
A Generic Construction for Revocable Identity-Based Encryption
with Subset Difference Methods

Kwangsu Lee∗

Abstract

To deal with dynamically changing user’s credentials in identity-based encryption (IBE), providing
an efficient key revocation method is a very important issue. Recently, Ma and Lin proposed a generic
method of designing a revocable IBE (RIBE) scheme that uses the complete subtree (CS) method by
combining IBE and hierarchical IBE (HIBE) schemes. In this paper, we propose a new generic method
for designing an RIBE scheme that uses the subset difference (SD) method instead of using the CS
method. In order to use the SD method, we generically design an RIBE scheme by combining two-level
HIBE and single revocation encryption (SRE) schemes. If the underlying HIBE and SRE schemes are
adaptively (or selectively) secure, then our RIBE scheme is also adaptively (or selectively) secure. In
addition, we show that the layered SD (LSD) method can be applied to our RIBE scheme and a chosen-
ciphertext secure RIBE scheme also can be designed generically.
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1 Introduction

Identity-based encryption (IBE) is a new type of public-key encryption (PKE) that solve the public-key
management problem in PKE by using a user’s identity as a public key [41]. Since the first IBE scheme in
bilinear maps was proposed by Boneh and Franklin [5], research on new types of cryptographic encryption
such as IBE, hierarchical IBE (HIBE), attribute-based encryption (ABE), and predicate encryption (PE) has
been actively studied as an important research topic [5,8,15,17]. Despite the long history of research on IBE,
the IBE schemes have not been widely deployed in real environments. One reason of this problem is that
unlike PKE schemes, which uses a public-key infrastructure to handle certificate issuance and revocation, it
is not simple to revoke the private key of a user in IBE. Therefore, an important additional feature of IBE
schemes is to support the private key revocation flexibly and efficiently.

The method of revoking the private key of a user in IBE has been studied since the initial IBE scheme
was designed, but this method is not suitable for handling a large number of users [5]. The first revocable
IBE (RIBE) scheme to efficiently handle large numbers of users was proposed by Boldyreva et al. [3]. The
key design principle of their RIBE scheme is that a trusted center periodically creates and broadcasts an
update key on time T for non-revoked users, along with the generation of a user’s private key. In this case,
if the private key of a user ID is not revoked in the update key on time T , the user can decrypt a ciphertext
for his identity ID and the corresponding time T . In other words, the RIBE scheme proposed by Boldyreva
et al. can be seen as a method to support the indirect private key revocation, in which the center decides
the revocation of private keys instead of the sender. Specifically, Boldyreva et al. designed their RIBE
scheme by combining a tree-based broadcast method with a fuzzy identity-based encryption scheme. After
the work of Boldyreva et al., various RIBE schemes and extension schemes have been proposed to enhance
the efficiency, security, and functionality of RIBE [9, 10, 18, 25, 28, 31, 36, 38–40, 43].

Currently, to design an RIBE scheme, we redesign an RIBE scheme from the beginning by directly
modifying an efficient IBE scheme proposed before. This is problematic in that a new RIBE scheme must
be designed again whenever a new IBE scheme having a different mathematical structure is proposed. Ma
and Lin recently overcome this problem by suggesting a generic method of designing an RIBE scheme by
using an IBE scheme as a black-box [32]. In their generic RIBE scheme with the complete subtree (CS)
method, an update key consists of O(r log N

r ) IBE private keys and a ciphertext consists of O(logN) IBE
ciphertexts where r is the number of revoked users and N is the number of users. In the RIBE scheme,
reducing the size of update keys is an important issues since an update key should be broadcasted to all
users for each time period. The motivation of this work is to reduce the update key size of the generic RIBE
scheme. In tree-based broadcast encryption, there exists the subset difference (SD) method proposed by
Naor et al. [34] which is more efficient than the CS method. Additionally, the layered SD (LSD) method
which improved the SD method has also been proposed [16]. Therefore, we ask whether it is possible to
design an RIBE scheme from an IBE scheme in a generic way using the SD/LSD method to reduce the size
of update keys. If the SD/LSD method can be applied to a generic RIBE scheme, the size of an update key
can be reduced from O(r log N

r ) key elements to O(r) key elements.

1.1 Our Contributions

In this paper, we show that it is possible to design an RIBE scheme with the SD method in a generic way.
As described above, the generic RIBE scheme with the CS method uses two-level HIBE and IBE schemes
as basic building blocks [32]. On the contrary, our generic RIBE scheme with the SD method uses two-
level HIBE and single revocation encryption (SRE) schemes as basic building blocks. The SRE scheme is a
special type of broadcast encryption scheme in which a ciphertext is specified with a group label GL and a
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Table 1: Comparison of revocable identity-based encryption schemes

Scheme PP Size SK Size UK Size CT Size Model DKER Generic

BF [5] O(1) O(1) O(N− r) O(1) SE No No

BGK [3] O(1) O(logN) O(r log N
r ) O(1) SE No No

LV [31] O(λ ) O(logN) O(r log N
r ) O(1) AD No No

SE [39] O(λ ) O(logN) O(r log N
r ) O(1) AD Yes No

LLP [25] O(1) O(log2 N) O(r) O(1) AD Yes No

ML1 [32] O(1) O(1) O(r log N
r ) O(logN) AD Yes Yes

ML2 [32] O(logN) O(1) O(r log N
r ) O(1) AD Yes Yes

Ours (SD) O(1) O(1) O(r) O(log2 N) AD Yes Yes

Ours (LSD) O(1) O(1) O(r) O(log1.5 N) AD Yes Yes

Let λ be a security parameter, N be the number of maximum users, and r be the number of revoked users. We
count the number of group elements to measure the size of parameters. We use symbols SE for selective IND-CPA
and AD for adaptive IND-CPA.

revoked member label ML. The newly derived RIBE scheme with the SD method consists of O(r) number
of SRE private keys in an update key and O(log2 N) number of SRE ciphertexts in a ciphertext. Compared
with the previous generic RIBE scheme with the CS method, the size of an update key is reduced but the
size of a ciphertext is increased. The detailed comparison of RIBE schemes is given in Table 1.

To analyze the security of our generic RIBE scheme with the SD method, we show that if the underly-
ing HIBE and SRE schemes are adaptively (or selectively) secure under chosen plaintext attacks, then the
proposed generic RIBE scheme is also adaptively (or selectively) secure under chosen plaintext attacks. The
key idea of our proof is to first divide the types of an attacker according to the queries of the attacker, and to
isolate the attacker of a specific type to break the security of the underlying HIBE or SRE scheme. However,
this idea is not simple to apply since the SD method has a complicated subset cover structure unlike the CS
method. To handle this complicated structure in a ciphertext, we introduce additional hybrid games in the
security proof and handle each ciphertext element of the challenge ciphertext one by one.

In addition, we show that it is possible to reduce the size of a ciphertext by extending our generic
RIBE scheme to use the more efficient LSD method instead of using the SD method, but this modified
scheme increases the size of an update key slightly. We also show that our generic RIBE scheme which
provides only chosen-plaintext attack (CPA) security can be extended to provide the security against the
more powerful chosen-ciphertext attacker (CCA). To provide the CCA security of RIBE, the underlying
HIBE and SRE schemes should provide the CCA security and a one-time signature scheme with strong
unforgeability should be used.

1.2 Related Work

Certificate Revocation. The study of certificate revocation in public-key encryption has been the subject
of much research. In reality, the most widely used certificate revocation method is to periodically issue
a certificate revocation list (CRL) containing serial numbers of revoked user’s certificates. In addition,
a delta-CRL can be used to more efficiently issue the revocation information, and it is also possible to
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immediately check the state of a certificate by using the online certificate status protocol (OCSP) service.
In the theoretical aspect, various certificate revocation methods which are more efficient than the traditional
methods also have been proposed [2, 33, 35].

Broadcast Encryption. Public-key broadcast encryption (PKBE) provides the revocation of receivers be-
cause a sender can specify a receiver set S in a ciphertext directly [7]. Identity-based broadcast encryption
(IBBE) can provide more powerful revocation than existing PKBE because the maximum number of users
in the system can be exponential [11]. Identity-based revocation (IBR) can be viewed as a cryptographic
scheme that implements direct user revocation because all system users except the revoked users can de-
crypt a ciphertext where a revoked set R is specified in the ciphertext [27, 29]. However, PKBE, IBBE, and
IBR have the disadvantage that a user cannot be revoked after the creation of a ciphertext. Particularly, it
is a critical problem in a cryptographic system in which ciphertexts are stored in cloud storage and a user
accesses these ciphertexts later since the user cannot be revoked when his or her credential is expired.

Revocable IBE. Boneh and Franklin [5] proposed a revocation method for IBE such that a trusted center
periodically issues a private key for a user by combining an identity and time as ID‖T , but this method is not
scalable since a secure channel should be established for every time. The efficient and scalable RIBE scheme
was proposed by Boldyreva et al. [3] by combining the complete subtree (CS) method and a fuzzy identity-
based encryption scheme. In their RIBE scheme, a ciphertext is associated with a receiver’s identity D and
time T , and a trusted center periodically issues an update key one time T for non-revoked users to implement
the indirect key revocation. A number of secure and efficient RIBE schemes using a broadcast method for
key updates have been proposed [9, 18, 31, 36, 39, 43, 44]. Most of the RIBE schemes follow the CS method
for update keys, but Lee et al. [25] showed that an RIBE scheme with the SD method can be designed to
reduces the size of update keys. Recently, Ma and Lin [32] proposed a generic RIBE construction with the
CS method by combining IBE and HIBE schemes.

Revocable HIBE. The first revocable HIBE (RHIBE) scheme, which provides the private key revocation
in HIBE, was proposed by Seo and Emura [38]. They proposed an RHIBE scheme by applying the design
principle of previous RIBE schemes to an HIBE scheme. To improve the initially proposed RHIBE scheme,
Seo and Emura later introduced a history-free update method to reduce the size of private keys and update
keys [40]. After that, Lee and Park have introduced a new RHIBE scheme with short private keys and short
updated keys by introducing an intermediate private key in HIBE and using a modular design method [28].
In order to enhance the selective security of previous RHIBE schemes, Lee proposed an adaptively secure
RHIBE scheme by applying the dual system encryption method [20].

Revocable ABE. ABE is an extension of IBE in which a ciphertext is associated with attributes and a private
key is associated with an access structure, and the ciphertext of ABE can be decrypted by the private key of
ABE if the attributes satisfies the access structure [15]. An revocable ABE (RABE) scheme was proposed
by Boldyreva et al. [3] by following the design principle of their RIBE scheme. ABE is well-suited for
environments such as cloud storage where multiple users access different ciphertexts since it can provide
flexible access control. For such an environment, Sahai et al. [37] proposed a revocable-storage ABE (RS-
ABE) scheme that supports ciphertext updates as well as user key revocation. Lee et al. [21, 23] proposed
an improved RS-ABE scheme by using a self-updatable encryption scheme, and they also proposed an RS-
ABE scheme that provides the CCA security [26]. A generic construction of ABE with direct revocation in
which a revoked set is attached in a ciphertext was proposed by Yamada et al. [45].
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1.3 Versions of This Paper and Corrections

Regrettably, the RIBE scheme of our previous paper [22] is insecure as Takayasu pointed out [42]. Our
previous RIBE scheme was designed by combining HIBE, IBE, and IBR scheme. However, the previous
RIBE scheme had a problem in that an attacker could decrypt the IBR ciphertext included in the challenge
RIBE ciphertext by using another (non-revoked) IBR private key included in an update key. In this revised
paper, we updated our RIBE scheme to use an SRE scheme instead of using IBE and IBR schemes to prevent
the previous attack. By using an SRE scheme instead of using the IBE and IBR schemes, it was possible to
design a more efficient RIBE scheme than before.

2 Preliminaries

In this section, we first review the definition and security model of HIBE and SRE. Next, we review the
definition and security model of RIBE.

2.1 Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) is an extension of IBE in which a hierarchical identity is
used to represent a user’s identity and the delegation of private keys is provided [13, 17]. In HIBE, a user
receives a private key for his hierarchical identity from a trusted center, or receives a delegated private key
from another user. If a sender creates a ciphertext for a receiver’s hierarchical identity and transmits it to a
receiver, then the receiver can decrypt the ciphertext by using his private key if the hierarchical identity of
his private key is a prefix of the hierarchical identity of the ciphertext.

Let HID = (ID1, . . . , IDk) be an identity vector of size k. We let HID| j be a vector (ID1, . . . , ID j) of size
j derived from HID. We define a function Pre f ix(HID|k) that returns a set of prefix vectors {HID| j}1≤ j≤k
where HID|k = (ID1, . . . , IDk). The detailed syntax of HIBE is given as follows.

Definition 2.1 (Hierarchical Identity-Based Encryption, HIBE). An HIBE scheme consists of five algo-
rithms Setup, GenKey, Delegate, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ,Lmax). The setup algorithm takes as input a security parameter 1λ and maximum hierarchical
depth Lmax. It outputs a master key MK and public parameters PP.

GenKey(HID|k,MK,PP). The key generation algorithm takes as input a hierarchical identity HID|k =
(ID1, . . . , IDk) ∈ Ik where k ≤ Lmax, the master key MK, and the public parameters PP. It outputs a
private key SKHID|k .

Delegate(HID|k,SKHID|k−1 ,PP). The delegation algorithm takes as input a hierarchical identity HID|k, a
private key SKHID|k−1 for HID|k−1, and the public parameters PP. It outputs a delegated private key
SKHID|k .

Encrypt(HID|`,M,PP). The encryption algorithm takes as input a hierarchical identity HID|`=(ID1, . . . , ID`)∈
I` where `≤ Lmax, a message M, and public parameters PP. It outputs a ciphertext CTHID|` .

Decrypt(CTHID|` ,SKHID|k ,PP). The decryption algorithm takes as input a ciphertext CTHID|` , a private key
SKHID|k , and public parameters PP. It outputs a message M.

The correctness of HIBE is defined as follows: For all MK,PP generated by Setup(1λ ,Lmax), all HID|`,HID|k,
any SKHID|k generated by GenKey(HID|k,MK,PP) such that HID|k ∈ Pre f ix(HID|`), it is required that
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• Decrypt(Encrypt(HID|`,M,PP),SKHID|k ,PP) = M.

The security model of HIBE is defined by extending the security model of IBE to include additional
private key delegations [13, 17]. That is, an attacker can request delegated private key queries together with
general private key queries. In this case, if the distribution of general private keys and the distribution of
delegate private keys are the same, then we can only consider general private key queries to simplify the
security model. The detailed security model of HIBE is given as follows.

Definition 2.2 (IND-CPA Security). The IND-CPA security of HIBE is defined in terms of the following
game between a challenger C and a PPT adversary A:

1. Setup: C generates a master key MK and public parameters PP by running Setup(1λ ,Lmax). It keeps
MK to itself and gives PP to A.

2. Phase 1: A may adaptively request a polynomial number of private key queries. In response, C gives
a corresponding private key SKHID|k to A by running GenKey(HID|k,MK,PP) for each query.

3. Challenge: A submits a challenge hierarchical identity HID∗|` and two messages M∗0 ,M
∗
1 with the

equal length subject to the restriction: for each HID|k of private key queries, HID|k 6∈Pre f ix(HID∗|`).
C flips a random coin µ ∈{0,1} and gives a challenge ciphertext CT ∗ toA by running Encrypt(HID∗|`,
M∗µ ,PP).

4. Phase 2: A may continue to request private key queries.

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ , and wins the game if µ = µ ′.

The advantage ofA is defined as AdvHIBE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. An HIBE scheme is IND-CPA secure if for all PPT adversary A, the advantage of
A is negligible in the security parameter λ .

2.2 Single Revocation Encryption

Single revocation encryption (SRE) is a special kind of broadcast encryption [24, 27], in which a user is
specified with a group and member labels (GL,ML) and a ciphertext is generated for a group label GL and
a revoked member label ML′. In SRE, a sender generates a ciphertext CT for group and revoked member
labels (GL,ML) and a message M. A receiver who has a private key for his group and member labels
(GL′,ML′) from a trusted central decrypts the ciphertext if the group labels are equal GL = GL′ but the
member labels are not equal ML 6= ML′. The detailed syntax of SRE is given as follows.

Definition 2.3 (Single Revocation Encryption, SRE). An SRE scheme consists of four algorithms Setup,
GenKey, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ ): The setup algorithm takes as input a security parameter 1λ . It outputs a master key MK and
public parameters PP.

GenKey((GL,ML),MK,PP): The private key generation algorithm takes as input labels (GL,ML), the
master key MK, and public parameters PP. It outputs a private key SK(GL,ML).

Encrypt((GL,ML),M,PP): The encryption algorithm takes as input labels (GL,ML), a message M ∈M,
and public parameters PP. It outputs a ciphertext CT(GL,ML).
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Decrypt(CT(GL,ML),SK(GL′,ML′),PP): The decryption algorithm takes as input a ciphertext CT(GL,ML), a
private key SK(GL′,ML′), and public parameters PP. It outputs a message M.

The correctness of SRE is defined as follows: For all MK and PP generated by Setup(1λ ), SKID generated
by GenKey((GL′,ML′),MK,PP) for any (GL′,ML′), and any (GL,ML) and any M, it is required that

• If (GL = GL′)∧ (ML 6= ML′), Decrypt(Encrypt((GL,ML),M,PP),SK(GL′,ML′),PP) = M.

The security model of SRE is defined by extending the IND-CPA security model of PKBE [27]. In
this model, an attacker requests private key queries on labels. In the challenge step, the attacker submits
challenge labels (GL∗,ML∗) and the challenge messages M∗0 ,M

∗
1 and receives a challenge ciphertext CT ∗.

The attacker additionally requests private key queries and finally guesses the hidden message in CT ∗. The
detailed description of the security model is given as follows.

Definition 2.4 (IND-CPA Security). The security of SRE is defined in terms of the indistinguishability
under chosen plaintext attacks (IND-CPA). The security game is defined as the following game between a
challenger C and a PPT adversary A:

1. Setup: C runs Setup(1λ ) to generate a master key MK and public parameters PP. It keeps MK to
itself and gives PP to A.

2. Query 1: A adaptively requests private keys for labels (GL1,ML1), . . . ,(GLq1 ,MLq1). In response, C
gives the corresponding private keys SK1, . . . ,SKq1 to A by running GenKey((GLi,MLi),MK,PP).

3. Challenge: A submits challenge labels (GL∗,ML∗) and two messages M∗0 ,M
∗
1 with the equal length

subject to the restriction: for all (GLi,MLi) of private key queries, it is required that (GLi 6= GL∗) or
(GLi = GL∗)∧(MLi = ML∗). C flips a random coin µ ∈ {0,1} and gives the challenge ciphertext CT ∗

to A by running Encrypt((GL∗,ML∗),M∗µ ,PP).

4. Query 2: A may continue to request private keys for labels (GLq1+1,MLq1+1), . . . ,(GLq,MLq).

5. Guess: A outputs a guess µ ′ ∈ {0,1} of µ , and wins the game if µ = µ ′.

The advantage of A is defined as AdvSRE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. A SRE scheme is secure under chosen plaintext attacks if for all PPT adversary
A, the advantage of A in the above game is negligible in the security parameter λ .

2.3 Revocable Identity-Based Encryption

Revocable identity-based encryption (RIBE) is an extension of identity-based encryption (IBE) to support
private key revocation [3]. In RIBE, each user receives a private key for his or her identity ID from a trusted
center. The trusted center then periodically generates an update key which is associated with time T and a
non-revoked user set, and then it broadcasts the update key through the public channel. In this case, if the
private key of a user is not revoked in the update key, the user can derive a decryption key for ID and T by
combining the private key and the update key, and this decryption key can be used to decrypt a ciphertext
which is related with ID and T . The syntax of RIBE is given as follows.

Definition 2.5 (Revocable IBE, RIBE). An RIBE scheme consists of seven algorithms Setup, GenKey,
UpdateKey, DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:
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Setup(1λ ): The setup algorithm takes as input a security parameter 1λ . It outputs a master key MK, an
(empty) revocation list RL, and public parameters PP.

GenKey(ID,MK,PP): The private key generation algorithm takes as input an identity ID ∈ I, the master
key MK, and public parameters PP. It outputs a private key SKID.

UpdateKey(T,RL,MK,PP): The update key generation algorithm takes as input update time T ∈ T , the
revocation list RL, the master key MK, and public parameters PP. It outputs an update key UKT .

DeriveKey(SKID,UKT ,PP): The decryption key derivation algorithm takes as input a private key SKID, an
update key UKT , and public parameters PP. It outputs a decryption key DKID,T .

Encrypt(ID,T,M,PP): The encryption algorithm takes as input an identity ID ∈ I, time T , a message
M ∈M, and public parameters PP. It outputs a ciphertext CTID,T .

Decrypt(CTID,T ,DKID′,T ′ ,PP): The decryption algorithm takes as input a ciphertext CTID,T , a decryption
key DKID′,T ′ , and public parameters PP. It outputs a message M.

Revoke(ID,T,RL): The revocation algorithm takes as input an identity ID to be revoked and revocation
time T , and a revocation list RL. It outputs an updated revocation list RL.

The correctness of RIBE is defined as follows: For all MK, RL, and PP generated by Setup(1λ ), SKID

generated by GenKey(ID,MK,PP) for any ID, UKT generated by UpdateKey(T,RL,MK,PP) for any T
and RL such that (ID,Tj) /∈ RL for all Tj ≤ T , CTID,T generated by Encrypt(ID,T,M,PP) for any ID, T ,
and M, it is required that

• Decrypt(CTID,T ,DeriveKey(SKID,UKT ,PP),PP) = M.

The security model of RIBE was first defined by Boldyreva et al. [3], and then this security model was
extended by Seo and Emura [39] to support decryption key exposure resistance. In the security model of
RIBE, an attacker can request a private key query for an identity ID, an update key query for time T , a
decryption key query for ID and T , and a revocation query. In the challenge step, the attacker submits
a challenge identity ID∗, challenge time T ∗, and challenge messages M∗0 ,M

∗
1 , and receives a challenge

ciphertext CT ∗. Note that the private key query for ID∗ is not allowed in the IBE security model, but this
private key query for ID∗ is allowed in the RIBE security model. At this time, if the private key for ID∗

is queried, then the private key for ID∗ must be revoked in the update key on the challenge time T ∗. The
detailed definition of the RIBE security model is given as follows.

Definition 2.6 (IND-CPA Security). The IND-CPA security of RIBE is defined in terms of the following
experiment between a challenger C and a PPT adversary A:

1. Setup: C generates a master key MK, a revocation list RL, a state ST , and public parameters PP by
running Setup(1λ ). It keeps MK,RL to itself and gives PP to A.

2. Phase 1: A adaptively request a polynomial number of queries. These queries are processed as
follows:

• If this is a private key query for an identity ID, then it gives the corresponding private key SKID

to A by running GenKey(ID,MK,PP).
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• If this is an update key query for time T , then it gives the corresponding update key UKT,R to A
by running UpdateKey(T,RL,MK,PP).

• If this is a decryption key query for an identity ID and time T , then it gives the corresponding
decryption key DKID,T to A by running DeriveKey(SKID,UKT ,PP).

• If this is a revocation query for an identity ID and revocation time T , then it updates the revo-
cation list RL by running Revoke(ID,T,RL,ST ) with the restriction: The revocation query for
time T cannot be queried if the update key query for the time T was already requested.

Note that we assume that the update key queries and the revocation queries are requested in non-
decreasing order of time.

3. Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages
M∗0 ,M

∗
1 with equal length with the following restrictions:

• If a private key query for an identity ID such that ID = ID∗ was requested, then the identity ID∗

should be revoked at some time T such that T ≤ T ∗.

• The decryption key query for ID∗ and T ∗ was not requested.

C flips random µ ∈ {0,1} and obtains a ciphertext CT ∗ by running Encrypt(ID∗,T ∗,M∗µ ,PP). It gives
CT ∗ to A.

4. Phase 2: A may continue to request a polynomial number of additional queries subject to the same
restrictions as before.

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage of A is defined as AdvRIBE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. An RIBE scheme is IND-CPA secure if for all PPT adversary A, the
advantage of A is negligible in the security parameter λ .

3 Revocable IBE with SD

In this section, we first review the perfect binary tree and the subset difference method, and then we propose
a generic construction for RIBE by combining subset difference, HIBE, and SRE schemes.

3.1 Binary Tree

A perfect binary tree BT is a tree data structure in which all internal nodes have two child nodes and all leaf
nodes have the same depth. Let N = 2n be the number of leaf nodes in BT . The number of all nodes in BT
is 2N−1 and we denote vi as a node in BT for any 1≤ i≤ 2N−1. The depth di of a node vi is the length of
the path from a root node to the node. The root node of a tree has depth zero. The depth of BT is the length
of the path from the root node to a leaf node. A level of BT is a set of all nodes at given depth.

Each node vi ∈ BT has an identifier Li ∈ {0,1}∗ which is a fixed and unique string. An identifier of
each node is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on whether it is
connected to the left or right child node. The identifier Li of a node vi is obtained by reading all labels of
edges in a path from the root node to the node vi. The root node has an empty identifier ε . For a node vi, we
define Label(vi) be the identifier of vi and Depth(vi) be the depth di of vi.
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Figure 1: A path set for ID = 010 in the SD method

A subtree Ti in BT is defined as a tree that is rooted at a node vi ∈ BT . A subset Si is defined as a set of
all leaf nodes in Ti. For any two nodes vi,v j ∈ BT where v j is a descendant of vi, Ti, j is defined as a subtree
Ti−T j, that is, all nodes that are descendants of vi but not v j. A subset Si, j is defined as the set of leaf nodes
in Ti, j, that is, Si, j = Si \S j.

For a perfect binary tree BT and a subset R of leaf nodes, ST (BT ,R) is defined as the Steiner Tree
induced by the set R and the root node, that is, the minimal subtree of BT that connects all the leaf nodes in
R and the root node.

3.2 Subset Difference Method

The subset difference (SD) method is one instance of the subset cover (SC) framework proposed by Naor et
al. [34] which was used for efficient symmetric key broadcast encryption. The SD method is more efficient
than the complete subtree (CS) method because the size of the cover set representing the non-revoked users
is smaller than that of the CS method. We follow the SD definition of Lee et al. [24]. The SD method
uses a perfect binary tree and each user is located at a leaf node in the binary tree. The Assign algorithm
computes a path set PV , which is consists of subsets associated with the path from the root node to a user’s
leaf node. The Cover algorithm derives a cover set CV that can effectively cover non-revoked leaf nodes.
The Match algorithm can derive two related subsets if a user’s leaf node is not revoked in the cover set. A
simple example of the SD method is given in Figure 1 and 2. A detailed description of the SD method is
given as follows.

SD.Setup(N): Let N = 2n be the number of leaf nodes. It sets a perfect binary tree BT of depth n and
outputs BT . Note that a user is assigned to a leaf node in BT and the collection S of SD is the set of
all subsets {Si, j} where vi,v j ∈ BT and v j is a descendant of vi.

SD.Assign(BT ,v): Let v be the leaf node of BT that is assigned to a user ID. Let (vk0 ,vk1 , . . . ,vkn) be a
path from the root node vk0 to the leaf node vkn = v. It initializes a path set PV as an empty one. For
all i, j ∈ {k0, . . . ,kn} such that v j is a descendant of vi, it adds a subset Si, j defined by two nodes vi and
v j in the path into PV . It outputs the path set PV = {Si, j}.
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Figure 2: A cover set for R = {v9,v12,v13} in the SD method

SD.Cover(BT ,R): Let R be a revoked set of leaf nodes (or users). It first sets a subtree T as ST (BT ,R),
and then it builds a cover set CV iteratively by removing nodes from T until T consists of just a single
node as follows:

1. It finds two leaf nodes vi and v j in T such that the least-common-ancestor v of vi and v j does
not contain any other leaf nodes of T in its subtree. Let vl and vk be the two child nodes of v
such that vi is a descendant of vl and v j is a descendant of vk. If there is only one leaf node left,
it makes vi = v j to the leaf node, v to be the root of T and vl = vk = v.

2. If vl 6= vi, then it adds the subset Sl,i to CV ; likewise, if vk 6= v j, it adds the subset Sk, j to CVR.

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the cover set CV = {Si, j}.

SD.Match(CV,PV ): Let CV = {Si, j} and PV = {Si, j}. It finds two subsets Si, j ∈CV and Si′, j′ ∈ PV such
that (vi = vi′)∧ (d j = d j′)∧ (v j 6= v j′) where d j is the depth of v j. If two subsets exist, then it outputs
(Si, j,Si′, j′). Otherwise, it outputs ⊥.

The correctness of the SD scheme requires that if v 6∈ R, then SD.Match(CV,PV ) = (Si, j,Si′, j′) such that
(vi = vi′)∧ (d j = d j′)∧ (v j 6= v j′) where Si, j is defined by two nodes vi and v j.

Lemma 3.1 ( [34]). Let N = 2n be the number of leaf nodes in a perfect binary tree and r be the size of a
revoked set. In the SD method, the size of a path set is O(log2 N) where the hidden constant is 1/2 and the
size of a cover set is at most 2r−1.

3.3 Design Principle

In order to design a generic RIBE scheme with the SD method, we first analyze the generic RIBE scheme
with the CS method proposed by Ma and Lin [32]. The key design principle of their RIBE scheme with the
CS method is that the identity ID of a receiver can be fixed to the path of a binary tree and a ciphertext is
associated with the path set of the receiver’s identity ID where as the private key of a user is associated with
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the path set of a binary tree in directly constructed many RIBE schemes. Therefore, if the receiver’s identity
ID is not revoked in the CS method, there is a common node in the path set of the binary tree and a node in
the cover set of an update key. Thus, the equality function of IBE can be used to handle this common node
since the path can be related to IBE ciphertexts and the cover set can be related to IBE private keys.

However, this design method is difficult to apply to the SD method. The reason is that in the SD method,
unlike the CS method, there are no common nodes in the path set and the cover set. To solve this problem,
we use the new interpretation of the SD method which was used for an efficient public-key revocation
(PKR) scheme and RIBE scheme by using the SD method [24, 25]. To design an efficient PKR scheme,
Lee et al. [24] observed that the subset Si, j of the SD method can be interpreted as a set of single member
revocation instead of the existing interpretation that the subset Si, j is a set of leaf nodes where each leaf
node belongs to the subtree Ti but does not belong to the subtree T j. That is, if we consider a group set GL
which consists of all nodes of the subtree Ti that has the same depth as the node v j, the subset Si, j can be
interpreted as the same as GL except that the node v j is excluded from GL. Thus, Si, j can be interpreted as
single member revocation because it revokes one node v j in GL.

This interesting observation was also used to directly construct an RIBE scheme with the SD method by
Lee et al. [25]. They used a degree-one polynomial in the exponent to implement single member revocation,
but they only achieved an RIBE scheme in a non-generic way. In this work, we found that an SRE scheme
can be used in a generic way to achieve single member revocation if an RIBE ciphertext is associated with
a path set PV for a receiver’s identity ID and an RIBE update key is associated with a cover set CV for a
revoked set R. That is, given the subset Si, j, if we set a group label GL = Li‖d j and a member label ML = L j

where Li,L j are identifiers of nodes vi,v j and d j is the depth of v j, then all members of the group GL can
be represented by a label pair (GL,ML). In this case, a label pair (GL,ML) in a ciphertext and another
label pair (GL′,ML′) in an update key can be matching pairs if the group labels are equal but the member
labels are different such that GL = GL′∧ML 6= ML′. Thus, we can support the equality GL = GL′ and the
inequality ML 6= ML′ by using an SRE scheme. In addition, to provide security against collusion attacks in
the black-box construction, we divided the message M of a ciphertext into several secret shares by using a
simple secret sharing scheme, and then encrypt these shares by using HIBE and SRE schemes. Additionally,
we use the HIBE scheme to provide the decryption key exposure resistance.

3.4 Generic Construction

Let HIBE = (Setup, GenKey, Delegate, Encrypt, Decrypt) be a two-level HIBE scheme and SRE =
(Setup, GenKey, Encrypt, Decrypt) be an SRE scheme that supports a single revoked identity. We define
GMLabels(Si, j) = (GL = Label(vi)‖Depth(v j),ML = Label(v j)) where GL is a group label and ML is a
member label. A simple example of a group of nodes derived from a subset Si, j is given in Figure 3. A
generic RIBE scheme using the SD method is described as follows.

RIBE.Setup(1λ ): Let I = {0,1}n be the identity space.

1. It first obtains MKHIBE ,PPHIBE by running HIBE.Setup(1λ ,2). It also obtains MKSRE ,PPSRE

by running SRE.Setup(1λ ).

2. It defines a binary tree BT by running SD.Setup(2n) where I ∈ {0,1}n. Note that it will deter-
ministically assign an identity ID to a leaf node v ∈ BT such that Label(v) = ID.

3. It outputs a master key MK = (MKHIBE ,MKSRE), a revocation list RL= /0, and public parameters
PP = (PPHIBE ,PPSRE ,BT ).
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Figure 3: Single member revoked groups from the subsets S2,9 = (v2,v9) and S3,6 = (v3,v6)

RIBE.GenKey(ID,MK,PP): It first obtains SKHIBE by running HIBE.GenKey((ID),MKHIBE ,PPHIBE).
It outputs a private key SKID = SKHIBE .

RIBE.UpdateKey(T,RL,MK,PP): To generate an update key for T , it proceeds as follows:

1. It initializes RV = /0. For each (ID j,Tj) ∈ RL, it adds a leaf node v j ∈ BT which is associated
with ID j into RV if Tj ≤ T . It obtains CVT by running SD.Cover(BT ,RV ).

2. For each Si, j ∈CVT , it sets labels (GL,ML) = GMLabels(Si, j) and obtains SKSRE,Si, j by running
SRE.GenKey((GL‖T,ML),MKSRE ,PPSRE).

3. Finally, it outputs an update key UKT =
(
CVT ,{SKSRE,Si, j}Si, j∈CVT

)
.

RIBE.DeriveKey(SKID,UKT ,PP): Let SKID = SKHIBE . It first obtains DKHIBE by running HIBE.Delegate
((ID,T ),SKHIBE ,PPHIBE). It outputs a decryption key DKID,T = (DKHIBE ,UKT ).

RIBE.Encrypt(ID,T,M,PP): To generate a ciphertext for ID and T , it proceeds as follows:

1. It selects random R1 and sets R2 =M⊕R1. It obtains CTHIBE by running HIBE.Encrypt((ID,T ),
R1,PPHIBE).

2. Let vID be a leaf node associated with ID such that ID = Label(vID). Recall that the leaf node
vID is fixed by the Label function. It obtains PVID by running SD.Assign(BT ,vID).

3. For each Si, j ∈ PVID, it sets labels (GL,ML) = GMLabels(Si, j) and obtains CTSRE,Si, j by running
SRE.Encrypt((GL‖T,ML),R2,PPSRE). It creates CTPV =

(
PVID,{CTSRE,Si, j}Si, j∈PVID

)
.

4. Finally, it outputs a ciphertext CTID,T = (CTHIBE ,CTPV ).

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): Let CTID,T = (CTPV ,CTHIBE) and DKID′,T ′ = (DKHIBE ,UKT ). It pro-
ceeds as follows:

1. It first obtains R1 by running HIBE.Decrypt(CTHIBE ,DKHIBE ,PPHIBE).

2. It finds (Si, j,Si′, j′) = SD.Match(PVID,CVT ). It retrieves CTSRE,Si, j from CTPV and SKSRE,Si′, j′

from UKT . Next, it obtains R2 by running SRE.Decrypt(CTSRE,Si, j ,SKSRE,Si′, j′ ,PPSRE).
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3. Finally, it outputs a message M = R1⊕R2.

RIBE.Revoke(ID,T,RL): If (ID,∗) already exists in RL, it outputs RL. Otherwise, it adds (ID,T ) to RL
and outputs the updated RL.

3.5 Correctness

The correctness of the above RIBE scheme can be easily seen by using the correctness of the under-
lying HIBE, SRE and SD schemes. Let CTID,T = (CTHIBE ,CTPV ) be a ciphertext associated with ID
and T , and DKID′,T ′ = (DKHIBE ,UKT ) be a decryption key is associated with ID′ and T ′. In this case,
if the condition ID = ID′ ∧ T = T ′ is satisfied, then the random R1 is correctly decrypted by running
HIBE.Decrypt(CTHIBE ,SKHIBE ,PPHIBE) because of the correctness of HIBE.

Now we show that random R2 can be correctly decrypted from CTPV and UKT if the identity ID of the
ciphertext is not revoked in the update key UKT . Recall that the ciphertext CTPV is associated with PVID and
the update key UKT is associated with CVT . By the correctness of the SD scheme, the SD.Match algorithm
outputs two subsets of Si, j,Si′, j′ such that (vi = vi′)∧(d j = d j′)∧(v j 6= v j′) if the leaf node vID is not included
in the revoked set RV . Let CTSRE,Si, j ∈CTPV and SKSRE,Si′, j′ ∈UKT be corresponding ciphertext and private
key of Si, j and Si′, j′ respectively. From the definition of GMLabels, labels (GL,ML) = GMLabels(Si, j) and
(GL′,ML′) = GMLabels(Si′, j′) are obtained and they satisfy GL = GL′∧ML 6= ML′. Therefore, if the time
T of the ciphertext is the same as the time T ′ of the update key, then random R2 can be decrypted by running
SRE.Decrypt(CTSRE,Si, j ,SKSRE,Si′, j′ ,PPSRE) because of GL‖T = GL′‖T ′ and ML 6= ML′ by the correctness
of SRE.

3.6 Discussions

Layered Subset Difference. Since our generic RIBE scheme uses the SD method, the size of a ciphertext
depends on the size of the PV set and the size of an update key depends on the size of the CV set in the
SD method. Thus, the ciphertext and update key of generic RIBE consists of approximately O(log2 N) IBE
ciphertexts and 2r IBE private keys respectively where N = 2n is the number of users and r is the number
of revoked users. In order to reduce the size of ciphertexts in this generic RIBE scheme, we can apply the
layered subset difference (LSD) method of Halevy and Shamir [16]. If the LSD method is used instead of
the SD method, the ciphertext and the update key of this general RIBE scheme consists of O(log1.5 N) IBE
ciphertexts and 4r IBE private keys, respectively.

Chosen-Ciphertext Security. The CCA security model, which is stronger than the CPA security model,
allows an adversary to request decryption queries on ciphertexts. The above generic RIBE construction only
can derive a CPA secure RIBE scheme by using CPA secure HIBE and SRE schemes as building blocks.
To derive a CCA secure RIBE scheme, we may try to use CCA secure encryption primitives as building
blocks. However, this simple construction can not be CCA secure because it allows ciphertext elements
reordering attacks. To solve this problem, we apply the CCA methodology for multiple encryption proposed
by Dodis and Katz [12]. That is, a CCA secure RIBE scheme can be constructed by combining CCA secure
HIBE and SRE schemes with a one-time signature (OTS) scheme with strong unforgeability. At this time,
the underlying HIBE and SRE schemes should be modified to receive additional labels as inputs since the
public key of OTS should be tied with ciphertexts. This approach also provides the decryption key exposure
resistance (DKER) property since a decryption key is generated by using the delegation property of HIBE.
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4 Security Analysis

In this section, we prove the IND-CPA security of the generic RIBE construction proposed in the previous
section. The basic idea of this proof is to show that if there is an attacker that breaks the IND-CPA security
of the RIBE scheme, then we can construct an algorithm that breaks the IND-CPA security of underlying
HIBE or SRE schemes. In order to simplify the security proof, we try to prove the security by separating
the attacker into two types. That is, the Type-I attacker does not request a private key query on the challenge
identity ID∗, and the Type-II attacker requests a private key query on the identity ID∗.

First, since the Type-I attacker does not query the private key for the identity ID∗, we perform the proof
that relates the security of the underlying HIBE scheme with the security of the RIBE scheme. Next, since
the Type-II attacker queries the private key for ID∗, we perform the proof that relates the security of the
underlying SRE scheme and the security of the RIBE scheme.

Theorem 4.1. The generic RIBE scheme is IND-CPA secure if the underlying HIBE and SRE schemes are
IND-CPA secure.

Proof. Let ID∗ be the challenge identity and T ∗ be the challenge time. We divide the behavior of an adver-
sary as two types: Type-I and Type-II, which are defined as follows:

Type-I. An adversary is Type-I if it requests a private key for ID 6= ID∗ for all private key queries. In this
case, the adversary can request a decryption key for ID and T such that ID 6= ID∗ or ID = ID∗∧T 6=
T ∗.

Type-II. An adversary is Type-II if it requests a private key for ID = ID∗ for some private key query. In
this case, the private key for ID∗ should be revoked at some time T such that T ≤ T ∗ by the restriction
of the security model.

Let Ei be the event that A behaves like Type-i adversary. From Lemmas 4.2 and 4.3, we obtain the
following result

AdvRIBE
A (λ )≤ Pr[EI] ·AdvRIBE

A (λ )+Pr[EII] ·AdvRIBE
A (λ )

≤ AdvHIBE
B (λ )+O(n2)AdvSRE

B (λ ).

This completes our proof.

4.1 Type-I Adversary

The Type-I attacker does not request a private key query on the challenge ID∗, but can request decryption
key queries such that ID = ID∗ and T 6= T ∗. To deal with this attacker, we build a reduction algorithm that
attacks an HIBE scheme and selects an SRE scheme by itself. In this case, this algorithm will be able to
handle all queries of the Type-I attacker by using the queries for the HIBE scheme. The detailed proof is as
follows.

Lemma 4.2. For the Type-I adversary, the generic RIBE scheme is IND-CPA secure if the HIBE scheme is
IND-CPA secure.

Proof. Suppose there exists an adversary A that attacks the RIBE scheme with a non-negligible advantage.
An algorithm B that attacks the HIBE scheme is initially given public parameters PPHIBE by a challenger C.
Then B that interacts with A is described as follows:
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Setup: B generates MKSRE ,PPSRE by running the SRE.Setup algorithm. It initializes RL = /0 and gives
PP = (PPHIBE ,PPSRE ,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, update key, decryption key, and revo-
cation queries.

• For a private key query with an identity ID, B proceeds as follows: It receives SKHIBE from C by
querying a private key for ID since ID 6= ID∗ by the restriction of the Type-I adversary. It gives
SKID = SKHIBE to A.

• For an update key query with time T , B proceeds as follows: It simply generates UKT by running the
RIBE.UpdateKey algorithm since it knows MKSRE . It gives UKT to A.

• For a decryption key query with an identity ID and time T , B proceeds as follows:

1. It generates UKT by running the RIBE.UpdateKey algorithm since it knows MKSRE .

2. It receives DKHIBE from C by querying a private key for ID and T since ID 6= ID∗ or ID =
ID∗∧T 6= T ∗ by the restriction of the Type-I adversary.

3. It gives DKID,T = (DKHIBE ,UKT ) to A.

• For a revocation query with an identity ID and time T , B proceeds as follows: It adds (ID,T ) to RL if
ID was not revoked before.

Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages M∗0 ,M
∗
1 . B

proceeds as follows:

1. It first selects random R2 and sets R1,0 = M∗0 ⊕R2,R1,1 = M∗1 ⊕R2. Next, it receives CT ∗HIBE from C
by submitting ID∗, T ∗, and two challenge messages R1,0,R1,1.

2. To creates CT ∗PV for ID∗ and T ∗, it simply runs the RIBE.Encrypt algorithm with the random R2 as
input.

3. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE ,CT ∗PV ) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To complete the proof of this lemma, we need to analyze that the simulation described above is correct.
For this, it is sufficient to check whether HIBE private key queries requested by the simulator satisfy the
constraints of the HIBE security model. The simulator requests an HIBE private key query when processing
an RIBE private key query of an adversary, and can only request an HIBE private key with the condition
ID 6= ID∗ by the constraints of a Type-I adversary. And the simulator gets an HIBE challenge ciphertext for
the challenge hierarchical identity (ID∗,T ∗) when generating a challenge ciphertext. Therefore, the HIBE
private key queries requested by the simulator satisfy the constraints of the HIBE security model since they
does not correspond to the prefix of the challenge hierarchical identity.

4.2 Type-II Adversary

Since the Type-II attacker requests a private key query on the challenge ID∗, we can not handle the private
key queries of the RIBE scheme by using the private key queries of the HIBE scheme in the proof. Therefore,
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we prove the security by relating the security of the SRE scheme with the security of the RIBE scheme
against the Type-II attacker.

The main idea of the proof is to take advantage of the restriction of the RIBE security model such that if
the attacker queries the private key for the challenge identity ID∗, then the corresponding private key for ID∗

must be revoked from the update key on the challenge time T ∗. Thus, the ciphertext CT ∗PV in the challenge
ciphertext consists of the SRE ciphertexts associated with the subset Si, j belonging to the path set PVID∗ , but
the SRE private keys that can decrypt the corresponding ciphertext elements in CT ∗PV are not included in the
update key for T ∗ because of the restriction. Using this fact, we can prove the security of the RIBE scheme
against the Type-II attacker by using the security of the SRE scheme.

We prove the security by using hybrid games consisting of multiple sub-games because the ciphertext
CT ∗PV is composed of many SRE ciphertexts. That is, in the hybrid games, a ciphertext which encrypts a
random value related to M∗0 is changed to another ciphertext which encrypts a random value related to M∗1 .
In this hybrid steps, since the number of SRE ciphertexts in CT ∗PV is maximum O(n2), the proof can be
completed by performing O(n2) hybrid games. The detailed proof is described as follows.

Lemma 4.3. For the Type-II adversary, the generic RIBE scheme is IND-CPA secure if the SRE scheme is
IND-CPA secure.

Proof. Let ID∗ be the challenge identity and PVID∗ be the path set of ID∗ where the number of subsets
in PVID∗ is ` = n(n− 1)/2. The challenge ciphertext is formed as CT ∗ = (CT ∗HIBE ,CT ∗PV ) where CT ∗PV =
(PVID∗ ,{CT ∗SRE,Sik , jk

}`k=1). For the security proof, we define hybrid games G0,G1,G2,G3 as follows:

Game G0. This game is the original security game defined in the security model except that the challenge
bit µ is fixed to 0.

Game G1. This game is the same as the game G0 except that the settings of random R1 and R2 in the
challenge ciphertext are changed. That is, R2 are randomly chosen and R1 is set as M∗0 ⊕R2.

Game G2 In this game, the generation of CT ∗PV in the challenge ciphertext CT ∗ is changed. That is, a
random R′1 = M∗1 ⊕R2 is encrypted instead of R1 = M∗0 ⊕R2 to generate CT ∗PV .

For the analysis of security, we define additional sub-games H0, . . . ,Hρ , . . . ,H` where H0 = G1 and
H` = G2. The game Hρ is similar to the game Hρ−1 except that CT ∗SRE,Siρ , jρ

is an encryption on the
random R′1 =M∗1⊕R2. Specifically, CT ∗SRE,Sik , jk

for k≤ ρ is an encryption on the random R′1 =M∗1⊕R2

and CT ∗SRE,Sik , jk
for k > ρ is an encryption on the random R1 = M∗0 ⊕R2.

Game G3 This game is the same as the game G2 except that the settings of random R′1 and R2 in the
challenge ciphertext are changed. That is, R′1 is randomly chosen and R2 is set as M∗1 ⊕R′1. This game
is the original security game in the security model except that the challenge bit µ is fixed to 1.

Let SGi
A be the event that A outputs 0 in a game Gi. From Lemma 4.4, we obtain the following result

AdvRIBE
A (λ )≤ 1

2

∣∣∣Pr[SG0
A ]−Pr[SG3

A ]
∣∣∣≤ 1

2

∣∣∣Pr[SG1
A ]−Pr[SG2

A ]
∣∣∣

≤ 1
2

( `

∑
ρ=1

∣∣∣Pr[SHρ−1
A ]−Pr[SHρ

A ]
∣∣∣)≤ O(n2)AdvSRE

B (λ ).

This completes our proof.
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Lemma 4.4. If the SRE scheme is IND-CPA secure, then no polynomial-time Type-II adversary can distin-
guish between Hρ−1 and Hρ with a non-negligible advantage.

Proof. Suppose there exists an adversary A that attacks the RIBE scheme with a non-negligible advantage.
An algorithm B that attacks the SRE scheme is initially given public parameters PPSRE by a challenger C.
Then B that interacts with A is described as follows:

Setup: B generates MKHIBE ,PPHIBE by running the HIBE.Setup algorithm. It initializes RL = /0 and gives
PP = (PPHIBE ,PPSRE ,BT ) to A.
Phase 1: A adaptively requests a polynomial number of private key, update key, decryption key, and revo-
cation queries.

• For a private key query with an identity ID, B proceeds as follows: It generates SKID by running the
RIBE.GenKey algorithm since it knows MKHIBE . It gives SKID to A.

• For an update key query with time T , B proceeds as follows:

1. It initializes RV = /0. For each (ID j,Tj) ∈ RL, it adds a leaf node v j ∈ BT into RV if Tj ≤ T . It
obtains CVT by running SD.Cover(BT ,RV ).

2. For each Si, j ∈ CVT , it sets (GLk,MLk) = GMLabels(Si, j) and receives SKSRE,Si, j from C by
submitting labels (GLk‖T,MLk).

3. It creates UKT =
(
CVT ,{SKSRE,Si, j}Si, j∈CVT

)
and gives UKT to A.

• For a decryption key query with an identity ID and time T , B proceeds as follows:

1. It retrieves SKID = SKHIBE by querying a private key to its own oracle. It also retrieves UKT by
querying an update key to its own oracle.

2. Next, it generates a delegated key DKHIBE of SKHIBE by running the HIBE.DelegateKey algo-
rithm for ID and T .

3. It gives DKID,T = (DKHIBE ,UKT ) to A.

• For a revocation query with an identity ID and time T , B adds (ID,T ) to RL if ID was not revoked
before.

Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages M∗0 ,M
∗
1 . B

proceeds as follows:

1. It first selects random R1 and sets R2,0 = M∗0 ⊕R1,R2,1 = M∗1 ⊕R1. Next, it generates CT ∗HIBE by
running HIBE.Encrypt((ID∗,T ∗),R1,PPHIBE).

2. It obtains PVID∗ by running SD.Assign(BT ,vID∗) where a leaf node vID∗ is associated with ID∗. For
each Si, j ∈ PVID∗ , it obtains (GLk,MLk) = GMLabels(Si, j) and proceeds as follows:

• If k < ρ , then it generates CT ∗IBE,Si, j
by running SRE.Encrypt((GLk‖T ∗,MLk),R2,1,PPSRE).

• If k = ρ , then it receives CT ∗SRE,Si, j
from C by submitting challenge labels (GLk‖T ∗,MLk) and

challenge messages R2,0,R2,1.

• If k > ρ , then it generates CT ∗SRE,Si, j
by running SRE.Encrypt((GLk‖T ∗,MLk),R2,0,PPSRE).

It creates CT ∗PV =
(
PVID∗ ,{CT ∗SRE,Si, j

}Si, j∈PVID∗

)
.

18



3. It gives a challenge ciphertext CT ∗ = (CT ∗HIBE ,CT ∗PV ) to A.

Phase 2: Same as Phase 1.
Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B also outputs µ ′.

To complete the proof of this lemma, we need to analyze that the simulation described above is correct.
For this, it is sufficient to check whether the SRE private key query and the SRE challenge ciphertext
requested by the simulator satisfy the constraints of the SRE security model. First, let ID∗ and T ∗ be the
challenge identity and challenge time of the RIBE scheme, and (GL∗k‖T ∗,ML∗k) be the challenge labels of
the SRE scheme. In order to facilitate the analysis, we show that the simulator does not have any problem
in generating the SRE private keys which are elements of the update key, in the following three cases.

• Case T 6= T ∗: In order for the simulator to generate an update key, it must query an SRE private key
for labels (GLk‖T,MLk). If T 6= T ∗ is established by the SRE security model, the simulator can query
the SRE private key since GLk‖T 6= GL∗k‖T ∗ is established.

• Case T = T ∗ ∧GLk 6= GL∗k : The simulator must query an SRE private key for labels (GLk‖T,MLk)
to generate the update key. If GLk 6= GL∗k , the simulator can query the SRE private key since GLk‖ 6=
GL∗k‖T ∗ is established.

• Case T = T ∧GLk = GL∗k : To analyze this case, we use the constraints of the RIBE security model
that the RIBE private key corresponding to ID∗ should be revoked in the update key at time T ∗. The
subset S∗i, j corresponding to the labels (GL∗k ,ML∗k) of the challenge ciphertext is defined by two nodes
(v∗i ,v

∗
j). Since GLk = GL∗k is established, the SRE private key must also be requested for the SRE

private key associated with the subset Si, j such that vi = v∗i and Depth(v j) = Depth(v∗j). However,
the leaf node v∗ID revoked by the Cover algorithm of the SD scheme must be located in the descendant
nodes of the node v∗j . Therefore, since v j = v∗j is established, MLk = ML∗k is obtained. Therefore, it is
possible to query the private key of the label (GLk‖T,MLk) = (GL∗k‖T ∗,ML∗k) due to the constraints
of the SRE security model.

This completes our proof.

5 Instantiations

In this section, we show that our generic RIBE construction can be instantiated as real RIBE schemes by
using bilinear maps or lattices.

5.1 RIBE from Bilinear Maps

Previously, many RIBE schemes using the CS method were directly constructed on bilinear maps [3,31,39].
In addition, an RIBE scheme using the SD method was also directly constructed on bilinear maps [25]. Re-
cently, a generic construction for RIBE using the CS method was proposed by Ma and Lin [32]. Nonetheless,
different generic construction for RIBE using the SD/LSD method is still an interesting method because it
allows different RIBE instantiations by changing the underlying cryptographic schemes and allows RIBE
schemes with shorter update keys. Here, we will look at different instantiations of RIBE using the SD/LSD
method that provide selective security or adaptive security.

First, we instantiate an efficient RIBE scheme that provides selective security by following the generic
construction. To do this, we choose the two-level BB-HIBE scheme of Boneh and Boyen [4] that provides
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selective security in the DBDH assumption. For underlying SRE scheme, we choose the efficient SRE
scheme of Lee and Park [27] which provides selective security in the DBDH assumption. For reference,
we described the SRE scheme of Lee and Park in Appendix A. The resulting RIBE scheme that uses the
SD/LSD method provides selective security under the DBDH assumption. We analyze the private key,
update key, and ciphertext size of our generic RIBE scheme with the LSD method in an asymmetric bilinear
group. In the MNT159 bilinear group, the size of the G group is 159 bits, and the size of the Ĝ group and
the GT group is 954 bits. In the BB-HIBE scheme, the private key size is 2|Ĝ| and the ciphertext size is
3|G|+ |GT |. In the LP-SRE scheme, the private key size is 4|Ĝ| and the ciphertext size is 3|G|+ |GT | where
|G| denotes the size of a group element. In our RIBE scheme, the private key size is 2|Ĝ| since it consists
of the private key of HIBE, and the update key size is 16∗ r ∗ |Ĝ| since it is composed of SRE private keys
associated with a cover set, and the ciphertext size is approximately 0.5 ∗ log1.5 N ∗ (3|G|+ |GT |) since it
consists of SRE ciphertexts associated with a path set. Thus, if we set N = 232 and r = 1000, the private key
size is 238 bytes, the update key size is 1908 kilobytes, and the ciphertext size is 16 kilobytes.

Next, we instantiate an RIBE scheme that provides adaptive security. To this security, we use the two-
level HIBE scheme of Lewko and Waters [30] which provides adaptive security and the SRE scheme of
Lee and Park [27]. The resulting RIBE scheme provides adaptive security under static assumptions in
composite-order bilinear groups.

5.2 RIBE from Lattices

A number of RIBE schemes in lattices have been previously proposed [9,10,18,43]. Although the first lattice
based RIBE scheme using the CS method did not provide decryption key exposure resistance (DKER), the
new RIBE scheme using the CS method that allows DKER was recently proposed by using the delegation
property of HIBE [9, 18]. In addition, a lattice based RIBE scheme using the SD method also has been
proposed, but this scheme has a serious limitation such that the identity space is restricted to be small
universe because the Lagrange interpolation technique is directly applied to lattices [10].

We use the previously proposed efficient lattice based two-level HIBE and SRE schemes to instantiate
a lattice based RIBE scheme using the SD method. For the underlying HIBE scheme, we choose efficient
HIBE scheme of Agrawal et al. [1] that provide selective security in the LWE assumption. For the underlying
SRE scheme, we choose the ABE scheme for circuits [6, 14] since an SRE scheme can be instantiated
from an ABE scheme that supports equality and inequality gates. Alternatively, we may modify the NIPE
scheme [19] to handle equality by using the technique of HIBE [1].

We compare our RIBE scheme with the SD method and the RIBE scheme directly designed by Cheng
and Zhang [10]. Cheng and Zhang derived their RIBE scheme in lattices by applying the design principle
of the RIBE scheme of Lee et al. [25]. To use the technique of Lee et al., it is necessary to use the Lagrange
interpolation to recover a polynomial value in decryption. In lattices, if Lagrange coefficients and noise
values in ciphertexts are multiplied, then a large noise value is obtained in the decryption process, which
should be removed to obtain a message. Since the resulting noise value is exponentially increased as the
size of the identity space increases, their RIBE scheme has a serious problem that only a small universe of
identity can be accepted. Therefore, our RIBE scheme with the SD method is the first lattice based RIBE
scheme using the SD method that supports a large universe of identity and provides the DKER property.
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6 Conclusion

In this paper, we proposed a new generic RIBE construction with the SD method. Our generic construction
uses an HIBE scheme and SRE scheme as building blocks. The generic RIBE construction can be instanti-
ated by bilinear maps or lattices, and the private key consists of an HIBE private key, the update key consists
of O(r) number of SRE private keys, and the ciphertext consists of O(n2) number of SRE ciphertexts. If our
generic RIBE construction is extended to use the more efficient LSD method instead of the SD method, the
ciphertext is reduced to O(n1.5) number of SRE ciphertexts. In addition, if the underlying HIBE and SRE
schemes provide the CCA security and a one-time signature is used, then a CCA secure RIBE scheme can
be generically constructed.

There are some interesting open problems. The first problem is to reduce the size of a ciphertext in our
generic RIBE scheme with the SD method. In the previous generic RIBE scheme with the CS method, the
size of a ciphertext can be reduced by using an IBBE scheme. In our generic RIBE scheme with the SD
method, it is difficult to reduce the size of a ciphertext since it uses an SRE scheme. The second problem
is to design a generic RHIBE scheme with the SD method. To design a generic RHIBE scheme, the private
key delegation is needed. It is unclear how to extend the SRE scheme to support key delegation.
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A A Single Revocation Encryption Scheme

In this section, we describe the SRE scheme in the prime-order bilinear groups proposed by Lee and Park
[27]. They constructed an efficient SRE scheme by combining IBE and IBR schemes.

SRE.Setup(1λ ): It first generates a bilinear group G of prime order p of bit size Θ(λ ). Let g be a generator
of G. It chooses a random exponent α ∈ Zp and random elements u,h,w,v ∈ G. It also chooses a
random hash function H fromH. It outputs a master key MK = α and public parameters as

PP =
(
(p,G,GT ,e), g, u,h, w,v, H, Ω = e(g,g)α

)
.

SRE.GenKey((GL,ML),MK,PP): It selects random exponents r1,r2 ∈ Zp and outputs a private key by
implicitly including (GL,ML) as

SK(GL,ML) =
(

K0 = gα(uGLh)r1wr2 , K1 = (wMLv)r2 , K2 = g−r1 , K3 = g−r2
)
.

SRE.Encrypt((GL,ML),M,PP): Let M ∈ {0,1}m be a message. It chooses a random exponent t ∈ Zp and
outputs a ciphertext by implicitly including (GL,ML) as

CT(GL,ML) =
(

C = H(Ωt)⊕M, C0 = gt , C1 = (uGLh)t , C2 = (wMLv)t
)
.

SRE.Decrypt(CT(GL,ML),SK(GL′,ML′),PP): If (GL = GL′)∧ (ML 6= ML′), then it outputs a message as

M =C⊕H
(
e(C0,K0) · e(C1,K2) ·

(
e(C0,K1) · e(C2,K3)

)−1/(ML′−ML))
.

Otherwise, it outputs ⊥.

Theorem A.1 ( [27]). The SRE scheme is selectively secure under chosen plaintext attacks if the DBDH
assumption holds.
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