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Abstract
Smart grids are intelligent electrical networks that incorporate information and commu-
nication technology (ICT) to provide data services for the power grid. In this paper, the ICT
requirements for monitoring and control of the neighbourhood area network level of the
smart grid, with particular emphasis on making the ICT infrastructure energy efficient, are
analysed. One approach to provide energy efficiency in the communication system is to
develop a data reduction algorithm to reduce the volume of data prior to transmission.
Thus, a data compression technique called DRACO (data reduction algorithm for corre-
lated data) that shows a reasonable compression ratio while using network resources effi-
ciently is designed and developed. DRACO can be applied to data with a high data sampling
rate, and can transmit the essential information with compression ratios of 70%–99%. The
results of applying DRACO on real data collected by devices located in the University of
Manchester campus are discussed, followed by the evaluation and validation of DRACO by
comparing it with other available techniques. Finally, it is concluded that DRACO is suitable
for smart grid applications since it optimizes the network resource consumption and re-
duces the communication energy cost while maintaining the integrity and quality of data.

1 | INTRODUCTION

In planning for future electricity supplies, certain issues should
be considered, such as increased electricity usage, climate
change, and the conservation of natural resources. Some
countries have investigated the transformation of their existing
electricity grid into the smart grid. Smart grids have three main
characteristics, which are to some degree antagonistic: provi-
sion of good power quality, cost reduction, and improvement
in reliability. The need to ensure that these characteristics can
be accomplished together brings a requirement to design and
develop a rich information and communication technology
(ICT) network alongside the electricity network [1]. Smart grids
incorporate ICT to provide a data service for the generation,
transmission, and distribution networks of the electricity grid.
To reflect this structure, the ICT network is divided into three
networks: the wide area network (WAN), neighbourhood area
network (NAN), and home area network (HAN).

Deploying a large number of monitoring devices in the
smart grid that transmits huge volumes of data can potentially
saturate the devices' resources and consume energy at a rapid
rate. Some of the key constraints of wireless sensor devices
deployed in the smart grid are their limited resources, such as

memory, battery, and processing power. These necessitate the
development of techniques to utilise sensor resources more
efficiently in order to achieve a better quality ICT network and
a longer lifetime and time between maintenance sessions. As
such, energy consumption considerations of ICT networks
have emerged as a challenging concern. Energy awareness is
important for both wired and wireless technologies, but for
different reasons in each case. In wired networking, energy
consideration is important because of the projected economic
and environmental impacts, while in wireless networking, en-
ergy consideration is important because wireless sensor net-
works (WSNs) suffer from a lack of resources, such as a
shortage in power supply. Difficulties arise when the deployed
sensors in the smart grid are short of power; thus, a specific
area of the grid is no longer being monitored. Given that real‐
time data is being used in the control layer, this problem may
result in insufficiently accurate decision‐making in the grid. In
this research, we investigate a solution to ease this problem by
developing a data reduction algorithm suitable for smart grid
applications that can keep the integrity and quality of data.

According to the first order radio model [2], which quan-
tifies the energy consumed for data transmission, there are two
important factors affecting the energy consumption of data
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transmission. The first critical factor is d, the distance over
which data will be transmitted. Considerations of grouping
sensors to reduce the energy related to d are discussed in our
previous paper [3]. The second important factor is k, the
number of transmitted bits. Since there is a linear relation
between the first order radio energy model and number of
transmitted bits, by reducing the number of transmitted bits we
could reduce the energy consumption of the wireless trans-
mission process. Given that the energy consumed for trans-
mitting one bit is equal to the energy for processing 1000
instructions [4], we can save energy by applying a data
reduction technique before sending the data.

The novelty of our work is in developing a data reduction
method within an ICT architecture at the NAN level of the
smart grid. The lossless data reduction technique, which we
will introduce here later, is called DRACO (data reduction al-
gorithm for correlated data). Since DRACO is envisaged to be
implemented on resource‐constrained sensors, simplicity in the
design of the algorithm is a key issue. DRACO should offer
similar compression efficiency (for correlated data) as well‐
known compression algorithms such as Huffman [5], and
Arithmetic [6]. It should be computationally more efficient,
with fewer operations per logic gate, and therefore can require
less time to compress a similar amount of data. This simplicity
in terms of computation and time will ultimately imply energy
efficiency over the whole process of data reduction. This en-
ergy awareness is important because we intend to reduce en-
ergy usage of wireless sensors per unit of data processed.

To summarise, we have designed and deployed an ICT
architecture and have integrated DRACO within a working
NAN. This is the medium voltage power network of the
University of Manchester campus. Electricity grid monitoring
is installed, and real data are available, at high frequency and
accuracy. This is a rich test bed and has considerable variation
in demand throughout the day and year (e.g. linked to the
academic calendar). The core of our research is to design and
use a lossless data reduction algorithm to extract data with a
high data sampling rate and transmit the essential information,
rather than sending all the data. This will ensure reduced en-
ergy consumption of data transmission by wireless sensors.

2 | RELATED WORK

We have classified data transmission techniques into three
different categories. The first category is when sensors transmit
data after receiving a request from the sink. The second category
is when sensors send data whenever a threshold condition is
violated. The third category is when sensors collect data and
broadcast data continuously. The first and second categories are
more energy efficient methods of data transmission because the
data are being shippedwith lower frequency.However, theNAN
in our smart grid test bed necessitates the third category. This
requirement stems from the fact that to understand the behav-
iour of the gridwe need to sample data at a high rate at all times so
that we can capture the fastest fluctuations. A review of litera-
tures [7–9] reveals that energy efficient radio communication for

continuous monitoring can be accomplished through different
means such as duty cycling, optimising the routing algorithm,
optimising the network topology, and in‐network processing. In‐
network processing can be classified into two categories. The
first is the data aggregation techniques being implemented in
conjunction with WSN routing protocols. The second category
of in‐network processing methods is called data reduction,
which is performed by implementing data reduction algorithms
to reduce the communication cost by minimising the size of
transmitted data. Applying data reduction will result in efficient
bandwidth utilisation, and also in power saving, caused by
minimised‐size data transmission that will increase the network
lifetime [10]. The technique used in this research to enhance the
efficiency of the communication network belongs to the second
category of in‐network processing, that is, the data reduction
method.

2.1 | Data reduction in smart grids

The current literature indicated that most of the studies in data
reduction for smart grids concern smart meters [11], while data
reduction for resource‐constrained monitoring devices in
smart grids (e.g. lightweight wireless sensors) has not been
largely investigated. A study [12] has compared a number of
data compression algorithms for smart meters by analysing
their processing time and compression efficiency. The authors
showed excellent compression efficiency can be achieved when
investing a moderate amount of memory. However, to design
DRACO, one of our requirements is to avoid using memory of
the sensors. Authors in [13] have investigated the lossless
compression of high‐frequency smart meter data and have
made recommendations on these algorithms. They have found
that the compression ratio varies with data resolution and data
type, which is in line with the finding in our research. However,
these algorithms are implemented on smart meters, which are
generally more powerful in terms of computation power and
bandwidth compared with the wireless, resource‐constrained
sensors. Another study [14] proposed a new lossless
compression algorithm to provide the best balance between
the compression ratio and computational costs. The authors
experimentally compared the data compression algorithms to
improve energy efficiency in smart meters. These algorithms
need memory and computation power to be implemented, as
they either use dictionary or buffer, or a combination of
multiple techniques. Therefore, they would not meet the
resource‐constrained limitation of sensors. Authors in [15]
have proposed a compression algorithm for load profile data
for smart meters using several data compression techniques
combined. This is in contrast to the simplicity we require to
design and implement our data reduction technique. In 2019,
researchers [16] investigated an artificial neural network–based
data mining technique to compress the meter readings on the
customer side in an advance metering infrastructure (AMI)
system, and decompressed the data at the data centre.
Although this approach is suitable for the AMI, it cannot be
implemented on resource‐constrained sensors.
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A study in 2018 [17] addressed the challenge of manage-
ment of raw data in smart grids by comparing a number of
lossless compression algorithms, to find the most suitable
compression strategy for monitoring and analysis applications.
Generally, these lossless algorithms are developed for aggre-
gator or base stations, while our focus is on resource‐con-
strained sensors. Klump et al. [18] proposed a two‐stage
lossless compression method for a synchrophasor measure-
ments unit, which does not suffer from resource scarcity.
Allalouf et al. [19] and Sari [20] have argued that the huge
amount of data communication in smart grids will put the ICT
network under substantial strain. They have examined the
benefit that can be gained by applying lossy data reduction
techniques by intermediate nodes to ease the flow of data.
Khalifa et al. [21] have used a simulation to demonstrate that a
centralised architecture, where hundreds of thousands of
metering devices transmit their reading to the central data
collection server, failed to adequately serve the smart grid
infrastructure. Another study [17] compared 14 openly avail-
able lossless compression techniques to evaluate the
compression efficiency and computation time for electricity
grid data, and provided a set of recommendations. It proved
that the compression efficiency strongly depends on the type
of the datasets, and sampling rate, which is consistent with our
results. A recent work by [22] studied how to map substation
communication standard IEC 61850, with the constrained
application protocol and the concise binary object represen-
tation. This work established more than 50% data reduction
efficiency, compared with results based on http and web ser-
vices. Other researchers [23,24] explored a data prediction
method to reduce the amount of data in the communication
channel of the smart grid. They used a lossy data reduction
method, in which data is transmitted only if the predicted data
and the actual data do not meet a satisfactory error threshold.

2.2 | Lossless data reduction

Since there is a limited amount of literature on lossless data
reduction for resource‐constrained sensors in the smart grid,
we present the literature based on data reduction in other
fields. Previously, researchers have investigated a range of data
reduction techniques for different areas of science. However,
some of these techniques are inappropriate for resource‐
limited networks, such as our test bed.

In this research we are interested in lossless data reduction
techniques. Two of the most popular and most utilised lossless
data reductions are Huffman coding and Arithmetic coding.
Huffman coding [5] uses variable length coding and is the basis of
muchresearch inthisarea.Thevariable lengthcodingconverts the
symbols into binary symbols on the basis of probability of
occurrence of that symbol. Thus, most messages composed of
repeated symbols can be compressed into a shorter bit stream.
Arithmetic coding [6] is another method, which takes a stream of
symbols and replaces them with a single number. Two main fac-
tors in the coding process in this method are the occurrence
probabilityandthecumulativeprobabilitiesofasymbolsequence.

On the basis of the available literature, we have applied
concepts for the WSN to a new domain. A key principle of our
work is to develop a simple algorithm that can be performed
on resource‐constrained devices.

One of the techniques developed for the WSN, on which
our data reduction algorithm is based, considers the differences
between each sensor reading. The literature proposing a data
reduction algorithm includes [4,25–29]. This technique is most
appropriate where devices collect similar values, so values that
are temporally adjacent are highly correlated.

Here we discuss two of these techniques that are based on
the same principles as DRACO. The first one [30] has pro-
posed a lossless data compression by exploiting the correlation
between consecutive samples of data in the WSN and
considering the principles of entropy compression. Consid-
ering these concepts, they have compressed the collected data
with the help of a small dictionary. The algorithm functions as
follows: It first finds the differences between each two suc-
cessive values. Then, by utilising two's complement, it converts
these differences into a set of least significant bits. Finally, it
concatenates the compressed data with the Huffman variable
length code. Authors have claimed that they have provided
66.99% and 67.33% compression efficiency for temperature
data and humidity data, respectively. We believe the compres-
sion ratio depends on the characteristics of data and cannot be
generalised. Later, we will compare DRACO's performance
with that of this algorithm.

Another study [31,32] has modified the aforementioned
approach [30] to enable data compression on a wider range of
sensor types with higher standard deviations. This new version
of the previously discussed algorithm is called Fixed Index.
The authors state that the two approaches for applying data
compression algorithms are either to implement a number of
compression algorithms together on the data collected from a
WSN or to develop a single compression algorithm that offers
a satisfactory compression ratio. The new algorithm discussed
in the research by Sornsiriaphilux et al. applies two modifica-
tions to the aforementioned algorithm [30]. In the original data
compression algorithm [30], each set of compressed data is a
combination of a group of high‐order bits and low‐order bits.
High‐order bits represent the number of bits needed to show
the difference between each two consecutive values. Low‐order
bits represent the differences in the data. The first alteration is
to use one's complement instead of using two's complement
for showing the low‐order bits. The second revision is to use
Fixed Index instead of the Huffman variable length code in the
high‐order bits. The former modification will reduce the
number of operations needed and the later modification will
keep the length of bits constant, which is useful when the
standard deviation of data increases. By this technique the
length of the high‐order bits is fixed to four bits. For example,
when the difference between two values is eight, this eight
should be represented in the low‐order bits after one's com-
plement has been applied to it. Therefore, eight will be rep-
resented as 0111. Next, the high‐order bits represent the
number of bits that low‐order bits will occupy. These high ‐
order bits will be identified through the four‐bit Fixed Index
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table provided in the aforementioned paper. As such, since
eight requires four bits (0100), therefore, the high‐order bits
will be 0100. Finally, the compressed data will be equal to
01000111. Sornsiriaphilux et al. have claimed that the Fixed
Index algorithm performs better than the previous algorithm
using the Huffman length code when the standard deviation
increases. Here, we will later establish that DRACO offers a
better compression ratio as the standard deviation of data in-
creases, compared with these two algorithms.

3 | ICT ARCHITECTURE DESIGN FOR
THE NAN

Electricity grids are commonly centrally monitored at the level
of a national transmission grid, lacking monitoring at the NAN
level. Here, we mainly focus on the NAN of the electricity
distribution network. Having considered smart grid re-
quirements at this level, both through the literature and a series
of discussions with power engineer professionals, we devel-
oped a prototype ICT architecture, published in [33]. Here we
briefly discuss the prototype architecture as a context to the
data reduction.

Figure 1 depicts our proposed ICT architecture at the
NAN level, which is based on hybrid communication tech-
nologies that integrate sensing and computation to enable
monitoring, data gathering, and control and prediction of the
future state of the network. The proposed ICT architecture has
moved from a centralised architecture to a more decentralised
system. A collection of single NANs (NAN 1, NAN 2 ...)
communicate together to effectively construct a wider NAN.

The first layer of the architecture consists of smart meter
monitoring systems that are the gateway from the HAN to the
NAN and are used to monitor the building‐level data. These
monitoring devices are located in all the buildings in the
campus test bed, recording electricity use data every 30 mi-
nutes. This data can be combined with data about real‐time
energy prices to offer an effective demand response control.

The second layer of the architecture is composed of hun-
dreds of sensors situated in the streets. These are wireless
sensors that are used to monitor environmental data such as
temperature, light, humidity, and carpark monitoring. This in-
formation can be logged every second. We have utilised a
cluster based WSN topology to reduce the data transmission
range, which reduces energy demand in the system [34]. This
layer helps in controlling the electricity network, since the
sensors can provide information to help predict demand and to
improve control actions. Examples of the controls offered by
this layer include control of smart parking, control on the
battery charging of electric cars, and control of street lighting.

The third layer incorporates substation monitoring and
control. The reason we need a different layer of abstraction for
this layer is that layer 2 is responsible for monitoring the
environmental factors, whereas layer 3 is responsible for
monitoring and control of the electricity network; these are
two distinct functionalities. Regarding the test bed, this layer
consists of eleven 6.6 kV substations that are equipped with

sixteen monitoring systems, such as CompactRIOs (cRIOs).
These cRIOs are running at 1–4 Hz (sensing one to four
samples per second), measuring three‐phase voltage, current,
active power, power factor, voltage spectrum (eight channels
for each phase), current spectra (eight channels), and fre-
quency. For example, measurement of these parameters can
enable identification of faults, for power quality analysis.

The fourth layer is the database (DB) layer that will store
data received from the layers below and will feed them to the

F I GURE 1 Proposed ICT architecture
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NAN control unit (NCU) (layer 5). This layer has been
implemented by a PostgreSQL database. The fifth layer (NCU)
will apply control over the entire NAN area (a single unit of
NAN) on the basis of information received from the DB layer.
It should access sensing units directly in emergency situations,
and indirectly through the DB in normal operating.

Figure 1 illustrates a single NAN only. We will consider
here only one such NAN, namely, a university campus. Since
each NAN can take optimal decisions for its own region, which
are not necessarily the optimal decisions for the whole
network, another layer of communication should be added to
the top layer to enable each NAN to coordinate its decisions.

4 | DESIGN OF DRACO

In smart grid applications where the metering devices collect
data with a high acquisition rate and transmit them to the
NCU, a great degree of data correlation is common. We have
therefore developed a simple data reduction algorithm that
discards the redundant parts between each two consecutively
measured values and transmits the changing parts only. These
parts are a small portion of the original binary representation.
This algorithm can improve the energy efficiency of the
communication network by transmitting a smaller volume of
data while keeping data integrity.

4.1 | Smart grid application requirements

Each of the smart grid applications has its own requirements in
terms of sampling rate, data payload, latency, and reliability. The
design of DRACO should not negatively impact these re-
quirements. DRACO will meet the sampling rate requirement,
by proving that when the sampling rate increases, the DRACO
efficiency will increase as well. Also, DRACO does not impact
the data payload, as DRACO is designed to reduce the trans-
mitted data. It also does not reduce the reliability, as DRACO is a
lossless algorithm and data can be fully recovered at the receiver
side, and it does not affect the underlying transport mechanism
that guarantees the delivery ofmessages.However, generally data
compression algorithms can distress the communication latency.

Communication latency requirement ‘T’ is defined as [35]:

T ¼ taþ tb þ tc < Dth ð1Þ

where

� ta and tc are the delays for processing the message (e.g. data
compression) at the source and destination;

� tb is the communication link delay;
� Dth is the required message delay that depends on the smart

grid application.

While DRACO does not affect tb, the compression and
decompression time effect ta and tc, respectively. DRACO

execution time is in the order of seconds (on average 0.25
seconds for each compression and decompression) and can
meet the low latency requirements for some of the smart grid
applications for the NAN area that are in the order of seconds,
including [36] meter reading (on demand from meters to
utility) < 15s; electric service prepayment (from utility to
customers) < 30s; distribution automation < 5s; customer
information and messaging customers < 15s; distribution
customer storage (charge/discharge command from distribu-
tion application controller to the storage) < 5s; electric trans-
portation (utility sends price info to plug‐in hybrid electric
vehicles) < 15s.

4.2 | DRACO‐1

The DRACO algorithm works as follows in order to reduce
the size of the text files being transmitted by the monitoring
devices located in our test bed. At the sender side of our
proposed algorithm, the digit‐based representation of signed
decimal values is ready for transmission. DRACO first reads
and keeps the sign. It converts the value to a positive digit‐
based decimal value. Then it converts the positive digit‐based
decimal value to a positive digit‐based integer value by multi-
plying by a sufficiently large power of 10. After these modifi-
cations, at the beginning of each round of transmission, the
sender will transmit the modified full value of the first
measured data.

This full value indicates the start of each round of trans-
mission. Frequent transmission of the updated full value of the
measured data will reduce the risk of data loss in the
communication network. If a number of measured data are
missed in the transmission channel, then the receiver side will
decode the received values incorrectly. In order to prevent such
data loss, our strategy is to send the modified full measured
value on a regular basis. A decision on how often the full value
needs to be transmitted depends on the requirements of the
user of the system. In the test scenario, we are dealing with file
transmission. Each file contains data collected for the past one
hour, which are logged every second. In this case, the first
value of each file will be transmitted as the original full value,
and the data reduction will be applied on the second value
onwards, until the end of the file. The decision on the size of
the original file depends on the application for which these
data are collected.

To discard the redundancy between the two consecutive
values, DRACO works as follows. After taking the digit‐based
representations of a decimal value, read and keep their signs,
and change them to digit representations of absolute integer
values; then convert these absolute integer values into digit‐
based binary representations. Subsequently, we initiate the data
comparison on the binary representations by applying XOR on
each two consecutive values, for example, beginning with the
far left digit of the binary representation 111001 and the
consecutive 111110. The first three‐digit pairs of the first value
and consecutive value are pairs of 1, so XOR returns three 0.
The next digit pair are 0 and 1 and so XOR represents this as 1.
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Similarly, the next digit pair are 0 and 1, so XOR returns a 1.
The final digit pair are 1 and 0, so XOR represents this as 1.
The difference between the binary representation of value one
(þ5.7) and consecutive value two (� 6.2) is therefore 000111,
or 111, as shown in Table 1. Next, the XORed values will be
converted back to absolute digit‐based representations of in-
tegers. Finally, they will be multiplied by their signs and will be
transmitted to the receiver point. Thus, in this process, the
signed digit‐based representations of integer value that are the
result of the XOR process will be transmitted.

On the receiver side, the reception device will receive a file
comprising the first full value and subsequent changed parts
only. It will first read and keep the signs of each value and
change them to positive values. It then converts the base 10
representations to the binary representations. Subsequently, it
can reconstruct the original value by applying the XOR to the
value ‘n’ and to the reconstructed value ‘n‐1’. For example, 111
(‘n’) can be reconstructed by comparing with 111001 (‘n‐1’), to
give 111110. Binary reconstructed values are then converted
into digit‐based representations of integer values and multi-
plied by their signs. Finally, these values will be converted into
the original values with a decimal fraction part, on the basis of
how many decimal points are needed.

This algorithm is called DRACO‐1. Tables 1 and 2
demonstrate a simple example of the compression and de-
compression of DRACO‐1 on the sender and receiver sides.

4.3 | DRACO‐2

After several rounds of testing the data reduction method and
analysing the results, we recognised that DRACO‐1 could be

improved to offer more compression efficiency for data with a
higher correlation degree. The improved DRACO‐1 is called
DRACO‐2, which, however, can only be applied in cases where
correlation between the collected data is very high (e.g. this is
the case for frequency and voltage readings).

The difference between DRACO‐1 and DRACO‐2 is that,
on the transmitter side, after applying XOR and converting the
binary values back into integer values, if any consecutive value
appears as ‘0’, DRACO‐2 will only send one instance of pre-
vious value together with the number of repetitions. Tables 3
and 4 demonstrate a simple example of the compression and
decompression of DRACO‐2 on the sender and receiver sides.
Although DRACO‐2 is not as stable and general as DRACO‐1,
DRACO‐2 is valuable for data in high volumes with strong
correlations, and in these cases, it can perform better than
DRACO‐1.

DRACO offers similar execution time for compression and
decompress, since similar computation power and similar
functions are used on both sides of sender and receiver. This is
beneficial for the performance of power systems and appli-
cations where latency is the main concern.

DRACO can also provide a low level of security for
communication between devices, since we are transmitting a
modified or cipher data, and not the original data. Similar to
one‐time pad cryptography, which uses information theory to
create a cipher text, DRACO uses XOR gate to create a cipher
text. DRACO avoids the need for the sender and receiver to
carry a copy of the cipher key (which makes the one‐time pad
cryptography communication vulnerable to revealing the key).
However, DRACO uses the preceding value as the key to ci-
pher the consecutive value. This approach avoids the insecure‐
implementation vulnerability of a cipher key.

TABLE 1 The transmitter side (DRACO‐1)

Measured
value

Matrix
of signs

Absolute
value

Binary
representation

XORed
value

Absolute value
of reduced part

Matrix
of signs

Sent value
(signed reduced value)

þ5.7 þ1 57 111001 111001 57 þ1 þ57

� 6.2 � 1 62 111110 111 7 � 1 � 7

þ6.1 þ1 61 111101 11 3 þ1 þ3

� 5.7 � 1 57 111001 100 4 � 1 � 4

þ6.3 þ1 63 111111 110 6 þ1 þ6

TABLE 2 The receiver side (DRACO‐1)

Received
value

Matrix
of signs

Absolute
value

Binary
representation

Reconstructed
XORed value

Absolute
reconstructed
value

Absolute reconstructed
value with
decimal points

Matrix
of signs

Signed final
reconstructed
value (original value)

þ57 þ1 57 111001 111001 57 5.7 þ1 þ5.7

� 7 � 1 7 111 111110 62 6.2 � 1 � 6.2

þ3 þ1 3 11 111101 61 6.1 þ1 þ6.1

� 4 � 1 4 100 111001 57 5.7 � 1 � 5.7

þ6 þ1 6 110 111111 63 6.3 þ1 þ6.3
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4.4 | Subtraction

Instead of applying XOR we could also use subtraction. When
testing both subtraction and XOR for our collected data and
comparing the size of the compressed data, we found that both
these techniques result in a similar compression ratio. This is
the result of the technique we use to represent data.

Table 5 compares the compression ratio for four
parameters—voltage, current, frequency, and total power fac-
tor—using DRACO‐1 and subtraction.

The logic diagram of XOR is simpler than that of sub-
traction; thus, it is easier to be executed on various types of
devices, such as energy‐constrained sensors. Therefore, XOR

gives us almost the same compression as subtraction does but
with simpler and fewer operations. In order to implement
XOR, two inputs (A and B) and one output (Q) are required.
The truth table in Table 6 shows the behaviour of XOR. XOR
is true (the output is equal to 1) when only one of the inputs is
true, expressed using Boolean algebra.

XOR can be implemented with only three gates as shown
in Figure 2. In order to implement the subtraction, three inputs
(A (minuend), B (subtrahend) and (borrowin)) and two outputs
(D (difference bit) and (borrow out)) are required. Table 7
shows the behaviour of the subtraction process.

Accordingly, the following logical expression can be used
to implement subtraction.

TABLE 3 The transmitter side (DRACO‐2)

Measured
value

Matrix
of signs

Absolute
value

Binary
representation

XORed
values

Absolute value of
reduced part

Matrix
of signs

Signed value
of reduced part

Final sent value
(signed value with
number of repetition)

þ49.5 þ1 495 111101111 111101111 495 þ1 þ495 þ495,0

þ50.3 þ1 503 111110111 11000 24 þ1 þ24 þ24,4

þ50.3 þ1 503 111110111 0 0 þ1 0 � 53,0

þ50.3 þ1 503 111110111 0 0 þ1 0 þ49,0

þ50.3 þ1 503 111110111 0 0 þ1 0 þ194,2

þ50.3 þ1 503 111110111 0 0 þ1 0

� 45 � 1 450 111000010 110101 53 � 1 � 53

þ49.9 þ1 499 111110011 110001 49 þ1 þ49

þ30.5 þ1 305 100110001 11000010 194 þ1 þ194

þ30.5 þ1 305 100110001 0 0 þ1 0

þ30.5 þ1 305 100110001 0 0 þ1 0

TABLE 4 The receiver side (DRACO‐2)

Received
value

Ordered
value

Matrix
of signs

Absolute
value

Binary
representation

Reconstructed
XORed value

Absolute
reconstructed
values

Absolute
reconstructed
value

Matrix
of signs

Final
reconstructed
value

þ495,0 þ495 þ1 495 111101111 111101111 495 49.5 þ1 þ49.5

þ24,4 24 þ1 24 11000 111110111 503 50.3 þ1 þ50.3

� 53,0 0 þ1 0 0 111110111 503 50.3 þ1 þ50.3

þ49,0 0 þ1 0 0 111110111 503 50.3 þ1 þ50.3

þ194,2 0 þ1 0 0 111110111 503 50.3 þ1 þ50.3

0 þ1 0 0 111110111 503 50.3 þ1 þ50.3

� 53 � 1 53 110101 111000010 450 45 � 1 � 45

þ49 þ1 49 110001 111110011 499 49.9 þ1 þ49.9

þ194 þ1 194 11000010 100110001 305 30.5 þ1 þ30.5

0 þ1 0 0 100110001 305 30.5 þ1 þ30.5

0 þ1 0 0 100110001 305 30.5 þ1 þ30.5
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D¼ ðA ⊕ BÞ⊕ Borin ð4Þ
Borout ¼ �A:ðB ⊕ BorinÞ þ B:Borin ð5Þ

Figure 3 shows the logic diagram of subtraction that requires
seven gates, two of which are XOR gates, to be implemented.
Thus, it has been shown that implementing a subtraction oper-
ation is more complex than implementing a XOR operation.

4.5 | Bit by bit comparison

The reason we chose XOR over bit by bit comparison is that
we realise that a problem exists when using a normal com-
parison between bits.

In a normal comparison, to discard the redundancy be-
tween values, we start by comparing each of two consecutive
digit‐based binary representation values. The comparison of
these values starts with comparing the most significant digit in
the binary representation of that value. This process will
continue until the first difference between two digits is found.
Then the comparison will be halted, and the redundant digit
will be discarded. The bits starting from the first dissimilar digit
(which are called the changed digits) are then converted into
base 10 representations and multiplied by their signs before
transmission.

The receiver side will first read the signs and convert the
unsigned numbers into positive digit‐based integers. Then it
will convert the base 10 representations into binary represen-
tations. This process is needed to implement the binary com-
parison. Subsequently, it can reconstruct the original value by
knowing only a sample of the modified full data that was
transmitted at the beginning of each round of transmission.
Having one sample of modified full data discloses enough
information to generate the original values out of the received
compressed values. This information could be such as the
number of bits each value occupies, and the pattern of bits.
Then the signs will be added to the digit‐based integer values,
and finally, these values will be converted into the original
values with a decimal fraction part.

Our experiments reveal that a problem with this system
occurs when the first changed digit appears as ‘0’ rather than
‘1’. In this case, when converting the binary representation of
changed digits back into the digit‐based integer, the ‘0’s before
the first ‘1’ will be ignored. Thus, on the receiver side, when the
reception unit receives the digit‐based integer value, it is not
able to reconstruct the correct original value because the

TABLE 5 Compression efficiency of DRACO and subtraction

Original size (bit) DRACO‐1 size (bit) Ratio (%) Subtraction size (bit) Ratio (%)

Voltage 230464 14822 93 14410 93

Current 230464 17700 92 15734 93

Frequency 371456 14408 96 14408 96

Total power factor 371288 14520 96 14406 96

TABLE 6 Truth table for XOR

A B Q A:B
¯
þ A

¯
:B ≡ ðAþ BÞ:ðA

¯
þ B

¯
Þ (2)

0 0 0 Using de Morgan's Law we can convert this to

0 1 1 ðAþ BÞ:ðA
¯
þ B

¯
Þ ≡ ðAþ BÞ:ðA:B

¯
Þ (3)

1 0 1

1 1 0

F I GURE 2 Logic diagram of XOR

TABLE 7 Truth table for subtraction

A B D

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

F I GURE 3 Logic diagram of subtraction
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number of ‘0’ before the first ‘1’ is unknown. Tables 8 and 9
demonstrate examples of the case when the bit by bit‐based
algorithm malfunctions.

For example, the binary representations of 61 and 57 in the
third and fourth rows are ‘111101’ and ‘111001’. After
comparing these values with their previous values and discarding
the redundant digits, the remaining digits are ‘01’ and ‘001’,
respectively. When converting them back into the integer rep-
resentation, the ‘0’s before the ‘1’ will be ignored. So, when the
receiver side receives the changed parts of these two rows
(integer 1), it cannot identify how many ‘0’s appear before the
first ‘1’. When rebuilding the values 61 and 57, both recon-
structed values will be 63.

Therefore, to avoid the aforementioned problem, we
proposed a solution, which is to use exclusive OR (XOR). The
difference between utilising the XOR and the normal bit by bit
comparison is that when the XOR is used, the first changed
digits always appear as ‘1’. This is a result of the fact that the
XOR between two similar digits will result in 0 (1 ⨁ 1 ¼ 0 and
0 ⨁ 0¼ 0) and the XOR between two dissimilar digits will
result in 1 (1 ⨁ 0 ¼ 1 and 0 ⨁ 1 ¼ 1). Thus, when converting
the changed digits (which always start with 1) into the integer
format, we trust that we are not losing any digits.

5 | IMPLEMENTATION

As discussed earlier, we implemented DRACO in a university
electricity network at the University of Manchester. Our
technique is purely a compression method that keeps the
quality and integrity of data. DRACO is lossless after the
truncation of data. However, the decision to apply truncation

or not depends on the user requirements. Although the pro-
posed algorithm is applicable to diverse data sizes and char-
acteristics, it is most suitable for data where consecutive values
vary only in the least significant digits when represented as
binary, that is, the rate of change of the data is slow with
respect to the sensing rate. The efficiency of this compression
process, which depends on the degree of data correlation, can
be described by the following formula (if the data size is
inflated, we indicate this in the results by a minus sign, as given
by the formula).

ηc ¼
So � Sc

So
% ð6Þ

where ηc is the compression ratio;
So is the original data size;
Sc is the compressed data size.
DRACO is economic in terms of the execution time, and

the compression and decompression time are similar. The tests
on different sources of data indicate that the execution time of
DRACO is acceptable, which will be discussed later. It is
efficient in terms of communication energy consumption,
since this is dependent on the number of transmitted bits.

5.1 | Evaluation of DRACO on simulated
data

In this section, first we evaluate DRACO with seven data sets
that were simulated via LabVIEW and cRIO. In Figure 4, we
present the results from the performance of algorithm for
seven different data types, each comprising 17,982 data

TABLE 8 The transmitter side (bit by bit)

Counter
Measured
value

Measured
binary
representations

Binary
representations
after comparison

Reduced
value ready
for transmission

1 57 111001 111001 57

2 62 111110 110 6

3 61 111101 01 1

4 57 111001 001 1

5 63 111111 111 7

TABLE 9 The receiver side (bit by bit)

Counter
Received
value

Received binary
representations

Binary
reconstructed
representations

Original
(reconstructed
decimal value)

1 57 1111001 111001 57

2 6 110 111110 62

3 1 1 111111 63

4 1 1 111111 63

5 7 111 111111 63
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values. These are the simulated data for one hour, being
calculated approximately five times a second. Using formula
(1.5) our simulation reveals that we are able to achieve over
70% efficiency, on average, in terms of reduced data volume.
This would almost equate to a saving of 70% in energy
consumption for data transmission if using DRACO.

5.2 | Evaluation of DRACO on real data
measured at substation level

We now examine the results of applying the DRACO
compression algorithm using data collected from the substation
level of the university electricity network. The following are the
results from some of our experiments on real data collected by
the cRIO devices located in the 6.6 kV‐substations in the Uni-
versity of Manchester campus. Comparing the efficiency of the
algorithm on both simulated data and real data, we obtained
similar results.

Both DRACOs were tested against a period of data to
implement our experimentation. A sample one‐day period is
provided here. We demonstrate the DRACOs over 24 hours of
real data (collected from 8:00 AM on 24 April 2013 to 8:00 AM
on 25 April 2013) to assess the efficiency of the data reduction
algorithm during different periods within a day, covering peak
hours and non‐peak hours. We used MATLAB to implement
DRACO and ran codes on a standard Windows 10 x64 PC
(Intel(R) Core(TM) i7‐8650U CPU @ 1.90 GHz 2.11 GHz). In
order to measure the average execution time of DRACO we
used MATLAB functions tic and toc before and after the
command line tool execution. The tic function records the
current time, and the toc function uses the recorded value to
calculate the elapsed time. We ran all the experiments in the
same environment using the same laptop and MATLAB
version to fairly compare DRACO and other existing
compression algorithms.

In these experiments we have considered voltage, current,
and frequency data because their characteristics are different.
The variations in voltage are less, whereas variations in current
are much more substantial, with a higher rate of changes.
Additionally, the rate of change in the frequency data is very

low, unless some problem occurs in the electricity grid.
Therefore, our data reduction algorithm will perform differ-
ently on these three types of data.

Figure 5 compares DRACO‐1 (blue line) and DRACO‐2
(red dotted line) using voltage data. It shows that DRACO‐2
has a better compression ratio, and is therefore a more efficient
algorithm, for voltage compression. Moreover, between 16:00
and 1:00 we achieve a better compression (over 89%) ratio,
which means the network voltage is steadier over this period,
and as a result, the data correlation is higher during this period
of time. It is recommended that DRACO‐2 be used for
compression of voltage data at all times.

Figure 6 compares DRACO‐1 (blue line) with DRACO‐2
(red dotted line) using the data for current amplitude. First, we
achieve a lower compression ratio for both algorithms for
current data compared with voltage data, due to its greater
variation. Second, results show the best compression ratio is
achieved roughly between 17:00 hours to 1:00, which (as for
the voltage data) indicates a period of relatively steady network
current. Comparing DRACO‐1 and DRACO‐2, we suggest a
switching algorithm for the monitoring system for current

F I GURE 4 Effect of DRACO on simulated data [37]

F I GURE 5 24 hours of compressed voltage data

F I GURE 6 24 hours of compressed current data
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data. Between 17:00 and 1:00 the compression ratio of
DRACO‐2 exceeds the compression ratio of DRACO‐1;
therefore, during this time period we could use DRACO‐2 as
the compression algorithm for the current data, and for the
rest of the day DRACO‐1 could be applied.

Figure 7 compares DRACO‐1 (blue line) and DRACO‐2
(red dotted line) using the frequency data. The frequency data
has a lower rate of change compared with the voltage and
current data. DRACO‐1 gained over 76% compression effi-
ciency, while DRACO‐2 achieved over 99% compression ef-
ficiency. Thus, it is suggested that DRACO‐2 be used for
compressing the frequency data at all times. This is an inter-
esting result for frequency, because without using DRACO‐2,
it would be very wasteful in terms of data transmission and
hence energy to send data at such a high sampling rate. It is
very important to monitor frequency data at a high sampling
rate because frequency could go out of range very quickly,
which is potentially catastrophic for the system. As a result, this
is an excellent example of the value of DRACO compression,
with an over 99% compression ratio.

5.3 | Evaluation of the effect of different
data sampling frequencies

An experiment was designed to assess the effect of various
sampling rates on the efficiency of DRACO. We examined the
data being logged with different frequencies, such as once every
second (1 Hz), once every two seconds (0.5 Hz), once every four
seconds (0.25 Hz), once every eight seconds (0.125 Hz), once
every 10 seconds (0.1 Hz), and finally, once every 20 seconds
(0.05 Hz). Figure 8 shows that, as the frequency of the data
acquisition rate increases, the original size of the data will in-
crease. However, as we start to sample more frequently, the
correlation between each two consecutive values is higher and
DRACO performs best on data with stronger correlations. So
the difference between the original data size and the DRACO
reduced data size also grows. Thus, with a higher sampling rate

we could transmit more data about the network, and with the use
of theDRACOswe could send this datamore efficiently in terms
of data volume.

This means by using DRACOs we can achieve a better
compression ratio for a higher acquisition rate. This result
confirms the fact that, when data are being sampled at a faster
rate, the correlation between each two consecutive values is
higher and DRACO performs best on data with stronger
correlations. In a simplified scenario, the result can also be
beneficial in terms of bandwidth utilisation. In case we want to
transmit data with a higher frequency, which results in a higher
volume of data, we can transmit more information using the
same amount of bandwidth by applying DRACO.

5.4 | Evaluating the effect of different bit
rates

In this section we examine the effect of DRACO on the bit
rate. This experiment was carried out to determine the link
between significant events in the actual data profile and the
maximum/minimum bit rate. Since our analysis shows that the
total active power data has one of the highest variations of all
the data types, here we have selected this as the test data.
Consequently, the changes in the bit rate can be visibly seen.
We have estimated the bit rate by dividing the size of the
reduced data by time, which is 30 seconds in this experiment
(byte/second). Figure 9 shows the actual profile of the total
active power and the bit rate [38] after applying DRACO.
Analysing both the behaviour of the original data and the data
transfer rate, we realise that, when there are fewer spikes and
minimum changes between consecutive data, the data transfer
rate is low. Conversely, when there is a big change in the data
values and when the data variation is high, we observe a higher
transfer rate. This result can be seen in the two ringed areas in
Figure 9 corresponding to the areas where minimum and
maximum rate of change happen in the top figure, and their
corresponding transfer rate in the bottom figure. The solid
black ring (880s–910s) in the bit‐rate graph shows the
maximum data transfer rate, where data values vary signifi-
cantly and has the biggest change among the time periods in

F I GURE 7 24 hours of compressed frequency data

F I GURE 8 Data acquisition rate evaluation
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this profile. The dashed black ring (760s–790s) demonstrates
the lowest bit rate, for a period where data are very similar.
Although there is a small jump in the dashed black ring time
period, the rest of the data have the most similarities (very
steady), which leads to a bit‐rate minimum. In summary, the
correlation between the two graphs indicates the dependency
of the data transfer rate on the rate of change of the quantity
being measured (e.g. total active power).

6 | COMPARISON WITH OTHER
WORKS

To assess the efficiency of the DRACOs we have compared
their performance with that of other data reduction algorithms.
Thus, we have followed two approaches: In the first approach,
we have produced data as described in other published works,
then applied DRACOs to this generated data, and compared
the compression performance of DRACOs and other data
reduction algorithms. In the second approach, we have applied
DRACOs and other developed algorithms to our test data and
compared the compression performance of DRACOs and
other data reduction algorithms.

6.1 | The first approach: comparison of
DRACO with other algorithms on generated
data

Tests were carried out to compare the compression efficiency
of DRACOs with that of two other existing data reduction
algorithms specifically developed for sensor data on the basis
of the Huffman and Fixed Index methods (both methods have
been discussed earlier in section 2). These two algorithms were
chosen because they have been designed particularly for sensor
networks with resource limitation problems, and use low‐
complexity data reduction techniques suitable for such envi-
ronments. Moreover, their designs are also based on the cor-
relations between each of two consecutive data values, which
will reduce the number of transmitted bits.

In this scenario we tested the DRACOs on data that were
generated using the method we describe next. Thus, we are
evaluating the DRACOs with more general data that are not
tailored just for electricity networks. Since we can collect data
across different sensing environments with a wide range of
standard deviations, we can compare compression algorithms
for data with a range of standard deviations.

In this experiment the data reduction algorithm, which is
based on Huffman, is called Differential_Huffman, and the
one that uses Fixed Index is simply called Fix_index.

In order to initiate a comparison, we first started generating
test data. The data was generated according to the procedure
described in the research by [32]. We produced 14,400 samples
of random data using normal or Gaussian distribution. It was
assumed that these data were generated by a sensor at a rate of
once a minute during a 10‐day period (60�24�10¼14,400
data points). This is a realistic assumption for data measure-
ments derived from environmental phenomena. The mean of
the simulation was assigned to 0, while the standard deviations
ranged from 0 to 250.

A high standard deviation and less correlated data might
result in lower compression using DRACO. The DRACOs are
efficient for compression when the data are scattered fairly
narrowly around the mean, rather than being widespread.
However, the standard deviation does not indicate how data
are linked in time (e.g. with a same standard deviation, values
could be differently linked in time). These two issues (high
standard deviation and lower data correlation) will decrease the
effectiveness of DRACO. Therefore, a range of standard de-
viation data samples were used.

Then we applied DRACO‐1, DRACO‐2, Differ-
ential_Huffman, and Fix_index on these generated data and
determined the compression ratio. Therefore, we have
compared these four algorithms in similar situations.

In the investigations by Sornsiriaphilux et al. [31], the
decimal precision for test data is not given when executing
their algorithms. However, the decimal precision is important
for DRACOs. Hence, we have considered different precisions
in two scenarios, called the ‘best‐case scenario’ and the ‘worst‐
case scenario’. The best‐case scenario is when we considered
only one decimal point and the worst‐case scenario is when we

F I GURE 9 Total active power (kW) (top figure) and the
corresponding bit rate (bottom figure)
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considered full decimal points. Note that DRACO is designed
for electrical network monitoring, where small variations in the
decimal points are not important from the control point of
view. For monitoring of the University of Manchester Campus
electricity network, the precision requirement is therefore a
best case. However, future investigations may require the full
precision of the sensor readings. This would exploit the lossless
nature of our technique, which can still produce compression
in this limit of precision.

The results of these comparisons are shown in Figure 10. It
shows that, in the best‐case scenario, both DRACOs per-
formed better than Differential_Huffman and Fix_index.
Moreover, the compression ratio of our methods is more
stable over the ranges of standard deviations, whereas the
compression ratio of the other two algorithms reduces as
standard deviation increases. Thus, as the standard deviation of
the data increases, we do not lose significant compression ef-
ficiency for DRACOs.

In the worst‐case scenarios, when the standard deviation
value is smaller, the Differential_Huffman and Fix_index
perform better than the DRACOs. However, as the standard
deviations increase, DRACO‐1 performs better than these two
algorithms. Also, at the largest standard deviation of 180 and
above, DRACO‐2 performs better than the Differ-
ential_Huffman. DRACO‐2 is a steadier compression algo-
rithm (has a consistent compression ratio performance)
compared with the Differential_Huffman and Fix_Index (for
which the compression ratio decreases rapidly as the standard
deviation increases, for both algorithms).

6.2 | The second approach: Comparison of
DRACO with other algorithms on electricity
network data

In the second round of tests we compared DRACO‐1 with two
different compression algorithms. These algorithms are the
Huffman and Arithmetic, which are among the best‐known
data reduction techniques. We considered the binary trans-
mission technique in this analysis as discussed earlier. Com-
parisons between these algorithms were made by applying our
data as an input to the Huffman, Arithmetic, and DRACO in
similar situations. These data were collected from monitoring
devices during a period of one hour, sampled once every
second, located in the electricity network substation. The input
data were rounded off to the same precision for all algorithms.

Earlier we showed that DRACO‐1 is a more stable algo-
rithm compared with DRACO‐2. DRACO‐2 is suitable for
downloaded data with higher correlation, such as voltage and
frequency, while DRACO‐1 is suitable for live data stream and
can be generalised and be applied across all the measured
values. Therefore, we kept DRACO‐2 out of the comparisons
for the size and compression ratio in this subsection. The re-
sults, as shown in Table 10, indicate that Huffman compres-
sion ratio is only 1%–2% better than DRACO‐1 for data
streams with smaller variations, such as voltage, frequency, and
total power factor. However, for the data streams with higher

variation, such as current, DRACO‐1 performs 4% better than
Huffman. This is a result of the fact that Huffman obtains its
compression efficiency on the basis of frequency of occurrence
of each value. Since the rate of reappearance of each value in
current was low in our data, this makes Huffman perform
poorly compared with DRACO‐1. Also, our experiments
revealed that the average of Huffman's execution time is higher
than the DRACO's (see Table 11). Comparing the results of
the Arithmetic algorithm with those of DRACO‐1 reveals that,
for data streams with low variations and high frequency of
occurrence, such as total power factor and frequency, Arith-
metic compression ratio is 2% higher than that of DRACO‐1.
However, for data streams with higher variations, such as
voltage, the compression ratio of DRACO‐1 is 2% higher than
Arithmetic's. For data streams with even greater variations,
such as current, the compression ratio of DRACO‐1 is 7%
higher than Arithmetic's. This is the result of the fact that
compression efficiency of Arithmetic coding depends on the
frequency of occurrence of data. Also, our experiments
revealed that the average execution time of the Arithmetic is
higher than the DRACO's (see Table 11).

7 | CONCLUSION

We have developed an energy aware architecture to enable
sensor networks to transmit data at a reduced energy con-
sumption. In order to incorporate energy awareness in our
architecture, we have developed data reduction algorithms that
can be used as an appropriate technique.

Our survey of data compression algorithms shows that
there is no one method that is superior for all forms of data
streams. Therefore, we have devised a practical data reduction
algorithm, DRACO, on the basis of readings from monitoring
devices that are typical of electricity network data patterns. The
efficiency of the proposed technique depends on the degree of
correlation between data points.

We have been able to validate the new algorithm, DRACO,
on data from real electrical networks, which were produced at a
very high sampling rate, and transmit the essential data with
compression ratios of 70%–99%. High sampling rates are
typical for this application, in terms of identifying important
changes in the dynamic behaviour of electrical systems. Since,
according to the first order radio model, the energy

F I GURE 1 0 Comparison of data reduction algorithms
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consumption of data transmission has a linear relation to the
number of transmitted bits, one significant contribution of this
research is that the DRACO can reduce energy consumption
associated with data transmission, and can improve the overall
energy efficiency of the communication network in the pro-
posed architecture.

We have shown that DRACO performs well in comparison
to other data reduction algorithms, by comparing compression
ratio for algorithms applied to a general data set as well as the
specific case of the electricity network data.

In addition to energy consumption reduction, DRACO is
able to provide an efficient flow of information by reducing
data traffic, which needs further investigation. In complex
sensor networks, bottlenecks are caused by the fact that
thousands of sensors are sending their data to the central point.
In some cases, by applying DRACO, we may reduce the risk of
bottlenecks. This is an issue for further research work. More-
over, the growth in the number of monitoring devices in the
smart grid in the near future will lead to an explosion in data
volume. This will cause storage and network congestion
problems. At this stage we are not typically prepared to manage
such a volume of data. We need to develop new methods and
techniques to ease these forthcoming issues of network
congestion and data storage. DRACO could be an initial point
for addressing these problems.

Here we have focused on the design and implementation
of DRACO, but in the future, storage limitation and network
congestion problems can be considered as possible further
applications of DRACO.
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