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Abstract  8 

Gas flaring has gained global recognition as a prominent agent of pollution, leading to the estab-9 

lishment of the Global Gas Flaring Reduction (GGFR) initiative, which requires an objective means 10 

of monitoring flaring activity. Because auditable information on flaring activity is difficult to obtain 11 

there have recently been attempts to detect flares using satellite imagery, typically at global scales. 12 

However, to adequately assess the environmental and health impacts of flaring from local to region-13 

al scales, it is important that we have a means of acquiring information on the location of individual 14 

active flaring sites and the volume of gas combusted at these sites. In this study we developed an 15 

approach to the retrieval of such information using nighttime MODIS thermal imagery. The 16 

MODIS flare detection technique (MODET) and the MODIS flare volume estimation technique 17 

(MOVET) both exploit the absolute and contextual radiometric response of flare sites. The levels of 18 

detection accuracy and estimation error were quantified using independent observations of flare lo-19 

cation and volume. The MODET and MOVET were applied to an archive of MODIS data spanning 20 

2000-2014 covering the Niger Delta, Nigeria, a significant global hotspot of flaring activity. The 21 

results demonstrate the substantial spatial and temporal variability in gas flaring across the region, 22 

between states and between onshore and offshore sites. Thus, while the estimated total volume of 23 

gas flared in the region over the study period is large (350 Billion Cubic Metres), the heterogeneity 24 

in the flaring indicates that the impacts of such flares will be highly variable in space and time. In 25 

this context, the MODET and MOVET offer a consistent and objective means of monitoring flaring 26 
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activity over an appropriate range of scales and it is now important that their robustness and trans-27 

ferability is tested in other oil-producing regions of the world. 28 
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1. Introduction 32 

Gas flaring is one of the processes, alongside venting and reinjection, used to dispose of the 33 

natural gas associated with extracted crude oil. Crude oil from a group of wells in an oil field is ini-34 

tially gathered for processing at a flow station where gas is separated from oil. One or a number of 35 

flares in the vicinity of the flow station are then used to burn off the gas. Flaring is commonly 36 

adopted by oil companies because it is more cost-effective than converting to commercial natural 37 

gas. Efforts to empirically assess the environmental impacts of flaring are frequently hampered by 38 

limited access to official information on flare locations and volumes, the heterogeneity in spatial 39 

and temporal sampling strategies and methods used to collect data and lack of auditability. In order 40 

to begin to assess the environmental impacts of flaring in a coherent fashion, there is a pressing 41 

need for a robust, consistent and objective means of determining: where active flaring sites are lo-42 

cated; what volume of gas is being flared at each site; and how the distribution and volume of flares 43 

has changed over space and time. Consequently, there is a need to develop new methods of acquir-44 

ing such information, and remote sensing seems the most viable option. However, as explained be-45 

low, while there have been several approaches developed for monitoring biomass fires, only a lim-46 

ited number of studies have attempted to map flares or estimate flaring volumes from space. The 47 

present study builds upon this work and presents an alternative and enhanced approach.  48 

1.1 Fire detection using satellite imagery 49 

 50 

Satellite systems have long been deployed to detect and monitor fires and their effects, due to 51 

their timely and repetitive observations, multispectral viewing capabilities, synoptic coverage, and 52 

their ability to retrieve information from hazardous locations. Four major classes of algorithm (sin-53 

gle channel threshold, multi-channel threshold, contextual and sub-pixel) have been developed to 54 

sense fires from satellite images (Li et a.l, 2000, Martin et al., 1999). The two main types of signals 55 

employed for this purpose are either direct (flames and heat) or indirect (smoke and burned surfac-56 
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es). Direct signals are most commonly employed in fire detection studies (Movaghati et al., 2009, 57 

Justice et al., 2006, Weaver et al., 2004), whilst indirect  signals are employed for post fire assess-58 

ment and management (Sedano et al., 2013; Lanorte et al., 2011). Most satellite-based fire detection 59 

studies have focused on forest/biomass fires, as their impacts draw considerable attention from the 60 

research community and investigations are facilitated by the availability of well-established fire-61 

hotspot algorithms (ATPS, 2013; Wooster et al., 2012; Wang et al., 2012; Xu et al., 2010; Casadio 62 

and Arino, 2009; Qian et al., 2009; Roberts and Wooster, 2008; Zhukov et al., 2006; Giglio et al., 63 

2003; Prins and Menzel, 1992; Dozier, 1981).  64 

Radiation emitted at typical surface fire temperatures mostly lies in the infrared region of the 65 

electromagnetic spectrum. Thus, images from sensors such as the Advanced Very High Resolution 66 

Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Ge-67 

ostationary Operational Environmental Satellite (GOES) Imager, which have infrared bands, have 68 

commonly been used for forest fire detection (Justice et al., 2006; Ichoku et al., 2003; Li et al., 69 

2000; Kaufman et al., 1998). These systems have a relatively high temporal resolution, enabling 70 

near-continuous monitoring of active fire fronts, which is very important given the ephemeral na-71 

ture of biomass fires.  72 

The AVHRR was used to produce the first global fire product and near-real-time global fire 73 

data set. The fire detection capability of AVHRR nighttime imagery was first applied on fixed tar-74 

gets of known location (Matson and Dozier, 1981).  The level of success achieved in the detection 75 

of fixed fire sources led to the use of AVHRR in biomass fire detection. The MODIS sensor has 36 76 

spectral bands, some of which are specifically designed for fire monitoring and has improved fire 77 

detection capabilities based on existing algorithms developed for AVHRR (Casanova et al., 2005, 78 

Justice et al., 2002). However, gas flaring, has not received as much attention as other high temper-79 

ature events (biomass fires, volcanoes, over ground and underground coal fires) and existing fire 80 

detection algorithms are often inadequate for detecting gas flares due to the small extent of each 81 

flare (Anejionu et al., 2014, Elvidge et al., 2011).  82 
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1.2 Detection of gas flares using satellite imagery 83 

Croft (1978) was the first to observe gas flares in nighttime Defence Meteorological Satellite 84 

Program (DMSP) and Landsat Multi-spectral Scanner System (MSS) images. While carrying out 85 

research to determine blackbody temperatures of sub-pixel fires Matson and Dozier (1981) discov-86 

ered that flares were detectable from nighttime AVHRR imagery. Twelve high temperature indus-87 

trial sources in Detroit (steel mills), and six gas flares in the Persian Gulf were identified using the 88 

3.8µm and 11µm bands of AVHRR. Muirhead and Cracknell (1984) visually inspected daytime 89 

AVHRR images and were able to identify gas flares from North Sea oil rigs.  90 

Elvidge et al. (2007) used DMSP Operational Linescan System (OLS) imagery to visually 91 

identify flares, using the circularity and bright centres of lights from flares to aid detection, and this 92 

was the first attempt to detect flares on a global scale over extended time periods (1994-2008 inclu-93 

sive). Although the DMSP-OLS method has high temporal resolution (12 hours revisit period), the 94 

relatively low spatial resolution (560m – 2.7km) of the imagery limits its ability to accurately detect 95 

individual flare sites, particularly amidst urban areas as noted by Elvidge et al. (2009a). Further-96 

more, the visual identification technique employed is subjective and time consuming. 97 

Casadio et al. (2012a) applied an active flame detection algorithm (ALGO3) to nighttime 98 

Along Track Scanning Radiometer (ATSR) imagery to detect flares on a global basis. The method 99 

is a single band fixed threshold algorithm based on the shortwave infrared band of ATSR (1.6µm) 100 

and mostly employs temporal persistence of hotspot pixels as an indicator of flaring activity, with 101 

the presence of industrial installations (identified from high resolution images available on Google 102 

Earth) used to validate the results. However, the method of validation, which does not utilise direct 103 

observation of flares on high resolution images, may be inconsistent as not all industrial sites in oil 104 

producing regions contain flares. Nevertheless, ALGO3 is more objective than the DMSP-OLS and 105 

AVHRR methods, as it adopts a fixed threshold method to automatically discriminate hotspots, thus 106 

overcoming the limitations of manual identification. The method has subsequently been revised 107 
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through the integration of nighttime ATSR and SAR products to detect flares in the North Sea 108 

(Casadio et al., 2012b).  109 

Whilst the DMSP-OLS and ATSR methods of flare detection can be useful for detecting 110 

flares at global level, they are of more limited utility where precise information on flare locations 111 

and flare volumes is required for accurate assessment of impacts from local to regional scales.  In 112 

our previous work, we exploited the higher spatial resolution of Landsat imagery and its extended 113 

time-series to detect flares over a period of 29 years (Anejionu et al., 2014). We developed the 114 

Landsat Flare Detection Method (LFDM), a multiband threshold technique that used the near infra-115 

red, shortwave infrared and the thermal infrared bands to map active gas flares in the Niger Delta. 116 

The LFDM achieved a higher level of spatial accuracy (±23.85m) than earlier methods based on 117 

low resolution imagery, and the long archive enabled us to reconstruct the flaring history of the re-118 

gion back to 1984. However, despite the success of the LFDM in flare detection, the low frequency 119 

of cloud-free images over the region, lack of nighttime data, and the scan line corrector error in post 120 

2003 images limited its potential for estimating flaring volumes. 121 

In an attempt to identify alternative data sources that may overcome some of the problems as-122 

sociated with Landsat data, we noted that Elvidge et al. (2011) had demonstrated some potential for 123 

using MODIS imagery to detect flare sites; this prompted us to investigate this data further. A key 124 

advantage of MODIS data is the frequency of acquisition from the Terra and Aqua satellite plat-125 

forms, which increases the likelihood of obtaining cloud-free imagery, which is a critical constraint 126 

at the Niger Delta study site and most other regions of the world. Therefore, the present study ex-127 

plores the use of MODIS imagery for accurately and objectively detecting onshore and offshore 128 

flares and for estimating flaring volumes.  129 

 130 

1.2.1 MODIS fire products and gas flare detection 131 

 132 

The MODIS fire products (MOD14 and MYD14) from Terra and Aqua platforms, respective-133 

ly, were developed for the identification and monitoring of wild fires. The fire detection algorithms 134 
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are based on those developed for AVHRR, but with new capabilities (previous AVHRR 3.75µm 135 

waveband was shifted to 3.95µm in MODIS, to minimise the effects of atmospheric water vapour 136 

absorption and reflected solar radiation by 40% (Kaufman et al., 1998)). Fire pixels are retrieved 137 

using a hybrid of absolute and contextual processes that involve the application of sets of thresholds 138 

on bands 22 (3.95μm), 31(11μm) and 16 (0.86μm) (Giglio et al., 2003; Justice et al., 2002).  139 

However, as observed by Elvidge et al., (2011), the MODIS fire product is less efficient at de-140 

tecting gas flares because thresholds in the algorithms were adapted to minimise the detections of 141 

small fires such as gas flares and to maximise the detection of larger and more intense biomass fires 142 

(Kaufman et al., 1998, Justice et al., 2002, Giglio et al., 2003). In addition, the algorithms only de-143 

tect fires on landmasses (onshore) as they are not expected to occur on water bodies (offshore). This 144 

is a significant constraint of the product in the present context because a considerable proportion of 145 

flaring activities in the Niger Delta are located offshore. However, ongoing improvements of the 146 

MODIS fire product (collection 6) are expected to revise the water mask to facilitate offshore gas 147 

flare detection (Giglio et al., 2014; Csiszar et al, 2012). Exploratory investigations (Elvidge et al., 148 

2011) revealed that the MODIS fire products were conservative in flare detection, compared with 149 

visual observations directly made from the MODIS band 22 image. This indicates that a bespoke 150 

algorithm is required for the detection of gas flares from MODIS imagery.  151 

 152 

1.2.2 Flare volume estimation from satellite imagery 153 

The first attempt to estimate the volume of gas flared using satellite imagery was conducted 154 

by Elvidge et al. (2007), who used nighttime DMSP-OLS imagery to quantify the changes in total 155 

annual flaring volume for each of the world’s oil producing countries over the period 1995 – 2006. 156 

The technique was further improved and the period of study extended to 15 years (1994 – 2008) by 157 

Elvidge et al. (2009a).  However, the researchers noted some limitations in the DMSP-OLS tech-158 

nique such as the saturation of the DMSP-OLS visible band due to the brightness of gas flares, as 159 

well as the inability of the technique to detect flares in the mid-to-high latitudes in the summer time 160 
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due to solar contamination. In addition, the lack of onboard calibration of the DMSP-OLS visible 161 

band limits the ability to estimate the total radiative output from flares, and the intercalibration of 162 

different DMSP-OLS sensors was based on the assumption that electrically generated lights around 163 

Sicily, Italy, had remained constant over the period of study (1994-2008) which was not validated. 164 

Furthermore, Elvidge et al. (2011) found it very difficult to discriminate flares in lit urban areas and 165 

lights from oil facilities other than gas flares are often included in DMSP-OLS signals. These limi-166 

tations will each contribute to uncertainties in estimates of flaring volume using the DMSP-OLS 167 

and suggest that there is value in exploring the potential of alternative remote sensing systems. 168 

The first attempt to estimate flaring volume from MODIS was made by Gallegos et al. 169 

(2007). They found that the reference flare sites with known gas flaring volumes were in some cas-170 

es not detectable with the MODIS data, and therefore concluded that MODIS data would only be 171 

marginally useful in estimating daily gas flaring volumes. However, as noted by Elvidge et al., 172 

(2011) the researchers did not work with enough MODIS images to test its capability for monthly or 173 

annual estimation of gas flaring volumes.  174 

Elvidge et al. (2011) found that the MODIS fire product (MOD14) was inefficient at esti-175 

mating flaring volumes. In many countries such as Nigeria, estimates were typically 25% lower 176 

than estimates derived from DMSP-OLS imagery due to the undersampling of gas flares by 177 

MOD14. Furthermore, for countries in the Amazon such as Bolivia, where biomass fires are com-178 

mon, the volume estimates exceeded those derived from DMSP-OLS due to the erroneous inclusion 179 

of other fire sources. However, Elvidge et al. (2011) did find a close correspondence between flare 180 

volumes estimates made directly from the difference between MODIS bands 22 and 31, and the re-181 

sults previously obtained from DMSP-OLS for a particular sample year (but as noted previously 182 

there are several limitations with the DMSP-OLS technique itself). Therefore, based on this finding, 183 

they recommended further exploration of MODIS for flare detection and volume estimation. 184 

 185 

In this study, we set out to achieve the following objectives: 186 
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i. develop a technique to detect active gas flare sites from MODIS imagery, 187 

ii. develop a technique to estimate the volume of gas flared from individual flare sites 188 

from MODIS imagery, 189 

iii. apply these techniques to the MODIS archive in order to quantify the trajectories of 190 

gas flaring activity and flaring volumes in a globally significant gas flaring region. 191 

 192 

2. Study Area 193 

 194 
The Niger Delta (Figure 1) is a densely populated region with over 10 million people and covers an 195 

area of approximately 70,000km2 (NPC, 2010). It is the largest source of hydrocarbons in Nigeria 196 

(Tuttle et al., 1999) and the region has been greatly impacted by ongoing oil and gas exploration 197 

and extraction, which commenced in 1958. Importantly, the Niger Delta is home to the third largest 198 

mangrove forest in the world with rich biodiversity (Niger Delta Awareness, 2007). Consequently 199 

the Niger Delta is ranked as one of the highest conservation priorities in West Africa (IUCN, 1994) 200 

as it provides the natural habitat for a wide variety of endemic coastal and estuarine fauna and flora, 201 

supporting over 60% of the total species in Nigeria (World Bank, 1995, cited in Ugochukwu 2008; 202 

IUCN, 1994). Despite its importance, the region is virtually unprotected and as a result has been the 203 

focus of increasing research activity in recent years, particularly on the impacts of oil exploitation 204 

on the environmental (Bayode et al., 2011; Nwaogu and Onyeze, 2010; Eregha and Irugh, 2009), 205 

socio-cultural and economic characteristics of the region (Aghalino and Odeh, 2010; Ajiboye et al., 206 

2009). Among the many activities associated with the oil industry that directly affect the environ-207 

ment, such as oil spillage and fires, deforestation, dredging and associated waste, gas flaring is a 208 

prominent agent of pollution in the region (Ovri and Iroh, 2013; Ovuakporaye et al., 2012; Abdul-209 

kareem et al., 2012; Dung et al., 2008). However, efforts to empirically assess the environmental 210 

impacts of flaring in the Niger Delta have been hampered by limited access to official information 211 

on flare locations and volumes and difficulties in undertaking field investigations due to security 212 

issues. Thus, previous research has mostly been speculative or restricted to small areas surrounding 213 
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individual flares (Obia et al., 2011; Abdulkareem, et al., 2012; Anomohanran, 2012; Oseji, 2011; 214 

Odjugo and Osemwenkhae, 2009; Dung et al., 2008). Hence, there is an important need to develop 215 

a comprehensive understanding of flaring activity and its impacts in the Niger Delta, particularly 216 

given that Nigeria ranks second among gas flaring countries globally (Elvidge et al., 2009). 217 

Insert Figure 1 here 218 

3. Methods 219 

3.1 Data and preprocessing 220 

Day and nighttime MODIS images from the Terra and Aqua platforms were acquired from 221 

the NASA’s Earth Observing System Data and Information System (EOSDIS) 222 

(http://earthdata.nasa.gov/). Having explored the data available for all months of the year, it was 223 

found that only data for the months of December and January had acceptable levels of cloud-free 224 

coverage as all images in all other months had greater than 50% cloud coverage. These months fall 225 

within the Harmattan weather period, with drier and less humid conditions experienced in the Niger 226 

Delta. This study consequently used MODIS data from these months for the period 2000 to 2014. In 227 

total, 1643 MODIS images (899 Terra and 744 Aqua) were obtained and processed for the study. 228 

Individual images with greater than 30% cloud cover were removed, leaving a total of 588 images 229 

for further analysis. The MODIS raw DN values were processed with the ENVI MODIS toolkit to 230 

derive spectral radiances. All images were georeferenced to the WGS 1984 coordinate system then 231 

clipped to the study area. Bi-monthly temporal composites were computed from the data obtained in 232 

the adjacent months of December and January using a maximum value compositing technique that 233 

selected the maximum radiance from each pixel from all the images in the bi-monthly stack (Stoms 234 

et al., 1997). This approach records the radiance value for each pixel which is least attenuated by 235 

cloud cover and therefore effectively generates a cloud-free composite image and minimises noise 236 

due to other atmospheric constituents (Jonsson and Eklundh, 2004). In the absence of data on at-237 

mospheric conditions over the study sites on the various image acquisition dates, the compositing 238 

http://earthdata.nasa.gov/
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technique provided a practical and effective atmospheric correction method as has been well estab-239 

lished and previously applied to MODIS data (Huete et al., 2002; Holben, 1986). This procedure 240 

generated 15 temporal composite images of the study site covering the 2000-2014 period at an ap-241 

proximately annual sampling interval. 242 

 243 

3.1.1 Examination of the flare detection potential of MODIS bands 244 

Each MODIS band was examined interactively and compared to reference data of known flare 245 

locations (see section 3.2.1 below) in order to determine its suitability for flare detection. Only a 246 

small number of bands showed any capabilities for flare detection (Figure 2, see Table 1 for band 247 

characteristics). The daytime shortwave infrared (band 6, 1.64 µm; band 7, 2.11 µm) showed some 248 

potential for flare detection, as in previous research with Landsat data (Anejionu et al., 2014). In-249 

deed, Elvidge et al. (2013) found that for gas flares (at 1800K) the peak radiant emission is in the 250 

shortwave infrared at around 1.6 µm. However, in the present study the daytime shortwave infrared 251 

bands were highly sensitive to other reflective materials including clouds, the built-environment and 252 

sands in and around rivers. Similar confounding effects have been found when attempting to use 253 

daytime shortwave infrared VIIRS data (band M10, 1.6 µm) for flare detection (Elvidge et al., 254 

2013). Furthermore, gas flares could not be detected from nighttime MODIS bands 6 and 7 as the 255 

MODIS reflective bands are turned off during “night mode” scans (MODIS Characterization Sup-256 

port Team, 2012). From the MODIS thermal bands that have previously been used in biomass fire 257 

detection only bands 21 and 22 (both 3.96µm) were useful for flare detection, while band 31 (11.02 258 

µm) had no value for flare detection whether acquired during daytime or nighttime. Daytime band 259 

21 and 22 data were responsive to flares but were also sensitive to other hot and reflective surfaces 260 

such as urban areas, bare lands and sands due to solar irradiation. Nighttime data were equally re-261 

sponsive to flares but were not subjected to the solar-induced confounding effects. While bands 21 262 

and 22 had similar responses to gas flares, band 21 is known to be noisier with higher quantization 263 

error than band 22 (Giglio et al., 2003) and this was evident in the data used for the present study. 264 
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The noisiness of band 21 is due to the fact that it has a relatively higher dynamic range than band 22, 265 

to avoid saturation over very hot and large targets and this has made it useful for the detection of 266 

biomass fires and volcanoes. However, due to the relatively smaller size of gas flares band 22 is 267 

more appropriate. Based on the spectral emission patterns of gas flares elucidated by Elvidge et al. 268 

(2013) flares at 1800K have a peak radiant emission at around 1.6 µm therefore MODIS band 22 269 

(3.96µm)  is on the trailing edge of flare emissions. Using Plank’s and Stefan-Bolzmann’s Laws, 270 

we estimated that for flares at 1800K MODIS band 22 would sample approximately 0.63% of total 271 

radiant output, whereas for flares at 1250K band 22 would sample 1.01% of the radiant output. 272 

Therefore, MODIS band 22 would become relatively more effective as flare temperature decreases 273 

but would be less suitable than a shortwave infrared band for higher temperature flares. However 274 

for the practical reasons given above related to solar effects and nighttime MODIS scan configura-275 

tion, nighttime band 22 data was used for the development of the flare detection and volume estima-276 

tion techniques described in this study. 277 

Insert Figure 2 Here 278 
 279 
 280 

Table 1. Spectral and spatial characteristics of the MODIS bands examined in this study. 281 

Band Bandpass (μm) Spatial Resolution (m) 

6 1.628-1.652 500m 

7 2.105-2.155 500m 

21 3.929-3.989 1000m 

22 3.929-3.989 1000m 

31 10.780-11.280 1000m 

 282 
 283 

 284 

 285 

3.2 Development of the MODIS Flare Detection Technique (MODET) 286 

A method which utilised the radiometric and spatial properties of gas flares was chosen for 287 

detecting flares and discriminating them from other features with high thermal emissions. Gas flares 288 

are smaller in size than biomass fires, occur at flare stacks and pits permanently fixed to a particular 289 

location and are mostly continuously active (SPDC, 2013; Elvidge et al., 2011; Friends of the Earth, 290 
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2005). The continuous combustion of gas is expected to generate a considerable thermal signal that 291 

would distinguish fire from non-burning background features. However, given the varying envi-292 

ronmental context of flares in the Niger Delta (ranging from offshore, to mangrove swamp and to 293 

rainforest areas), we found that a simple threshold method alone was unsuitable for flare detection. 294 

We therefore fused a traditional radiometric threshold algorithm with a spatial filtering algorithm 295 

capable of identifying gas flares based on differences in radiation between the flare pixels and sur-296 

rounding pixels. This combination of radiometric and spatial filtering algorithms has been found to 297 

be valuable when using thermal imagery for fire detection (Roberts et al., 2005; Roberts and 298 

Wooster, 2008). In the present study, the radiometric algorithm applied a threshold to band 22 to 299 

identify potential flare sites (see section 3.2.2 below which discusses the selection of the threshold 300 

value). The spatial filtering algorithm is an adaptation of earlier methods used in the identification 301 

of active fires (Flasse and Ceccato, 1996; Prins and Menzel, 1992) and flares from MODIS imagery 302 

(Elvidge et al., 2011). A high pass filter was applied to band 22 in order to identify areas of sharp 303 

spatial change in radiance. A 3x3 kernel was found to be most suitable for highlighting differences 304 

between flares and immediate surrounding pixels.  The results of the high pass filtering were subse-305 

quently reclassified using a threshold to identify potential flare pixels (section 3.2.2 discusses the 306 

threshold value). The results of the spatial filtering were then overlaid with the results from the ra-307 

diometric threshold and potential flare pixels common to both algorithms were taken to be the ac-308 

tive flare pixels. The key stages of the MODET are summarised in Figure 3. 309 

Given the spatial resolution of the MODIS imagery (1km) it is feasible that within a single 310 

pixel or group of pixels identified as flares there may be one or more active flares associated with a 311 

flow station. Flares associated with a flow station are typically located within a radius of several 312 

hundred metres whereas individual flow stations are located at least several tens of kilometres apart. 313 

Therefore, rather than identifying flares (from individual stacks/pits), the MODET actually detects 314 

the flaring activity associated with individual flow stations, which we refer to as ‘flare sites’. 315 

Insert Figure 3 here 316 
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 317 

3.2.1 Reference dataset and validation method 318 

High resolution images covering the Niger Delta obtained from Google Earth were visually 319 

inspected in order to construct a reference dataset of active flare sites. This approach was adopted as 320 

a ground-based survey of flare locations was not feasible at the time of research, due to logistical 321 

and security issues associated with fieldwork in the region. Visible fires from gas flares (e.g.  centre 322 

of Figure 4) were used in conjunction with clearly discernible physical structures such as buildings, 323 

pipelines, flare pits and flare stacks to confirm the locations of active flare sites. This method for 324 

collecting reference data on flare locations has been employed effectively by previous researchers 325 

(Anejionu et al., 2014; Casadio et al., 2012; Elvidge et al, 2009b). The high resolution data cover-326 

ing the study area comprise a mosaic of images acquired over different time periods; as a result no 327 

single image or acquisition date was able to provide enough reference flare sites for validation. 328 

Hence, the reference dataset of 43 active flare sites was obtained from a range of high resolution 329 

images acquired between 2002 and 2007 and this was compared to the outputs of the MODET ap-330 

plied to MODIS imagery for the corresponding years. All active flare sites within the boundaries of 331 

the high resolution images were identified by placing a 1km resolution vector grid over the imagery 332 

and systematically viewing and identifying all flare sites within each grid cell. The boundaries of 333 

the high resolution images were used to define the sample areas for validating the MODET, there-334 

fore errors of omission and commission could be quantified and the user and producer accuracies 335 

for detection computed. 336 

Insert Figure 4 here 337 

 338 

3.2.2. Identification of optimal thresholds and assessment of detection and spatial accuracy 339 

To identify the optimal thresholds for the radiometric and spatial filtering algorithms, a range 340 

of radiance values were tested. Characteristic background radiance of onshore and offshore envi-341 

ronments for the original and spatially filtered band 22 images were used to identify suitable ranges 342 
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of thresholds for testing. In turn, thresholds of between 0.5 and 0.7 Wm-2 sr-1 μm-1 (with an incre-343 

ment of 0.01) were tested for the radiometric algorithm and between 0.2 and 0.5 Wm-2 sr-1 μm-1 (in-344 

crement 0.1) for the spatial filtering algorithm, and the accuracy of the outputs determined using the 345 

validation approach outlined above. Table 2 shows the accuracy statistics for a selection of the best 346 

performing combinations of threshold values. The combination of thresholds for the radiometric 347 

and spatial algorithms which maximised both user’s and producer’s accuracy (combination H in 348 

Table 1) was selected for the MODET (Figure 3).  349 

Table 2. Summary statistics of accuracies computed from the different threshold combinations based on a reference 350 
data set of 43 known flares. 351 

Combina-

tion 

Radiometric 

Threshold 
(Wm-2 sr-1 μm-1) 

Spatial 

Threshold 
(Wm-2 sr-1 μm-1) 

Total 

Detections 

Flares 

omitted 

Detections 

Confirmed 

Producer’s 

accuracy 

User’s 

Accuracy 

A 0.66 0.4 35 10 35 76.7 100.0 

B 0.645 0.4 35 10 35 76.7 100.0 

C 0.6 0.4 36 9 36 79.1 100.0 

D 0.56 0.4 40 6 40 86.1 100.0 

E 0.6 0.2 43 4 41 90.7 95.4 

F 0.6 0.3 42 5 41 88.4 97.6 

G 0.6 0.5 40 6 40 86.1 100.0 

H 0.56 0.3 43 4 43 90.7 100.0 

 352 
 353 

To compute the spatial accuracy of the MODET, the coordinates of the centroids of 20 flare 354 

sites detected by the technique were compared with the coordinates of corresponding reference 355 

flares derived from the high resolution imagery (Table 3). Offsets in latitude and longitude between 356 

the MODET detection and the reference flare locations were used to compute the root mean square 357 

error (RMSE) for each flare site and the mean RMSE (844m) was used as a measure of the spatial 358 

accuracy of the MODET. 359 

 360 
Table 3. Details of the MODET detections and reference flare locations used to compute the spatial 361 

accuracy of the MODET 362 

MODET Detections 

 

Reference flares 

  Long (o) Lat (o) Flare Site ID Long (o) Lat (o) RMSE (m) 

6.521486 5.659878 MODET 11 6.517196 5.659283 480 

6.708013 5.456133 MODET 22 6.694344 5.458499 1539 

6.662598 5.387761 MODET 27 6.657883 5.386097 555 
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6.616185 5.239537 MODET 31 6.628775 5.236312 1442 

6.493413 5.191626 MODET 33 6.491294 5.197543 697 

6.506888 5.097302 MODET 35 6.506823 5.099702 266 

6.364653 5.026933 MODET 37 6.358577 5.024974 708 

6.379626 4.882203 MODET 47 6.372342 4.885274 877 

6.08198 4.657122 MODET 53 6.07764 4.661282 667 

7.06385 4.652631 MODET 55 7.060293 4.652185 397 

6.272682 4.628248 MODET 56 6.26458 4.628168 899 

6.673079 4.544832 MODET 60 6.664416 4.549694 1102 

7.009052 4.552018 MODET 61 7.003554 4.55646 784 

8.016076 4.547077 MODET 62 8.010454 4.552057 833 

7.049092 4.544832 MODET 63 7.045435 4.553114 1004 

6.634151 4.523871 MODET 64 6.632621 4.526412 329 

5.280867 5.668245 MODET 123 5.275077 5.673164 843 

6.718174 4.554332 MODET 148 6.710037 4.55965 1078 

5.133817 5.84871 MODET 238 5.133365 5.860184           1274 

5.17438 5.614197 MODET 173 5.173002 5.624002 1099 

Note: Mean RMSE = 844m 363 

 364 
3.2.3 Application of the MODET 365 

The MODET was subsequently applied to the bi-monthly (December-January) temporal com-366 

posites covering the 2000 to 2014 study period. The number of times each flare site was detected 367 

was recorded with sites that were detected only once over the fifteen sampling occasions removed 368 

as false detections. This is because once flow stations are constructed and flares become active they 369 

burn continuously over their operational period which is typically in decadal time scale (SPDC, 370 

2013, Onwuka, 2003). Therefore gas flares are highly unlikely to occur on only a single sampling 371 

occasion, whereas biomass fires, or other high radiance features are much more ephemeral. Previ-372 

ous studies have utilised a similar persistence approach in discriminating flares from false identifi-373 

cations (Casadio et al. 2012a, 2012b) or to normalise the impact of background noise on flare detec-374 

tions (Elvidge et al., 2009a). Since we do not have data from subsequent years to confirm if the 375 

flares detected in 2013/14 were persistent, we incorporated them into the output, on the basis that 376 

their detections satisfied the MODET procedure. The flares identified within the study period were 377 

used to obtain a flaring history detailing the spatial and temporal variations in the distribution of 378 

active flares in the region. The Nigerian political map was used to allocate the detected flares to the 379 
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different states in the region. As the map did not delineate offshore state boundaries, offshore flares 380 

were objectively allocated to the state with the nearest onshore boundary by Euclidean distance. 381 

The onshore and offshore flaring was then used to calculate the overall activity for each state, on 382 

each sampling occasion.  383 

 384 

3.3 Development of the MODIS Flare Volume Estimation Technique (MOVET) 385 

The MOVET is based on the concept that the volume of gas flared at each flow station for any 386 

given time period (i.e. the combustion rate) would determine the intensity of fire at that location, 387 

and by extension the magnitude of the spectral radiance emitted at the location, captured by the 388 

MODIS sensor. We therefore set out to establish a method that would optimally harness the infor-389 

mation contained in the radiance at the flare sites (flare pixels) and surrounding environment (back-390 

ground pixels), to estimate the volume of gas flared. Having identified the locations of flare sites 391 

using the MODET, MODIS band 22 was analysed further to derive a statistical relationship be-392 

tween the spectral radiance of flare sites and the volume of gas flared. Due to the difficulty in ac-393 

cessing official records of oil and gas related information in Nigeria (which gave rise to the present 394 

research on alternative information sources on flaring), it was only possible to match detections 395 

from the MODET with records of the volume of gas flared at 29 sample flow stations across the re-396 

gion in December 2004 (data sourced from Nigerian National Petroleum Corporation). Consequent-397 

ly, the band 22 temporal composite image from December 2004 was used together with the flare 398 

volume records in order to develop the MOVET.  399 

A number of different approaches were explored in order to develop the MOVET. The first 400 

stage was to apply a series of different methods for extracting pixel values from the vicinity of de-401 

tected flare sites, and the second was to use a number of different ways to derive radiometric varia-402 

bles from the extracted pixels. The combination of extraction approach and radiometric variables 403 

that produced the strongest correlation with the flare volume records was used for the MOVET. The 404 

pixel extraction approaches that were tested were: (i) use of individual or groups of flare pixels at 405 
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each flare site; (ii) identification of a centroid location for individual or groups of flare pixels at 406 

each flare site then construction of a circle of different sizes (1, 2, 3km) around this point and ex-407 

traction of all pixels which intersected with the circle (to incorporate flare and background pixels); 408 

(iii) use of a buffer of 1 to 3 pixels around each individual or group of flare pixels and extraction of 409 

all flare and background pixels within this region. The radiometric variables derived from the 410 

groups of pixels extracted in the previous stage were: (i) statistical parameters (minimum, maxi-411 

mum, range, sum, mean and standard deviation); (ii) combinations of the statistical parameters such 412 

as the product of mean and maximum, standard deviation and sum, and the difference between the 413 

maximum and minimum. These combinations of statistical parameters enabled quantification of 414 

various relationships between flare and background radiance values, for example, the difference be-415 

tween the maximum and minimum measured the radiance increase above background generated by 416 

flares; (iii) calculation of the Fire Radiative Power based on fire and background pixel radiances 417 

(Wooster et al., 2003); (iv) calculation of the magnitude of slope in radiance between flare pixels 418 

and background pixels expressed as a mean value for each group of pixels considered. The optimal 419 

combination of pixel extraction approach and radiometric variables was used as the basis as 420 

MOVET as follows. 421 

The MOVET is based on the combined use of the total radiation intensity at the flare site and 422 

a measure of the localised influence of the flares over their surrounding environment. It is thus a 423 

hybrid absolute and contextual approach for estimating flare volume which incorporates radiance 424 

values of flare pixels and surrounding pixels. A buffer of 1 pixel around flare pixels (i.e. in the case 425 

of an individual flare pixel constitutes a 3x3 pixel window with the flare at the centre) was found to 426 

be optimal for capturing the radiometric zone of influence of flares and some areas of background 427 

that were unaffected by flares. The 1 pixel buffer accommodated the variability and effects of gas 428 

flares in the different environmental contexts. Regression analyses performed on reported flare vol-429 

ume and radiance statistics for the 29 sample flare sites demonstrated that the optimal predictor of 430 
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flare volume was a combination of the sum and standard deviation of radiance values of the extract-431 

ed pixels at flare sites (R² = 0.77, p<0.01; see Figure 5) which was used as the basis of the MOVET: 432 

V = 375(Σr2.σr) + 6230     (1) 433 

where V = flare volume (Million Cubic Metres);   434 

Σr = sum of radiance (Wm-2 sr-1 μm-1);  435 

σr = standard deviation of radiance (Wm-2 sr-1 μm-1).  436 

Here Σr2 quantifies the absolute intensity of emissions of the flare site while σr provides a 437 

measure of the local variation between the radiation from flares and their immediate surroundings. 438 

Across the Niger Delta flares are positioned in a variety of environmental contexts (mangrove 439 

swamps, rainforest, offshore) with varying background radiance, therefore a given volume of com-440 

busted gas may lead to different total radiance emissions from the flare site depending on the con-441 

text. Therefore, incorporation of σr into the MOVET model provides the contextual information 442 

that effectively normalises the total radiation from each flaring site by accounting for varying local 443 

conditions.  444 

Insert Figure 5 here 445 

 446 

The predictive power of the MOVET model was tested using the leave-one-out cross valida-447 

tion method (Arlot and Celisse, 2010) based on the sample of 29 flare sites. This revealed a RMSE 448 

of 0.007 Billion Cubic Metres (BCM) per month (28% of the mean), equating to an annual estima-449 

tion error of 0.084BCM for individual flare sites.  450 

3.4. Estimating volumetric rate of gas flaring in the Niger Delta (2000 – 2013) 451 

The MOVET was applied to each temporal composite MODIS band 22 image for January and 452 

December of each sample year in order to estimate the volume of gas flared at all identified flare 453 

sites. In order to estimate the annual total volume of gas flared at each site, we needed to derive es-454 

timates of flaring volume in each month of the year.  We observed from the available summary of 455 

monthly volumes reported for 2005 (the only year for which monthly data was available) that 456 
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monthly variation in flaring in the region was minimal with a coefficient of variation of 9.6% and 457 

no systematic seasonal fluctuation. This indicated that it was acceptable to quantify monthly flaring 458 

volumes based on the January and December estimates from MOVET. Therefore, for each flare site, 459 

the volume estimates derived from the January and December monthly temporal composites in the 460 

same calendar year were interpolated linearly to estimate volumes for all months of that year. The 461 

twelve monthly volume estimates were then summed in order to calculate an annual volume of gas 462 

combusted for each flare site. This process was repeated across the MODIS archive in order to de-463 

rive an annual estimate for volume of gas combusted at each flare site for each year from 2000 to 464 

2013. The volume combusted at each site was summed over the entire study period and totals were 465 

calculated for each state in the Niger Delta and the whole region. Uncertainty in the flare volume 466 

estimates was expressed using the upper and lower 99% confidence intervals for the slope and in-467 

tercept derived from the calibration of the MOVET (see section 3.3) for individual flare sites, scaled 468 

to annual estimates for states and the study site, as appropriate.   469 

 470 

4.0 Results 471 

4.1 Spatial and temporal distribution of flare sites in the Niger Delta 472 

The MODET detected 271 flare sites (190 onshore and 81 offshore) from 2000 to 2014. The 473 

spatial distribution of the flares across the states of the Niger Delta is shown in Figure 6. The figure 474 

also illustrates the number of times each of the flare sites was detected within the study period 475 

based on an annual sampling interval, which is indicative of the duration of activity at each site. For 476 

clarity, the number of detections recorded in Figure 6 do not represent detections in individual 477 

MODIS images, rather they represent the number of detections in each of the bi-monthly temporal 478 

composites from each sample year. This is why the maximum number of detections is 15, where an 479 

individual flare has been detected in all of the 15 bi-monthly temporal composites that were ana-480 

lysed between 2000 and 2014. 481 

Insert Figure 6 here 482 
 483 
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The number of flare sites identified per state is shown in Table 4. Rivers State had the highest 484 

proportion of flare sites in the region over the study period (27%), closely followed by Delta State 485 

(26%). Whilst Akwa Ibom State had only 13% of flares sites, it possessed the greatest proportion of 486 

offshore flare sites in the region, with 37% of all offshore flare sites in the Niger Delta being locat-487 

ed in this state.  488 

Table 4. Distribution of flare sites across the Niger Delta States (2000-2014) 489 

State Onshore flare sites Offshore flare sites All flare sites 

Rivers 56 16 72 

Delta 51 19 70 

Bayelsa 41 12 53 

Akwa Ibom 6 30 36 

Edo 19 0 19 

Ondo 5 4 9 

Imo 11 0 11 

Abia 1 0 1 

Total 190 81 271 

 490 
The temporal trajectory of flaring activity across the Niger Delta is shown in Figure 7, which 491 

indicates a downward trend from the peak in 2000 to 2014. Each sampling interval indicates a 492 

maintenance or decrease in flaring activity, with the largest decreases from 2000 to 2001 and 2013 493 

to 2014 with the only increase in activity from 2010 to 2011.   494 

Insert Figure 7 here 495 

4.2 Spatial and temporal distribution of the volume of gas flared in the Niger Delta 496 

The outputs of the MOVET suggest that there was a wide variation in the annual volume of gas 497 

flared at individual flow stations (Table 5).  This table shows the specific flare sites which have the 498 

smallest and largest volumes of gas combustion within each year, along with the annual mean and 499 

standard deviation. The maximum volume for an individual flare site was 4.60BCM, which was 500 

recorded in 2005 in Rivers State (MODET 58), and the minimum volume of 0.0363BCM was rec-501 

orded in Imo State (MODET 224) in 2009. From the peak at 2005, there was a general reduction in 502 

the mean volume of gas combusted at individual flare sites and a decrease in the variability of flared 503 

volume.  504 

 505 



 

 

Table 5. Summary of annual variations in volume of gas estimated for individual flare sites. The uncertainties are computed based on the upper and lower con-506 
fidence 99% limits  507 

Year 

Min 

(BCM) 

Uncertainty 

(±) Flare ID State Location 

Max 

(BCM) 

Uncertainty 

(±) Flare ID State Location 

Mean 

(BCM) 

Uncertainty 

(±) 

Std 

DEV 

2000 0.0370 0.013 MFDT 52 Rivers Onshore 1.596 0.463 MFDT 58 Rivers Onshore 0.192 0.057 0.256 

2001 0.0369 0.012 MFDT 268 Edo Onshore 2.383 0.691 MFDT 58 Rivers Onshore 0.209 0.062 0.325 

2002 0.0372 0.013 MFDT 339 Delta Onshore 2.039 0.592 MFDT 58 Rivers Onshore 0.200 0.060 0.296 

2003 0.0369 0.012 MFDT 98 Rivers Onshore 3.013 0.874 MFDT 58 Rivers Onshore 0.221 0.066 0.350 

2004 0.0364 0.012 MFDT 367 Bayelsa Onshore 3.792 1.099 MFDT 58 Rivers Onshore 0.225 0.067 0.414 

2005 0.0374 0.013 MFDT 217 Rivers Onshore 4.602 1.333 MFDT 58 Rivers Onshore 0.265 0.078 0.501 

2006 0.0372 0.013 MFDT 332 Edo Onshore 3.606 1.045 MFDT 58 Rivers Onshore 0.249 0.074 0.448 

2007 0.0371 0.013 MFDT 339 Delta Onshore 2.860 0.829 MFDT 61 Rivers Onshore 0.249 0.074 0.416 

2008 0.0372 0.013 MFDT 114 Ondo Onshore 1.941 0.563 MFDT 22 Rivers Onshore 0.192 0.057 0.314 

2009 0.0363 0.012 MFDT 224 Imo Onshore 1.022 0.297 MFDT 75 Rivers Onshore 0.161 0.048 0.175 

2010 0.0372 0.013 MFDT 2 Edo Onshore 1.123 0.327 MFDT 75 Rivers Onshore 0.142 0.043 0.167 

2011 0.0373 0.013 MFDT 332 Edo Offshore 2.043 0.593 MFDT 231 Akwa Ibom Offshore 0.159 0.048 0.255 

2012 0.0369 0.012 MFDT 106 Rivers Onshore 2.253 0.654 MFDT 231 Akwa Ibom Offshore 0.157 0.047 0.269 

2013 0.0370 0.013 MFDT 227 Akwa Ibom Offshore 0.475 0.139 MFDT 87 Rivers Offshore 0.100 0.031 0.094 
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Figure 8 shows the spatial distribution of individual flare sites and the total volume of gas 523 

combusted at each site over the study period.  Figure 8 also shows the total volume of gas flared 524 

within each state over the study period. The results demonstrate that the volume of gas flared at in-525 

dividual sites varied by over two orders of magnitude, as did the volume of gas flared across the 526 

states. Rivers State flared the greatest volume of gas (135BCM) over the study period, followed by 527 

Bayelsa State (71BCM). Figure 9 summarises variations in flaring activities between states in the 528 

region over the study period. Most states showed an initial phase of increasing activity followed by 529 

a general decrease, although the timing of these phases differs between states and some states do 530 

not show this pattern of activity. Figure 9 also shows that there are wide variations between states in 531 

the contributions of onshore and onshore flaring, and in those states where there is a mixture there 532 

are differing trajectories of onshore and offshore activity with offshore generally becoming more 533 

prevalent over time.   534 

Insert Figure 8 here 535 

 536 

Insert Figure 9 here 537 

 538 

Figure 10 shows the trajectory of annual volumes of gas flared across the whole Niger Delta 539 

region over the study period. This reveals that flaring activity increased initially, reaching a maxi-540 

mum (36BCM) in 2005 before subsequently declining from 2006 to 2009. There was however, a 541 

brief increase in activity from 2010 to 2011, followed by another period of decline to the present 542 

levels. These annual volume estimates derived from the MOVET show a reasonably close corre-543 

spondence with the trend of the reported volumes of gas flared for the Niger Delta published by the 544 

NNPC (2012) (also shown in Figure 10). There are some discrepancies, notably at the middle of the 545 

study period where the MOVET estimates showed much greater variability than the reported fig-546 

ures. Official reports are not available for 2013, but the MOVET indicated a substantial reduction in 547 

flaring volume in the final stage of the study period. The MOVET outputs produced an estimate that 548 

a total of 350 BCM of gas was flared in the region from March 2000 to January 2014.  549 
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Insert Figure 10 here 550 

 551 

5.0 Discussion 552 

The location of flare sites detected by the MODET varied considerably at the state level, with some 553 

states such as Rivers and Delta having substantially more terrestrial flare sites than offshore, whilst 554 

others such as Akwa Ibom had the inverse. However, the regional distribution of the flare sites 555 

shows that there are more flare sites in the terrestrial environment than the marine environment. 556 

This explicit level of variation detected using MODIS data is important as it may be used to isolate 557 

and specifically study the varying impacts of flare sites for any particular area. For example flaring 558 

in Akwa Ibom State is expected to have greater impact on the marine environment than the terres-559 

trial environment, based on the distribution of the flare sites shown in Figure 6. On the other hand, 560 

the terrestrial environment of Rivers State will be the most impacted. Furthermore, the spatial dis-561 

tribution of the flares and the number of times they were detected over the study period showed var-562 

ious clusters of flaring activity. This suggests that the environmental impacts of flaring could be 563 

highly heterogeneous, with extreme values in certain locations.  564 

The MODET revealed an overall reduction in the number of active flare sites between 2000 and 565 

2014 (Figure 5). This may have been as a result of the decommissioning of some flare sites due to 566 

the commencement of full operations at the Nigerian Liquefied Natural Gas facility at Bonny Island 567 

in late 1999 and subsequent commissioning of additional gas liquefaction trains from 2002, which 568 

led to increased commercial utilisation of gases associated with extracted crude oil (NLNG, 2013). 569 

The noticeable downward trend in the number of flare sites between 2006 and 2009 corresponds to 570 

the period when oil and gas production in the region was severely disrupted by the Niger Delta mili-571 

tants (Paki and Ebienfa, 2011; Punch Newspaper, 2009). Also towards the end of 2005 gas plants 572 

were commissioned at Kwale/Okpai by Nigeria Agip Oil Company, and Okoloma by the Shell Pe-573 

troleum Development Company (SPDC, 2011), both of which became fully operational from 2006. 574 

The gas recycled from these plants is utilised in the generation of up to 1000MW of electric power 575 
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(National Petroleum Investment Management Services, 2010).  The brief increase in numbers of 576 

flare sites between 2010 and 2011, marked the return of relative peace in the region at the com-577 

mencement of the Amnesty programme by the Federal Government of Nigeria (BBC, 2009), which 578 

appears to have enabled a short period of increased oil and gas production. Since 2011 there has 579 

been a steady decline in the number of active flare sites through to present. During this period there 580 

has not been any significant unrest in the region that could disrupt oil and gas production, hence the 581 

decrease in numbers of flare suggests a decline in the use of flaring to dispose of gas. This may be a 582 

consequence of the Soku liquefied natural gas feeder plant, which supplies 40% of the 22 million 583 

tonnes of gas  per annum (30BCM) to the liquefaction facility at Bonny Island, returning to full op-584 

eration towards the end of 2009 (Fineren, 2009). There has also been installation of associated gas 585 

gathering infrastructure at various oilfields in the Niger Delta by the oil companies, such as those at 586 

Forcados-Yokri and Southern Swamps (SPDC, 2013), which has reduced the requirement for flar-587 

ing. Hence, the results indicate that the oil and gas companies may finally be working towards the 588 

eradication of gas flaring in the region. However, further monitoring of the situation using the 589 

MODET is required in order to confirm this trend in subsequent years.  590 

The MOVET showed that there was considerably variability between individual flare sites 591 

in the volume of gas flared per annum and this is a reflection of the varying quantities of gas pro-592 

duced at the different flow stations. Gas produced at flow stations varies due to the commissioning 593 

or decomissioning of oil wells that are feeding into a station, changes in the rate of oil and gas pro-594 

duction from individual wells and inter and intra well variation in the ratio of associated gas to oil 595 

during the production cycle (International Association of Oil and Gas Producers, 2000). Interesting-596 

ly, the minimum volume combusted by an individual flare site was recorded in 2009 which coincid-597 

ed with the peak in social unrest in the region, which drastically disrupted oil production activities. 598 

However, of greater significance is the systematic decrease in maximum and mean volumes com-599 

busted by individual flare sites since 2005 (Table 4). This suggests that in addition to the decrease 600 

in the number of active flare sites (discussed above), for the remaining active sites, the rate of gas 601 
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combustion has also decreased which may be a result of reduced production from the wells contrib-602 

uting to flow stations and/or implementation of alternative strategies for dealing with associated 603 

gas.  604 

The state-level trajectories of the volumes of gas combusted (Figure 7) illustrated the specific 605 

contributions of onshore and offshore flares to the total for each state as well as annual variations in 606 

those contributions. We found that prior to the recent decline in flaring activity in 2013, in states 607 

such as Rivers (which has the highest flaring volume among the states) and Akwa Ibom there was a 608 

noticeable decline in onshore flaring volume, while the offshore volume gradually increased over 609 

the same period. This suggests intensified offshore oil exploitation and decreasing onshore activities 610 

in these states, which could be as a result of discoveries of new offshore oilfields such as Bonga, 611 

Oyo, Ofon, Usan and Egina. Delta State however, shows a recent increase in onshore flaring vol-612 

ume after an initial decline and steadily decreasing offshore flaring activity. In addition there is a 613 

general decline in onshore and offshore flaring volume in Bayelsa State. It was also found that alt-614 

hough Delta State had a greater number of active flare sites than Akwa Ibom or Bayelsa states, 615 

greater volumes of gas were combusted in Akwa Ibom (71BCM over the study period) and Bayelsa 616 

State (61BCM) than in Delta State (49BCM). This could be due to a lower gas to oil ratio in the oil-617 

fields in Delta State, or because a larger proportion of the gas produced from Delta State is being 618 

utilized at recycling locations such as the Forcados-Yokri and Southern Swamp AGG, as well as the 619 

Kwale/Okpai gas plant, which are all located in Delta State.  As these observations demonstrate, a 620 

significant advantage of the MOVET is the ability to provide information with sufficient spatial 621 

precision to permit analysis of oil exploitation strategies in different states and, potentially, detailed 622 

evaluation of the impacts of gas flaring. This level of information has not been previously explored 623 

in flare-related research using remote sensing which has tended to focus on national or global scales 624 

(Elvidge et al., 2009a, 2009b, Casadio et al., 2012), whereas the emphasis with MOVET is at the 625 

level of the individual flow station.  626 
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The regional trajectory of the volume of gas combusted (Figure 8) showed a general increase 627 

in the first half of the study period corresponding with increasing oil production, followed by a de-628 

crease in the second half in response to reduced oil production due to social disruption in the region, 629 

in conjunction with the introduction of measures to reduce flaring such as liquefaction of gas. The 630 

regional trajectory also indicated that the infrastructure for reducing gas flaring was already in place 631 

by the end of the period of unrest in 2009, because although oil production returned to levels expe-632 

rienced before the period of unrest, the volume of gas flared continued to decrease. There is an 633 

overall tendency for the estimates for gas flaring from MOVET to be higher than the reported val-634 

ues, with a notable discrepancy during the period of peak flaring in 2005-2006. This highlights the 635 

importance of having an alternative means of obtaining information on gas flaring that is independ-636 

ent of official sources which rely on data provided by the oil companies. Our method determined 637 

that a considerable volume of natural gas (350 BCM) has been flared in the region over the study 638 

period; this has an energy value of 3.71x 109 MWh which, by way of comparison, is approximately 639 

10 times the annual electrical power consumption of the United Kingdom. Assuming that 184kg of 640 

carbon dioxide is produced per MWh of natural gas (DEFRA, 2013), the gas flared in the Niger 641 

Delta over the study period has resulted in 682.64Mt of carbon dioxide being released to the atmos-642 

phere, suggesting a significant contribution of greenhouse gasses and other pollutants during this 643 

period. 644 

Owing to the low spatial resolution of MODIS data, the spatial accuracy of the MODET was 645 

found to be 844m, which is very much lower than the 24m spatial accuracy obtained from the Land-646 

sat Flare Detection Method (Anejionu et al., 2014). However, for regional and state-based studies 647 

such as that undertaken here, the MODET appears adequate. Indeed, the distribution of active flare 648 

sites in the Niger Delta detected with MODIS data closely corresponds with that obtained from 649 

Landsat (Anejionu et al., 2014). The low spatial resolution of MODIS data may also have resulted 650 

in the non detection of low intensity flares, leading to the under-detection of 9.3% based on the cal-651 

culated producer’s accuracy of the MODET. Nevertheless, the spatial resolution of the data did not 652 
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restrict the user’s accuracy. Cloud cover was a limiting factor encountered in the course of this re-653 

search. As with many areas of the world the Niger Delta is heavily cloud covered and this limits the 654 

sampling opportunities for passive optical remote sensing. However, the frequent revisit times of 655 

the Terra and Aqua platforms meant that it was possible to construct cloud-free temporal composite 656 

images which formed the basis of the MODET and MOVET. The temporal sampling was limited to 657 

certain months of the year and it was not possible to characterise intra-annual variations in gas flar-658 

ing activity, but the temporal sampling was sufficient for monitoring the longer-term inter-annual 659 

trajectories in flaring. While the annual estimates of flaring volume from MOVET were based on 660 

the reasonable assumption that intra-annual variations are minimal at active flare sites, it is likely 661 

that estimates could be improved if more frequent sampling was possible. In this context, the com-662 

bination of information derived from MODIS together with that from other passive and active satel-663 

lite systems, may help to reduce the impacts of cloud cover and thereby increase the temporal sam-664 

pling opportunities. For instance, it has been shown that SOUMI VIIRS data is valuable for flare 665 

detection (Elvidge et al., 2013). Furthermore, pre-launch algorithm development has demonstrated 666 

the potential of the forthcoming Sea and Land Surface Temperature Radiometer on Sentinel-3 in 667 

gas flare detection (Wooster et al., 2012). These systems are expected to play active role in the fu-668 

ture monitoring of gas flaring activities around the world. 669 

 670 

 671 

6.0 Conclusion 672 



 

 29 

 This research has demonstrated the utility of MODIS data for detecting individual gas flare 673 

sites and estimating the volume of gas combusted at these sites. Two MODIS-based techniques, 674 

MODET and MOVET were developed which were capable of providing alternative sources of 675 

information on gas flaring activity. The techniques were applied to the Niger Delta region and the 676 

outputs provided detailed information on the spatial and temporal variability of gas flaring activity 677 

in the region for the past 14 years.  678 

The methods developed in this research provide an objective means of monitoring gas flar-679 

ing activity which is particularly important in areas such as the Niger Delta, where investigations of 680 

gas flaring have previously been hampered by restricted access to official information on flares. Us-681 

ing freely-available MODIS data, the MODET and MOVET are consistent across different oil 682 

fields; they are timely and reduce delays associated with traditional methods of acquiring flaring 683 

data; and the data is independent of particular companies or authorities. In principle, with the 684 

MODET and MOVET flaring can be investigated at spatial scales ranging from that of the individ-685 

ual flare site up to global level and across the time scale covered by the MODIS archive. However, 686 

it is now important that the robustness and transferability of the techniques is evaluated in other oil-687 

producing regions of the world. This will enable the methods to make a key contribution to moni-688 

toring the compliance of countries to the Global Gas Flaring Reduction initiative and for modelling 689 

the health and environmental impacts of flaring. 690 
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List of Figure captions 893 
 894 

Figure 1. Map of the Niger Delta region, showing its component oil producing states. Map of Nigeria is inset. 895 
 896 

Figure 2. Spectral band images demonstrating the gas flare detection potential of day time and nighttime MODIS band 897 
22 and daytime band 7 (band 6 showed a very similar response). Bands 6 and 7 are turned off at nighttime. 898 

 899 
Figure 3. Flow chart illustrating the key stages of the MODIS Flare Detection Technique (MODET), based on the har-900 
nessing of radiometric and spatial properties of flares in nighttime band 22 imagery. 901 
 902 
Figure 4. An active flare in the Agbada oilfield (Rivers State) of the Niger Delta captured in a high resolution image on 903 
Google Earth 904 

 905 
Figure 5. Scatterplot of the radiance of flare sites (quantified by the product of the square of the sum of radiance and 906 
standard deviation of radiance values in the buffer zone around flare pixels) and recorded volume of gas flared at sam-907 
ple flow stations in the Niger Delta, used for calibrating the MOVET model. 908 

 909 



 

 34 

Figure 6. Map showing the spatial distribution of flare sites identified in the Niger Delta with the MODIS Flare Detec-910 
tion Technique from March 2000 to January 2014. Flare sites detected once are those that are newly detected in 2013/14. 911 

 912 
Figure 7. Flare sites detected in the Niger Delta from 2000 to 2014. The positive error bar (9.3%) is based on the pro-913 
ducer’s accuracy of the MODET while absence of a negative error bar reflects the 100% user’s accuracy. 914 

 915 
Figure 8. The distribution of volume of gas combusted at individual flare sites (represented by the size of the symbol 916 
that shows the location of each site) and within each state (represented by the colour shading of each state) over the 917 
study period (2000-2014). 918 

 919 
Figure 9. Trajectories of annual gas flaring volume (BCM) within the individual states in the Niger Delta over the study 920 
period, indicating the contribution of onshore (blue bars) and offshore (red bars) flaring towards each annual total.  921 

 922 
Figure 10. Graph showing the temporal trajectory of annual flaring volume estimated using the method developed in 923 
this research compared to reported annual volumes and annual crude oil production within the study area. Error bars 924 
represent the 99% confidence interval derived from the calibration of the MOVET. 925 

 926 
 927 


