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Abstract. The recent advent of cloud computing and the IoT has made
it imperative to have efficient and secure cryptographic schemes for on-
line data sharing. Data owners would ideally want to store their data/files
online in an encrypted manner, and delegate decryption rights for some
of these to users with appropriate credentials. An efficient and recently
proposed solution in this regard is to use the concept of aggregation that
allows users to decrypt multiple classes of data using a single key of con-
stant size. In this paper, we propose a secure and dynamic key aggregate
encryption scheme for online data sharing that operates on elliptic curve
subgroups while allowing dynamic revocation of user access rights. We
augment this basic construction to a generalized two-level hierarchical
structure that achieves optimal space and time complexities, and also
efficiently accommodates extension of data classes. Finally, we propose
an extension to the generalized scheme that allows use of efficiently com-
putable bilinear pairings for encryption and decryption operations. Each
scheme is formally proven to be semantically secure. Practical experi-
ments have been conducted to validate all claims made in the paper.
Keywords: Key-Aggregate Cryptoystem, Online data sharing, Semantic
security, Dynamic access rights

1 Introduction

The advent of cloud computing and the Internet of Things (IoT) has led to a
massive rise in the demand for online data storage and data sharing services.
Two very important paradigms that any data sharing service provider must
ensure are privacy and flexibility. Since online data almost always resides in
shared environments (for instance, multiple virtual machines running on the
same physical device), ensuring privacy is a non trivial task. Current technology
for secure data sharing comes in two major flavors - trusting a third party auditor
[1] or using the user’s own key to encrypt her data [2]. Figure 1 describes a
realistic online data sharing set-up. Suppose a data owner stores multiple classes
of encrypted data online with the intention of providing users decryption keys
to one or more such ciphertext classes, based on their respective credentials.
She might also wish to dynamically update the delegated access rights based on
changes to the data/credibility issues. The challenge therefore is to provide her



Key for 4""""-""3(2,3,4)

e3n i

4
’
Online

Data Storage

Owner | :
Encrypts

5 Ciphertext
classes

Fig. 1: Example of Online Data Sharing

with a secure and efficient online data sharing scheme that allows updates to
user access rights on the fly.

A niive (and extremely inefficient) solution is to have a different decryption
key for each ciphertext class, and share them accordingly with users via secured
channels. A more efficient proposition is the key-aggregate encryption (KAC)
scheme proposed in [3] that combines the power of individual decryption keys,
for ciphertext classes in a given subset, into a single key for that subset. This key
is specific to the designated subset, meaning that it cannot be used to decrypt
any ciphertext class outside that subset. KAC derives its roots from the seminal
work by Boneh et.al. [4] that allows broadcasting of data (encrypted by the same
public key) among multiple users, each of whom possess their own private keys for
decryption. Both these schemes make use of bilinear mappings on multiplicative
cyclic groups.

Contributions: In this paper, we propose a basic key-aggregate scheme on
additive elliptic subgroups that delegate decryption rights to multiple ciphertext
classes using a single constant sized key. The scheme is dynamic in nature, that is,
it allows the data owner to revoke access rights of users without having to change
the entire set-up, unlike in the existing KAC scheme. We then generalize this
scheme into a two-level construction that allows flexible public key extension
and maintains constant ciphertext size, while avoiding many of the pitfalls of
earlier hierarchical schemes. We provide a formal proof of semantic security
for the generalized scheme. We further extend the generalized scheme to allow
using popular and efficiently implementable elliptic curve pairing schemes. We
compare the time and space requirements of the proposed generalized scheme
under various operating configurations. We also compare the performance of our
proposed scheme, in terms of key size and resource utilization, with that of other
existing schemes in literature.

Organization: The rest of the paper is organized as follows. Section 2 provides
a brief overview of state of the art data sharing schemes. Section 3 introduces the
notion of key aggregate cryptosystem, and provides a description of the complex-
ity assumptions used to prove the semantic security of our proposed schemes.
Our basic dynamic key-aggregate scheme is presented in Section 4. We follow up
with a more generalized two-tiered construction of the scheme for efficient public



key extension in Section 5, and prove its semantic security. A further extension
for the generalized scheme that allows using efficiently implementable pairings
is introduced and proved semantically secure in Section 6. Experimental results
using Tate pairings based implementations of the extended scheme are presented
in Section 7. Finally Section 8 concludes the paper.

2 Related Work

In this section we present a brief overview of public and private key cryptographic
schemes in literature for secure online data sharing. While many of them focus
on key aggregation in some form or the other, very few have the ability to provide
constant size keys to decrypt an arbitrary number of encrypted entities.

2.1 Hierarchical Encryption

One of the most popular techniques for access control in online data storage
is to use a pre-defined hierarchy of secret keys [5-8] in the form of a tree-like
structure, where access to the key corresponding to any node implicitly grants
access to all the keys in the subtree rooted at that node. For instance, [9] uses
repeated evaluations of a pseudo-random function/block cipher on a fixed secret
to generate a tree hierarchy of symmetric keys. Some more advanced schemes
[10-12] extend access control to cyclic and acyclic graphs. A major disadvantage
of hierarchical encryption schemes is that granting access to only a selected
set of branches within a given subtree warrants an increase in the number of
granted secret keys. This in turn blows up the size of the key shared. Thus while
hierarchical cryptosystems provide a neat key delegation mechanism when all
files in a given branch is to be shared, its efficiency drops drastically as the
complexity of the delegation increases.

2.2 Compact Key Symmetric Encryption

Compact key encryption for the symmetric key setting has been used in [13, 14] to
solve the problem of concisely transmitting large number of keys in the broadcast
scenario. The basic methodology is to divide the entire ciphertext space into a
finite set of classes, followed by a constant size aggregate key generation for the
set of classes to be delegated. This scheme thus solves the problem of multi-class
delegation faced by hierarchical schemes. However, symmetric key sharing via a
secured channel is costly and not always practically viable for many applications
on the cloud. Some other schemes in the symmetric key setting also attempt to
reduce the key size [15], but they are not aimed at decryption key delegation
and are hence not very relevant to the present discussion.

2.3 Compact Key Identity-Based Encryption

Identity-Based Encryption (IBE) is a public key-based encryption scheme in
which the public key for any user is an identity-string corresponding to that



user. Proposed initially in [16], IBE was concretized by the proposition of two
very widely cited and popular IBEs - The Boneh-Franklin scheme [17] and Cocks’
encryption scheme [18]. An IBE system comprises of a trusted private key gen-
erator that holds a master-secret key and issues a secret key to each user based
on the user identity. Each user receives a message that has been encrypted using
her id and some public parameters, and can decrypt the same using the secret
key allotted to her by the trusted party. Compact key IBEs have been proposed
in [19] and [20]. The former approach involves the use of random oracles while
the latter shuns the use of oracles. Both these schemes allow aggregation of keys;
however each key must come from a different identity division. Fuzzy IBE [21]
allows for a single compact key to decrypt multiple ciphertexts, but they must
have been encrypted under a closed set of identities, and the scheme does not
work in practical scenarios for arbitrary identities.

2.4 Attribute Based Encryption

Attribute-based encryption (ABE) [22-24] allows each user to be identified by a
set of attributes. An encrypted file stored in cloud can only be decrypted by an
user who has access to the corresponding secret key. The secret key is securely
transmitted to the user who satisfies the access control policies set by the data
owner. A major drawback of this scheme is that each time the access right to a
particular user is revoked the entire ciphertext has to be recrypted in the cloud.
The idea of ABE has been extended to shared keys for user groups in [25] with
the focus on collusion resistance and not on key size compression.

2.5 Proxy Re-Encryption

Proxy re-encryption is another technique to achieve fine-grained access control
and scalable user revocation in unreliable clouds [26]. In this method the data
owner and a semi trusted proxy cloud share a secret key in advance, with which
the cloud can be delegated to re-encrypt data on behalf of the data owner.
The semi-trusted proxy re-encrypts the data using the data owner’s public key,
thus converting it into a file that can in turn be decrypted by the secret key of
the client. In the whole process, the proxy has no knowledge of the data being
sent. An extension to this technique has been proposed in [27] that allows the
cloud servers to automatically re-encrypt data based on their internal clocks,
without any external trigger. However, proxy re-encryption essentially transfers
the responsibility for secure key storage from the delegatee to the proxy and is
susceptible to collusion attacks. It is also important to ensure that the transfor-
mation key of the proxy is well protected, and every decryption would require
a separate interaction with the proxy, which is inconvenient for applications on
the cloud.

2.6 Key-Aggregate Cryptosystems (KAC)

The authors of [3] proposes an efficient scheme, namely KAC, that allows secure
and efficient sharing of data on the cloud. The scheme is a public-key cryp-



tosystem that uses constant size ciphertexts such that efficient delegation of
decryption rights for any set of ciphertexts are possible. When a user demands
for a particular subset of the available classes of data, the data owner computes
an aggregate key which integrates the power of the individual decryption keys
corresponding to each class of data. However, KAC as proposed in [3] suffers
from three major drawbacks, each of which we address in this paper. First of
all, the security assumption of KAC seems to be the Bilinear Diffie Hellman
Exponent (BDHE) assumption [28]; however no concrete proofs of semantic se-
curity are provided by the authors in [3]. Secondly, with respect to user access
rights, KAC is a static scheme in the sense that once a user is in possession of
the aggregate key corresponding to a subset of files from data owner, the owner
cannot dynamically revoke the permission of the client for accessing one or more
updated files. Since dynamic changes in access rights is extremely common in
online data storage, this scenario needs to be tackled. Finally, the public key
extension of KAC proposed in [3] is extremely cumbersome and resource con-
suming since registration of each new public key-private key pair requires the
number of classes to be extended by the original number of classes.

3 Preliminaries

We begin by formally defining the Key Aggregate Cryptosystem (KAC), and
stating the complexity assumptions used to prove the security of the encryption
schemes proposed in this paper.

3.1 The Key Aggregate Cryptosystem (KAC)

A key aggregate cryptosystem is an ensemble of the following randomized algo-
rithms:

1. Setup(1*,n): Takes as input the number of ciphertext classes n and the
group order parameter A. Outputs the public parameter PK. Also computes
a secret parameter t used for encryption which is not made public. It is only
known to data owners with credentials to control client access rights.

2. Keygen(): Outputs the public and master-secret key pair :

(PK =~yP,msk = 7).

3. Encrypt(PK, i, m): Takes as input the public key parameter PK, the ci-
phertext class 7 and the message m. Outputs the ciphertext C corresponding
to the message m belonging to class i.

4. Extract(msk = v,S): Takes as input the master secret key v and a subset
S c{1,2,---,n}. Computes the aggregate key Ks and the dynamic access
control parameter U. The tuple (Kg,U) is transmitted via a secure channel
to users that have access rights to S.

5. Decrypt(Ks,U,S,i,C = {c1,ca,c3}): Takes as input the aggregate key Kg
corresponding to a subset S C {1,2,---,n}, the dynamic access parameter
U, the ciphertext class 7 and the ciphertext C. Outputs the decrypted message
m.



3.2 Semantic Security of KAC

We now define the semantic security of a key-aggregate encryption system against
an adversary using the following game between an attack algorithm A and a chal-
lenger B. Both A and B are given n, the total number of ciphertext classes, as
input. The game proceeds through the following stages.

1. Init: Algorithm A begins by outputting a set S C {1,2,--- ,n} of receivers
that it wishes to attack. For each ciphertext class ¢ € S, challenger B per-
forms the SetUp-i, Challenge-i and Guess-i steps. Note that the number
of iterations is polynomial in |S]|.

2. SetUp-i: Challenger B generates the public param, public key PK, the
access parameter U, and provides them to A. In addition, B also generates
and furnishes A with the aggregate key Kz that allows A to decrypt any
ciphertext class j ¢ S.

3. Challenge-i: Challenger B performs an encryption of the secret message m;
belonging to the i* class to obtain the ciphertext C. Next, B picks a random
b e (0,1). It sets K, = m; and picks a random K;_; from the set of possible
plaintext messages. It then gives (C, Ko, K1) to algorithm A as a challenge.

4. Guess-i: The adversary A outputs a guess b’ of b. If ¥ = b, A wins and
the challenger B loses. Otherwise, the game moves on to the next ciphertext
class in S until all ciphertext classes in S are exhausted.

If the adversary A fails to predict correctly for all ciphertext classes in S, only
then A loses the game. Let AdvK AC 4, denote the probability that 4 wins
the game when the challenger is given n as input. We say that a key-aggregate
encryption system is (7,€,n) semantically secure if for all 7-time algorithms A
we have that |[AdvKAC 4, — %| < € where € is a very small quantity. Note
that the adversary A is non-adaptive; it chooses S, and obtains the aggregate
decryption key for all ciphertext classes outside of S, before it even sees the
public parameters param or the public key PK.

3.3 The Complexity Assumptions

We now introduce the complexity assumptions used in this paper. In this section,
we make several references to bilinear non-degenerate mappings on elliptic curve
sub-groups, popularly known in literature as pairings. Hence it seems logical to
provide a brief background on bilinear pairing based schemes on elliptic curve
sugroups.

Bilinear Pairings: We present a brief outline of the necessary facts about
bilinear pairings on elliptic curves that are used in the forthcoming discussion.
Let K = F}, be a field of prime order p, and let an elliptic curve over K be defined
by the Weierstrass [28] equation:

E(K) : y? + arzy + asy = 2> + apx® + agx + ag



where a1, a9, as,a4,a5 € K. The curve must be non-singular. In particular,
if char(K) # 2,3, the equation takes the special form y? = 23 + a4z + ag with
day® + 27a6% # 0. Let K = F,r be the smallest extension field of K = F), that
contains the ¢ roots of unity. Here, k is called the embedding degree with
respect to K and gq. We denote the set of g-torsion points on the elliptic curve
as E(K)[q] (g-torsion points essentially have order q).

A pairing is a bilinear map defined over elliptic curve subgroups. Let Gy and
G2 be two such additive cyclic subgroups of the same prime order ¢ and let G
be a multiplicative group, also of order ¢ with identity element 1. Let P and
Q be generators for G; and Go respectively. A pairing ¢’ : G; x Gy — Grp
satisfying the following the following properties is said to be a bilinear mapping.

— Bilinear: VP, P, € G1,Q1,Q2 € Gs, and a,b € Z, we have the following:

R é’(aPl,le) A:é/(Pval)ab

/(P + P2, Q1) = €/ (P1,Q1)e' (P, Q1)
g (P, Q1)e/(Pr, Q2)

e
e'(P,Q1+Q2) =¢
— Non-degeneracy: If for all P; € Gy, é’(Pl, Q1) = 1 then Q1 = 1. Alternatively,
if P and @ be the generators for G; and G respectively where neither group
only contains the point at infinity, then €’ (P,Q)#1
— Computability: There exists an efficient algorithm to compute ¢! (R,S)VR €
G1, S € Gy

It is important to note that G; and G could be identical groups as well.

The First Complexity Assumption: Our first complexity assumption is the
I-BDHE problem [4] in a bilinear elliptic curve subgroup G, defined as follows.
Given a vector of 21 + 1 elements (H, P,aP,a?P,--- ,a'P,a!t2P ... [ o?P) €
G2+1 as input, and a bilinear pairing ¢’ : G, x G; — G output €/(P, H)* ' €
Gr. Since !t P is not an input, the bilinear pairing is of no real use in this
regard. Using the shorthand P; = oP, an algorithm A is said to have an ad-
vantage € in solving [-BDHE if

PrlA(H,P,Py,Py,--- ,P;,Piyg---,Py) =€ (Piy1,H)] > €, where the probabil-
ity is over the random choice of H, P € G, random choice of a € Z, and random
bits used by A. The decisional version of I-BDHE for elliptic curve subgroups
may be analogously defined. Let Y(p o = (P, P1, Po,--- , P, Pyo--- , Py). An
algorithm B that outputs b € {0, 1} has advantage € in solving decisional -BDHE
in G if ‘PT[B(P? H, YV(P,a,l)?é/<1:)l+laH)) = O]_PT[B(G7 H7}/(P,oz,l)7T) = OH > €,
where the probability is over the random choice of H, P € G, random choice of
o € Zg, random choice of T' € Gt and random bits used by B. We refer to the left
and right probability distributions as L-BDHE and R-BDHE respectively. Thus,
it can be said that the decision (7, ¢,{)-BDHE assumption for elliptic curves holds
in G if no 7-time algorithm has advantage € in solving the decisional I-BDHE
problem over elliptic curve subgroup G.



The Second Complexity Assumption: We next define the (,7)-BDHE prob-
lem over a pair of equi-prime order bilinear elliptic curve subgroups G; with
generator P and Gy with generator ). Given a vector of 31 + 2 elements
(H,P,Q,aP,a®P,--- ,a'P,a!*?P ... o P,aQ,a’Q, - ,a'Q) as input, where
P and o!P € G; and H,Q,a'Q € G, , along with a bilinear pairing e
G1 X Go — G, output eA’(P7 H)"l+1 € Gr. Since a!t1 P is not an input, the bi-
linear pairing is of no real use in this regard. Using the shorthand P; = o P and
Q; = a'Q, an algorithm A is said to have an advantage e in solving (/,1)-BDHE if
PT[A(H,P,Q,P17P2,"- ,B,]DH_Q- .- aP2l7Q17' .- ,Ql) = e’(PH_l,H)] > € where
the probability is over the random choice of P € Gy, H,Q € Gs, random
choice of o € Z, and random bits used by 4. We may also define the decisional
(1,1)-BDHE problem over elliptic curve subgroup pairs as follows. Let Y{p o) =
(P,P]_,PQ,"' ’PZ7B+2 ,Pgl) and }/(/Q,a,l) = (Q7Q15Q27"' ,Ql). A]SO let H
be a random element in Go. An algorithm B that outputs b € {0, 1} has advan-
tage € in solving decisional I-BDHE in G if |[Pr[B(P, Q, H,Y(p,a,1), Y(’Q,W), é’(PlH, H))
= 0-Pr(B(G, H,Y(p,a,1); Y(/Q,a,z)’T) = 0]| > ¢, where the probability is over the
random choice of P € Gy, H,Q € G,, random choice of a € Z,, random choice
of T' € G and random bits used by . We refer to the left and right probability
distributions as L’-BDHE and R’-BDHE respectively. Thus, it can be said that
the decision (7,¢,1,1)-BDHE assumption for elliptic curves holds in (G1, Gs) if
no 7-time algorithm has advantage ¢ in solving the decisional (I,1)-BDHE prob-
lem over elliptic curve subgroups G; and Gs. To the best of our knowledge, the
(1,1)-BDHE problem has not been introduced in literature before.

Proving the Validity of the Second Complexity Assumption: We prove
here that the decision (7,¢,l,1)-BDHE assumption for elliptic curves holds in
equi-prime order subgroups (G1, Gz) if the decision (7, €, [)-BDHE assumption for
elliptic curves holds in Gy. Let e : G1 x Gy — Gp and e G1 x Gy — Gt be
bilinear pairings. Also, let P and @ are the generators for G, and G respectively.
We first make the following observation.

Observation 1: Since G; and Gy have the same prime order (say ¢), there
exists a bijection ¢ : G; — G4 such that ¢(aP) = a@ for all a € Z,. Similarly,
since G also has order ¢, there also exists a mapping ¢ : Gy — G such that
o(e'(Hy, Hy)) = €' (Hy, p(Hy)) for all Hy, Hy € Gy.

Let A be a 7-time adversary that has advantage greater than e in solving
the decision (I,1)-BDHE problem over equi-prime order subgroups (G1,G2). We
build an algorithm B that has advantage at least € in solving the [-BDHE problem
in Gy. Algorithm B takes as input a random [-BDHE challenge (P, H,Y(p o 1), Z)
where Z is either é’(B+1,H) or a random value in Gr. B computes Yc’g,a,l
by setting Q; = ¢(P;) for i« = 1,2,--- 1. B also computes H = ¢(H) €
G2 and Z' = ¢(Z) € Z. then randomly chooses a bit b € (0,1) and sets
Ty, as Z' and Ty_; as a random element in Gp. The challenge given to A is
((P,Q,H’,Y(pyaylwYé7a,l)7T0,T1). Quite evidently, when Z = é’(PHhH) (i.e.
the input to B is a I-BDHE tuple), then ((P,Q,H’,Y(p’ayl),Yé’a,l),To,Tl) is
a valid challenge to A. This is because in such a case, T, = Z' = ¢(Z) =



¢(e'(Piy1, H)) = €'(Pry1, H'). On the other hand, if Z is a random element in
Gr (i-e. the input to B is a random tuple), then Ty and T3 are just random
independent elements of Gr.

Now, A outputs a guess b’ of b. If ' = b, B outputs 0 (indicating that
Z = e/(Piy1, H)). Otherwise, it outputs 1 (indicating that Z is random in Gr).
A simple analysis reveals that if (P, H,Y(pq,),Z) is sampled from R-BDHE,
PriB(G,H,Y(pa, %) =0] = %, while if (P, H,Y(p o), Z) is sampled from L-
BDHE, |Pr[B(G, H,Y(pa1), %) — %| > €. So, the probability that B outputs
correctly is at least e, which in turn implies that B has advantage at least € in
solving the I-BDHE problem. This concludes the proof.

4 The Proposed Dynamic Key-Aggregate Cryptosystem:
The Basic Case

In this section, we present the design of our proposed dynamic key-aggregate
storage scheme on additive elliptic curve subgroups assuming that there are n
ciphertext classes. Our scheme ensures that the ciphertext and aggregate key
are of constant size, while the public parameter size is linear in the number of
ciphertext classes. Unlike the scheme proposed in [3], the proposed scheme allows
dynamic revocation of user access rights without having to massively change the
system parameters. We also present a proof of security for the proposed scheme.

4.1 The Basic Construction of Dynamic KAC

Let G be an additive cyclic elliptic curve subgroup of prime order g, where

22 < ¢ < 2M1 such that the point P is a generator for G. Also, let Gr be a

multiplicative group of order ¢ with identity element 1. We assume that there

exists an efficiently computable bilinear pairing ¢ :GxG — Gp. We now

present the basic construction of our proposed key-aggregate encryption scheme.
The scheme consists of the following five phases.

1. Setup(1*,n): Randomly pick a € Z,. Compute P, = o'P € G for i =
1,---,n,n+2,---,2n. Output the system parameter as
param = (P, Py,--- , Pp, Pyyo,- -+, Pay,). The system also randomly chooses
a secret parameter ¢ € Z, which is not made public. It is only known to data
owners with credentials to control client access rights.

2. Keygen(): Pick v € Z,, output the public and master-secret key pair :
(PK =~P,msk = ).

3. Encrypt(PK,i,m): For a message m € Gy and an index ¢ € {1,2,--- ,n},
randomly choose r € Z, and let t' = t + r € Z,. Then the ciphertext is
computed as .

C= (’I"P, t/(PK + Pi),m.e’(Pn,t’Pl)) = (Cl, Ca, Cg)

4. Extract(msk = v,S): For the set S of indices j the aggregate key is com-

puted as

Ks = Zjes YPpt1—j = ZjES a"t1-ipK



and the dynamic access control parameter U is computed as tP. Thus the
net aggregate key is (Kg,U) which is transmitted via a secure channel to
users that have access rights to S.

5. Decrypt(Ks,U,S,i,C = {c1,c2,c3}): If i ¢ S, output L. Otherwise return
the message .
= cs€' (Ks + 3 jcs jzi Pnt1—j+i, U + 1) /(€ (X jes Prvi-js 2))-

The proof of correctness of this scheme is presented below.

¢ (Ks+ X cs jui Pati—j+i, U+ c1)
é/(z:jgs Pn+1—j7 C2)
& (X es VPut1-5 + Ljes,jps Pati—jtist' P)
e (X es Pri1—j: t'(PK + P;))
e (X es VPat1-5,t' P)/ (X s (Pnyi—jti) — Prg1,t'P)
e (X es Prt1-5, VPK)e' (32 c5 Pnt1-j, ' Pi))
e e (Xies Prt1—jrit'P)
e/ (Pny1,t'P)e’ (3 cs Pny1—j, ' Pi))
o e (X es Prti—jtist'P)
e (Pnt1,t'P)e’ (3 cs Prnt1—j+i t'P))
e (P, t' Py)
€/ (Pny1,t'P)

=m

Th=03

= c3

4.2 Dynamic Access Control

An important aspect of the proposed scheme is the fact that it allows the data
owner to dynamically update user access permissions. In KAC [3], once the data
owner issues an aggregate key corresponding to a set of ciphertext classes to a
user, revoking the user’s access permissions to the same is not possible without
changing the master secret key. However, changing the master secret key each
time an user’s access privileges to a ciphertext class need to be updated, is a very
expensive option and may not be practically feasible. Our scheme, on the other
hand, offers a solution to this problem by allowing the data owner to dynamically
update user access privileges.

We achieve this by making the parameter U = tP a part of the aggregate key
in our proposed scheme and not a part of the ciphertext. The user must have the
correct value of U in possession to be able to decrypt any encrypted ciphertext
class in the subset S. Now suppose the data owner wishes to alter the access
rights to the subset S. She can simply re-encrypt all ciphertexts in that class
using a different random element ¢ € Z4, and then provide the updated dynamic
access parameter U =P to only those users who she wishes to delegate access
to. The decrypted value will give the correct message m only if the same t is
used for both encryption and decryption. This is a major difference between
our scheme and the scheme proposed in [3], where the knowledge of the random



parameter was only embedded as part of the ciphertext itself, and could not be
used to control access rights of users. Moreover, since U is of constant size and
needs to be transmitted only when changed (and not for every encryption), there
is no significant degradation in performance.

4.3 Performance and Efficiency

The decryption time for any subset of ciphertext classes S is essentially dom-
inated by the computation of Ws = > s Ppi1—j+i. However, if a user has
already computed Zje s Pny1—j4i for a subset S” similar to S, then she can
easily compute the desired value by at most |S — S§’| operations. For similar
subsets S and S’, this value is expected to be fairly small. A suggested in [4],
for subsets of very large size(n — r,r < n), an advantageous approach could
be to pre-compute Z;jf P14 corresponding to ¢ = 1 to n, which would
allow the user to decrypt using only r group operations, and would require only
r elements of param. Similar optimizations would also hold for the encryption
operation where pre-computation of Z;Z’ P, 41—; is useful for large subsets.

It is important to note that our proposed scheme fixes the number of cipher-
text classes beforehand, thus limiting the scope for ciphertext class extension.
The only way to increase the number of classes is to change the public key pa-
rameters, which would therefore require some kind of administrative privileges,
and cannot be done by an user for her own purposes. However, in online data
sharing environments, users may wish to register their own public key-private
key pairs for new ciphertext classes according to their own requirements. Such
an extension to the scheme would make extremely convenient and attractive to
potential users. A proposal made in [3] recommends that the user be allowed
to register new public-private key pairs, at the cost of increasing the number of
ciphertext classes by n each time. This is both impractical and wasteful. In the
next section, we present a two-tier generalization of our scheme that tackles this
issue in a more economical fashion. We provide a proof of semantic security for
the base case presented here. As will be shown later, this proof is a special case
of the proof for the generalized scheme presented in the next section.

4.4 Formal Proof of Semantic Security

In this section we formally prove the security of the proposed generalized key-
aggregate encryption scheme.

The Reduced Scheme: The ciphertext C = (¢1, co, ¢3) output by the Encypt
operation essentially embeds the value of m in ¢5 by multiplying it with ¢’ (P, t'Py).
The main secret is thus e/(P,,t'P;) = €/ (P11, P), the knowledge of which is
transmitted using (cy,c¢2), and is decrypted using the aggregate key Ks and
the dynamic access parameter U. Consequently, the security of our proposed
scheme is equivalent to that of a reduced key-aggregate encryption scheme that



simply uses the reduced ciphertext (c1,c2), the aggregate key Ks and the dy-
namic access parameter U to successfully transmit and decrypt the value of
¢’ (P41, P). We prove the semantic security of this reduced scheme parameter-
ized with a given number of ciphertext classes n, which also amounts to proving
the semantic security of our original encryption scheme for the same number of
ciphertext classes.

The Adversarial Model: We make the following assumptions about the ad-
versary A:

1. The adversary has the aggregate key that allows her to access any ciphertext
class other than those in the target subset S, that is, she possesses K.

2. The adversary has access to the public parameters param and PK, and also
possesses the dynamic access parameter U.

The Proof of Security: The security proof presented here uses the first com-
plexity assumption stated in 3.3. Let G be a bilinear elliptic curve subgroup of
prime order g and G be a multiplicative group of order ¢. Let ¢ :GxG — Gr
be a bilinear non-degenerate pairing. We claim that for any pair of positive in-
tegers n,n’(n’ > n), the reduced key-aggregate encryption scheme over elliptic
curve subgroups is (7,€,n’) semantically secure if the decision (7,€,n)-BDHE
assumption holds in G.

Proof: Let for a given input n’, A be a 7-time adversary that has advantage
greater than e in solving the reduced scheme parameterized with a fixed n. Using
A, we build an algorithm B that has advantage at least € in solving the n-
BDHE problem in G. Algorithm B takes as input a random n-BDHE challenge
(P, H,Y(pan), Z) (where Z is either ¢'(Pny1, H) or a random value in Gr), and
proceeds as follows.

1. Init: B runs A and receives the set S of ciphertext classes that A wishes to
be challenged on. For each ciphertext class i € S, B performs the SetUp-
i, Challenge-i and Guess-i steps. Note that the number of iterations is
polynomial in |S].

2. SetUp-i: B should generate the public param, public key PK, the access
parameter U, and the aggregate key Kz and provide them to A. They are
generated as follows.

— param is set as (P,Ypqn).

— PK is set as uP — P; where u is randomly chosen from Z,.

— Kz is set as 3 o 5(uPp1—j — (Pag1-j+4)). Note that Kz is equal to
Yi¢s a™t1=IPK in accordance with the specification provided by the

scheme. Moreover, B is aware that i ¢ S (implying i # j), and hence has
all the resources to compute K.
— U is set as some random element in G.
Since P, «, U and the u values are chosen uniformly at random, the public
parameters and the public key have an identical distribution to that in the
actual construction.



3. Challenge-i: To generate the challenge for the ciphertext class 7, B computes
(c1,¢2) as (H — U,uH). It then randomly chooses a bit b € (0,1) and sets
Ty, as Z and T;_, as a random element in Gp. The challenge given to A is
((e1,¢2), Ty, T1). We claim that when Z = ¢/(P, 11, H) (i.e. the input to B is
a n-BDHE tuple), then ((c1,c2), To, T1) is a valid challenge to A. Since P is
a generator of G, H = t'P for some ¢’ € Z,, resulting in the following.

U = tP for some t € Z,
—a=H-U={' —t)P=rP wherer =t' —t
—c=uH=ut'P=t(uP)=t'(uP—- P+ P)=t(PK+ F)
— Ky =2 =€ (Pyyy,H) =€ (Pyyq,t'P)

On the other hand, if Z is a random element in G (i.e. the input to B is
a random tuple), then Ky and K; are just random independent elements of
Gr.

4. Guess-i: The adversary A outputs a guess b’ of b. If b’ = b, B outputs 0
(indicating that Z = e/(Pn41, H)), and terminates. Otherwise, it goes for
the next ciphertext class in S.

If A returns b’ # b for each ciphertext class ¢ € S. In the latter case, B
outputs 1 (indicating that Z is random in Gr). We now analyze the probability
that B gives a correct output. If (P, H,Y(pa,n),Z) is sampled from R-BDHE,
PriB(G,H,Y(pan),Z) = 0] = %, while if (P, H,Y(pan),Z) is sampled from
L-BDHE, |Pr[B(G,H,Y(pan),Z)] — %| > €. So, the probability that B outputs
correctly is at least 1 — (1 — e)“S' > €, implying that B has advantage at least €
in solving the n-BDHE problem in G. This concludes the proof.

5 A Generalized Version of Dynamic KAC

In this section, we focus on building an efficiently extensible version of our pro-
posed scheme that allows an user to economically increase the number of ci-
phertext classes while registering a new public key-private key pair. We adopt
the idea presented in [4] to develop a hierarchical structure that has multiple
instances (say n1) of the original scheme running in parallel. Each such instance
in turn provides locally aggregate keys for mo ciphertext sub-classes. Each ci-
phertext class thus now has a double index (i1,i2) where 1 < 43 < my and
1 <45 < ny. This allows the overall setup to handle n = ninsy classes. However,
it is important to note that all the instances can use the same public parameters.
This interaction among the instances helps to largely improve performance. We
further point out that while in [4], the generalized construction offers a trade-
off between the public parameter size and the ciphertext size, our generalized
scheme actually reduces the public parameter size without compromising on the
size of the ciphertext. Further, addition of a single new key increases the num-
ber of classes only by ns and not by n. Setting ny < n thus achieves significant
improvement in performance over the existing proposal.



5.1 The Construction of the Generalized KAC

Let ny be a fixed positive integer. Our proposed no-generalized key-aggregate
encryption scheme over elliptic curve subgroups is as described below. It may be
noted that the bilinear additive elliptic curve sub-group G and the multiplicative
group G, as well as the pairing ¢’ are the same as in the basic scheme. The
algorithm sets up my = |n/na] instances of the basic scheme, each of which
handles ny ciphertext classes. The original scheme is thus a special case of the
extended scheme with n; = 1 and ny = n.

1. Setup(1*,n3): Randomly pick a € Z,. Compute P, = o'P € G for i =
1,--+ ,no,ne +2,--- ,2nsy. Output the system parameter as
param = (P, Py, ,P,,, Pnyt2,"++ , Pan,). The system randomly chooses a
secret parameter ¢ € Z, which is not made public. It is only known to data
owners with credentials to control client access rights.

2. Keygen(): Pick 1,72, -+ ,Yn, € Zg, output the public and master-secret
key pair :
(PK:(pklapk27 T apkrn) = (’ylpv ’YQPa e 77n1P)amSk:(71a727 e 771’7,1))'

3. Encrypt(pki,, (i1,i2),m): For a message m € Gr and an index (i1,i2) €
{1,2,--- ,n1} x {1,2,--- ,na}, randomly choose r € Z, and let t' =t +1r €
Z,. Then compute the ciphertext C=(rP,t'(pki, + P;,), m.¢/(Ppn,,t'P)) =
(c1,c2,c3).

4. Extract(msk = v,S): For the set S of indices (j1,j2) the aggregate key is
computed as Ks = (k§, k%, -+ kg') =
(Z(sz)es 1Py t1-) Z(z,jz)es V2P t1-jas s Z(m,jZ)es Yy Pryt1-j2)
and the dynamic access control parameter U is computed as tP. Thus the
net aggregate key is (Ks,U) which is transmitted via a secure channel to
users that have access rights to S. Note that k% = Z(jl,jz)GS a1 ipk;,
for 3 =1,2,--- ,ng.

5. Decrypt(Ks,U,S, (i1,42),C = {c1,ca,c3}): If (i1,42) ¢ S, output L. Other-
wise return the message
e (kg +2 (i1 da) €S da i Prati—jatizUtcr)
é/(Z(iij)es Pryt+1-j5,02)

ﬁL263

The proof of correctness for the generalized scheme is presented below.



m C: e’(k:fsl + Z<i1~j2)€$-j2¢i2 P"2+17j2+i2’ U+ cl)
=c3

€ (3(iy,j9)es Prot1—ja» c2)
e/(z(il’h)es Vi Pn'2+17j2 + Z('ilez)es.jz#iz P"2+17]'2+i2»tlp)
& (X (sy.50)es Prati—iz: t' (Pkiy + Piy)

(X iygp)es Yir Proti—ins ' P) (L iy jpyes (Prat1-ia+iz) = Pnyt1,U'P)

¢ (X iy, ipres Proti—in: VPR ) (i jpyes Prati-sa: V' Fij)

& (X (i1 .p)es Proti—jatin, t'P) (1)
e/ (Pngyt1, t/P)eI(E(il,jQ)es Prgt1—igst'Piy)

EI(Z(ilyjz)eg Pn2+1—j2+712, t/P)
e/(Pn2+1,t/P)e/(Z(isz)es Pryt1—jotig t'P)
é/(Pngatlpl)
é/(P712+17 t,P)

=c3

= c3

=c3

=c3

=m

=m

5.2 Semantic Security of the Generalized KAC

The Reduced Generalized Scheme: As in the original scheme, we may
analogously define a reduced version of the generalized encryption scheme. We
note that once again, in the generalized scheme, the ciphertext C = (¢, ¢, c3)
output by the Encypt operation essentially embeds the value of m in c3 by mul-
tiplying it with ¢! (P, ,tP1). Consequently, the security of our proposed scheme
is equivalent to that of a reduced generalized key-aggregate encryption scheme
that simply uses the reduced ciphertext (c1,cz), the aggregate key Ks and the
dynamic access parameter U to successfully transmit and decrypt the value of
¢'(Pp,,t'P) = ¢ (Py,41,t'P). We prove the semantic security of this reduced
scheme parameterized with a given number of ciphertext classes no for each
instance, which also amounts to proving the semantic security of our original en-
cryption scheme for the same number of ciphertext classes. Note that the proof
of security is independent of the number of instances n; that run in parallel. The
adversarial model is the same as in the case of the proof for the basic scheme.

The Security Proof: The security proof presented here uses the first complex-
ity assumption stated in 3.3. Let G be a bilinear elliptic curve subgroup of prime
order ¢ and G be a multiplicative group of order ¢. Let ¢/ : G x G — G be a
bilinear non-degenerate pairing. For any pair of positive integers na, n’(n’ > ng)
our proposed no-generalized reduced key-aggregate encryption scheme over ellip-
tic curve subgroups is (7, €, n’) semantically secure if the decision (7, ¢, no)-BDHE
assumption holds in G. We now prove this statement below.

Proof: Let for a given input n’, A be a 7-time adversary that has advantage
greater than e for the reduced scheme parameterized with a given ny. We build
an algorithm B that has advantage at least € in solving the no-BDHE problem in



G. Algorithm B takes as input a random np-BDHE challenge (P, H, Y{p,a,n,); Z)

where Z is either €/(Py, 11, H) or a random value in Gy. Algorithm B proceeds
as follows.

1. Init: Algorithm B runs A and receives the set S of ciphertext classes that A
wishes to be challenged on. For each ciphertext class (i1,i2) € S, B performs
the SetUp-(i1,iz2), Challenge-(i1,i2) and Guess-(iy,iz2) steps. Note that
the number of iterations is polynomial in |S].

2. SetUp-(iy,iz2): B should generate the public param, public key PK, the ac-
cess parameter U, and the aggregate key K. For the iteration corresponding
to ciphertext class (i1,i2), they are generated as follows.

— param is set as (P, Ypa.n,).

— Randomly generate ui,ug, -+ ,un, € Zq. Then, set PK=
(pk1,pka, -+, pkn,), with pkj, = uj, P — P, for j1 =1,2,--+ ,n1.

— Set Kz = (k%, k%, o kgt), where k% is set as 30 oo s (WP, 41—, —
(Pry+1—ja+tis))- Then, k:jgl =1y s "2 72 pky, swhich is as per the
scheme specification. Note that B knows that (i1,i2) ¢ S, and hence has
all the resources to compute this aggregate key for S.

— U is set as some random element in G.

Note that since P, o, U and the u;, values are chosen uniformly at random,
the public key has an identical distribution to that in the actual construction.

3. Challenge-(iy,i2): To generate the challenge for the ciphertext class (i1, i2),
B computes (c1, ¢2) as (H—U, u;, H). It then randomly chooses a bit b € (0,1)
and sets K as Z and K;_; as a random element in Gp. The challenge given
tOAiS ((61762),K0,K1). ~
We claim that when Z = ¢/(P,,+1,H) (i.e. the input to B is a no-BDHE
tuple), then ((c1,c2), Ko, K1) is a valid challenge to A. We prove this claim
here. we point out that P is a generator of G and so H = t'P for some
t' € Z,. Putting H as t'P gives us the following:

— U =tP for some t € Z,

—aq=H-U=({—-t)P=rPforr=t—t

- G = uilH = (uil)t/P = tl(y‘ilp) = t/(uilp - ‘Piz + P'lQ) = t,(pkil + P'LQ)

- Ky=Z=¢(Pp,+1,H) =€ (Ppy+1,t'P)

On the other hand, if Z is a random element in Gr (i.e. the input to B is
a random tuple), then Ky and K; are just random independent elements of
Gr.

4. Guess-(i1,1i2): The adversary A outputs a guess b’ of b. If b’ = b, B outputs
0 (indicating that Z = e’(P,, 11, H)), and terminates. Otherwise, it goes for
the next ciphertext class in S.

If after |S| iterations, b’ # b for each ciphertext class (i1,i2) € S, the algorithm B
outputs 1 (indicating that Z is random in Gr). We now analyze the probability
that B gives a correct output. If (P, H,Y{pa,n,), Z) is sampled from R-BDHE,
PriB(G,H,Y(pan,),Z) =0] = %, while if (P, H,Y(p,a n,),Z) is sampled from
L-BDHE, |Pr[B(G, H,Y(p,an,), Z)] — %| > €. So, the probability that B outputs



Table 1: Comparison between the Basic and Generalized schemes

‘ Item ‘Nature of Computation‘Original scheme‘Generalized scheme‘
param(SetUp) One-time O(n) O(n2)
PK (KeyGen) One-time o0(1) O(n1)
Ks(Extract) One-time O(1) O(n1)
C One per Message 0(1) O(1)
Encrypt One Per Message O(1) O(1)
Decrypt One Per Message o(|S)) oO(|S])

correctly is at least 1 — (3 — €)l¥l > 1 4 ¢. Thus B has advantage at least € in
solving the no-BDHE problem. This concludes the proof. Note that the instance
of this proof with ny = 1 and ny = n serves as the proof of security for the basic
KAC scheme proposed in Section 4.

Performance Trade off with the Basic Scheme: We compare the vari-
ous parameter sizes for the proposed original and extended schemes in table
1. We note that SetUp and KeyGen are both one-time operations, and for a
given subset S, the Extract operation is also performed once to generate the
corresponding aggregate key Ks. The most important advantage that the gen-
eralized scheme provides is the user’s ability to efficiently extend the number of
ciphertext classes. As far as encryption and decryption are concerned, encryption
should ideally take the same time for both schemes, while decryption is actually
expected to be faster for the generalized construction as ny < n.

5.3 A Flexible Extension Policy

If a user needs to classify her ciphertexts into more that n classes, she can register
for additional key pairs (pkn,+1,m8kn,+1), <-+y (Dkn,+1, mSkn,+;) as per her
requirements. Each new key registration increases the number of classes by no,
where ns < n. The idea of under-utilization stems from the fact that registration
of each public-private key pair increases the number of classes by no. However,
it is not necessary that all the existing classes are utilized at any given point of
time. For instance, a user may at any point of time want to register [ new private-
public key pairs, however she will in all probability not use up all In, additional
classes of messages that could be encrypted using the newly registered keys. We
stress here is that, unlike in the public key extension scheme proposed in [3]
where the values of ny and no are fixed to 1 and n respectively, our generalized
construction provides a choice of n; and ns so that the system administrator
could choose pair of values suited to their requirements.

We propose a metric to quantify the under-utilization of ciphertext classes
for a given configuration of the system. Let us assume that at some instance of
time, there are n; + [ private-public key pairs registered in the system, and c¢;
classes corresponding to each key are being utilized. We define the utilization

1 n1

. 1 _ 1 i . .
coefficient as 11, where { = —= 371, | log(t). An efficient scheme tries to

minimize the value of £ to achieve good utilization of the existing set of classes.
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Fig. 2: A Practical Request Scenario in the Hierarchical Setting

The value is maximum when ¢; = nsVi = 1,2, --- ,no. Note that ¢; = 0 implies
that no subclasses under the given key pk; are being utilized, which is equivalent
to not registering the key at all.

To stress the importance of the flexible extension policy, we provide a sim-
plified example here. We consider two possible configurations of the extended
scheme. In the first configuration, ny = 1 and ny = n, which is essentially iden-
tical to the public key extension scheme proposed in [3]. The other configuration
has ny > 1 and ny < n. Now assume that before extension, both schemes uti-
lized c ciphertext classes out of the n possible classes, equally distributed across
all key pairs. Now suppose a situation arises where an user needs to register [
more key pairs, and utilizes z < ny classes corresponding to each key. In the first

configuration, we have & = —l%(l log(Z)+1log(+)), while for the second config-
uration, & = — b (1(10g(:5)) + mi log(£)). Now for £ > (g —1)log(2) — 1.

& < &. Thus for any value of (n1,n2) other than (1,n), there exists a value of
[ for which the scheme achieves better utilization coefficient. Since [ is expected
to increase in a dynamic scenario, our public key extension scheme eventually
performs better than the scheme suggested in [3].

5.4 Advantage over Hierarchical Encryption Based Schemes

Although the generalized scheme has a two level hierarchy (with each of the ny
parallely executing instances of the basic scheme representing a node in the top
level and the actual ciphertext classes representing nodes in the lower level),
it avoids the pitfalls of existing hierarchical encryption based schemes [5,8]. In
standard tree based hierarchical systems, granting access to the key correspond-
ing to any node implicitly grants access to all the keys in the subtree rooted at
that node. This means granting access to a selected set of nodes in a given sub-
tree would blow up the key-size to be the same as the number of nodes. This is
avoided in our generalized scheme, since any number of nodes (ciphertext classes)
that belong to the same instance may be aggregated into a single key. Figure 2
summarizes this phenomenon. In the situation depicted, a tree-based hierarchy
system would require 4 decryption keys, while our scheme would require only 2.
In this respect, our scheme has similar advantages to that of [3].



6 Extending the Generalized KAC for Efficient Pairings
on Elliptic Curve Subgroups

The encryption schemes proposed so far use the assumption that the ellip-
tic curve pairing bilinear pairing ¢ : G x G — G satisfies the property
¢! (P, P) # 1, where P is the generator for GG1. In this section, we propose an
extension to the generalized ns-scheme that allows using pairings of the form
¢ Gy x Gy —» G, where GGy and G5 are two elliptic curve subgroups of
the same prime order. The motivation behind this extension is that many pop-
ular pairing algorithms such as the Tate [29], Eta [30], and Ate [31] pairings
are defined over two distinct elliptic curve subgroups G; and G of the same
order. Many efficient implementations of such pairings on sensor nodes such as
TinyTate [32] have been proposed in literature. This motivates us to modify our
scheme in a manner that allows using such well-known pairings. The modified
encryption scheme described below allows using a pairing €’ : G x Gy — G
with P generator of GG; and () generator of Gs.

6.1 Construction of the Extended KAC

1. Setup(1*,n2): Randomly pick a € Z,. Compute P; = o'P € G, for i =
1,--+,no,n9+2,---,2ny and Q; = a'Q € Gy for i = 1,--- ,ny. Output the
system parameter as
param = (P, Py, -+, Pny, Pryto, 0y Pany,@, @1, -, @ny ). The system also
randomly chooses secret parameters ¢ € Z, which is not made public. It is
only transferred through a secure channel to data owners with credentials to
control client access rights.

2. Keygen(): Pick 1,72, -+ ,Yn, € Zg, output the public and master-secret
key tuple:

(PKI:(pkllapk12v' o 7pk1n1) = (’ylpv'YQPa T 7’7n1P)1 PK2:
(pk217pk227 T 7pk2n1) = (’71@772@7 T 7771162)7 m8k2(71>’727 T 7’7711))'

3. Encrypt(pki,, (i1,i2),m): For a message m € G and an index (i1,i2) €
{1,2,--- ,n1}x{1,2,--- ,ne},randomly choose r € Z, and let t' = t+r € Z,.
Then compute the ciphertext as
C=(rQ,t' (pk?;, + Qi,), m.€"(Pp,,t'Q1)) = (c1,c2,¢3).

4. Extract(msk = v,S): For the set S of indices (j1,j2) the aggregate key is
computed as Kgs = (k§, k%, -+ kg') =
(Z(l,jz)es 'YanQ—o—l—an Z(Q,jQ)es 72Pn2+1—j27 T aZ(nth)es 7n1pn2+1—j2)
and the dynamic access control parameter U is computed as t@). Thus the
net aggregate key is (Ks,U) which is transmitted via a secure channel to
users that have access rights to S. Note that k§ = > . csa™ 1 Ipkt
fOI‘jl = 172,"' ,Nnt.

5. Decrypt(Ks,U,S, (i1,42),C = {c1,c2,c3}): If (i1,42) ¢ S, output L. Other-
wise return the message
5 — 67/(k-151+z(i1,j2)€51j2#i2 Pryt1-jatiz Uter)
= (X iy jgyes Prati-ja:c2)




The proof of correctness of this scheme is presented below.

5 i
ell(ksl + Z(il,jg)es,h#iz Pryt1—jo+tig, U+ c1)

m = c3 =
3 e//( P, . c )
2y ,da)es Pra+1—js, €2

37/(Z(il,j2)eg Yiq Pn2+1—j27 t,Q)(;//(Z(il,j2)es(Pn2+1—.7'2+772) - Pn2+1v t,Q)
& (X (i1.50r€8 Proti-in: Yiy Q)" (5, jayes Proti-iz, @2(#'Q))
87/(2(1‘1,]'2)55 Pryti—jotis: t'Q)
67’(P7L2+1’t’Q)EA”(E(il,D)es Proyt1—jotio: t'Q)

= c3

=m

6.2 Semantic Security of the Extended KAC

The proof of security uses a reduced version of the extended KAC scheme, anal-
ogous to the reduced scheme used for proving the security of the generalized
KAC. The adversarial model is also the assumed to be the same as for the gen-
eralized KAC. The proof uses the (I,1)-BDHE assumption proposed in 3.3. Let
Gy and Go be additive elliptic curve subgroups of prime order ¢, and G be
a multiplicative group of order ¢. Let €¢” : Gy x Gy — G be a bilinear non-
degenerate pairing. We claim that for any pair of positive integers na, n'(n’ > ng)
our proposed extension to the no-generalized reduced key-aggregate encryption
scheme over elliptic curve subgroups is (7, €, n’) semantically secure if the decision
(1,€,n2,n2)-BDHE assumption holds in (G, Gz). We prove the claim below.

Proof: Let for a given input n’, A be a 7-time adversary that has advantage
greater than e for the reduced scheme parameterized with a given ns. We build
an algorithm B that has advantage at least € in solving the (ng,ns)-BDHE
problem in G. Algorithm B takes as input a random (ns,ns)-BDHE challenge
(P,Q, H, Y(P,a,nz),YC’)WM,Z) where Z is either €”/(P,,,1, H) or a random value
in Gp. Algorithm B proceeds as follows.

1. Init: Algorithm B runs A and receives the set S of ciphertext classes that A
wishes to be challenged on. For each ciphertext class (i1,i2) € S, BB performs
the SetUp-(iy,i2), Challenge-(iy,iz2) and Guess-(i,iz2) steps. Note that
the number of iterations is polynomial in |S].

2. SetUp-(i1,i2): B should generate the public param, public keys PK!, PK?,
the access parameter U, and the aggregate key Kz. For the iteration corre-
sponding to ciphertext class (i1,43), they are generated as follows.

— param is set as (P, Q, YP.a,ns: Y0 ony)-

— Randomly generate ui,ug, -+ ,un, € Zq. Then, set
PK'=(pk'y,pk'y,--- ,pk',,), where pk'; is set as uj, P — P;, for j; =
1,2,--- ,n1, and set
PK?=(pk?,, pk?,,- - ,pkznl)7 where pkzjl is set as u;, Q — @y, for j1 =
17 2a IR L3 .

— Ky is set as (klg, k%, -+, kg') where kz

= Z(jl’j2)¢3(upnz+1—j2 - (Pn2+1—j2+i2)) for Jj1=1,2,--- ,n1. Note that



this implies k%l = Z(jl,jz)eés a"2+1_j2pk1j1, as is supposedjo be as per
the scheme specification. Note that B knows that (i1,72) ¢ S, and hence
has all the resources to compute this aggregate key for S.
— U is set as some random element in Gs.
Note that since P, @, a, U and the uj, values are chosen uniformly at
random, the public key has an identical distribution to that in the actual
construction.

3. Challenge-(iy,i2): To generate the challenge for the ciphertext class (i1, i2),
B computes (c1, ¢2) as (H—U, u;, H). It then randomly chooses a bit b € (0,1)
and sets K as Z and K;_; as a random element in Gp. The challenge given
tOAiS ((01,02),K0,K1). .

We claim that when Z = €’(P,,+1,H) (i.e. the input to B is a no-BDHE
tuple), then ((c1, c2), Ko, K1) is a valid challenge to A. We prove this claim
here. we point out that @ is a generator of Gy and so H = t'P for some
t' € Zy. Putting H as t'Q) gives us the following:
— U =1tQ for some t € Z,
—aq=H-U=@{-t)Q =rQ wherer =t — ¢
— e = u H = (u) )t'Q = t'(u;, Q) = t'(us, Q— Qi, + Qi) = t'(pk?;, +Qs,)
Ky =7 = &(Payir, H) = ¢(Pry1, £Q)
On the other hand, if Z is a random element in Gr (i.e. the input to B is
a random tuple), then Ky and K; are just random independent elements of
Gr.

4. Guess-(i1,i2): The adversary A outputs a guess b’ of b. If b’ = b, B outputs
0 (indicating that Z = 67’(Pn+1, H)), and terminates. Otherwise, it goes for
the next ciphertext class in S.

If after |S| iterations, b’ # b for each ciphertext class (i1,i2) € S, the algorithm B
outputs 1 (indicating that Z is random in Gr). We now analyze the probability
that B gives a correct output. If (P, H,Y(p o n,), Z) is sampled from R'-BDHE,
PriB(G,H,Y(pan,),Z) = 0] = %, while if (P, H,Y(p qn,),Z) is sampled from
L'-BDHE, |Pr[B(G, H,Y(p,a,ns): Z)] — %| > €. So, the probability that B outputs
correctly is at least 1 — (3 — €)l¥! > 1 4 . Thus B has advantage at least € in
solving the (ng2,n2)-BDHE problem. This concludes the proof.

7 Experimental Results Using Tate pairings

In this section we present experimental results from our implementations of the
extended generalized scheme using Tate pairings on BN-curves using 256 bit
primes [33]. All our experiments have been carried out on an AMD Opteron
(TM) Processor 6272 x 16 with a clock frequency 1.4 GHz. The details of our
implementations of Tate Pairings are summarized in Appendix A.

7.1 Space and Time Complexities

Table 2 summarizes the space requirements for various parameters of the scheme
for different values of (n1, ng). The results have been averaged over 100 randomly



Table 2: Space Complexities

ni | n2 | param PK msk Ks U Total
(in bytes)|(in bytes)|(in bytes)|(in bytes)|(in bytes)| (in KB)
1 |100| 16112 144 40 72 64 16.046875
2 |50 8112 240 56 120 64 8.390625
4 [25] 4112 432 88 216 64 4.796875
5 |20 3312 528 104 264 64 4.171875
10(10| 1712 1008 184 504 64 3.390625
20| 5 912 1968 344 984 64 4.171875
25| 4 752 2448 424 1224 64 4.796875
50| 2 432 4848 824 2424 64 8.390625
100| 1 272 9648 1624 4824 64 16.046875
Table 3: Time Complexities
ni | n2 SetUp KeyGen Encrypt Extract Decrypt Total
(in clock cycles)|(in clock cycles)|(in clock cycles)|(in clock cycles)|(in clock cycles)|(in clock cycles)
1 |100 2920000 10000 7932000 47000 16095000 27004100
2 |50 1410000 30000 8065000 53000 16110000 25668000
425 690000 60000 8130000 81000 16284000 25245000
5|20 590000 70000 8091000 96000 16379000 25226000
10|10 280000 140000 7957000 170000 16049000 25136000
20| 5 130000 270000 8070000 320000 16361000 25151000
25| 4 120000 350000 8256000 370000 16239000 25836000
50 2 50000 680000 8265000 712000 16398000 26105000
100| 1 30000 1360000 8201000 1315000 16142000 27048000
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Fig. 4: Key Size ratio - Proposed Aggregate Scheme vs Hierarchical Scheme

chosen subsets of the n = 100 ciphertext classes. Table 3 summarizes the time
complexity for various operations of the scheme for different values of (n1,ns).
The results have been averaged over 100 randomly chosen subsets of the n = 100
ciphertext classes. The encryption and decryption operation complexities are
further averaged over 10 message transmissions corresponding to each subset.
We point out that both the overall space and time requirements are minimum
for n; = ny = 10 = /n, which proves the usefulnesss of the generaalization.

7.2 Comparison with Hierarchy Based Schemes

Next, we compare specifically the key size required for the proposed extended
scheme, for different values of ny and ns (again corresponding to n = 100), with
that required for a hierarchical encryption construction [9]. Since our scheme



_n1=1,n2=100
2=50
i —n1=4,n2=25

—n1=2,n

Utilization Coefficient

L 1 1 Il Il L 1 1
0 100 200 300 400 500 600 700 800 900
Number of Key Pairs Added

Fig. 6: Utilization coefficient vs Newly Registered Keys

uses a hierarchy depth of 2, we use the same for the hierarchical construction as
well, with n; nodes in level 0, and ns level 1 nodes in the subtree rooted at each
level 0 node. Figure 4 summarizes the findings. Evidently, lower the value of nq,
better the key aggregation, hence lower the ratio.

7.3 Utilization Coefficient Comparison

Finally we compare the utilization-coefficient of the extended scheme for various
values of n; and ny (corresponding to n = 100) with increase in the number of
registered key pairs [, where each key pair increases the number of classes by
ngs. We leave out the configuration ny = n,ny = 1 because that always leads to
an utilization coefficient of 1 but is impractical due to huge space requirements.
Figure 6 demonstrates that that beyond a certain value of [, the combination
(1,n) proposed in [3] has a lower utilization coefficient that all other combina-
tions of (n1,n2) for a given n. This emphasizes the advantage of making the
choice of (n1,ns) flexible.

8 Conclusions and Future Work

In this paper, we have proposed a secure and dynamic key aggregate encryption
scheme for online data sharing. Our scheme allows data owners to delegate users
with access rights to multiple ciphertext classes using a single decryption key
that combines the decrypting power of individual keys corresponding to each
ciphertext class. Unlike existing key aggregate schemes that are static in their
access right delegation policies, our scheme allows data owners to dynamically
revoke one or more users’ access rights without having to change either the
public or the private parameters/keys. The use of bilinear pairings over addi-
tive elliptic curve subgroups in our scheme helps achieve massive reductions in
key and ciphertext sizes over existing schemes that use multiplicative groups.
We pointed out that a possible criticism of this scheme is that the number of



classes is pre-defined to some fixed n. To deal with this issue, we next proposed
a generalized two-level construction of the basic scheme that runs n; instances
of the basic scheme in parallel, with each instance handling key aggregation for
ng ciphertext classes. This scheme provides two major advantages. First of all,
it allows dynamic extension of ciphertext classes by registering of new public
key-private key pairs without affecting other system parameters. Secondly, it
provides a wide range of choices for n; and no that allows efficient utilization of
ciphertext classes while also achieving optimum space and time complexities. Fi-
nally, we extend the generalized scheme to allow the use of popular and efficiently
implementable bilinear pairings in literature such as Tate Pairings that operate
on multiple elliptic curve subgroups instead of one. Each of the three proposed
schemes have been proven to be semantically secure. Experimental studies have
demonstrated the superiority of our proposed scheme over existing ones in terms
of key size as well as efficient utilization of ciphertext classes. A possible future
work is to make the proposed schemes secure against chosen ciphertext attacks.
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A Implementation of Tate pairings Using BN Curves

A.1 The Tate pairing

We first provide a brief overview of the Tate pairing. Let K be a field of prime
order p, and let an elliptic curve F(K) over K be defined by the Weierstrass
[28] equation. Also, Let K = F,. be the smallest extension field of K = F,
that contains the ¢*" roots of unity. We refer to k as the embedding degree with
respect to K and ¢q. Further, we refer to the set of g-torsion points on the elliptic
curve as E(K)[qg] (g-torsion points essentially have order ¢). Before defining the
Tate pairing, we briefly state the Miller’s function [28]. Let [a]P denote the
multiplication of a point P € E by a scalar a € Z (equivalent to adding P a
times), and let O € E denote the point at infinity. A Miller function is any
rational function on E that has a divisor of the form

(fa.r) = a(P) = ([¢]P) = (¢ = 1)O. (2)

A Miller function has g zeros at P, one pole at [¢|P and ¢ — 1 poles at O. For
every point Q # P, [¢]P,/, we have (f, p) € K. We now define the Tate pairing
over elliptic curves.

The Tate pairing ey : Gy X G — G is a well-defined, non-degenerate,
bilinear pairing with G; = E(K)[q], G2 = E(K)/qE(K), and Gy = K /(K ).
Let P € E(K)[g] and Q € E(K)/qE(K). Then the Tate pairing of P,Q is
computed as

pk—1

er(P,Q) = fq.p(Q) 7

3)

Properties: Tate pairing satisfies following properties that make the pairing
suitable for use in cryptography.

— Well defined: e (0,Q) =1 for all Q € E(K) and er(P,Q) € (K')? for all

P e E(K)[q] and all Q € ¢E(K).

— Bilinearity: For all P, P, P, € E(K)[q] and Q,Q1,Q2 € E(K), we have
—er(P1+ P, Q) = er(P1,Q) - er (P2, Q).
- er(P, Q1+ Q2) = er(P,Q1) - er(P,Q2). _

— Non-degeneracy: For each point E(K)[g]\O there is some point Q € E(K)
such that er(P, Q) ¢ (K)4.

A.2 Pairing Friendly Curves

Barreto and Naehrig [34] developed a method for constructing a method for
constructing pairing-friendly elliptic curves over prime fields, with prime order
and embedding degree k = 12. The equation of the curve is E : y? = 2% + b,
with b # 0. The trace (of Frobenius) of the curve, the curve order and the



characteristic of I, are parameterized as:

t(z) = 622 +1
n(z) = 36z — 362% + 182% — 62 + 1
p(z) = 362* — 362> + 2427 — 62 + 1

respectively. Such a curve is often referred to in literature a Barreto-Naehrig or
BN curve. Since every point on the BN curve has order n, the value of ¢ (a large
prime dividing the curve order) can be taken to be the same as n.

Suitability of Barreto-Naehrig curves: BN curves are especially well suited
for the 128-bit security level. This is because, if p is 256-bit prime, then the
Pollards rho method for computing discrete logarithms in E(F,) has running
time approximately 228, as does the number field sieve algorithm for computing
discrete logarithms in the extension field IF,,12. The biggest advantage of using
BN curves is that they admit sextic twists with degree six, implying that there
exists a distortion map between IF,» and IF,15. This is of great advantage from
the computational point of view since many computations can now be restricted
to the field IF,2. The other advantage of using BN curves is their flexibility in
terms of order of the prime p. Barreto and Naehrig have defined in [34] a whole
family of BN curves to choose from, corresponding to primes of any given order.

Barreto-Naehrig curve used in implementation The BN curve used in
our implementation for 256 bit primes is given by

E:Y?=X%+3 (4)

with BN parameter = 6000000000001 F2D (in hexadecimal). The correspond-
ing prime p(z) = 362* — 3623 + 2422 — 62 + 1 is a 256-bit prime of Hamming
weight 87, n(z) = 36x* — 3623 + 1822 — 6z + 1 is 256-bit prime of Hamming
weight 91, and t — 1 = p — 7 = 622 + 1 is a 128-bit integer of Hamming weight
28(here t = p+ 1 — r is the trace of E). Note that the choice of p is made such
that p = 7(mod8), p = 4(mod9) p = 1(mod6). The reason for this is as follows.

1. The first condition ensures that —2 is a quadratic non-residue.

2. The second condition ensures efficient computation of cube roots [35].

3. The third condition ensures that there exists £ € 2 such that W6 — ¢ is
irreducible over 2 [W].

A.3 The Finite Field Extensions

As per the proposition in [36], we construct the extension field Fi2 using the
following tower field extensions:



Fplul/(u? +2)
2[1)]/( &) where £ = —u — 1, and
6[w]/(w —v).

The quadratic/cubic non-residues and reduction polynomials are detailed in
Table 4 for ag,a; € Fp, bg,b1,by € Fp2, and ¢, c; € Fps

1. Fpe
2. IF
3. ]Flz

Table 4: Extension fields

Extension|Non-Residue| Construction Representation
F,2 B8 =-2 ]FP[X]/(X2 -8) a=ag + a1 X
F E=-1/B |F2[Y]/(Y?- &) |b=bo + b1Y + boY?

F iz ¢ =€ |[Fel2])(2°-¢) c=co+ a1z

A.4 The Actual Implementation

The computation of the Tate pairing can be broadly divided into two major parts
- the Miller’s algorithm and the final exponentiation. A detailed implementation
of the Miller’s algorithm has been presented in [33] and we use the same for our
experiments. The final exponentiation can also be efficiently implemented using
the following factorization.

fpmf :f(pﬁ_l)'p4zf,j—21+1'p4_§2+l
_ ((fpﬁ—l)p%l)ip“{f“



