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ABSTRACT
With the development of deep neural networks (DNNs) and the
publicly available source code repositories, deep code comment
generation models have demonstrated reasonable performance on
test datasets. However, it has been confirmed in computer vision
(CV) and natural language processing (NLP) that DNNs are vulner-
able to adversarial examples. In this paper, we investigate how to
maintain the performance of the models against these perturbed
samples. We propose a simple, but effective, method to improve
the robustness by training the model via data augmentation. We
conduct experiments to evaluate our approach on two mainstream
sequence-sequence (seq2seq) architectures which are based on the
LSTM and the Transformer with a large-scale publicly available
dataset. The experimental results demonstrate that our method can
efficiently improve the capability of different models to defend the
perturbed samples.
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1 INTRODUCTION
In software and system development, automated processing and
analysis of program source code can greatly reduce the developing
cost, which has received tremendous interests from industry. It is
not until several years ago, researchers started to propose using
deep neural networks (DNNs) for the task of source code processing.
In particular, encouraging process has been made in code comment
generation tasks [1, 8, 19, 21, 24].

Szegedy et al. [18] first observe that adding imperceptible per-
turbations on the original inputs can fool the state-of-the-art DNNs
used for image classification, which are referred to as adversarial
examples. The existence of adversarial examples may seriously af-
fect the reliability and security of the deep learning models which
discourages their application in practice. In recent years, many
efforts in computer vision (CV) and natural language processing
(NLP) have concentrated on how to improve the robustness the
DNN models against the prevalent adversarial examples.

Very recently, some researchers [3, 17, 22, 23] have investigated
the robustness of neural networks applied to programming, includ-
ing code classification models, method name prediction models and
type prediction models. However, the robustness of code comment
generation models has received little attention. In this paper, we
focus on the code comment generation task which is more akin
to the neural machine translation in the NLP domain and explore
the robustness of DNNs used for this task. We propose to adopt a
well-studied technique for robustness enhancement, i.e., adversarial
training based on data augmentation to improve the robustness. We
carry out experiments on the publicly available source code dataset
to assess the robustness of two code comment generation models, a
Transformer-based sequence-to-sequence (seq2seq) model and an
LSTM-based seq2seq model. The experiment results show that our
approach can defend the model against adversarial attacks without
modifying the model structure and the training procedure. Our
code and data are publicly available1.

1https://github.com/Zhangxq-1/coderepository.git
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The remainder of this paper is structured as follows. Section
2 presents the related work. Section 3 describes our proposed ap-
proach. Section 4 introduces the evaluation setup and results. Sec-
tion 5 discusses the threats to validity. Section 6 concludes our
work.

2 RELATEDWORK
Since Szegedy et al. [18] first observed that deep neural networks
are vulnerable to small perturbation, a lot of efforts have emerged
to study the robustness of DNNs. In CV, they proposed the first
adversarial examples method named L-BFGS to test the robustness
of the image classification model. Goodfellow et al. [6] presented a
simplified method FGSM which is a gradient-based attack method.
Besides, there are some other representational works [4, 12]. Re-
searchers try to employ approaches in the image domain to texts
and propose some efficient approaches. For example, in text, Paper-
not et al. [15] proposed the first adversarial examples generation
algorithm using the unfolding computational graph. Instead of gra-
dient loss, Javid et al. [9] generated adversarial examples to attack
the classification model by performing the atomic flip.

In neural program analyzers, Wang et al. [20] first compared
the robustness of different program representation towards the
semantics prediction task. Zhang et al. [23] exploited the MHM
approach to generate adversarial examples towards the code clas-
sification models. Pavol et al. [3] proposed a novel technique to
address the problem of learning accurate and robust models of the
type prediction task. Ramakrishnan et al. [17] and Yefet et al. [22]
focused on the robustness of the method name prediction model.

To improve the robustness of DNN models, existing methods
can be classified into two categories: adversarial training which
contains data augmentation [10], model regularization [14], and
robust optimization [12], as well as knowledge distillation [16].

3 APPROACH
In this section, we present our method for improving robustness.
The overview of our approach is given in Figure 1. It consists of four
steps: (1) training and testing the model with the original dataset;
(2) generating the perturbed test dataset to test the robustness of
the trained model; (3) generating the data augmentation training
dataset to retrain the model; (4) testing the retrained model on both
the original set and perturbed set.

Our goal is to learn robust deep code comment generation mod-
els that can maintain the performance of models under perturbed
inputs. Thus, the first question is how to generate the perturbations
for the original test dataset. To this end, we employ the MHM [23]
algorithm which is the state-of-the-art method of perturbing source
code by renaming identifiers. MHM takes all the programmer-
defined identifiers in the source code as tokens to be substituted
and renames them iteratively according to Metropolis-Hastings
(M-H) sampling [5, 7, 13]. At each iteration, a change from 𝑥 to 𝑥 ′
is accepted based on the acceptance rate:

𝛼 (𝑥 ′ |𝑥) =𝑚𝑖𝑛{1, 𝛼∗}
where

𝛼∗ ≈ 1 −𝐶 (𝑥 ′) [𝑦]
1 −𝐶 (𝑥) [𝑦]

In this paper, 𝐶 (𝑥) is instantiated as the BLEU score.
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Figure 1: The workflow of our approach

In order to enhance the robustness of deep code comment gen-
eration models, we adopt the adversarial training method based on
data augmentation, a simple but effective method. For the examples
⟨𝑝, 𝑐𝑜𝑚𝑚𝑒𝑛𝑡⟩ in the training set 𝐷𝑡𝑟𝑎 , we first randomly sample a
subset 𝐷𝑡𝑟𝑎

𝑠𝑢𝑏
⊆ 𝐷𝑡𝑟𝑎 which contains 𝑁𝑢𝑚 examples (𝑁𝑢𝑚 = 9, 957

in our experiment). For each sample in 𝐷𝑡𝑟𝑎
𝑠𝑢𝑏

, we generate adver-
sarial example ⟨𝑝𝑎𝑑𝑣, 𝑐𝑜𝑚𝑚𝑒𝑛𝑡⟩ according to the MHM algorithm,
and then mix the adversarial examples with the original dataset
to generate a new dataset 𝐷𝑡𝑟𝑎

𝑎𝑑𝑣
, and retrain the model using 𝐷𝑡𝑟𝑎

𝑎𝑑𝑣
without changing the original model’s parameters. In this way, we
can obtain a more robust model.

4 EVALUATION
4.1 Dataset
We conduct experiments based on the publicly available Java source
code dataset [8]which containsmethods extracted from Java projects
on GitHub.2 This dataset provides method-level source code and
comment. We only extract the first sentence of Javadoc as the
comment, which represents the functionality of the method. We
preprocess the dataset by the Javalang parser3 to extract identifiers.
The statistics of the dataset are shown in Table 1.

4.2 Target Models
We adopt two commonly used seq2seq models based on the LSTM
and Transformer [1] architectures as the target models in our ex-
periments to study how to improve the robustness of deep code
comment generation models. We reuse the code from the original
2https://github.com
3https://github.com/c2nes/javalang
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Table 1: Information about the Java dataset.

Dataset Java
Train 69708
Validation 8714
Test 8714
Avg identifiers in Dataset 3.2

work and follow their instructions to set hyper-parameters. Both
models are seq2seq models at the text level. The input of these mod-
els is token sequences, which are obtained by splitting the original
source code. The LSTM architecture with attention is widely used
in the field of source code processing, and to the best of our knowl-
edge, the Transformer architecture represents the state-of-the-art
result on the Java dataset.

4.3 Metrics
Robustness can be evaluated by the performance changes of DNNs
before and after the adversarial attack. BLEU,METEOR, and ROUGE-
L are three automatic machine translation metrics which have been
widely adopted to measure the quality of the generated comments
in code comment generation tasks.

• BLEU. The BLEU score refers to the degree of similarity
between the generated text and the reference texts, with
values closer to 1 representing more similarity.

• METEOR. METEOR evaluates the translation result based
on recall and accuracy measures, aligns it with the reference,
and calculates the sentence level similarity score.

• ROUGE-L. ROUGE-L focuses on recall score which com-
putes similarity based on the longest common subsequence
between the translation result and the reference.

A robust model should be stable and should not change its output
much when exposed to adversarial examples. Compared with the
performance on the original test dataset, the lower the value after
the adversarial attack implies the worse robustness of the model.
Therefore, we use these three metrics to evaluate the robustness of
the model.

4.4 Results
In our experiment, we use the perturbed examples replacing 𝐾
identifiers (in our experiment, we set𝐾 = 3) to study the robustness
of different deep code comment generation models by observing
the changes of the BLEU, METEOR, and ROUGE-L values. The
experimental results on LSTM and Transformer architectures are
shown in Table 2.

It can be observed from Table 2 that the performance of both
models significantly degrades with the perturbed dataset. Between
these twomodels, even though the results of the Transformer model
on the clean dataset are better, relative degradation of the BLEU
score, METEOR score, and ROUGE-L score (66.42%, 65.30%, and
53.27%) on the perturbed dataset are worse than the LSTM model
with relative degradation of 44.60%, 48.28% and 39.06%. (Note that a
larger value of relative degradation means worse robustness.) It can
be seen that the performance of the model cannot be guaranteed to
maintain when it is subject to perturbation attacks.

Table 2: Results on the perturbed test dataset with replacing
𝐾 identifiers. (‘Clean’ means the original test dataset and ‘Adv’ is
the perturbed test dataset.)

Clean Adv

Transformer
BLEU 44.58 14.97
METEOR 26.43 9.17
ROUGR-L 54.76 25.59

LSTM
BLEU 35.47 19.65
METEOR 19.72 10.2
ROUGE-L 47.57 28.99

To validate the effectiveness of the data augmentation based
adversarial training method, new models without changing the
hyper-parameters and model structures are trained from scratch on
the adversarially augmented training set which is mixed with the
perturbed examples. Then, we test the new model with the original
test dataset (i.e., ‘Clean’ in Table 3) and the perturbed test dataset
with 𝐾 identifiers (𝐾 = 3) replaced (i.e., ‘Adv’ in Table 3). In Table 3,
‘Nor’ represents the model through the standard training process,
and ‘Aug’ represents the model trained by data augmentation.

It has been confirmed that improving robustness may sacrifice
the accuracy of the models on the clean dataset [2, 11]. We can ob-
serve fromTable 3 that the BLEU,METEOR and ROUGE-L scores are
all significantly increased on both the original ‘Clean’ test dataset
and the ‘Adv’ test dataset. It suggests that, after data augmentation,
we obtain a new model which retains the accuracy but is more
robust.

Table 4 shows an example of the generated summary of the
Transformer model. The summary is irrelevant to the reference
(‘Ref’ in Table 4) under adversarial attacks, whereas after the data
augmentation, the generated result is closer to the reference.

5 THREATS TO VALIDITY
Internal Validity. The randomness of selecting the substituted
identifier and the implementation errors may affect the reproducibil-
ity of the experiment results. To alleviate this threat, we conduct a
manual inspection using an example and re-implement the experi-
ment for three times.
External validity. We only concentrate on improving the roubst-
ness of the comments generation model for Java methods in our
approach. However, our approach is essentially programming lan-
guage independent and can be applied to any comments generation
model.

6 CONCLUSION
In this paper, we adopt the MHM algorithm to generate the per-
turbed examples to evaluate the performance of different deep code
comment generation models built on LSTM and Transformer ar-
chitectures. We propose a robust enhancement method for these
models and conduct experiments to validate the effectiveness of the
data augmentation adversarial training method. Experiment results
show that our method can enhance the models’ defense against
attacks. In the future, we will explore more effective methods to
further improve the model robustness.
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Table 3: Results of the data augment adversarial training. (The more BLEU increases on the ‘Adv’ dataset, the more robust the model
is after adversarial training.)

BLEU METEOR ROGUE-L

Transformer

Nor-Clean 44.58 26.34 54.76
Nor-Adv 14.97 9.17 25.59
Aug-Clean 45.41 27.31 54.78
Aug-Adv 26.77 15.75 36.97

LSTM

Nor-Clean 35.47 19.72 47.57
Nor-Adv 19.65 10.2 28.99
Aug-Clean 39.07 21.69 49.98
Aug-Adv 25.40 13.62 35.27

Table 4: An example of adversarial attack before and after data augmentation.

Clean static boolean isPackageAccess ( final int modifiers )
{ return ( modifiers & ACCESS_TEST ) == _NUM; }

Adv static boolean statistic ( final int modifiers )
{ return ( modifiers & ACCESS_TEST ) == _NUM; }

Ref returns whether a given set of modifiers implies package access.
Nor-Adv returns true if thistype, returns false if the given modifiers.
Aug-Adv learn whether a given set of modifiers implies package access.
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