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Abstract. We extend the prior provable related-key security analysis of
(generalized) Feistel networks (Barbosa and Farshim, FSE 2014; Yu et
al., Inscrypt 2020) to the setting of expanding round functions, i.e., n-bit
to m-bit round functions with n < m. This includes Expanding Feistel
Networks (EFNs) that purely rely on such expanding round functions,
and Alternating Feistel Networks (AFNs) that alternate expanding and
contracting round functions. We show that, when two independent keys
K1,K2 are alternatively used in each round, (a) 2dm

n
e + 2 rounds are

sufficient for related-key security of EFNs, and (b) a constant number of
4 rounds are sufficient for related-key security of AFNs. Our results com-
plete the picture of provable related-key security of GFNs, and provide
additional theoretical support for the AFN-based NIST format preserving
encryption standards FF1 and FF3.

Keywords: Blockcipher · Expanding Feistel Networks · Alternating Feistel Net-
works · Related-key attack · CCA-security · H-coefficient technique

1 Introduction

Generalized Feistel networks. The well-known Feistel blockciphers, includ-
ing the Data Encryption Standard (DES) [25], rely on the Feistel permutation
ΨF (A,B) := (B,A⊕F (B)), where F : {0, 1}n → {0, 1}n is a domain-preserving
round function. This structure has been generalized along multiple axes, pro-
viding much more choices for the involved parameters and possibilities of ap-
plications. In particular, the so-called Contracting Feistel Networks (CFNs) em-
ploy contracting round functions G : {0, 1}m → {0, 1}n, m > n [44], while Ex-
panding Feistel Networks (EFNs) employ the opposite expanding round functions
F : {0, 1}n → {0, 1}m [44]. In some cases, the two sorts of round functions are

? Preliminary version will appear at CT-RSA 2021. Yuqing Zhao and Wenqi Yu are
co-first authors of the article.



executed in a alternating manner [2,33], yielding Alternating Feistel Networks
(AFNs). Following [28], these are now known as generalized Feistel networks.
Well-known blockciphers that follow these Feistel variants include the Chinese
standard SMS4 [19] (contracting) and BEAR/LION/LIONESS [2] (alternat-
ing). Besides, CFNs have supported full-domain secure encryption schemes [35],
while AFNs have been proposed as blockcipher modes-of-operation for format-
preserving encryption (FPE) [13,8,14] and adopted by the NIST format-preserving
encryption standard FFX [23], in order to encrypt non-binary alphabet [23] or
database records [18] into ciphertexts of the same format.

Provable security of Feistel networks and their variants was initiated by Luby
and Rackoff [32]. The approach is to model the round functions as pseudoran-
dom functions (PRFs). Via a generic standard-to-ideal reduction, the schemes
are turned into networks using secret random round functions, for which infor-
mation theoretic indistinguishability is provable, i.e., no distinguisher is able to
distinguish the Feistel network from a random permutation on 2n-bit strings.
With this model, Luby and Rackoff proved CCA security for 4-round balanced
Feistel networks, and subsequent works extended this direction to refined re-
sults [39,28,43,37] or to cover the aforementioned generalized Feistel networks
[38,35,2,13,8,33,48,28,41]. It has been proved that CFNs, EFNs, and AFNs could
all achieve CCA security up to nearly 2m adversarial queries [28,45], at the cost
of a logarithmic number of rounds. For CFNs and EFNs, m being the domain
size of the round function while for AFNs m being the domain size of the input
of contracting round function.

Related-key security. The above PRF or secret random function-based secu-
rity argument assumed the network using a fixed secret key. We will henceforth
refer to this as the Single-Key (SK) setting. The adversarial model, however,
usually violates this assumption. In particular, the Related-Key Attacks (RKAs),
first identified by Biham [9] and Knudsen [30], consider a setting where an ad-
versary might be able to run a cryptosystem on multiple keys satisfying known
or chose relations (due to key update [29,24] or fault injection [3]). Compared to
the classical “single-key” setting, the increased adversarial power enables much
more effective attacks against quite a number of blockciphers [21,10].

On the other hand, security against RKAs has become a desirable goal, par-
ticularly for blockciphers, as it increases the robustness of the primitive and eases
its use. In this respect, Bellare and Kohno [7] initiated the theoretical treatment
of security under related-key attacks by proposing definitions for RKA secure
pseudorandom functions (PRFs) and pseudorandom permutations (PRPs), for-
malizing the adversarial goal as distinguishing the cipher oracles with related-
keys from independent random functions or permutations, and presenting pos-
sibility and impossibility results. Since then, follow up works have established
various important positive results for provably RKA secure constructions of com-
plicated cryptographic primitives [6,5,1,26]. In particular, Barbosa and Farshim
established RKA security for 4 rounds balanced Feistel networks with two mas-
ter keys K1 and K2 alternatively used in each round [5], and Guo established
RKA security for the so-called Feistel-2 or key-alternating Feistel ciphers [26].
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RKA security of GFNs. GFNs remain far less understood in the RKA model.
To our knowledge, this was only partly addressed in [47], which established RKA
security for contracting Feistel networks using two keys alternatively. In contrast,
the generalized Feistel variants using expanding round functions have never been
analyzed w.r.t. RKAs. This includes expanding EFNs and alternating AFNs.

As already observed [33,36], expanding round functions are attractive in the-
ory, in the sense that the amount of randomness needed to define an ideal ex-
panding function is less than that of the contracting ones.4 The shortage is that,
information theoretic security is limited by the input size n of the round func-
tion, and turns vanishing for small n (8 bits for example). Though, even in this
case, provable security is usually viewed as theoretical support for the structure
(see e.g., [16]).5 As such, expanding round functions are still used in practice.
For example, EFNs can be made practical via storing truly random expand-
ing functions for small input size n (e.g., 8 bits), as done in the hash function
CRUNCH [31]. Meanwhile, as mentioned before, AFNs have been the structure
of the NIST format-preserving encryption standards [23]. The contracting round
functions are built from AES-CBC, while the expanding are from AES-CTR.

Regarding provable security, the landscape is very subtle. For EFNs, it was
shown that 2dmn e + 4 rounds suffice for the classical SK CCA security up to

2n/2 queries (generic attacks have been exhibited in [42,46]). For AFNs, it was
shown that 12dmn e + 6 rounds suffice for SK CCA security up to 2m/2 queries,
which is birthday bound of the parameter m (m is larger than n). With fewer
rounds, provable results were restricted to weaker models such as CPA security
(3 rounds [33]) or key recovery security (4 rounds [33,34]).6 In all, for EFNs and
AFNs, while asymptotically optimal bounds have been proved, it remains unclear
what’s the minimal number of rounds necessary for CCA security.

Our results. As mentioned before, in the regime of RKA security, GFNs with
contracting round functions have been studied in [47]. This paper aims to inves-
tigate GFNs with expanding round functions to complete the picture.

RKA security of 2dmn e+ 2-round EFN. In detail, we first consider expand-

ing Feistel networks using a keyed round function F : K × {0, 1}n → {0, 1}m,
where m > n. We first pinpoint the number of rounds that appear sufficient.
In this respect, we note that the proof framework for balanced Feistel, con-
tracting Feistel, and Naor-Reingold views the scheme as several middle rounds
sandwiched by a number of outer rounds: the outer rounds ensure some sort
of full diffusion, while the middle rounds ensure pseudorandomness of the final
outputs. This framework has also been used for the RKA security of 3-round
Even-Mansour cipher [17]. Following this idea, we identify that the number of
expanding Feistel rounds sufficient for full diffusion is dmn e. We also observe

4 It consumes n · 2m bits to describe the table of a contracting random function from
{0, 1}m to {0, 1}n, while m · 2n bits for an expanding one from {0, 1}n to {0, 1}m.

5 For AFN-based modes we might have n = 128, and the bound would be meaningful.
We hope to see concrete designs.

6 Although many have mentioned the possibility of CCA security on 4 rounds [33].
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that two middle rounds are sufficient as the randomness source. Therefore, we
pinpoint 2dmn e + 2 as the number of rounds plausible for CCA security. This
improves upon the aforementioned SK CCA result with 2dmn e + 4 rounds [28].
The improvement stems from the fine-grained H-coefficient-based analysis rather
than the NCPA(Non-adaptive CPA)-to-CCA transformation used in [28].

The next step is to pinpoint a plausible correlated key assignment—as ob-
served in the context of balanced Feistel networks [7,5], independent round keys
actually admit related-key attacks. A natural idea is to alternate two indepen-
dent keys K1,K2 ∈ K in each round, as in [5] and in some practical blockci-
phers [27,4]. Note that an odd number of Feistel rounds with such alternating
key assignment yields an (insecure) involution.7

Fortunately, the aforementioned number of rounds 2dmn e+ 2 is even. There-
fore, we focus on this alternating key assignment, and prove that the 2dmn e+ 2
rounds are sufficient for the classical birthday security, i.e., for RKA security up
to 2n/2 adversarial queries.

RKA security of 4-round AFN. We then consider alternating Feistel net-
works, in which the odd rounds use contracting G : K × {0, 1}m → {0, 1}n
while the even rounds use expanding F : K × {0, 1}n → {0, 1}m. Somewhat
interestingly,—and in contrast to contracting and expanding Feistel networks
(see [47] for discussion on the former),—the number of rounds suffice for CCA
security in an AFN is always 4, independent of the ratio m/n. Briefly, the reason
is that AFNs actually behave quite similarly to the classical balanced Feistel
networks, except that the domain and range of the round functions are different.
The construction of AFN is shown Fig. 2.

To achieve RKA security, again we have to resort to non-independent key
assignments. We consider again the aforementioned key assignment. With the
above, we prove that the 4-round AFN using round keys (K1,K2,K1,K2) is
RKA secure up to 2n/2 queries, which is the birthday bound with respect to the
parameter n.

For AFN there is another interesting property, i.e., if all the round keys are
identical, then an odd number of rounds constitutes an involution (not CCA
secure), while an even number of rounds is not. As we are trying to establish
security for 4 rounds, it seems appealing to employ such identical round keys.
Unfortunately, another subtle issue hinders this attempt. In detail, technically,
the classical generic standard-to-ideal reduction is unable to handle two differ-
ent keyed functions using the same secret key: the reduction is just unable to
simulate the other primitive with the target secret key. On the positive side, this
issue can be overcame by using a tweakable keyed function that behaves as con-
tracting for tweak input 0 while expanding for tweak 1. For the AFN using such
a tweakable keyed function as the round function, the reduction is able to handle
the case of identical round keys (it just idealizes all round functions “once for

7 By this, even number of rounds are likely vulnerable to recent advanced slide at-
tacks [20]. Though, we remark that slide attacks typically require at least 2n/2 com-
plexities [11,12,22,20], and thus do not violate our birthday provable bounds. Seeking
for beyond-birthday provable bounds is a promising future direction.
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all”). Interestingly, this model appears closer to FF1 and FF3. Our analysis is
easily adapted to this 4-round AFN variant, indicating RKA CCA security up to
2n/2 queries. For clearness, we summarize our new results and relevant existing
results in Table 1.

As mentioned before, our results complete the picture of RKA security of
generalized Feistel networks. They also provide additional theoretical support for
the NIST standards FF1 and FF3. However, we remark important caveats. The
concrete parameters involved in FF1 and FF3 are rather small, and our provable
bounds (in fact, any information theoretic provable bounds) are too weak to
be meaningful. FF1 and FF3 are intended to resist attacks with complexity far
beyond the information theoretic upper bound. Therefore, the number of rounds
have to be determined by cryptanalytic results rather than the provable ones.
In fact, recently, FF1 and FF3 have been found insufficient.

We also mention that the blockcipher LIONESS of Anderson and Biham uses
4 independent keys in its two calls to a stream cipher and two calls to a hash
function [2]. Our result can be applied to halve the amount of keys while boosting
provable security (i.e., boosting birthday-bound CCA security to birthday-bound
RKA CCA security).

Table 1. Provable security results on expanding and alternating Feistel networks.
The scheme AFN∗ is the aforementioned tweakable function-based AFN. The second
column lists the security models, where SK is the abbreviation of Single-Key. The
third column list the number of rounds required by the provable results. The fourth
column list the key assignment in use: Independent means independent round keys,
Alternating means (our) alternating two keys, and Identical means identical round
keys. Parameter m > n, m is the output length of the expanding function and the input
length of the contracting function. Parameter n is the input length of the expanding
function and the output length of the contracting function. The parameter t is an
integer and determines the number of rounds.

Scheme Model Rounds Round keys Security Ref.

EFN SK CCA 2dm
n
e+ 4 Independent n/2 [28,45]

EFN SK CCA 4t+ 2dm
n
e+ 1 Independent tn/(t+ 1) [45]

EFN RKA CCA 2dm
n
e+ 2 Alternating n/2 Theorem 1

AFN Key recovery 3 - - [33,34]
AFN SK CPA 3 Independent n/2 [33]
AFN SK CCA 12dm

n
e+ 6 Independent m/2 [28]

AFN SK CCA (12dm
n
e+ 2)t+ 5 Independent tm/(t+ 1) [45]

AFN RKA CCA 4 Alternating n/2 Theorem 2
AFN∗ RKA CCA 4 Identical n/2 Corollary 1

Technical insights. The RKA security proofs start with a generic standard-to-
ideal reduction replacing the round functions with ideal keyed functions. Then
the crux is to analyze the idealized EFN and AFN variants in the RKA setting.
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This two-step approach follows [5], and actually appears the common denomi-
nator of security proofs of Feistel networks.

For the RKA analysis of the idealized networks, we employ the widely used
H-coefficient technique [40,15]. As mentioned before, this step follows the same
general paradigm as the H-coefficient-based single-key CCA security analysis
(which, however, seems elusive for EFNs and AFNs). Though, the analysis has to
consider: (i) the interaction between queries under different related keys (which
is specific to the RKA setting), and (ii) the interference between different rounds
that are using the same keys (due to the non-independent round keys, which is
again crucial for RKA security). These distinguish our results from the relative
simple single-key CCA analysis.

Organization. We serve necessary notations and definitions in Sect. 2. After
that, we serve the RKA security analysis for EFN in Sect. 3. As the security proof
is a bit complicated, we serve the analysis of the simplest setting of 6-round in
Appendix A as an instructive example. We then present the analysis for 4-round
AFN in Sect. 4. We finally conclude in Sect. 5.

2 Preliminaries

For two bit strings X,Y of any length, we denote by X‖Y their concatenation.
For X ∈ {0, 1}m, we denote by X[a, b] the string consisting of the b− a+ 1 bits
between the a-th position and the b-th position. This means X = X[1, i]‖X[i+
1,m] for any i ∈ {1, ...,m − 1}. For example, if X = 0xA5A5 (in hexadecimal
form), then X[1, 3] = 0x5, while X[4, 16] = 0x05A5.

Two of our three results focus on using two independent keys K1,K2 in the
round functions. In this respect, we denote the master key of the network by
K = (K1,K2) ∈ K2, i.e., a vector of dimension 2. We denote by K[i] its i-th
coordinate, where i = 1 or 2. We further denote by

KA(K) = (Ki1 , ...,Kit)

the round key assignment of the network, where i1, ..., it are fixed indices in
{1, 2}. For such a vector of round keys KA(K), we denote by KA(K)[j] the j-
th round key Kij . Thereby, a related-key derivation function φ maps a certain
master key K = (K1,K2) to a new master key K′ = (K ′1,K

′
2). We will write

EFNKA(K) and AFNKA(K) for the corresponding construction using the master
key K and the key assignment KA.

For the case K = (K1,K2), we will specially pay attention to the alter-
nating key assignment Alter(K) = (K1,K2,K1,K2, ...). Formally, Alter(K) :=
(Ki1 , ...,Kit), where ij = 1 for j odd and ij = 2 for j even.

2.1 (Multi-user) RKA Security

The RKA security notion is parameterized by the so-called related-key deriving
(RKD) sets. Formally, an ν-ary RKD set Φ consists of RKD functions φ mapping
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a ν-tuple of keys (K1, ...,Kν) in some key space Kν to a new ν-tuple of key in
Kν , i.e., φ : Kν → Kν .

We need to formalize the multi-user RKA security model8 (i.e., the model
involving multiple independent secret keys) for the keyed round functions and
the classical (single-user) RKA CCA security model for the blockcipher/Feistel
networks. For the former, let F : K × {0, 1}n → {0, 1}m be a keyed function,
and fix a key K ∈ K. We define the Φ-restricted related-key oracle RK[FK ],
which takes a RKD function φ ∈ Φ and an input X ∈ {0, 1}n as input, and
returns RK[FK ](φ,X) := Fφ(K)(X). Then, we consider a Φ-restricted related-
key adversaryD which has access to u related-key oracles instantiated with either
F or an ideal keyed function RF : K × {0, 1}n → {0, 1}m, and must distinguish
between two worlds as follows:

– the “real” world, where it interacts with RK[FK1 ], ...,RK[FKu ], andK1, ...,Ku

are randomly and independently drawn from K;
– the “ideal” world, where it interacts with RK[RFK1 ], ...,RK[RFKu ], and K1,...,
Ku are randomly and independently drawn from K.

The adversary is adaptive. Note that in the ideal world, each oracle RK[RFKi
]

essentially implements an independent random function for each related-key
φ(Ki). Formally, D’s distinguishing advantage on F is defined as

Adv
Φ-rka[u]
F (D) :=

∣∣∣ PrRF,K1,...,Ku

[
DRK[RFK1

],RK[RFK1
]−1,...,RK[RFKu ],RK[RFKu ]−1

= 1
]

− PrK1,...,Ku

[
DRK[FK1

],RK[FK1
]−1,...,RK[FKu ],RK[FKu ]−1

= 1
] ∣∣∣ .

It was proved that, under some natural restrictions on RKD sets, the single-
user and multi-user RKA notions are equivalent up to a factor of u. Moreover,
our subsequent sections mainly focus on the case of u = 2. We refer to [5] for
details.

Similarly, a blockcipher E : Kν×{0, 1}m → {0, 1}m shall be comparable with
an ideal cipher. Formally, D’s distinguishing advantage on E is defined as

Adv
Φ-rka[1]
E (D) :=

∣∣∣ PrIC,K
[
DRK[ICK],RK[ICK]−1

= 1
]
− PrK

[
DRK[EK],RK[EK]−1

= 1
] ∣∣∣,

where RK[EK]−1(φ, Y ) := E−1
φ(K)(Y ).

As already noticed in [7], Φ-RKA security is achievable only if the RKD set Φ
satisfies certain conditions that exclude trivial attacks. For this, we follow [5] and
characterize three properties. Firstly, the output unpredictability (UP) advantage
of an adversary A against an RKD set Φ is

Advup
Φ (A) := Pr

[
∃(φ,K∗) ∈ L1 × L2 s.t. φ(K) = K∗ : K←$ K; (L1, L2)← A

]
.

8 This was termed multi-key RKA security in [5]. As we refer to the classical security
model with a single “static” secret key as “single-key (CCA) model”, we use the
terms single-user and multi-user here for distinction.
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Secondly, the claw-freeness (CF) advantage of an adversary A against an RKD
set Φ is

Advcf
Φ(A) := Pr

[
∃φ1, φ2 ∈ L s.t. φ1(K) = φ2(K) ∧ φ1 6= φ2 : K←$ K; L← A

]
.

Finally, when the master key is the aforementioned vector K = (K1,K2), the
switch-freeness (SF) advantage of an adversary A against an RKD set Φ is

Advsf
Φ(A) := Pr

[
(∃φ1, φ2 ∈ L)(∃i 6= j ∈ {1, 2}) s.t. φ1(K)[i] = φ2(K)[j] :

K←$ K; L← A
]
.

We require the three advantages to be sufficiently small. The necessity of
UP and CF has already been noticed in [7]: if A is able to figure out φ ∈ Φ
such that φ(K) = c for some constant c or φ(K) = φ′(K) for some φ′ 6= φ,
then distinguishing is always possible by comparing RK[EK](φ,X) with Ec(X)
or with RK[EK](φ′, X) respectively. On the other hand, the SF property aims to
ensure a definitive distinction between the round functions using K1 and those
using K2. I.e., once a master key K = (K1,K2) is fixed, a round function using
K1 will never use K2 for some RKD function φ.

2.2 The H-Coefficient Technique

The core step of our proofs consists of analyzing information theoretic indis-
tinguishability of EFNs and AFNs built upon ideal keyed functions, which will
employ the H-coefficient technique [40,15]. To this end, we assume a determin-
istic distinguisher that has unbounded computation power, and we summarize
the information gathered by the distinguisher in a tuple

Q =
(
(φ1, X1, Y1), . . . , (φq, Xq, Yq)

)
called the transcript, meaning that the j-th query was either a forward query
(φj , Xj) with answer Yj , or a backward query (φj , Yj) with answer Xj .

To simplify the definition of “bad transcripts”, we reveal the key K to the
distinguisher at the end of the interaction. This is wlog since D is free to ignore
this additional information to compute its output bit. Formally, we append K to
τ and obtain what we call the transcript τ = (Q,K) of the attack. With respect
to some fixed distinguisher D, a transcript τ is said attainable, if there exists
oracles IC such that the interaction of D with the ideal world RK[ICK] yields Q.
We denote T the set of attainable transcripts. In all the following, we denote
Tre, resp. Tid, the probability distribution of the transcript τ induced by the
real world, resp. the ideal world (note that these two probability distributions
depend on the distinguisher). By extension, we use the same notation for a
random variable distributed according to each distribution.

With the above, the main lemma of H-coefficient technique is: (see [15]).
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Lemma 1. Fix a distinguisher D. Let T = Tgood ∪ Tbad be a partition of the
set of attainable transcripts T . Assume that there exists ε1 such that for any
τ ∈ Tgood, one has

Pr[Tre = τ ]

Pr[Tid = τ ]
≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ Tbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

Given a transcript Q, a blockcipher E, and a key K ∈ Kν , we say the related-
key oracle RK[EK] extends Q, denoted RK[EK] ` Q, if Eφ(K)(X) = Y for all
(φ,X, Y ) ∈ Q. It is easy to see that for any attainable transcript τ = (Q,K),
the interaction of the distinguisher with oracles RK[EK] produces (Q,K) if and
only if K is sampled in the interaction and RK[EK] ` τ . We refer to [15] for a
formal argument. With these, it is not hard to see that,

Pr
[
Tid = τ

]
= Pr[K] · Pr

[
RK[ICK] ` Q

]
≤ Pr[K] ·

(
1

2n+m − q

)q
, (1)

where n + m is the block size of the resulting (n + m)-bit generalized Feistel
network, and Pr[K] = PrK∗ [K

∗ = K]. Similarly,

Pr
[
Tre = τ

]
= Pr[K] · Pr

[
RK[EK] ` Q

]
, (2)

and the analysis of Pr
[
RK[EK] ` Q

]
will constitute the core of the subsequent

proofs.

3 Security Analysis of Expanding Feistel Networks

Let m and n be positive integers such that m > n. In this section, we consider
the t-round EFNF

n,m,t
KA(K) using an expanding round function Fn,m. Formally, for

X ∈ {0, 1}n+m and i ∈ {1, ..., t}, the ith round of the EFN uses the round key
Ki, and is defined as

Ψ
Fn,m

Ki (X) := Fn,mKi

(
X[1, n]

)
⊕X[n+ 1, n+m]

∥∥ X[1, n].

The t-round EFN
Fn,m,2dmn e+2

KA(K) using the key assignment KA(K) = (K1, ...,Kt) is

a composition of t such rounds, i.e.,

EFNF
n,m,t

KA(K) (X) := ΨF
n,m
Kt ◦ ... ◦ ΨF

n,m
K1 (X).

As mentioned in the Introduction, for such EFNs, 2dmn e + 2 rounds and the
alternating key assignment Alter(K) = (K1,K2,K1,K2, . . . ) would ensure RKA
security.
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Theorem 1. For any distinguisher D making at most q queries to the oracles

RK[EFN
Fn,m,2dmn e+2

Alter(K) ] and RK[EFN
Fn,m,2dmn e+2

Alter(K) ]−1 in total, it holds

Adv
Φ-rka[1]

EFN
Fn,m,2dm

n
e+2

Alter(K)

(D) ≤ Adv
Φ-rka[2]
Fn,m (D) + Advcf

Φ(D) + Advsf
Φ(D)

+
(dmn e+ 1)2q2

2n
+

q2

2n+m
. (3)

The bound appears independent of the unpredictability advantage Advup
Φ (D).

Though, Advup
Φ (D) shall be small in order to ensure that Adv

Φ-rka[2]
Fn,m (D) is

sufficiently small.

The proof starts with a generic standard-to-ideal reduction, which replaces
the keyed expanding round function Fn,m with an ideal keyed expanding func-
tion RFn,m : K × {0, 1}n → {0, 1}m. Clearly (see [5, Theorem 2] for a more
detailed formalism),∣∣∣ Adv

Φ-rka[1]

EFN
RFn,m,2dm

n
e+2

Alter(K)

(D)−Adv
Φ-rka[1]

EFN
Fn,m,2dm

n
e+2

Alter(K)

(D)
∣∣∣ ≤ Adv

Φ-rka[2]
Fn,m (D),

and we could focus on analyzing Adv
Φ-rka[1]

EFN
RFn,m,2dm

n
e+2

Alter(K)

(D) for the idealized EFN.

We’ll employ the H-coefficient technique, define and analyze bad transcripts, and
show that the probabilities to obtain any good transcript in the real world and
the ideal world are sufficiently close.

3.1 Bad Transcripts

Definition 1. An attainable transcript τ = (Q,K) is bad, if either of the fol-
lowing conditions is fulfilled:

(B-1) Claw in τ : there exist two triples (φ1, X1, Y1) and (φ2, X2, Y2) in Q such
that φ1 6= φ2, while φ1(K) = φ2(K);

(B-2) Switch in τ : there exist two triples (φ1, X1, Y1) and (φ2, X2, Y2) in Q and
two distinct indices i, j ∈ {1, 2} such that φ1(K)[i] = φ2(K)[j].

Otherwise we say τ is good.

It is clear that Pr[(B-1)] ≤ Advcf
Φ(D): an adversary against the claw-freeness

of the RKD set Φ could simulate the related-key oracle with Φ against the
distinguisher D, collecting D’s transcript of queries and responses, and use the
records in Q to break the claw-freeness of Φ. Similarly, Pr[(B-2)] ≤ Advsf

Φ(D),
and thus

Pr
[
Tid ∈ Tbad] = Pr

[
(B-1) ∨ (B-2)

]
≤ Advcf

Φ(D) + Advsf
Φ(D). (4)
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3.2 Analyzing Good Transcripts

Fix a good transcript τ . The ideal world probability simply follows from Eq. (1),

and it remains to analyze Pr
[
RK[EFN

RFn,m,2dmn e+2

Alter(K) ] ` Q
]
, i.e., an ideal keyed

function RFn,m satisfying RK[EFN
RFn,m,2dmn e+2

Alter(K) ] ` Q. We proceed in two steps.

First, given an ideal keyed function RFn,m, it is possible to derive the (dmn e+ 1)
th and (dmn e + 2) th round intermediate values involved during evaluating the
queries in τ . We thus define a “bad predicate” BadF(RFn,m) on RFn,m, such
that once BadF(RFn,m) is not fulfilled, the event Tre = τ is equivalent to RFn,m

satisfying 2q distinct equations on these intermediate values, the probability of
which is close to the ideal world probability. The bound then follows from some
simple probabilistic arguments.

Formally, given an ideal keyed function RFn,m, for every (φi, Xi, Yi) ∈ τ ,
we define the induced intermediate values in a “meet-in-the-middle” manner. In
detail, we first define X1,i := Xi, and

X`,i := RFn,mAlter(φi(K))[`−1]

(
X`−1,i[1, n]

)
⊕X`−1,i[n+ 1, n+m]

∥∥ X`−1,i[1, n]

(5)

for ` = 2, ..., dmn e+ 1. We then define X2dmn e+3,i := Yi, and

X`,i := X`+1,i[m+ 1, n+m]∥∥ RFn,mAlter(φi(K))[`]

(
X`+1,i[m+ 1, n+m]

)
⊕X`+1,i[1,m] (6)

for ` = 2dmn e+ 2, 2dmn e+ 1, ..., dmn e+ 3.

Bad predicate. Informally, the conditions capture “unnecessary” collisions
among calls to the round function RFn,m during evaluating the q queries.

Definition 2. Given a function RFn,m, the predicate BadF(RFn,m) is fulfilled,
if any of the following dmn e+ 3 conditions is fulfilled.

– (C-[`]) For ` = 1, ..., dmn e, the ` th condition addresses the ` + 1 th and
2dmn e + 2 − ` th round function “inputs”: there exists two indices i, j ∈
{1, ..., q} such that
• there exists `′ ∈ {1, ..., `} such that

(
Alter(φi(K))[` + 1], X`+1,i[1, n]

)
=(

Alter(φj(K))[`′], X`′,j [1, n]
)
; or

• there exists `′ ∈
{

2dmn e+ 3− `, ..., 2dmn e+ 3
}

such that
(
Alter(φi(K))[`+

1], X`+1,i[1, n]
)

=
(
Alter(φj(K))[`′ − 1], X`′,j [m+ 1, n+m]

)
; or

• there exists an index `′ ∈ {1, ..., ` + 1} such that
(
Alter(φi(K))[2dmn e +

2− `], X2dmn e+3−`,i[m+ 1, n+m]
)

=
(
Alter(φj(K))[`′], X`′,j [1, n]

)
; or

• there exists `′ ∈
{

2dmn e+4−`, ..., 2dmn e+3
}

such that
(
Alter(φi(K))[2dmn e+

2−`], X2dmn e+3−`,i[m+1, n+m]
)

=
(
Alter(φj(K))[`′−1], X`′,j [m+1, n+

m]
)
.

11



– (C-[dmn e+ 1]) There exists distinct i, j ∈ {1, ..., q} and ` ∈ {1, ..., dmn e}
such that

(
Alter(φi(K))[`], X`,i[1, n]

)
6=
(
Alter(φj(K))[`], X`,j [1, n]

)
, while

X`+1,i[1, n] = X`+1,j [1, n];
– (C-[dmn e+ 2]) There exists two distinct indices i, j ∈ {1, ..., q} and an

index ` ∈ {dmn e + 4, ..., 2dmn e + 3} such that
(
Alter(φi(K))[` − 1], X`,i[m +

1, n+m]
)
6=
(
Alter(φj(K))[`−1], X`,j [m+1, n+m]

)
, yet X`−1,i[m+1, n+m] =

X`−1,j [m+ 1, n+m];

– (C-[dmn e+ 3]) There exists two distinct indices i, j ∈ {1, ..., q} such that
either

(
Alter(φi(K))[dmn e+1], Xdmn e+1,i[1, n]

)
=
(
Alter(φj(K))[dmn e+1], Xdmn e+1,j [1, n]

)
,

or
(
Alter(φi(K))[dmn e+ 2], Xdmn e+3,i[m+ 1, n+m]

)
=
(
Alter(φj(K))[dmn e+

2], Xdmn e+3,j [m+ 1, n+m]
)
.

To bound Pr[BadF(RFn,m)], we consider the conditions in turn.

Condition (C-[`]), ` = 1, ..., dm
n
e. Consider any such two indices i, j ∈ {1, ..., q}.

We distinguish two cases.

Case 1: ` is odd. In this case, the `+ 1 th round function uses the keys φi(K)[2]
and φj(K)[2], while the 2dmn e+ 2− ` th uses φi(K)[1] and φj(K)[1]. Note that
for `′ 6= ` + 1,

(
Alter(φi(K))[` + 1], X`+1,i[1, n]

)
=
(
Alter(φj(K))[`′], X`′,j [1, n]

)
only if `′ is even (so that Alter(φi(K))[`+1] = Alter(φj(K))[`′] means φi(K)[2] =
φj(K)[2]), as otherwise the condition (B-2) is fulfilled and τ is not good. By this,
the 1st subcondition is simplified as

X`+1,i[1, n] ∈
{
X2,j [1, n], X4,j [1, n], ..., X`−1,j [1, n]

}
.

This is yet another composed condition. In this respect, we first consider the
probability to have X`+1,i[1, n] = X2,j [1, n]. By construction, this means(

RFn,mφi(K)[1]

(
X`,i[1, n]

)
⊕X`,i[n+ 1, n+m]

)[
1, n
]

=
(
RFn,mφj(K)[1]

(
X1,j [1, n]

)
⊕X1,j [n+ 1, n+m]

)[
1, n
]
,

where
(
X`,i[n+ 1, n+m]

)[
1, n
]

further depends some function values in the set

S`,1 :=
{
RFn,mφj(K)[1]

(
X1,j [1, n],RFn,mφj(K)[1]

(
X3,j [1, n]

)
, ...,RFn,mφi(K)[1]

(
X`−2,i[1, n]

)}
.

Conditioned on ¬(C-[`−1]), it holdsX`,i[1, n] /∈ {X1,j [1, n], X3,j [1, n], ..., X`−2,i[1, n]}.
By this,

(
RFn,mφi(K)[`]

(
X`,i[1, n]

))[
1, n
]

is independent of the function values in

S`,1, and is uniformly distributed in {0, 1}n. Therefore, the probability to have
X`+1,i[1, n] = X2,j [1, n] is 1/2n.

We then consider the next equality X`+1,i[1, n] = X4,j [1, n], which means(
RFn,mφi(K)[1]

(
X`,i[1, n]

)
⊕X`,i[n+ 1, n+m]

)[
1, n
]

=
(
RFn,mφj(K)[1]

(
X3,j [1, n]

)
⊕X3,j [n+ 1, n+m]

)[
1, n
]
.
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where
(
X`,i[n + 1, n + m]

)[
1, n
]

and
(
X3,j [n + 1, n + m]

)[
1, n
]

further depend
on some function values in the set S`,1 defined as before. Again, conditioned on
¬(C-[`−1]),

(
RFn,mφi(K)[`]

(
X`,i[1, n]

))
[1, n] is independent of the function values in

S`,1, and is uniform in {0, 1}n. Therefore, the probability to have X`+1,i[1, n] =
X4,j [1, n] is 1/2n. Similar reasoning holds for the next (` − 1)/2 − 2 equations
X`+1,i[1, n] = X6,j [1, n], ..., X`+1,i[1, n] = X`−1,j [1, n], and thus

Pr
[
X`+1,i[1, n] ∈

{
X2,j [1, n], X4,j [1, n], ..., X`−1,j [1, n]

}]
=

(`− 1)

2n+1
.

We then consider the equality X`+1,i[1, n] = X2dmn e+4−`,j [m+ 1, n+m] due
to the 2nd subcondition, which means(

RFn,mφi(K)[1]

(
X`,i[1, n]

)
⊕X`,i[n+ 1, n+m]

)[
1, n
]

=
(
RFn,mφj(K)[1]

(
X2dmn e+5−`,j [m+ 1, n+m]

)
⊕X2dmn e+5−`,j [1,m]

)[
m− n+ 1,m

]
.

Again, X`,i[1, n] 6= X2dmn e+5−`,i[1, n] conditioned on ¬(C-[` − 1]), and thus the

values
(
RFn,mφi(K)[1]

(
X`,i[1, n]

))[
1, n
]

and
(
RFn,mφj(K)[1]

(
X2dmn e+5−`,j [1, n]

))[
m −

n+1,m
]

are independent and uniform. Therefore, the probability ofX`+1,i[1, n] =
X2dmn e+4−`,j [m+ 1, n+m] is 1/2n.

Similar reasoning holds for the next (` − 1)/2 equations, except for the last
one X`+1,i[1, n] = X2dmn e+3,j [m+ 1, n+m], which translates into(
RFn,mφi(K)[1]

(
X`,i[1, n]

)
⊕X`,i[n+ 1, n+m]

)[
1, n
]

= X2dmn e+3,j [m+ 1, n+m],

and which is clearly 1/2n due to the independence between RFn,mφi(K)[1]

(
X`,i[1, n]

)
and X2dmn e+3,j [m+ 1, n+m]. Summing over the (`+ 1)/2 equations, it can be

seen that the probability of the 2nd subcondition is (`+1)
2n+1 .

The analyses for the 3rd and 4th subconditions are similar by symmetry, and

also give rise to probabilities (`+1)
2n+1 and (`−1)

2n+1 resp. By the above, we eventually
reach the union bound 2(`− 1)/2n+1 + 2(`+ 1)/2n+1 ≤ 2`/2n.

Case 2: ` is even. While being different in details, this case is in general similar
to Case 1 by symmetry.

With all the above discussion, the probability that one of the four types of
collisions occur with respect to a certain pair of indices (i, j) is at most 2`/2n.
Since the number of such pairs is at most q2, we have

Pr
[
(C-[`]) | ¬(C-[`− 1])

]
≤ 2`q2

2n
. (7)
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Conditions (C-[dm
n
e + 1]) and (C-[dm

n
e + 2]). Consider (C-[dmn e+1]) first,

and consider any such three indices i, j ∈ {1, ..., q} and ` ∈ {1, ..., dmn e}. The
equality X`+1,i[1, n] = X`+1,j [1, n] translates into(

RFn,mAlter(φi(K))[`]

(
X`,i[1, n]

)
⊕X`,i[n+ 1, n+m]

)[
1, n
]

=
(
RFn,mAlter(φj(K))[`]

(
X`,j [1, n]

)
⊕X`,j [n+ 1, n+m]

)[
1, n
]
.

Since
(
Alter(φi(K))[`], X`,i[1, n]

)
6=
(
Alter(φj(K))[`], X`,j [1, n]

)
, the two values

RFn,mAlter(φi(K))[`]

(
X`,i[1, n]

)
and RFn,mAlter(φj(K))[`]

(
X`,j [1, n]

)
are uniform in {0, 1}m

and independent. Therefore, the probability to have X`+1,i[1, n] = X`+1,j [1, n]

is 1/2n. Summing over the
(
q
2

)
· dmn e ≤

q2

2 d
m
n e choices of i, j, `, we reach

Pr
[
(C-[dm

n
e+ 1])

]
≤
dmn eq

2

2n+1
. (8)

The analysis for (C-[dmn e+ 2]) is similar by symmetry, yielding

Pr
[
(C-[dm

n
e+ 2])

]
≤
dmn eq

2

2n+1
. (9)

Condition (C-[dm
n
e + 3]). Consider any distinct (φi, Xi, Yi), (φj , Xj , Yj) ∈ Q.

We consider the probability to have
(
Alter(φi(K))[dmn e + 1], Xdmn e+1,i[1, n]

)
=(

Alter(φj(K))[dmn e+ 1], Xdmn e+1,j [1, n]
)

first. Wlog, assume that dmn e is even, as
the case of dmn e odd exhibits no essential difference (as shown before). In this
case, we have Alter(φi(K))[dmn e + 1] = φi(K)[1] and Alter(φj(K))[dmn e + 1] =
φj(K)[1], and the condition is fulfilled only if φi(K)[1] = φj(K)[1]. With this in
mind, we distinguish two cases.

Case 1: φi 6= φj. Then since τ is good and is claw-free, it holds φi(K) 6= φj(K),

which further implies φi(K)[2] 6= φj(K)[2]. By this, the probability to have
Xdmn e+1,i[1, n] = Xdmn e+1,j [1, n], or to have(

Xdmn e,i[n+ 1, n+m]⊕ RFn,mφi(K)[2]

(
Xdmn e,i[1, n]

))[
1, n
]

=
(
Xdmn e,j [n+ 1, n+m]⊕ RFn,mφj(K)[2]

(
Xdmn e,j [1, n]

))[
1, n
]
, (10)

is 1/2n, since RFn,mφi(K)[2] and RFn,mφj(K)[2] can be viewed as two independent random

functions from {0, 1}n to {0, 1}m.

Case 2: φi = φj. For clearness we let φ = φi = φj . Let ∆1 := X1,i ⊕X1,j . Since
D does not make redundant queries, it has to be ∆1 6= 0. We further distinguish
two subcases.
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– Subcase 2.1: ∆1[1, dmn e · n] 6= 0. Then, let ` ∈ {0, ..., dmn e − 1} be the
smallest index such that ∆1[`n + 1, (` + 1)n] 6= 0. By construction, this
means X`+1,i[1, n] 6= X`+1,j [1, n]. Conditioned on ¬(C-[dmn e + 1]), this fur-
ther implies X`+2,i[1, n] 6= X`+2,j [1, n], ..., and eventually Xdmn e+1,i[1, n] 6=
Xdmn e+1,j [1, n].

– Subcase 2.2: ∆1[1, dmn e ·n] = 0. Then it has to be ∆1[dmn e ·n+1, n+m] 6= 0,
which necessarily implies Xdmn e+1,i[1, n] 6= Xdmn e+1,j [1, n] by construction.

Therefore, conditioned on ¬(C-[dmn e+1]), it is not possible to haveXdmn e+1,i[1, n] =
Xdmn e+1,j [1, n] for any two distinct indices (i, j).

The analysis for
(
Alter(φi(K))[dmn e+2], Xdmn e+3,i[m+1, n+m]

)
=
(
Alter(φj(K))

[dmn e+ 2], Xdmn e+3,j [m+ 1, n+m]
)

is similar by symmetry. More concretely, for
any such two triples (φi, Xi, Yi), (φj , Xj , Yj) such that φi(K)[2] = φj(K)[2], we
have:

– If φi 6= φj , then it holds φi(K)[1] 6= φj(K)[1] by the claw-freeness and by
φi(K)[2] = φj(K)[2], and thus the probability to have Xdmn e+3,i[m + 1, n +

m] = Xdmn e+3,j [m+ 1, n+m] or(
Xdm

n
e+4,i[1,m]⊕ RFn,mφi(K)[1]

(
Xdm

n
e+4,i[m+ 1, n+m]

))[
m− n+ 1,m

]
=

(
Xdm

n
e+4,j [1,m]⊕ RFn,mφj(K)[1]

(
Xdm

n
e+4,j [m+ 1, n+m]

))[
m− n+ 1,m

]
(11)

is 1/2n due to the independence between RFn,mφi(K)[1] and RFn,mφj(K)[1].

– If φi = φj , then it is not possible to have Xdm
n
e+3,i[m+ 1, n+m] = Xdm

n
e+3,j [m+

1, n+m] conditioned on ¬(C-[dm
n
e+ 2]).

In all, for each pair (i, j) of distinct indices, the probability to haveXdmn e+1,i[1, n] =
Xdmn e+1,j [1, n] or Xdmn e+3,i[m+ 1, n+m] = Xdmn e+3,j [m+ 1, n+m] is no larger

than 2/2n. Taking a union bound for the
(
q
2

)
≤ q2/2 choices of (i, j) yields

Pr
[
(C-[dm

n
e+ 3]) | ¬(C-[1]) ∧ ... ∧ ¬(C-[dm

n
e+ 2])

]
≤ q2

2n
. (12)

Gathering Eqs. (7), (8), (9), and (12), we reach

Pr
[
BadF(RFn,m)]

≤
( ∑
`=1,...,dmn e

Pr
[
(C-[`]) | ¬(C-[`− 1])

])
+ Pr

[
(C-[dm

n
e+ 1])

]
+ Pr

[
(C-[dm

n
e+ 2])

]
+ Pr

[
(C-[dm

n
e+ 3]) | ¬(C-[1]) ∧ ... ∧ ¬(C-[dm

n
+ 2e])

]
≤
( ∑
`=1,...,dmn e

2`q2

2n

)
+
dmn eq

2

2n+1
+
dmn eq

2

2n+1
+
q2

2n
≤

(dmn e+ 1)2q2

2n
. (13)
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Completing the proof. Consider any good transcript τ = (Q,K), where
Q =

(
(φ1, X1, Y1), ..., (φq, Xq, Yq)

)
. With the values defined in Eqs. (5) and (6),

it can be seen that, the event RK[EFN
RFn,m,2dmn e+2

Alter(K) ] ` Q is equivalent to 2q

equations as follows.

RFn,mφi(K)[b1]

(
Xdmn e+1,i[1, n]

)
=
(
Xdmn e+1,i[n+ 1, 2n]⊕Xdmn e+3,i[m+ 1, n+m]

)
∥∥∥ (Xdmn e+1,i[2n+ 1, n+m]⊕Xdmn e+3,i[1,m− n]

⊕ RFn,mφi(K)[b2]

(
Xdmn e+3,i[m+ 1, n+m]

)
[1,m− n]

)
for i = 1, ..., q,

(14)

RFn,mφi(K)[b2]

(
Xdmn e+3,i[m+ 1, n+m]

)
[m− n+ 1,m]

=
(
Xdmn e+1,i[1, n]⊕Xdmn e+3,i[m− n+ 1,m]

)
for i = 1, ..., q, (15)

where b1 = 2, b2 = 1 when dmn e is odd, and b1 = 1, b2 = 2 when dmn e is even. We
refer to Fig. 1 for illustration.

RFn,m
φi(K)[b1]

RFn,m
φi(K)[b2]

Xdm
n
e+1[1, n] Xdm

n
e+1[n+ 1, 2n]Xdm

n
e+1[2n+ 1, n+m]

Xdm
n
e+3[1,m− n] Xdm

n
e+3[m− n+ 1,m]Xdm

n
e+3[m+ 1, n+m]

Fig. 1. The middle dm
n
e+ 1 th and dm

n
e+ 2 th rounds of EFN

RFn,m,2dm
n
e+2

Alter(K) .

We remark that, the equation on RFn,mφi(K)[b1]

(
Xdmn e+1,i[1, n]

)
depends on the

m−n output bits RFn,mφi(K)[b2]

(
Xdmn e+3,i[m+1, n+m]

)
[1,m−n]. Since the first m−

n bits and the last n bits of the random function value RFn,mφi(K)[b2]

(
Xdmn e+3,i[m+

1, n+m]
)

are independent, the probability to have Eqs. (14) and (15) is 1
2m× 1

2n =
1

2n+m for every i ∈ {1, ..., q}.
Then, for any RFn,m, as long as BadF(RFn,m) is not fulfilled, the above ran-

dom variables {RFn,mφi(K)[b1]

(
Xdmn e+1,i[1, n]

)
}i=1,...,q and {RFn,mφi(K)[b2]

(
Xdmn e+3,i[m+

1, n+m]
)
[m−n+1,m]}i=1,...,q are 2q distinct and independent ones, as otherwise

(C-[dmn e+3]) is fulfilled. Furthermore, these random variables are not affected by
the randomness in RFn,m that determines the satisfiability of BadF(RFn,m) (i.e.,
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the values
{
RFn,mAlter(φi(K))[`](X`,i[1, n])

}
i∈{1,...,q},`∈{1,...,dmn e,d

m
n e+3,...,2dmn e+2}), as

otherwise (C-[dmn e]) is fulfilled. Therefore, by Eq. (13), the real world probability
has

Pr
[
RK[EFN

RFn,m,2dmn e+2

Alter(K) ] ` Q
]

≥ Pr
[
RK[EFN

RFn,m,2dmn e+2

Alter(K) ] ` Q ∧ ¬BadF(RFn,m)
]

= Pr
[
RK[EFN

RFn,m,2dmn e+2

Alter(K) ] ` Q | ¬BadF(RFn,m)
]
·
(

1− Pr
[
BadF(RFn,m)

])
≥
(

1−
(dmn e+ 1)2q2

2n

)
·
( 1

2n+m

)q
In a similar construction to Figure.3, we have the probability

Pr
[
Tre = τ

]
Pr
[
Tid = τ

] ≥ (1−
(dmn e+ 1)2q2

2n

)
·
( 1

2n+m

)q/( 1

2n+m − q

)q
≥
(

1− q

2n+m

)q
·
(

1−
(dmn e+ 1)2q2

2n

)
≥ 1−

( q2

2n+m
+

(dmn e+ 1)2q2

2n

)
. (16)

Gathering Eqs. (4) and (16) yields Eq. (3).

4 Security Analysis of Alternating Feistel Networks

Let m and n be positive integers such that m ≥ n. In this section, we will first
consider AFNs using a contracting round function Gm,n and an expanding round
function Fn,m.9 Formally, for X ∈ {0, 1}n+m and i odd, the ith round of the
AFN using the key Ki employs Gm,n, and is defined as

Ψ
Gm,n

Ki (X) := Gm,nKi

(
X[n+ 1, n+m]

)
⊕X[1, n]

∥∥ X[n+ 1, n+m].

On the other hand, for i even, the ith round using the key Ki employs Fn,m,
and is defined as

Ψ
Fn,m

Ki (X) := X[1, n]
∥∥ Fn,mKi

(
X[1, n]

)
⊕X[n+ 1, n+m].

Then, the t-round AFN is a composition of such t rounds.
As mentioned in the introduction, 4-round AFN with the alternating key

assignment Alter, as depicted in Fig. 2 (left), is always RKA secure, regardless
of the ratio m/n. Formally,

9 We stress that Gm,n and Fn,m must be “independent”, in the sense that
(Gm,nK1

, Fn,mK2
) using independent keys K1,K2 is indistinguishable from a pair of inde-

pendent ideal keyed functions (RGm,n,RFn,m). For example, Gm,n and Fn,m cannot
be built from the same primitive such as the AES.
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Gm,nK1

Fn,mK2

X1[1, n] X1[n+ 1, n+m]

X2[1, n] X2[n+ 1, n+m]

Gm,nK1

X3[1, n] X3[n+ 1, n+m]

Fn,mK2

X4[1, n]

X5[1, n]

X4[n+ 1, n+m]

X5[n+ 1, n+m]

TFm,n,0K

TFm,n,1K

X1[1, n] X1[n+ 1, n+m]

X2[1, n] X2[n+ 1, n+m]

TFm,n,0K

X3[1, n] X3[n+ 1, n+m]

TFm,n,1K

X4[1, n]

X5[1, n]

X4[n+ 1, n+m]

X5[n+ 1, n+m]

Fig. 2. (Left) The 4-round alternating Feistel network AFNG
m,n,Fn,m,4 using a con-

tracting round function Gm,n and an expanding round function Fn,m and two keys
K1,K2. (Right) The 4-round alternating Feistel network AFNTF

m,n,4 using a tweak-
able round function TFm,n and a single key K.
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Theorem 2. For any distinguisher D making at most q queries to the oracles
RK[AFNG

m,n,Fn,m,4
Alter(K) ] and RK[AFNG

m,n,Fn,m,4
Alter(K) ]−1 in total, it holds

Adv
Φ-rka[1]

AFNGm,n,Fn,m,4
Alter(K)

(D) ≤ Adv
Φ-rka[1]
Gm,n (D) + Adv

Φ-rka[1]
Fn,m (D) + Advcf

Φ(D)

+
q2

2n+m
+

3q2

2n
. (17)

The proof flow is similar to Theorem 1. We also start with a generic two-step
standard-to-ideal reduction. In the first step, we replace the keyed contracting
round function Gm,n with an ideal keyed contracting function RGm,n : K ×
{0, 1}m → {0, 1}n. This clearly introduces a gap of at most Adv

Φ-rka[1]
Gm,n (D).

We then replace the expanding round function Fn,m with the ideal RFn,m :

K × {0, 1}n → {0, 1}m, with an additional gap of Adv
Φ-rka[1]
Fn,m (D). As discussed

in the introduction, the independence between the two involved keys K1 and K2

is crucial for this reduction.
Then, we focus on analyzing Adv

Φ-rka[1]

AFNRGm,n,RFn,m,4
Alter(K)

(D) for the idealized AFN.

We also use the H-coefficient technique, and follow the same (though simpler)
flow as Theorem 1.

4.1 Bad Transcripts

An attainable transcript τ = (Q,K) is bad, if a claw exists τ , i.e., there exist
two triples (φ1, X1, Y1) and (φ2, X2, Y2) in Q such that φ1 6= φ2, while φ1(K) =
φ2(K). Otherwise we say τ is good. And it holds

Pr
[
Tid ∈ Tbad] ≤ Advcf

Φ(D). (18)

Compared with Sect. 3.1, it is natural to ask why switch-freeness turns useless
here. Informally, switch-freeness prevents collisions between keys used in different
rounds, i.e., φi(K)[1] = φj(K)[2] for some (φi, Xi, Yi) and (φj , Xj , Yj). But such
a collision is harmless here due to the different round functions in use.

4.2 Analyzing Good Transcripts

Fix a good transcript τ . The ideal world probability simply follows from Eq.
(1), and it remains to analyze Pr

[
RK[AFNRGm,n,RFn,m,4

Alter(K) ] ` Q
]
. Similarly to Sect.

3.2, we define a “bad predicate” BadF(RGm,n,RFn,m) on RGm,n and RFn,m, such
that once BadF(RGm,n,RFn,m) is not fulfilled, the event Tre = τ is equivalent
to RGm,n and RFn,m satisfying 2q distinct equations, the probability of which is
close to the ideal world probability. This will enable the argument.

In detail, given a pair of ideal keyed functions (RGm,n,RFn,m), for every
(φi, Xi, Yi) ∈ τ , define

X1,i := Xi, X5,i := Yi,

X2,i := X1,i[1, n]⊕ RGm,nφi(K)[1]

(
X1,i[n+ 1,m+ n]

) ∥∥ X1,i[n+ 1,m+ n],

X4,i := X5,i[1, n]
∥∥ X5,i[n+ 1,m+ n]⊕ RFn,mφi(K)[2]

(
X5,i[1, n]

)
. (19)
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Bad predicate. Informally, the conditions capture “unnecessary” collisions
among calls to the round functions RGm,n and RFn,m while evaluating the q
queries.

Definition 3. Given a pair of random functions (RGm,n,RFn,m), the predicate
BadF(RGm,n,RFn,m) is fulfilled, if any of the following four conditions is fulfilled.

(C-1) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[2], X2,i[1, n]) = (φj(K)[2], X5,j [1, n]).

(C-2) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[1], X4,i[n+ 1, n+m]) = (φj(K)[1], X1,j [n+ 1, n+m]).

(C-3) There exists two distinct indices i, j ∈ {1, ..., q} such that
(φi(K)[2], X2,i[1, n]) = (φj(K)[2], X2,j [1, n]).

(C-4) There exists two distinct indices i, j ∈ {1, ..., q} such that
(φi(K)[1], X4,i[n+ 1, n+m] = (φj(K)[1], X4,j [n+ 1, n+m]).

Consider the conditions in turn. First, for (C-1), note thatX2,i[1, n] = X1,i[1, n]⊕
RGm,nφi(K)[1]

(
X1,i[n+ 1,m+n]

)
, where RGm,nφi(K)[1]

(
X1,i[n+ 1,m+n]

)
is uniformly

distributed and independent of X5,j [1, n] which is specified in τ . Therefore,
the probability to have X2,i[1, n] = X5,j [1, n] for any i, j is 1/2n, and thus
Pr[(C-1)] ≤ q2/2n. Similarly by symmetry, X4,i[n+1, n+m] = X5,i[n+1,m+n]⊕
RFn,mφi(K)[2]

(
X5,i[1, n]

)
, which means the probability to have X4,i[n+ 1, n+m] =

X1,j [n+ 1, n+m] is 1/2m, and further Pr[(C-2)] ≤ q2/2m.
The condition (C-3) is slightly more cumbersome. Consider any such two

triples (φi, Xi, Yi), (φj , Xj , Yj) ∈ Q. The condition is fulfilled only if φi(K)[2] =
φj(K)[2]. With this in mind, we distinguish two cases.

Case 1: φi 6= φj. Then since τ is good and is claw-free, it holds φi(K) 6= φj(K),

which further implies φi(K)[1] 6= φj(K)[1]. By this, the probability to have
X2,i[1, n] = X2,j [1, n], or to have

X1,i[1, n]⊕ RGm,nφi(K)[1]

(
X1,i[n+ 1,m+ n]

)
= X1,j [1, n]⊕ RGm,nφj(K)[1]

(
X1,j [n+ 1,m+ n]

)
, (20)

is 1/2n, since RGm,nφi(K)[1] and RGm,nφj(K)[1] can be viewed as two independent ran-

dom functions from {0, 1}m to {0, 1}n.

Case 2: φi = φj. For clearness we let φ = φi = φj . Then we further distinguish
two subcases.

– Subcase 2.1: X1,i[n + 1,m + n] 6= X1,j [n + 1,m + n]. Then the proba-
bility to have X2,i[1, n] = X2,j [1, n], or to have Eq. (20), is 1/2n, since
RGm,nφ(K)[1]

(
X1,i[n+ 1,m+n]

)
and RGm,nφ(K)[1]

(
X1,j [n+ 1,m+n]

)
are indepen-

dent and uniform in {0, 1}n;
– Subcase 2.2: X1,i[n+ 1,m+ n] = X1,j [n+ 1,m+ n]. Then since the distin-

guisher does not make redundant queries, it has to be X1,i[1, n] 6= X1,j [1, n],
which means it is impossible to have X2,i[1, n] = X2,j [1, n] or Eq. (20).
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Therefore, for each pair (i, j) of indices, the probability to have X2,i[1, n] =
X2,j [1, n] is no larger than 1/2n. Summing over the

(
q
2

)
≤ q2/2 choices, we reach

Pr[(C-3)] ≤ q2/2n+1.

The analysis for (C-4) is similar by symmetry, yielding Pr[(C-4)] ≤ q2/2m+1.
Summing over the four probabilities and using n ≤ m, we reach

Pr
[
BadF(RGm,n,RFn,m)] ≤ q2

2n
+
q2

2m
+

q2

2n+1
+

q2

2m+1
≤ 3q2

2n
. (21)

Completing the proof. Consider any good transcript τ = (Q,K), where
Q =

(
(φ1, X1, Y1), ..., (φq, Xq, Yq)

)
. With the values defined in Eq. (19), it can

be seen that, the event RK[AFNRGm,n,RFn,m,4
Alter(K) ] ` Q is equivalent to 2q equations

as follows.

RFn,mφi(K)[2](X2,i[1, n]) = X2,i[n+ 1, n+m]⊕X4,i[n+ 1, n+m] for i = 1, ..., q,

RGm,nφi(K)[1](X4,i[n+ 1, n+m]) = X2,i[1, n]⊕X4,i[1, n] for i = 1, ..., q.

For any RGm,n and RFn,m, as long as BadF(RGm,n,RFn,m) is not fulfilled,
the above random variables {RFn,mφi(K)[2](X2,i[1, n])}i=1,...,q are q distinct ones,

and {RGm,nφi(K)[1](X4,i[n+ 1, n+m])}i=1,...,q are also distinct, as otherwise either

(C-3) or (C-4) will be fulfilled. Moreover, these random variables are not affected
by the randomness in RGm,n and RFn,m that determines the satisfiability of
BadF(RGm,n,RFn,m) (i.e., the values {RGm,nφi(K)[1](X1,i[n+ 1, n+m])}i=1,...,q and

{RFn,mφi(K)[2](X5,i[1, n])}i=1,...,q), as otherwise either (C-1) or (C-2) will be fulfilled.

Therefore, by Eq. (21), we have

Pr
[
RK
[
AFNRGm,n,RFn,m,4

Alter(K)

]
` Q

]
≥ Pr

[
RK
[
AFNRGm,n,RFn,m,4

Alter(K)

]
` Q | ¬BadF(RGm,n,RFn,m)

]
·
(

1− Pr
[
BadF(RGm,n,RFn,m)

])
≥
( 1

2n+m

)q
·
(

1− 3q2

2n

)
.

With this, and further using Eqs. (1) and (2), we reach

Pr
[
Tre = τ

]
Pr
[
Tid = τ

] ≥ ( 1

2n+m

)q
·
(

1− 3q2

2n

)/( 1

2n+m − q

)q
≥
(

1− q

2n+m

)q
·
(

1− 3q2

2n

)
≥ 1−

( q2

2n+m
+

3q2

2n

)
. (22)

Gathering Eqs. (18) and (22) yields Eq. (17).
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4.3 AFN using a Tweakable Round Function and Single Key

While the standard-to-ideal reduction couldn’t handle two different functions
that use the same secret key, the situation could be remedied by using a tweakable
round function. In detail, consider a tweakable round function TFm,n that has
a tweak input of 1 bit, such that TFm,n(0, ·) maps (K,x) ∈ K × {0, 1}m to
x ∈ {0, 1}n and TFm,n(1, ·) maps (K,x) ∈ K × {0, 1}n to x ∈ {0, 1}m. This
is quite different from the standard notion of tweakable blockciphers, as the
domain of the standard formalism typically don’t vary with the tweak. Here,
however, depending on whether the tweak input is 0 or 1, the round function
varies between contracting and expanding.

The security of such tweakable round function TFm,n shall be measured by
its deviation from the ideal counterpart RTFm,n that is uniformly picked from
all the functions that have exactly the same signature as TFm,n. Note that
this means RTFm,n(0, ·) and RTFm,n(1, ·) are independent ideal keyed functions.
Further define

Iden(K) = (Ki1 , ...,Kit), where Ki1 = ... = Kit = K.

Now, for the 4-round AFN using TFm,n as the round function and identical
round key, as depicted in Fig. 2 (right), a RKA security proof is possible.

Corollary 1. For any distinguisher D making at most q queries to RK[AFNTF
m,n,4

Iden(K) ]

and RK[AFNTF
m,n,4

Iden(K) ]−1 in total, it holds

Adv
Φ-rka[1]

AFNTFm,n,4
Iden(K)

(D) ≤ Adv
Φ-rka[1]
TFm,n (D) + Advcf

Φ(D) +
q2

2n+m
+

3q2

2n
, (23)

where Adv
Φ-rka[1]
TFm,n (D) =∣∣∣ PrK

[
DRK[TFm,n

K ],RK[RTFm,n
K ]−1

= 1
]
− PrK,RTF

[
DRK[RTFm,n

K ],RK[RTFm,n
K ]−1

= 1
] ∣∣∣.

Proof (Sketch). The proof turns possible simply because a single standard-to-

ideal reduction already suffices to turn AFNTF
m,n,4

Iden(K) into the ideal AFNRTFm,n,4
Iden(K) .

The subsequent analysis for Adv
Φ-rka[1]

AFNRTFm,n,4
Iden(K)

(D) basically follows the previous for

Adv
Φ-rka[1]

AFNRGm,n,RFn,m,4
Iden(K)

(D), and we sketch the crucial points below. Concretely, the

definition and probability of bad transcripts here are the same as Sect. 4.1.
Whereas the definition of BadF(RTFm,n) is a slight modification of Definition

3 as follows.

Definition 4. Given a tweakable function RTFm,n, the predicate BadF(RTFm,n)
is fulfilled, if any of the following four conditions is fulfilled.

(C-1) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K), X2,i[1, n]) = (φj(K), X5,j [1, n]).
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(C-2) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K), X4,i[n+ 1, n+m]) = (φj(K), X1,j [n+ 1, n+m]).

(C-3) There exists two distinct indices i, j ∈ {1, ..., q} such that
(φi(K), X2,i[1, n]) = (φj(K), X2,j [1, n]).

(C-4) There exists two distinct indices i, j ∈ {1, ..., q} such that
(φi(K), X4,i[n+ 1, n+m] = (φj(K), X4,j [n+ 1, n+m]).

The analyses for the conditions simply exclude the case of φi 6= φj , which implies
φi(K) 6= φj(K) due to claw-freeness and excludes the possibility of collisions.
Anyway, the bound Pr

[
BadF(RTFm,n)] ≤ 3q2/2n remains, and the subsequent

analysis just follows. ut

5 Conclusion

We study provable related-key security (RKA security) of expanding Feistel net-
works and alternating Feistel networks. For the former built upon a round func-
tion F : K×{0, 1}n → {0, 1}m, we prove that 2dmn e+2 rounds with the alternat-
ing key assignment suffice for RKA security; for the latter that alternate round
functions F : K × {0, 1}n → {0, 1}m and G : K × {0, 1}m → {0, 1}n, we prove
that 4 rounds with the alternating key assignment suffice. These complete the
picture of provable RKA security of generalized Feistel networks, and provide
further insights into the NIST standards FF1 and FF3.

Provable security of EFNs is limited by the input size of F . On the other
hand, provable security of AFNs is upper bounded by G. We thus leave beyond
n-bit RKA security of AFNs as an open question.
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A Security Proof for EFNFn,2n

In this section, we prove RKA-CCA security for EFNF
n,2n

, i.e., the simplest case
of m

n = 2. As mentioned in the Introduction, we consider the alternating key
assignment Alter.

Theorem 3. For any distinguisher D making at most q queries to RK[EFNF
n,2n,6

Alter(K)]

and RK[EFNF
n,2n,6

Alter(K)]
−1 in total, it holds

Adv
Φ-rka[1]

EFNFn,2n,6
Alter(K)

(D) ≤ Adv
Φ-rka[2]
Fn,2n (D) + Advcf

Φ(D) + Advsf
Φ(D) +

9q2

2n
+

q2

23n
.

Outline of the proof. As the first step, we replace the keyed function Fn,2n

with a random function RFn,2n : K × {0, 1}n → {0, 1}2n, which gives rise to the

random network EFNRFn,2n

Alter(K). As two independent keys K1 and K2 are involved,
it holds ∣∣∣ Adv

Φ-rka[1]

EFNFn,2n,6
Alter(K)

(D)−Adv
Φ-rka[1]

EFNRFn,2n,6
Alter(K)

(D)
∣∣∣ ≤ Adv

Φ-rka[2]
Fn,2n (D)
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by a standard hybrid argument.

The core step is to analyze Adv
Φ-rka[1]

EFNRFn,2n,6
Alter(K)

(D) for the random EFN, which

will employ the H-coefficient technique. We will define bad transcripts and upper
bound their probability in ideal world, and then show that the probabilities to
obtain any good transcript in the real word and the ideal world are sufficiently
close.

A.1 Bad Transcripts

Definition 5. An attainable transcript τ = (Q,K) is bad, if either of the fol-
lowing conditions is fulfilled:

– (B-1) Claw in τ : there exists two triples (φ1, X1, Y1) and (φ2, X2, Y2) in Q
such that φ1 6= φ2, while φ1(K) = φ2(K);

– (B-2) Switch in τ : there exists two triples (φ1, X1, Y1) and (φ2, X2, Y2) in Q
and two indices i, j ∈ {1, 2} such that φ1(K)[i] = φ2(K)[j].

Otherwise we say τ is good.

It is clear that Pr[(B-1)] ≤ Advcf
Φ(D): an adversary against the claw-freeness

of the RKD set Φ could simulate the related-key oracle with Φ against the
distinguisher D, collecting D’s transcript of queries and responses, and use the
records in Q to break the claw-freeness of Φ. Similarly, Pr[(B-2)] ≤ Advsf

Φ(D),
and thus

Pr
[
Tid ∈ Tbad] = Pr

[
(B-1) ∨ (B-2)

]
≤ Advcf

Φ(D) + Advsf
Φ(D). (24)

A.2 Analyzing Good Transcripts

Fix a good transcript τ . The ideal world probability simply follows from Eq. (1),

and it remains to analyze Pr[RK[EFNRFn,2n,6
Alter(K) ] ` Q]. We define a “bad predicate”

BadF(RFn,2n) on the ideal keyed function RFn,2n, such that once BadF(RFn,2n)
is not fulfilled, the event Tid = τ is equivalent to RFn,2n satisfying 2q new and
distinct equations. To facilitate, for any RFn,2n and every (φi, Xi, Yi) ∈ Q, we
define X1,i := Xi, X7,i := Yi, and define the “induced intermediate values” as
follows.

X2,i := ΨRFn,2n
K1 (X1,i), X3,i := ΨRFn,2n

K2 (X2,i),

X5,i :=
(
ΨRFn,2n

K1

)−1
(X6,i), X6,i :=

(
ΨRFn,2n

K2

)−1
(X7,i).

Note that the 2nd and 3rd round intermediate values X2,i, X3,i are derived along
the “forward direction”, while the 4th and 5th X5,i, X6,i are derived along the
“backward direction”.
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Bad predicate. The predicate BadF(RFn,2n) captures various types of collisions
among the “induced intermediate values”. Formally, the specific definition and
probability analysis are as follows.

Definition 6. Given an ideal keyed function RFn,2n, the predicate BadF(RFn,2n)
is fulfilled, if any of the following nine conditions is fulfilled.

(C-1) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[1], X1,i[1, n]) = (φj(K)[1], X3,j [1, n]).

(C-2) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[2], X5,i[2n+ 1, 3n]) = (φj(K)[2], X7,j [2n+ 1, 3n]).

(C-3) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[1], X1,i[1, n]) = (φj(K)[1], X6,j [2n+ 1, 3n]).

(C-4) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[2], X2,i[1, n]) = (φj(K)[2], X7,j [2n+ 1, 3n]).

(C-5) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[1], X3,i[1, n]) = (φj(K)[1], X6,j [2n+ 1, 3n]).

(C-6) There exists two indices i, j ∈ {1, ..., q} such that
(φi(K)[2], X2,i[1, n]) = (φj(K)[2], X5,j [2n+ 1, 3n]).

(C-7) There exists two distinct indices i, j ∈ {1, ..., q} and an index ` ∈ {1, 2}
such that

(
Alter(φi(K))[`], X`,i[1, n]

)
6=
(
Alter(φj(K))[`], X`,j [1, n]

)
, yet

X`+1,i[1, n] = X`+1,j [1, n].
(C-8) There exists two distinct indices i, j ∈ {1, ..., q} and an index ` ∈ {6, 7}

such that
(
Alter(φi(K))[`−1], X`,i[2n+1, 3n]

)
6=
(
Alter(φj(K))[`−1], X`,j [2n+

1, 3n]
)
, yet X`−1,i[2n+ 1, 3n] = X`−1,j [2n+ 1, 3n].

(C-9) There exists two distinct indices i, j ∈ {1, ..., q} such that
(φi(K)[1], X3,i[1, n]) = (φj(K)[1], X3,j [1, n]) or (φi(K)[2], X5,i[2n+1, 3n])
= (φj(K)[2], X5,j [2n+ 1, 3n]).

Otherwise we say τ is good.

To bound the probability, we analyze the conditions in turn.

Conditions (C-1) and (C-2). By construction, we can get that

X3,i[1, n] = RFn,2nφi(K)[2](X2,i[1, n])[1, n]⊕X2,i[n+ 1, 2n].

While for X1,j [1, n], which is determined by the transcripts, and dependent

from RFn,2nφi(K)[2](X2,i[1, n])[1, n]. As the number of such indices is q2, we have

Pr
[
(C-1)

]
≤ q2/2n. Similarly by symmetry, Pr

[
(C-2)

]
≤ q2/2n.

Conditions (C-3) and (C-4). By construction, we have

X6,i[2n+ 1, 3n] = RFn,2nφi(K)[2](X7,i[2n+ 1, 3n])[n+ 1, 2n]⊕X7,i[n+ 1, 2n].

Because of RFn,2n is a random function, RFn,2nφi(K)[2](X7,i[2n+ 1, 3n])[n+ 1, 2n] is

independent of X1,j [1, n]. Via an analysis similar as above, we reach Pr
[
(C-3)

]
≤

q2/2n. Similarly by symmetry, Pr
[
(C-4)

]
≤ q2/2n.
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Conditions (C-5) and (C-6). Concretely, consider (C-5) first. We notice that the
following equations are fulfilled.

X3,i[1, n] = RFn,2nφi(K)[2](X2,i[1, n])[1, n]⊕X2,i[n+ 1, 2n],

X6,i[2n+ 1, 3n] = RFn,2nφi(K)[2](X7,i[2n+ 1, 3n])[n+ 1, 2n]⊕X7,i[2n+ 1, 3n].

The detailed analysis is as follows.
1. Case φi(K)[2] = φj(K)[2].

Conditioned on ¬(C − 4), that is X2,i[1, n] 6= X7,j [2n+ 1, 3n]. Thus RFn,2nφi(K)[2]

(X2,i[1, n])[1, n] and RFn,2nφi(K)[2](X7,i[2n + 1, 3n])[n + 1, 2n] are independent, so

we have the probability of this situation is 1/2n. In detail,

Pr
[
(C − 5) ∨ (C − 4)

]
≤ Pr[(C − 4)] + Pr[(C − 5) | ¬(C − 4)] ≤ 2q2

2n

2. Case φi(K)[2] 6= φj(K)[2].
Because RFn,2n is a ideal function, in this case the round keys are different, so
RFn,2nφi(K)[2](X2,i[1, n])[1, n] and RFn,2nφi(K)[2](X7,i[2n+ 1, 3n])[n+ 1, 2n] are indepen-

dent, we need not to think about whether the inputs of the round function are
equal or not. So we have the probability is Pr[(C − 5)] ≤ q2/2n.

In all we reach Pr
[
(C − 5) ∨ (C − 4))] ≤ 2q2/2n. Similarly by symmetry,

Pr
[
(C − 6) ∨ (C − 3))] ≤ 2q2/2n

Conditions (C-7) and (C-8). Consider (C-7) first, and consider any such three
indices i, j ∈ {1, ..., q} and ` ∈ {1, 2}. The equality X`+1,i[1, n] = X`+1,j [1, n]
translates into (

RFn,mAlter(φi(K))[`]

(
X`,i[1, n]

)
⊕X`,i[n+ 1, 3n]

)[
1, n
]

=
(
RFn,mAlter(φj(K))[`]

(
X`,j [1, n]

)
⊕X`,j [n+ 1, 3n]

)[
1, n
]
.

Since
(
Alter(φi(K))[`], X`,i[1, n]

)
6=
(
Alter(φj(K))[`], X`,j [1, n]

)
, the two func-

tion outputs RFn,mAlter(φi(K))[`]

(
X`,i[1, n]

)
and RFn,mAlter(φj(K))[`]

(
X`,j [1, n]

)
are uni-

form in {0, 1}2n and independent. Therefore, the probability to haveX`+1,i[1, n] =

X`+1,j [1, n] is 1/2n. Summing over the
(
q
2

)
· 2 ≤ q2

2 2 choices of i, j, `, we reach

Pr
[
(C-7)

]
≤ 2q2

2n+1
. (25)

The analysis for (C-8) is similar by symmetry, yielding the same bound

Pr
[
(C-8)

]
≤ 2q2

2n+1
. (26)

Conditions (C-9). Consider any such two triples (φi, Xi, Yi), (φj , Xj , Yj) ∈ Q.
We consider the probability to have (φi(K)[1], X3,i[1, n]) = (φj(K)[1], X3,j [1, n])
first. In this case, the condition is fulfilled only if φi(K)[1] = φj(K)[1]. With this
in mind, we distinguish two cases.
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Case 1: φi 6= φj. Then since τ is good and is claw-free, it holds φi(K) 6= φj(K),

which further implies φi(K)[2] 6= φj(K)[2]. By this, the probability to have
X3,i[1, n] = X3,j [1, n], or to have(

X2,i[n+ 1, 3n]⊕ RFn,mφi(K)[2]

(
X2,i[1, n]

))[
1, n
]

=
(
X2,j [n+ 1, 3n]⊕ RFn,mφj(K)[2]

(
X2,j [1, n]

))[
1, n
]
, (27)

is 1/2n, since RFn,mφi(K)[2] and RFn,mφj(K)[2] can be viewed as two independent random

functions from {0, 1}n to {0, 1}2n.

Case 2: φi = φj. For clearness we let φ = φi = φj . Let ∆1 := X1,i ⊕X1,j . Since
D does not make redundant queries, it has to be ∆1 6= 0. We further distinguish
two subcases.

– Subcase 2.1: ∆1[1, 2n] 6= 0. Then, let ` ∈ {0, 1} be the smallest index such
that ∆1[`n + 1, (` + 1)n] 6= 0. By construction, this means X`+1,i[1, n] 6=
X`+1,j [1, n]. Conditioned on ¬(C-7), this further impliesX3,i[1, n] 6= X3,j [1, n].

– Subcase 2.2: ∆1[1, 2n] = 0. Then it has to be ∆1[2n + 1, 3n] 6= 0, which
necessarily implies X3,i[1, n] 6= X3,j [1, n] by construction.

Therefore, conditioned on ¬(C-7), it is not possible to have X3,i[1, n] = X3,j [1, n]
for any two distinct indices (i, j).

The analysis for
(
φi(K)[2], X5,i[2n+ 1, 3n]

)
=
(
φj(K)[2], X5,j [2n+ 1, 3n]

)
is

similar by symmetry. More concretely, for any such two triples (φi, Xi, Yi), (φj , Xj , Yj)
such that φi(K)[2] = φj(K)[2], we have:

– If φi 6= φj , then it holds φi(K)[1] 6= φj(K)[1] by the claw-freeness and by
φi(K)[2] = φj(K)[2], and thus the probability to have X5,i[2n + 1, 3n] =
X5,j [2n+ 1, 3n] or(

X6,i[1, 2n]⊕ RFn,2nφi(K)[1]

(
X6,i[2n+ 1, 3n]

))[
n+ 1, 2n

]
=
(
X6,j [1,m]⊕ RFn,2nφj(K)[1]

(
X6,j [2n+ 1, 3n]

))[
n+ 1, 2n

]
(28)

is 1/2n due to the independence between RFn,2nφi(K)[1] and RFn,2nφj(K)[1].

– If φi = φj , then it is not possible to have X5,i[2n+ 1, 3n] = X5,j [2n+ 1, 3n]
conditioned on ¬(C-8).

In all, for each pair (i, j) of distinct indices, the probability to haveX3,i[1, n] =
X3,j [1, n] or X5,i[2n+ 1, 3n] = X5,j [2n+ 1, 3n] is no larger than 2/2n. Taking a
union bound for the

(
q
2

)
≤ q2/2 choices of (i, j) yields

Pr
[
(C-9) | ¬(C-1) ∧ ... ∧ ¬(C-8)

]
≤ q2

2n
. (29)

Summing over the above, we reach

Pr
[
BadF(RFn,2n)] ≤ 9q2

2n
. (30)
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Completing the proof. Consider any good transcript τ = (Q,K), where Q =(
(φ1, X1, Y1), ..., (φq, Xq, Yq)

)
. It can be seen that the event RK[EFNRFn,2n,6

Alter(K) ] ` Q
is equivalent to the event that RFn,2n satisfies 2q equations as follows.

RFφi(K)[1](X3i[1, n]) = X3i[n+ 1, 2n]⊕X5i[2n+ 1, 3n]∥∥ X3i[2n+ 1, 3n]⊕ RFφi(K)[2](X5i[2n+ 1, 3n])[1, n]⊕X5i[1, n]

RFφi(K)[2](X5i[2n+ 1, 3n])[n+ 1, 2n] = X3i[1, n]⊕X5i[n+ 1, 2n].

RFn,2n
φi(K)[1]

X3[1, n] X3[n+ 1, 2n] X3[2n+ 1, 3n]

X5[1, n] X5[n+ 1, 2n] X5[2n+ 1, 3n]

RFn,2n
φi(K)[2]

Fig. 3. 3-round and 4-round in EFNRFn,2n,6
Alter(K)

The probability to obtain τ in the real world is

Pr[Tre = τ ] = Pr[K] · Pr
[
RK[EFNRFn,2n,6

Alter(K) ] ` Q
]

≥ Pr[K] · Pr
[
RK[EFNRFn,2n,6

Alter(K) ] ` Q ∧ ¬BadF(RFn,2n)
]

= Pr[K] ·
(

1− Pr
[
BadF(RFn,2n)

])
· Pr
[
RK[EFNRFn,2n,6

Alter(K) ] ` Q | ¬BadF(RFn,2n)
]
.

We refer to Fig. 3 for illustration. Conditioned on ¬BadF(RFn,2n), these are
2q distinct and new equations. Therefore,

Pr
[
RK[EFNRFn,2n,6

Alter(K) ] ` Q | ¬BadF(RFn,2n)
]

=

q∏
i=1

(
Pr
[
RFφi(K)[1](X3i[1, n]) = X3i[n+ 1, 2n]⊕X5i[2n+ 1, 3n]∥∥ X3i[2n+ 1, 3n]⊕ RFφi(K)[2](X5i[2n+ 1, 3n])[1, n]⊕X5i[1, n]

]
× Pr

[
RFφi(K)[2](X5i[2n+ 1, 3n])[n+ 1, 2n] = X3i[1, n]⊕X5i[n+ 1, 2n]

])
=
( 1

23n

)q
.
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We remark that, the equation on RFφi(K)[1](X3i[1, n]) depends on the function
value RFφi(K)[2](X5i[2n+ 1, 3n])[1, n]. Though, this won’t affect the distribution
of RFφi(K)[2](X5i[2n + 1, 3n])[n + 1, 2n], as the two halves RFφi(K))[2](X5i[2n +
1, 3n])[1, n] and RFφi(K)[2](X5i[2n + 1, 3n])[n + 1, 2n] are independent. In all,
using Eq. (30), we have

Pr[Tre = τ ]

Pr[Tid = τ ]
≥
(

1− 9q2

2n

)
×
( 1

23n

)q/( 1

23n − q

)q
≥ 1−

(9q2

2n
+

q2

23n

)
. (31)

Gathering Eqs (24) and (31), and using Lemma 1, we complete the proof of
Theorem 3.

32


	Related-Key Analysis of Generalized Feistel Networks with Expanding Round Functions
	1 Introduction
	2 Preliminaries
	2.1 (Multi-user) RKA Security
	2.2 The H-Coefficient Technique

	3 Security Analysis of Expanding Feistel Networks
	3.1 Bad Transcripts
	3.2 Analyzing Good Transcripts

	4 Security Analysis of Alternating Feistel Networks
	4.1 Bad Transcripts
	4.2 Analyzing Good Transcripts
	4.3 AFN using a Tweakable Round Function and Single Key

	5 Conclusion
	A Security Proof for EFNFn,2n
	A.1 Bad Transcripts
	A.2 Analyzing Good Transcripts



