mod q = 0, and G ⊆ Z∗

p is a group
of prime order q. Let g ∈ G be a generator. Let Fp,q : G→ Zq be the mapping defined by g 7→ g mod q,
where g ∈ G, and G, q, p are the parameters of the group.

The improved DSA is defined as follows:

– KeyGen: This algorithm takes 1λ as input, and generates the signing key sk and the verification key
vk as follows.
1. Choose x

$← Z∗
q and let y ← gx mod p.

2. Choose a hash function H : {0, 1}∗ → Zq.
3. Output sk = x and vk = (y,H).

– Sign: This algorithm takes a message m ∈ {0, 1}∗, the verification key vk, and the signing key sk as
input, and generates a signature σ as follows.

1. Choose t
$← Z∗

q and let r ← Fp,q(g
t mod p).

2. Let ψ ← gx mod p.
3. Let s← t−1(H(m ∥ r ∥ψ) + x · r) mod q.
4. Output σ ← (r, s).

– Verify: This algorithm takes a message m, a signature σ, and the verification key vk as input, and
verifies the signature as follows.
1. Let r′ ← Fp,q(g

H(m ∥ r ∥ y)/syr/s mod p).
2. If r′ = r, output 1, otherwise output 0.

Note that the computation of a hash function at the third step of the signing algorithm takes as input
not only a message and the value r, but also ψ = gx. This computation is different from that of the
second DSA variant [29].

6.2 Proof of Security

We prove the following theorem about the improved DSA.

Theorem 4. Let d be a positive integer, and assume the mapping Fp,q is collision resistant. Under the
d-SDL assumption over G, the signature scheme in Sect. 6.1 is Φpoly(d)-EUF-CM-RKA secure in the
random oracle model.

More precisely, assume that Fp,q is ϵ-collision-resistant. Then, for any probabilistic polynomial time
algorithm A with running time tA, making qS RKA signing oracle queries, and qH random oracle queries
to H, there exists a probabilistic polynomial time algorithm B with running time tB = 2tA +O(qS + qH)
that satisfies the following equation:

AdvΦ
poly(d)-euf-cm-rka

A,Σ (λ) ≤
(
(qH + qS)

(
Advd-sdlB,G (λ) +

1

q
+

2ϵ

qH + qS

))1/2

. (2)

12



Proof. An inequality between the advantage of A and that of B (Eq. (2)) is obtained in the same manner
as the proof of Theorem 3. Now, we only show how the forking algorithm F and the algorithm B which
solves the d-SDL problem are constructed.

As is done in Sect. 5.2, we first specify the following to use the general forking lemma. Suppose that IG

is the input generator that determines G ← (G, q, g), picks x $← Zq, computes y1 ← gx, y2 ← gx
2

, . . . , yd ←
gx

d

, and outputs X = (G, y1, y2, . . . , yd). Let the set Z be Zq, and let the integer Q be qH + qS . Let F
be an algorithm that uses randomness ρF consisting of randomness ρA for A and r1, . . . , rqH+qS ∈ Zq,
takes X = (G, y1, y2, . . . , yd) and h1, . . . , hqH+qS ∈ Zq as input (where we consider ri are random values
for ri/si and hi are random values for hi/si.), and internally runs A as follows:

Procedure of F . F sets pp ← G and sets vk ← y1. Note that values indexed from 1 to qH , r1, . . . , rqH ,
h1, . . . , hqH will be used for the response to A’s hash oracle queries, and the rest of the values
rqH+1, . . . , rqH+qS , hqH+1, . . . , hqH+qS will be used for the response to A’s RKA signing oracle queries.

Initialization. F proceeds as follows.
– Let LH ← ∅,M ← ∅.
– Run A with public parameter pp, input vk ← y, and randomness ρA.

Hash oracle query. For the i-th (1 ≤ i ≤ qH) hash oracle query (mi, ri, yi) from A, F responds as
follows:
– If (mi, ri, yi, h, ·) for some h ∈ Zq is recorded in LH (· is an arbitrary value), F returns h.
– Otherwise, F obtains hi as follows: From ri and ri, F obtains si. From hi and si, F obtains hi.

Then, F records (mi, ri, yi, hi,⊥) in the list LH and returns hi.
RKA signing oracle query. For the j-th (1 ≤ j ≤ qS) RKA signing oracle query (mj , ϕj) from A, F

computes the value rj ← Fp,q(g
hj (gϕj(x))rj mod p), where ϕj(x) = ad ·xd+ad−1 ·xd−1+· · ·+a1 ·x+a0.

Note that F can compute gϕ(x) by using its input X. From rqH+j and rqH+j , F obtains sqH+j . From
hqH+j and sqH+j , F obtains hqH+j .

– If there is already an entry of the form (mj , rqH+j , g
ϕj(x), ·, ·) in the list LH , then F gives up and

terminates with output (0,⊥)
– Otherwise, F records (mj , rqH+j , g

ϕj(x), hqH+j , sqH+j) in LH , and then F returns a signature
σj = (rqH+j , sqH+j) to A.

Output. When A outputs a message m∗ and a forged signature σ∗ = (r∗, s∗), F verifies it by using
the verification key and the list M . For the forged signature σ∗ = (r∗, s∗) on the message m∗, we
assume that A has made a hash query (m∗, r∗, y) without loss of generality. Thus, F always finds
(m∗, r∗, y, h, ·) for some h ∈ Zq in the list LH . Let J ∈ {1, . . . , qH} be the index such that h = hJ
found in this process. Then,
– If h∗ = hJ and the last element of (m∗, r∗, y, h∗, ·) is ⊥ (i.e. h∗ has been computed by hash oracle,

but has not been computed by RKA signing oracle), where h∗ = H(m∗, r∗, y), then F outputs
(J, V ← (r∗, s∗)). Here, the case means σ∗ = (r∗, s∗) is a valid signature for m∗ in the experiment
simulated by F .

– Otherwise, F outputs (0,⊥).

The above completes the description of F . Note that unless one of A’s RKA signing oracle queries
causes a collision in the list LH (in which case F will terminate with output (0,⊥)), F will provide a
perfect simulation for A. Furthermore, since a collision in the list LH will directly lead to the ϵ-collision-
resistance of the mapping function Fp,q to be broken, the probability that F terminates with output

different from (0,⊥) will be at least AdvΦ
poly(d)-euf-cm-rka

A,Σ (λ)− ϵ.

Procedure of B. B takes a d-SDL problem (g, gx, gx
2

, gx
3

, . . . , gx
d

) ∈ Gd+1 as input, and simulates the

challenger for an adversary A in the Φpoly(d)-EUF-CM-RKA security game. It sets X = (G, (g, gx, gx2

,

gx
3

, . . . , gx
d

)). The algorithm B performs the forking procedure BF corresponding to F as described
above. Let (d, V, V ′) be the output of BF . If d = 0, B gives up and aborts. Otherwise, let V = (r∗, s∗(1))

and V ′ = (r∗, s∗(2)). At this point, it is guaranteed that h∗(2) ̸= h∗(1), thus s
∗
(2) ̸= s∗(1). By using V and V ′,

we have r′ = Fp,q(g
h∗
(1)/s

∗
(1)yr

∗/s∗(1) mod p) = Fp,q(g
h∗
(2)/s

∗
(2)yr

∗/s∗(2) mod p), which implies

y = g(s
∗
(1)h

∗
(2)−s∗(2)h

∗
(1))/r

∗(s∗(2)−s∗(1))
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Thus, B obtains

x =
s∗(1)h

∗
(2) − s

∗
(2)h

∗
(1)

r∗(s∗(2) − s
∗
(1))

mod q.

This x is the required discrete logarithm. In other words, B solves the given instance of the d-SDL
problem. The running time of B, tB, is the sum of the time to run A twice, the time to compute x, and
the time to answer the RKA signing and hash oracle queries. Therefore tB = 2tA +O(qS + qH).

Now, we highlight the differences between the proof of Theorem 2 and Theorem 4. The proof of
Theorem 2 is obtained by changing the hash oracle query to (mi, ri) and the components of the list
LH to (mj , rj , hqH+j , sj). Furthermore, when the forgery is produced and the algorithm F checks the
validity, the last element of (m∗, r∗, h∗, ·) is ⊥ since the security notion Φpoly(d)-wEUF-CM-RKA does
not allow the message to have been submitted to the RKA signing oracle. In the proof of Theorem 4,
on the other hand, the security notion Φpoly(d)-EUF-CM-RKA guarantees that the last element of the
forgery (m∗, r∗, y, h∗, ·) is ⊥ since the message m∗ has not been submitted to the RKA signing oracle
with ϕ such that ϕ(sk) = sk, thus y ̸= gϕ(x). The 1-SDL assumption is equivalent to the ordinary DL
assumption, which leads to the following result.

Corollary 2. If the DL assumption over G holds and the function Fp,q is collision-resistant, then the
improved DSA is RKA secure with respect to affine functions in the random oracle model.

7 Conclusions

We analyzed the RKA security of the Schnorr signature scheme and DSA. We showed that the Schnorr
signature scheme and the second DSA variant from [29] are weak RKA secure with respect to polyno-
mial functions (Φpoly(d)-wEUF-CM-RKA), but the Schnorr signature scheme and the original DSA are
not fully secure against relatively weak attacks based on linear functions (Φlin-EUF-CM-RKA). It is not
known whether the second DSA variant is vulnerable with respect to Φpoly(d)-EUF-CM-RKA. We leave
this as an open problem. However, we proved that simple modifications yield schemes, the improved
Schnorr signature scheme and the improved DSA scheme, which are RKA secure with respect to polyno-
mial functions (Φpoly(d)-EUF-CM-RKA) in the random oracle model. The RKA security with respect to
polynomial functions is proven under the d-SDL assumption. Interestingly, considering the case of d = 1,
our results show that our improved Schnorr scheme and the improved DSA are RKA secure with respect
to affine functions in the random oracle model under the ordinary DL assumption. Moreover, our simple
modification of the original Schnorr scheme and the considered DSA variant does not require the public
or private key from the original schemes to change, and only increases the computational cost of the sign-
ing algorithm with a single exponentiation while no other computational cost or the signature size will
increase. However, the improved schemes do not address bit-flipping attacks, such as those highlighted
by Bao et al. [3]. It remains future work to construct schemes which are provably secure against these
attacks.
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