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Minimizing the energy consumed by heating, ventilation, and air conditioning (HVAC) systems of residential
buildings without impacting occupants’ comfort has been highlighted as an important artificial intelligence
(AI) challenge. Typically, approaches that seek to address this challenge use a model that captures the
thermal dynamics within a building, also referred to as a thermal model. Among thermal models, gray-box
models are a popular choice for modeling the thermal dynamics of buildings. They combine knowledge of
the physical structure of a building with various data-driven inputs and are accurate estimators of the
state (internal temperature). However, existing gray-box models require a detailed specification of all the
physical elements that can affect the thermal dynamics of a building a priori. This limits their applicability,
particularly in residential buildings, where additional dynamics can be induced by human activities such as
cooking, which contributes additional heat, or opening of windows, which leads to additional leakage of heat.
Since the incidence of these additional dynamics is rarely known, their combined effects cannot readily be
accommodated within existing models.

To overcome this limitation and improve the general applicability of gray-box models, we introduce a
novel model, which we refer to as a latent force thermal model of the thermal dynamics of a building, or
LFM-TM. Our model is derived from an existing gray-box thermal model, which is augmented with an
extra term referred to as the learned residual. This term is capable of modeling the effect of any a priori
unknown additional dynamic, which, if not captured, appears as a structure in a thermal model’s residual
(the error induced by the model). More importantly, the learned residual can also capture the effects of
physical elements such as a building’s envelope or the lags in a heating system, leading to a significant
reduction in complexity compared to existing models.

To evaluate the performance of LFM-TM, we apply it to two independent data sources. The first is an
established dataset, referred to as the FlexHouse data, which was previously used for evaluating the efficacy
of existing gray-box models [Bacher and Madsen 2011]. The second dataset consists of heating data logged
within homes located on the University of Southampton campus, which were specifically instrumented to
collect data for our thermal modeling experiments. On both datasets, we show that LFM-TM outperforms
existing models in its ability to accurately fit the observed data, generate accurate day-ahead internal
temperature predictions, and explain a large amount of the variability in the future observations. This,
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along with the fact that we also use a corresponding efficient sequential inference scheme for LFM-TM,
makes it an ideal candidate for model-based predictive control, where having accurate online predictions of
internal temperatures is essential for high-quality solutions.
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1. INTRODUCTION

On the path to our low-carbon future, increased attention is being paid to approaches
that optimize and reduce the energy consumption of the HVAC systems of buildings,
which can account for up to 40% of the total energy consumed and up to 33% of the total
carbon emissions in some countries [Aswani et al. 2012; Privara et al. 2013]. Heating
or cooling is necessary to maintain a comfortable temperature within a home. However,
this comfort comes at a price, both in terms of the monetary cost to the householder
and in terms of the carbon emissions resultant from the process. Consequently, there is
a need to optimize the operation of the HVAC system to minimize the energy consumed
by heating or cooling without impacting the householder’s comfort. This has been
highlighted as an important artificial intelligence (AI) challenge [Ramchurn et al.
2012; Evans 1991].

Toward this end, an important strand of work consists of approaches that treat
HVAC optimization as an optimal control problem. A model-based predictive control
(MPC) algorithm is then used to obtain a solution in the form of a sequence of accurate
and efficient control actions [Mady et al. 2011; Aswani et al. 2012; Privara et al.
2013; Oldewurtel et al. 2012; Rawlings 2000]. Researchers have also modeled heating
optimization as a Markov decision process (MDP), whose solution yields a sequence of
optimal heating or cooling actions [Urieli and Stone 2013; Dounis and Caraiscos 2009].
Researchers have also explored the idea of exploiting occupancy information to more
efficiently control HVAC systems [Lu et al. 2010; Scott et al. 2011].

A key component of these approaches is a model that captures the thermal dynamics
of a building, commonly referred to as a thermal model. This is typically a heat balance
equation that describes the evolution of the internal temperature within a building in
response to various physical processes [Bacher and Madsen 2011]. Having a thermal
model enables an HVAC controller to make more informed decisions on when to turn on
the HVAC system; it can determine how a building would respond to heating or cooling
and how long it would take for a building to reach the set-point temperature. Within
the AI literature, little research exists on the development of accurate, robust, and
adaptive thermal models that can accurately model the thermal dynamics of homes.
This is important because a poor thermal model, if used within an MPC algorithm or
within an MDP for HVAC optimization, will generate suboptimal heating or cooling
plans. In other words, these algorithms will fail to optimally control the heating or
cooling actions. Consequently, a householder may experience high discomfort. In both
cases, this would lead to a loss of confidence in the operation of the HVAC system.
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Substantive research on the development of thermal models does exist in the building
science literature, where one of the most common approaches for statistically modeling
the thermal dynamics of buildings is to explicitly include all the physical elements
that influence the evolution of the internal temperature. These models are referred
to as gray-box models and have been shown to be accurate at modeling the thermal
dynamics in various settings [Mady et al. 2011; Jimenez and Madsen 2008; Aswani
et al. 2012; Andersen et al. 2000; Privara et al. 2013].1 Although other statistical
modeling approaches, such as subspace identification and MPC-relevant identification,
have been proposed [Privara et al. 2013], gray-box models have been shown to be
competitive with these approaches at generating predictions of internal temperature
[Privara et al. 2013]. In addition, all elements within a gray-box model correspond
to a specific physical element within a building, which helps in the interpretability
of the models [Bacher and Madsen 2011]. Furthermore, efficient techniques exist for
model identification, inference, and parameter estimation in gray-box models, which
facilitates their application to data from a wide variety of buildings [Madsen and Holst
1995; Bacher and Madsen 2011; Andersen et al. 2000].

The simplest gray-box model, subsequently referred to as the Ti model, captures
two key dynamics: the heat from the heating system and the leakage of heat to the
ambient environment outside the building. However, more complex models have also
been proposed, which incrementally incorporate the effect of various physical factors
such as the lags in the building’s heating system (denoted as the TiTh model), its
envelope (denoted as the TiTeTh model), and sensor lags (denoted as the TiTeThTs
model) [Bacher and Madsen 2011] (we refer the reader to Appendix A for a detailed
description of these models). Such models can have several parameters, and as they
become increasingly complex, the number of parameters in the models proportionately
increases. Now, these parameters are typically learned from the data collected from a
building using least-squares fitting or maximum likelihood estimation [Privara et al.
2012]. However, such learning becomes more difficult as more parameters are incorpo-
rated in a model [Fernández Slezak et al. 2010]. Moreover, models with poor estimated
parameters generate poor predictions of the internal temperature.

Another key limitation of existing gray-box models is that they require a complete
a priori specification of all the physical elements that influence the thermal dynamics
of a building [Privara et al. 2013]. This can be problematic, especially when modeling
the thermal dynamics of residential buildings, where additional dynamics can be in-
duced by human activities. To explain this further, domestic activities such as cooking
or the deployment of an additional heater during a cold spell can contribute a sig-
nificant amount of extra heat, while an open window can cause additional heat loss.
Since the incidence of these additional dynamics cannot be fully known a priori, they
cannot be explicitly represented within a model. Typically, any additional factor that
influences the thermal dynamics but that has not been explicitly included in the model
gets accommodated as the variance of a Wiener noise process, or the stochastic noise
term [Yu et al. 2012; Bacher and Madsen 2011]. However, this is only legitimate if the
additional factor is uncorrelated across time lags and has white noise properties. Un-
fortunately, in practice, this assumption is often violated. For instance, a thermal lag
between the heater coming on and the temperature rising, if not explicitly included in

1Previously, gray-box models have been classified into two categories [Privara et al. 2013]. Probabilistic
semiphysical models have a stochastic noise term [Bacher and Madsen 2011]. In contrast, models that do not
include a stochastic noise term are termed deterministic gray-box models. In this article, we only consider
the former. Explicitly including a noise term in the model allows us to more effectively cope with any process
or measurement noise that can impair the ability of a model to generate accurate internal temperature
predictions.
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the process model, will induce structure in the model’s residual [Durbin and Koopman
2001]. Such a residual will have statistically significant correlation across several time
lags. Similarly, during cold spells, a householder may employ an additional heater that
will contribute additional heat, which, if not explicitly modeled, will also result in the
residual having structure and violating the white noise property. In contrast, we believe
that an adaptive model should be capable of modeling any additional factors that have
not been specified initially from the data. Existing gray-box models lack such flexibility.

Finally, the most mature work on gray-box modeling to date has empirically demon-
strated the accuracy of the models only at fitting observed data [Bacher and Madsen
2011; Andersen et al. 2000]. However, it is possible for a model to fit the observed data
very well but generate poor predictions on unseen inputs [Bishop 2006; Cawley and
Talbot 2010]. This process is known as overfitting. Existing gray-box models have not
been thoroughly evaluated on their ability to generate accurate predictions of internal
temperature. Consequently, they may not generalize well.

To address the aforementioned limitations, we introduce a novel model for the ther-
mal dynamics of buildings. In particular, we employ latent force models (LFMs) to
model the thermal dynamics of a building [Álvarez et al. 2009]. LFMs have previously
demonstrated their utility in diverse application areas of AI such as computational bi-
ology, understanding motion patterns, and target tracking [Álvarez et al. 2009; Álvarez
et al. 2010; Hartikainen and Särkkä 2011]. In LFMs, the physical knowledge of a dy-
namic system is represented as one or more coupled differential equations. These are
combined with a data-driven framework in which physical factors that affect the dy-
namics of the system are modeled using Gaussian processes (GPs) that are drawn from
distributions over the space of suitable functions [Álvarez et al. 2009; Álvarez et al.
2010; Hartikainen and Särkkä 2011]. This is particularly useful in situations where a
detailed specification of all physical factors that can affect the dynamics is not always
possible due to data being unavailable [Hartikainen and Särkkä 2011]. This is often
the situation in buildings, where the effect of physical elements such as the envelope
or the lags in the heating system are difficult to measure and recording data on human
activities that can affect the thermal dynamics is impractical.

In this article, we extend the standard LFM framework to develop latent force ther-
mal models of buildings, which we refer to as LFM-TM. This is based on augmenting
the simple gray-box thermal model described previously with a time-varying residual,
ε(t), which attempts to model the latent forces in a building that can influence the
evolution of the internal temperature and cause alterations in the thermal dynamics.
These latent forces include (1) all a priori unknown residual dynamics induced by hu-
man activity and (2) the effect of the physical elements such as a building’s envelope or
the lags in its heating system. To explain this further, in the LFM-TM, some knowledge
of the physics of thermal dynamics in a building is explicitly incorporated, with ε(t)
modeling the effect of the unobserved physical elements such as envelopes and lags,
as well as human-induced additional thermal dynamics. To achieve this, we assume
that ε(t) is a function drawn from a GP prior, which is subsequently learned when the
LFM-TM is applied to real data. At the end of the learning stage, ε(t) is able to capture a
model of the residual dynamics. Overall, the LFM-TM has fewer parameters than some
of the more complex gray-box models discussed earlier. As shown later in this article
(in Sections 5 and 6, respectively), its reduced representation does not have a detri-
mental effect on its ability to generate accurate predictions of internal temperature in
comparison with the more complex gray-box models.

We use a sequential inference scheme for the LFM-TM that was originally developed
for the LFM [Hartikainen and Särkkä 2010]. Standard inference in LFM is computa-
tionally expensive and scales as O(D3N3), where D is the dimensionality of the state
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in the LFM and N is the total time over which observations are recorded [Hartikainen
and Särkkä 2011]. In contrast, sequential inference for the LFM is more efficient as
it reduces the complexity to O(D3N). The inference scheme we adopt is based on a
state-space representation of the LFM, which can be solved using standard tools such
as the Kalman filter [Hartikainen and Särkkä 2010].

To demonstrate the utility of our LFM-TM, we apply it to model the thermal dynam-
ics of residential buildings. In contrast with office or commercial buildings, modeling
the thermal dynamics of residential buildings has received relatively little attention.
In particular, most existing work has only been tested on simulated data [Yu et al.
2012; Rogers et al. 2011]. Comparatively less research exists on thermal modeling of
residential buildings using real data [Mozer et al. 1996].

Noting this, we first apply LFM-TM to an existing dataset (referred to as the data
from FlexHouse), which has previously been used in the development of a range of gray-
box thermal models [Bacher and Madsen 2011]. However, FlexHouse is an experimental
residential building and does not have any occupants. Consequently, it is not possible
to test how human-induced activity in a home can affect the performance of our LFM-
TM. To address this issue, we also address the development of thermal models of
residential buildings inhabited by householders. Specifically, we instrumented homes
of university staff to collect home heating data. In both cases, we show that LFM-TM
is able to explain the observed data much better than previously specified gray-box
models. This results in LFM-TM yielding significantly higher log-likelihoods over the
forecast sample than existing models. Furthermore, not only does the LFM-TM have
a simpler structure, with fewer parameters and no loss of efficacy in comparison with
existing gray-box models, but also we show that it outperforms them by generating
much better internal temperature predictions.

In summary, we advance the state of the art in the following ways:

—We extend the LFM paradigm to develop LFM-TMs, an adaptive gray-box model of
the thermal dynamics of a building. It can be used to model the thermal dynamics of
a building without requiring a priori knowledge of all the physical elements that can
have an effect on the thermal dynamics. It generates accurate internal temperature
predictions in the face of human activities, which can interplay with the physical
elements in altering the thermal dynamics. This makes it particularly suited for
modeling the thermal dynamics of residential buildings.

—On an established dataset [Bacher and Madsen 2011], we demonstrate that LFM-TM
yields log-likelihoods that are almost 17% greater than the best-performing gray-box
model. Furthermore, it generates one-step predictions that are at least 25% more
accurate.

—On data collected from two different homes with occupants, we show that LFM-TM
yields log-likelihoods that are at least 38% greater than the best-performing gray-box
model. It also generates day-ahead predictions, which are at least 14% more accurate
in comparison with existing gray-box models. Finally, we observe that LFM-TM is
able to explain a greater proportion of the variance in the future observations.

The remainder of this article is structured as follows. In Section 2, we introduce
standard LFMs. In Section 3, we described the development of LFM-TM. Next, in
Section 4, we describe how we acquired the data for all the experiments presented in the
article. In Section 5, we apply LFM-TM to a standard previously published dataset and
demonstrate its superiority over competing gray-box models. We then apply the LFM-
TM to modeling the thermal dynamics of real homes, which is described in Section 6.
Section 7 concludes.
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2. BACKGROUND ON LATENT FORCE MODELS

Latent force models have received considerable interest as they combine underlying
physical knowledge of a system with data-driven models expressed as Bayesian non-
parametric Gaussian process priors [Álvarez et al. 2009; Hartikainen and Särkkä
2010]. We describe the LFMs in detail in Section 2.1. Subsequently, in Section 2.2,
we explain an efficient sequential inference scheme for inference in an LFM. Finally,
in Section 2.3, we describe how inference and predictions are undertaken as per this
scheme.

2.1. Latent Force Models

Consider a physical system consisting of a single output process x(t) that is modeled as
a linear first-order differential equation:

A
dx(t)

dt
+ κx(t) =

R∑
r=1

S1,rur(t), (1)

where ur(t) are driving processes that have an effect on the behavior of x(t). These
processes are not observed and hence they are also referred to as latent forces. In order
to correctly accommodate these unknown forces, they are given independent GP priors
ur(t) ∼ GP(m(t), kur (t, t′)), r = 1, . . . , R, where m(t) is an appropriate mean function
(taken usually to be zero without loss of generality) and kur (t, t′) a suitably chosen
covariance function.

As described in Álvarez et al. [2009] inference in this approach is based on closed-
form computation of the covariance functions of x(t) and dx(t)/dt and all the required
cross-covariances by solving the differential equation. It is possible to represent dif-
ferential equations of the type in Equation (1) as state-space models, which in case of
Equation (1) can be done as follows:

(1) Define state and input vectors as x(t) = (x(t), dx(t)/dt) and u(t) = (u1(t) . . . uR(t))T .
(2) Define matrices

F =
(

0 1
− κ

A 0

)
(2)

and

L =
(

0 · · · 0
S1,1

A · · · S1,R
A

)
. (3)

This model can be written in the form
dx(t)

dt
= Fx(t) + Lu(t). (4)

The differential equation then has the following solution:

x(t) = �(t)x(t0) +
∫ t

t0
�(t − s)Lu(s)ds, (5)

where �(τ ) denotes the matrix exponential �(τ ) = exp(F τ ). The required covariance
terms can now be evaluated as follows:

E[x(t)x(t′)] = �(t − t0)P0
x�(t′ − t0)T

+
∫ t′

t0

∫ t

t0
�(t − s)LKuu(s, s′)LT �(t′ − s′)T dsds′,

(6)
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where P0
x is the prior covariance of x(t) and Kuu(s, s′) is the joint covariance of all the

latent forces between time instants s and s′. Since we assume independence across
forces, Kuu(s, s′) is block diagonal.

If the covariance functions of the latent forces are modeled by squared exponential
covariance functions,

kur (τ ) = exp
(

−τ 2

l2
r

)
, τ = t − t′, r = 1 . . . R, (7)

then the covariance functions kyi ,xj (t, t′), kxi ,xj (t, t′), kxi ,ur (t, t′), and kyi ,ur (t, t′) can be solved
analytically for certain output models, such as Equation (1). This enables the usage of
standard GP regression techniques for predicting the values of the state x(t) as well as
estimating the necessary covariance functions [Rasmussen and Williams 2005].

However, for most other covariance functions, difficulties reside in the evaluation of
the double integral over the driving force covariances in Equation (6) that are required
to build the GP prior over the target variable, x(t). One has to always solve for the nec-
essary covariance functions when constructing new output models, and currently such
solutions exist only for squared exponential covariance functions. In addition, integrat-
ing over matrix exponentials is also computationally expensive. A further drawback
of the direct GP regression solution is that the computational complexity scales as
O(D3N3), where N is the number of time instances in the observations and D is the
number of data dimensions. All these reasons can impose serious restrictions on the
generality of this modeling framework.

To address the issues of tractability, as well as the high computational cost associ-
ated with inference in LFMs, a sequential inference scheme based on computationally
efficient techniques is presented in Hartikainen and Särkkä [2011]. In the next section,
we briefly introduce this core concept of sequential inference in LFMs in general.

2.2. Sequential Inference for Latent Force Models

To remedy the problems described in the previous section, in Hartikainen and Särkkä
[2010], a technique is proposed for formulating GP priors on the components r =
1, . . . , R of u(t) as a multivariate linear time-invariant (LTI) stochastic differential
equation (SDE) model of the form

dzr(t)
dt

= Fz,r zr(t) + Lz,r wz,r(t), (8)

where zr(t) = (ur(t) dur (t)
dt · · · ddr−1ur (t)

dtdr−1 )T and

Fz,r =

⎛
⎜⎜⎝

0 1
. . . . . .

0 1
−a0

r · · · −adr−2
r −adr−1

r

⎞
⎟⎟⎠, Lz,r =

⎛
⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎠.

By choosing the coefficients a0
r , . . . , adr−1

r , the spectral density qr of white noise process
wz,r(t), and the dimensionality dr of zr(t) appropriately, the dynamic model on ur(t) can
be chosen to correspond to a GP prior with a certain stationary covariance function.

As described in Hartikainen and Särkkä [2010], the coefficients a0
r , . . . , adr−1

r are
found by initially taking the Fourier transform of both sides of Equation (8). The
coefficients can then be expressed in terms of the spectral density of the latent force
kernel, k, provided that its spectral density, S(ω), can be written as a rational function
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of ω2:

S(ω) = (constant)
(polynomial in ω2)

(9)

The inverse power spectrum is then approximated by a polynomial series from which
the transfer function of an equivalent stable Markov process for the kernel can be
inferred along with the corresponding spectral density of the white noise process.
The stochastic differential equation coefficients are then calculated from the transfer
function.

Here, we consider covariance functions in the Whittle-Matérn family [Hartikainen
and Särkkä 2010; Rasmussen and Williams 2005]:

kν(τ ) = σ 2 21−ν

	(ν)

(√
2ν

l
τ

)ν

Kν

(√
2ν

l
τ

)
,

where l and σ 2 are the length scale and magnitude hyperparameters controlling the
overall correlation scale and variability of the process, Kν is a modified Bessel function
of the second kind, and ν is a parameter controlling the smoothness of the process.
In line with previous applications, we limit our view to cases in which ν = dr + 1/2
and 	 is the gamma function. This class of covariance functions is particularly useful
since it contains the exponential and the squared exponential covariance functions as
special cases (ν = 1/2 and ν → ∞). The key property of this model class is that it has
an analytic state-space representation since its spectral density S(ω) can be written
as a rational function of ω2 [Hartikainen and Särkkä 2010]. The mathematical forms
for S(ω) and kur (τ ) that result from choosing small values of dr for the Matérn class of
covariance functions can be found in Hartikainen and Särkkä [2010].

The GP prior models of the form in Equation (8) can be straightforwardly combined
with the output model of Equation (4) to form a joint model:

dxa(t)
dt

= Faxa(t) + La wa(t), (10)

where we have defined an augmented state vector xa(t) = (x(t)T z1(t)T · · · zR(t)T )T ,
and the matrices Fa and La are constructed such that they operate on the augmented
state appropriately.

2.3. Posterior Inference and Predictions

The LTI SDE model in Equation (10) has the desirable property that it can be analyti-
cally converted to a discrete-time dynamic model as

xk = A(
tk)xk−1 + qk−1, qk−1 ∼ N (0, Q(
tk)), (11)

where the transition and process noise matrices can be solved on the time instances
T = {tk}N

k=1 as

A(
tk) = �a(
tk),
tk = tk − tk−1,�a(τ ) = exp(Fa τ ),

Q(
tk) =
∫ 
tk

0
�a(
tk − τ ) La Qc LT

a �a(
tk − τ )T dτ,
(12)

where Qc is the spectral density of white noise process wa(t) in Equation (10).
So far we have not discussed how the output process is observed. The standard

approach is to use the linear Gaussian model:

yk = Hkxk + rk, rk ∼ N (0, Rk), (13)

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 1, Article 7, Publication date: March 2015.



Modeling the Thermal Dynamics of Buildings: A Latent-Force-Model-Based Approach 7:9

where the matrix Hk collects the observed components from the state vector. Now the
filtered posterior distribution of the state p(xk|y1:k, θ ) = N (mk, Pk) on the selected time
points can be solved exactly with the classical Kalman filter (KF) and the smoothing
distribution p(xk|y1:N, θ ) = N (m̃k, P̃k) with the Rauch-Tung-Striebel smoother (RTSS)
(see Simon [2006]). Both the KF and RTSS scale as O(D3N), where D is the dimension-
ality of x and N the number of time points. The estimation should be started from the
Gaussian prior p(x0|θ ) = N (m0, P0), where it is reasonable to set the covariance matrix
to be block diagonal of the form P0 = blkdiag(P0

x, P0
u1

, . . . , P0
uR

), where P0
x is the joint

prior covariance for the nonaugmented output process x(t) chosen according to a priori
knowledge. The blocks P0

ur
for the R latent forces can be set to stationary covariances

by numerically solving the algebraic Riccati equations as [Grewal and Andrews 2001]

dPur

dt
= Fz,r Pur + Pur FT

z,r + Lz,r qr LT
z,r = 0. (14)

In this context, the hyperparameters of the covariance function are learned by opti-
mizing the marginal likelihood of the observations as

p(y|θ ) =
N∏

k=1

p(yk|yk−1, θ ). (15)

3. LATENT FORCE THERMAL MODELS

Fundamentally, LFM-TM is derived from the Ti model described in Bacher and Madsen
[2011], to which an extra term, which we refer to as the learned residual, is added. This
term can model any a priori unknown additional dynamics. This makes it possible to
use the LFM-TM in situations where human-induced activity can suddenly change the
thermal dynamics of a building, as is often the case in domestic buildings or residential
homes. LFM-TM, in essence, is a gray-box model, which is augmented with a residual
that can accommodate the effect of the latent forces seen in real data.

To illustrate the LFM-TM, we start by specifying the following thermal model of
a home represented as a linear first-order DE, which is adapted from Ti (refer to
Appendix A) in Bacher and Madsen [2011] as

dTint(t)
dt

= 1
Ci

ηh(t) + 1
Ci Ria

(
Text(t) − Tint(t)

) + σidωi + ε(t). (16)

Equation (16), in essence, is a stochastic linear first-order differential equation, where
we have introduced an additional term ε(t). This is an unknown time-varying residual
function that is introduced to capture all factors in the built environment, which in-
fluence the thermal dynamics but are not accommodated within Ti. Such phenomena
include lags in a heating system or the effect of an additional heater. In particular,
Equation (16) can be viewed as an LFM with an unknown time-varying residual latent
force ε(t), and not random noise.

LFM-TM is also an extension of the Ti gray-box model that avoids the need to
introduce additional states such as envelopes and sensors. In existing gray-box models,
these elements are introduced mainly to derive a better fit to the data obtained from
buildings, but they yield models of increased complexity [Andersen et al. 2000]. We will
demonstrate that by eliminating additional states and replacing them by one single
time-varying driving force, LFM-TM performs better than previous models at fitting
the data observed from residential buildings.

Now as per the LFM machinery described in Álvarez et al. [2009], we assume that
the residual is a GP having a stationary covariance function as per ε(t) ∼ GP(0, k(t, t′)),
where k(t, t′) can be any stationary covariance function. For the GP prior on ε(t), we
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use a Matérn covariance function described in Rasmussen and Williams [2005]. We
make this choice because this covariance function does not impose any unrealistic
smoothness constraints and has a more flexible parameterization compared to other
covariance functions such as the squared-exponential covariance function [Rasmussen
and Williams 2005]. As demonstrated later, this confers a definite advantage in our
application, where ε(t) can show precipitous changes in structure, which a GP with
a squared-exponential covariance function will not accurately model. Furthermore,
by altering the parameterization of the Matérn covariance function (by varying the
ν parameter of a Matérn covariance function), it is possible to model residuals that
range from having white noise properties (ν = 1/2) to those that are correlated across
long time scales (ν = 5/2). Finally, in Equation (16), Text is a vector of known inputs
representing the external temperature, which needs to be accommodated with the
process model.

Once LFM-TM has been specified, as per the LFM machinery, we derive an aug-
mented model for the LFM-TM given as

dxa(t)
dt

= Faxa(t) + Gu(t) + La wa(t), (17)

where the augmented state vector is xa(t) = [Tint(t), z(t)T )]T . Here, z(t) incorporates
the residual within the process model, u(t) represents the input vector at t, and G is
the input coupling matrix.

In Equation (16), u(t) = [Text(t)] and G = [ 1
Ci Ria

]. The matrices Fa and La for the
LFM-TM are

Fa =

⎛
⎜⎜⎜⎝

− 1
Ci

1 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 −a0 −a1 −a2

⎞
⎟⎟⎟⎠, La =

( 0
0
1

)
.

Here, dr = 3; that is, the dimensionality of zr(t) = 3. Equation (16) can be extended to
accommodate any known additional inputs. For instance, one might incorporate solar
radiation in Equation (16). In this case, Equation (16) becomes

dTint(t)
dt

= 1
Ci

ηh(t) + 1
Ci Ria

(
Text(t) − Tint(t)

) + Aw

Ci
ηs(t) + ε(t) + σidωi, (18)

where u(t) = [Text(t), ηs]T and G = [ 1
Ci Ria

, Aw

Ci
]T .

Next, we describe how inference is done for Equation (17) as per the sequential infer-
ence scheme explained previously. In doing so, Equation (17) is analytically converted
to a discrete-time dynamic model as per Simon [2006]:

xa(k) = A(
tk)xa(k − 1) + B(
tk)u(k − 1) + qk−1, qk−1 ∼ N (0, Q(
tk)), (19)

where the corresponding transition matrix A and the input coupling matrix B can be
solved on the discrete-time instances T = {tk}N

k=1 as

A(
tk) = exp(Fa τ ), B(
tk) = A[I − exp(−Fa
tk)]F−1
a G.

Furthermore, the process noise matrices Q is

Q(
tk) =
∫ 
tk

0
�a(
tk − τ ) La Qc LT

a �a(
tk − τ )T dτ, (20)
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Fig. 1. Simulated example showing the performance of a KF (left) and LFM-TM (right) at modeling an
extra heat source.

where Qc is the spectral density of the white noise process wa(t) in Equation (17). The
observation model is given by

yk = Hkxk + rk, rk ∼ N (0, Rk), (21)

where the matrix Hk collects the observed components from the state vector.
In all applications of the LFM-TM described subsequently in this article, the time

evolution of the internal temperature during parameter learning and for the purposes
of generating predictions at selected time points is solved analytically with the KF.
First of all, maximum likelihood is used to learn the thermal parameters θ , as well
as the GP’s hyperparameters, {σ, l}. The internal temperature is estimated as follows.
First, the KF is initialized with a best-guess internal temperature value. The initial
covariance as explained earlier is block diagonal with a diagonal matrix over the tem-
perature components including the solution to the appropriate Riccati equation for the
Matérn model of the residual as presented in Hartikainen and Särkkä [2010]. The KF
is then used to predict the next state xa at the end of the current time interval t as per
Equation (19). The prediction step is conditioned on the value of the predicted heating
action at the previous time step. The KF predict and update steps are then repeated,
∀t ∈ N. The culmination of these steps also results in the residual being learned from
the data. In later sections, we will see that the residual in effect models the innovation
or the error at the end of each KF predict step. We illustrate the core idea behind LFM-
TM with a simple example. Figure 1(a) shows a simulated example of running a simple
gray-box model, where a latent force (LF) in the form of a piecewise constant heat
source is introduced to represent an additional heater in a home between Time = 0.3
and Time = 0.6. This latent force is shown in the lowest subplot of Figure 1(a). The esti-
mated internal temperature from this model (based on inference using a KF) is shown
in the top subplot, along with the error, labeled as Error (C), in the middle subplot of
Figure 1(a). This error is in effect the KF’s innovation and can also be construed as
the model’s residual. We see that the extra heat source induces a large error in the
estimation of the internal temperature as shown in the top subplot. The KF is unable
to fully accommodate this additional dynamic in its process model and induces a
pronounced error.

Next, an LFM-TM is applied to the same data and it is able to accurately model this
constant heat source as shown in Figure 1(b). The learned residual, ε(t), in the lowest
subplot of Figure 1(b) accurately models the constant heat source. As a result, the error
as shown in the middle subplot of Figure 1(b) is close to zero. ε(t) is able to capture the
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Fig. 2. FlexHouse data.

inherent (piecewise constant) structure of the latent force. It is also correlated across
all the time lags over which the additional heat is introduced. To generate Figure 1(b),
we use the sequential inference scheme discussed earlier.

4. DATA COLLECTION

We demonstrate the efficacy of the LFM-TM approach at accurately modeling the
thermal dynamics of buildings. We evaluate our approach on two different datasets:

(1) Our first dataset is composed of data collected from an experimental energy system,
Syslab, that consists of a specially designed building referred to as FlexHouse.
Data from FlexHouse has been previously used for thermal modeling purposes (see
Bacher and Madsen [2011] for more details). Although this data was not publicly
made available, we digitized the data plots and extracted the time series from the
digitized plots. Figure 2 plots this data, which is composed of the following time
series:
—A vector of observations of the internal temperature, Tint (in ◦C)
—Vector of logged external air temperature readings, Text (in ◦C)
—Total heat input from the electrical heaters in the building, ηh (in kW)
—Total solar irradiance measured on-site, ηs (in kW per m2)

(2) Our second dataset consists of data collected from a bespoke installation of heat-
ing equipment within multiple residential buildings undertaken in Southampton,
United Kingdom. These homes represent standard UK 1930s building stock, which
are heated by gas boilers and water radiators. We also collected historic as well as
forecasts of external temperature at the location of these homes from an external
website.2 A GP regression model is used to interpolate over missing data points
in the external temperature time series. The following time series are created and
subsequently used in the development of thermal models of the homes as described
in Section 6.
—Observations of the internal temperature (in ◦C) are used in the measurement

model of Ti, TiTh, and TiTeTh and the LFM-TM models.
—Logged external temperature readings are used as an input (Text) to every ther-

mal model.

2http://www.wunderground.com.
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—Logged data on boiler activity in each home yields ηon(t) ∈ [
0, 1

]
,∀t ∈ N—the

proportion of each 10-minute thermostat cycle during which the boiler on.
All data is down-sampled to a 10-minute resolution to be in sync with a boiler cycle.

5. EXPERIMENTS ON THE FLEXHOUSE DATA

To evaluate the efficacy and the accuracy of LFM-TM, we first apply it to model the
FlexHouse data. For this dataset, we use the LFM-TM described in Equation (18), as
solar irradiance is logged and subsequently used as an input. We also reimplemented
their previously published Ti, TiTh, TiTeTh, and TiTeThTs gray-box models for compar-
ison [Bacher and Madsen 2011]. Our aim is to remain consistent with the experiments
presented in this article, and hence, we present a like-for-like comparison between
their work and ours.

Three different metrics are used to compare the LFM-TM with the aforementioned
gray-box models in this context:

(1) Log-likelihood (logL): The log-likelihood assesses how well a model that is param-
eterized by θ fits the observed data. Since a Kalman filter is used for the inference
of all models, we assume a Gaussian likelihood in all cases. Then the likelihood is
calculated using the prediction ŷ(t|t − 1) as per

logL = log
N∏

t=2

1

(2π )1/2 (σy(t|t−1) + σr)
e
− (y(t)−ŷ(t|t−1))2

2(σy(t|t−1)+σr )2 , (22)

where σy(t|t−1) is the variance of ŷ(t|t − 1) and σr is the observation noise variance.
(2) One step-ahead prediction error (pred-rmse): We measure the one-step-ahead pre-

diction error between the predicted and observed internal temperature given as

pred-rmse =
√∑N

t=2(y(t) − ŷ(t|t − 1))2

N − 2
. (23)

pred-rmse estimates the distance between the mean predictions and the observa-
tions. The closer the pred-rmse is to zero, the better is the model.

(3) Normalized prediction error (npe): We use a third metric to evaluate how much of
the variance in the observations is explained by each thermal model. We refer to
this metric as the normalized prediction error or npe, which is given as per

npe = pred-rmse2

∑N
t=2(y(t)−ȳ(t))2

N−2

, (24)

where pred-rmse is calculated as per Equation (23). In effect, npe explains how
much of the variability in the observations our model captures. By using this
metric, it is possible assess how uncertain a model’s predictions are. The lower the
value of npe is, the higher the confidence one can have in a model’s predictions;
models for which npe > 1 have poor predictive ability, whereas models with npe 
 1
are excellent.

We now turn to the results in Table I. As can be seen, LFM-TM yields the best results
on all metrics. It yields the highest log-likelihood and the least one-step prediction
error and explains a far greater percentage of the variability in the future observations
in comparison with all the other gray-box models. As the complexity of the gray-box
models is increased, the model fit improves as well. The best-performing gray-box
model is TiThTeTs. LFM-TM improves upon this model on all metrics. The logL is
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Table I. Comparison of LFM-TM with Existing Gray-Box Models
Applied to FlexHouse Data

Model logL pred-rmse npe
Ti 544 0.1410 0.0017

TiTh 1301 0.1335 0.0016
TiThTe 1480 0.1195 0.0012

TiThTeTs 1541 0.1143 0.00099
LFM-TM 1802 0.0852 0.00062

Fig. 3. Estimate of the internal temperature, the estimation error, and the learned residual for LFM-TM.

14.5% greater; the prediction error, pred-rmse, is 25% lower; and npe is 37% lower.
Figure 3 plots the estimate of the internal temperature (Ti) as per LFM-TM, along
with the one-step-ahead prediction error at each time step. Furthermore, the plot
also shows the time-varying residual ε(t) that is inferred by LFM-TM. Effectively, the
addition of this GP process model to Ti results in the LFM-TM being able to model the
residual process explicitly, unlike the Ti model without the GP process, which attempts
to accommodate the residual process as variance in the process noise. To explain this
further, note that there is a small spike every time the heater is switched on because of
a lag between the heater coming on and the temperature rising. LFM-TM accurately
models this lag. This is seen as corresponding spikes in the learned residual. Visually
the learned residual appears to be smooth, which leads us to conclude that the LFM-TM
is able to distinguish between modeling essential structure from modeling noise.

In comparison, Figure 4 plots the outputs of the Ti and TiTh models without the GP
process model. Also, in Figure 5, the outputs of the TiTeTh and TiTeThTs models are
shown. Here, additional states representing the building envelope and the sensor lead
to further improvements in the model fit, with corresponding reductions in pred-rmse.
Specifically, it can be noted that it is the introduction of the building envelope that
results in the most significant reduction in pred-rmse. Thus, a building’s envelope sig-
nificantly affects the thermal dynamics of the internal temperature through conduc-
tion and convection effects. Modeling the temperature sensor leads to a small further
improvement.

However, the LFM-TM not only fits the data more accurately in comparison with the
competing gray-box models but also requires fewer parameters and little knowledge of
the physical elements of a building, which have an effect the thermal dynamics. The
residual ε(t) captures the effects of the lags in the heating system, the envelope, and
the sensor that are explicitly represented in the comparable gray-box models. Table II
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Fig. 4. Estimate of the internal temperature and the resultant estimation error for Ti (top) and TiTh
(bottom) models.

presents the total number of parameters in the various models. From this, it is possible
to conclude that the LFM-TM, in spite of having a relatively simple structure and fewer
parameters, is able to accurately model the data.

6. EXPERIMENTS ON RESIDENTIAL DATA

In this section, we present the results of applying the LFM-TM approach to thermal
modeling of real homes. We first describe how the LFM-TM is applied to the data
collected from real homes described in Section 4. Next, we compare the LFM-TM
with gray-box models. Specifically, for each home, we develop bespoke of Ti, TiTh, and
TiTeTh gray-box models and then demonstrate that the LFM-TM has improved efficacy
as compared to these models.

In Section 4, we explained how the logged data on the boiler activity in each home
yields ηon(t) ∈ [0, 1]—the proportion of each 10-minute thermostat cycle during which
the boiler is on. This is multiplied by a parameter, rh (the total heater power output in
kW), to yield ηh(t), t ∈ N for each thermal model. rh for a home is unknown a priori but
is learned from the data.
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Fig. 5. Estimate of the internal temperature and the resultant estimation error for TiTeTh (top) and
TiTeThTs (bottom) models.

Table II. Number of Parameters in the
Thermal Models

Model No. Parameters
Ti 5

TiTh 9
TiThTe 14

TiThTeTs 18
LFM-TM 7

We did not log solar irradiance at the site where the homes are located since most
of the data collection was done over winter months. Hence, in all the thermal mod-
els considered henceforth, solar irradiance is not used as an input. More specifically,
we use Ti, TiTh, and TiTeTh. We do not explicitly model the effect of the temper-
ature sensor in this setting either, since all internal temperature observations are
directly logged by the thermostat. In the absence of solar irradiance, the LFM-TM in
Equation (16) is chosen for all experiments. In Equation (16), ε(t) is drawn from a GP
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Table III. Comparison of LFM-TM with Existing Gray-Box Models

Model Mean logL Mean pred-rmse Mean npe
Ti 829 0.8534 0.9111

Home 1 TiTh 1049 1.2215 1.0428
TiThTe 1149 1.0938 0.5424

LFM-TM 1584 0.7292 0.5034
Ti 703 1.6354 0.76

TiTh 831 1.7442 0.8255
Home 2 TiThTe 891 1.7985 0.7315

LFM-TM 1340 1.4787 0.6361

prior, that is, ε(t) ∼ GP(0, k(t, t′)), where k(t, t′). Since ε(t) has a zero-mean covariance
function, any additional dynamics in the data are fully accounted for by k(t, t′).

Three different metrics are used to compare our LFM-TM with the existing gray-box
models (Ti, TiTh, and TiTeTh). In addition to the logL described in the previous section,
we first consider the pred-rmse, which is slightly reformed in this setting to deal with
day-ahead predictions and is given as

pred-rmse =
√∑N

t=2(y(t) − ŷ(t))2

N − 2
. (25)

Equation (25) calculates the error between the predicted and actual internal tempera-
tures for the entire day ahead. This is estimated by running the thermal model forward
over the day-ahead period. Unlike the experiments on the FlexHouse data, we choose
to perform day-ahead predictions in this setting, in order to thoroughly evaluate how
well each model generalizes to unseen inputs over a future time horizon. More specifi-
cally, day ahead is chosen as the horizon in accordance with previous work, where the
predictive ability of thermal models has been assessed on the basis of their ability to
generate accurate predictions of internal temperatures for the entire day ahead [Yu
et al. 2012; Rogers et al. 2011]. Finally, we use the normalized prediction error or npe,
which is now calculated as

npe = pred-rmse2

∑N
t=2(y(t)−ȳ(t))2

N−2

, (26)

where pred-rmse is calculated as per Equation (25). For all experiments on the data
from homes, we follow a standard sliding-window approach. Each model is trained on
4 days of training data. This is followed by day-ahead predictions generated for the
fifth day. The window is then moved forward by a day, and day-ahead predictions for
the sixth day are estimated. At the start, all parameters are learned using maximum
likelihood estimation. In Section 3, we described how the estimation step is undertaken
using a KF. The culmination of the training period results in a model of the residual
being learned. The log-likelihood of each model is subsequently recorded.

Next, the thermal model is run forward 1 day to generate day-ahead predictions of
the internal temperature. We generate temperature predictions over each 10-minute
interval corresponding to a boiler cycle resulting in 144 time instants in total for each
day. Day-ahead predictions are performed using the KF. The KF predicts the next state
xa(t) conditioned on xa(t − 1) and the inputs Text(t − 1) and ηh(t − 1). This process is
iterated t = 2 to 144 to generate predictions for the entire day ahead. At the end of the
prediction step, we estimate pred-rmse and npe to assess the accuracy of the day-ahead
predictions and therefore quantify the predictive ability of each model. We generate
day-ahead predictions for 14 days in total for each home. Table III presents the mean
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Table IV. The Total Number of Parameters
in Each Model

Model No. Parameters
Ti 5

TiTh 9
TiThTe 13

LFM-TM 6

Table V. Mean CPU Time in Seconds Required to Learn Parameters
in Each Model for Varying Number of Days of Training Data

No. Days Training Data
Model 1 2 3 4

Ti 3.9 8.1 11.7 19.2
TiTh 23.7 55.9 89.6 82.9

TiThTe 67.3 303.4 370.7 463.1
LFM-TM 10.9 22.9 30 35.4

log-likelihood, logL; the mean prediction error, pred-rmse; and the mean normalized
prediction error, npe, obtained from two different homes. These results are averages
over all 14 days.

We observe that as the complexity of the gray-box models is increased by adding
extra states, the model fit shows corresponding improvements. In Home 1, the best-
performing gray-box model is TiThTe. Our LFM-TM outperforms TiThTe on all three
metrics. It yields higher log-likelihoods and lower prediction errors and explains more
of the variability in the future (day-ahead) internal temperature observations in com-
parison with the gray-box models. In the case of Home 1, the improvements in logL,
pred-rmse, and npe are 38%, 14.5%, and 7%, respectively, over TiThTe.

In the case of Home 2, among all competing gray-box models, Ti yields the best
mean pred-rmse estimate, while TiThTe yields the best mean logL and npe estimates.
LFM-TM outperforms both models: logL is 33.5% greater, pred-rmse is 9.6% lower,
and npe is 13% lower in comparison with the corresponding gray-box model that yields
the best estimate on each metric. These improvements are seen in spite of LFM-TM
having significantly fewer parameters than the more complex TiTh and TiThTe models
as shown in Table IV. The time taken to learn the parameters of the LFM-TM is
significantly less than the more complex grey-box models as shown in Table V. Figure 6
is a plot from applying the LFM-TM to data from one of the homes. The top subplot
shows the estimate of the internal temperature during the training period over the first
4 days, followed by the day-ahead predictions of the internal temperature on the fifth
day. The vertical line divides the training and prediction periods. In the subplot in the
middle, the prediction error over both training and prediction periods is plotted. The
lowest subplot displays the time-varying residual ε(t) that is learned by the LFM-TM
during the training period. Also shown is ε(t) over the prediction period. Along similar
lines to what was observed in the experiments in Section 5, ε(t) accurately models the
error during the training periods. In effect, the residual models the error or the inno-
vation induced by the KF at each time step. This is equivalent to modeling the errors
that are induced by the inadequacies in the Ti when residual dynamics are present.

Figure 6 also shows that the predicted residual in the lowest subplot is smoother than
the residual over the training phase, with the mean value reaching zero in Figure 6
within a few time steps. This is because during the prediction phase, no observations
of internal temperature are available to the KF and the update step at each time
iteration is effectively skipped. This results in just the initial residual values getting
propagated through the KF process model over the first few steps in the prediction
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Fig. 6. Estimate of the internal temperature, the estimation error, and the learned residual for LFM-TM.

period. The reason that the residual reverts to zero in Figure 6 is because the length
scale of the GP’s (Matérn) covariance function learned during the training period is
small. Consequently, when no observations are available, the correlations between
successive states of the residual during the prediction phase quickly decay to zero.

From these empirical tests, we observed that overall, introducing a residual has a sig-
nificant impact on the accuracy of the day-ahead predictions. In Table III, the Ti model,
which is essentially the LFM-TM without a residual, generates significantly poorer pre-
dictions in comparison to the LFM-TM. The introduction of the residual in LFM-TM
leads to better process models being learned over the training phase. Subsequently,
when the same process model is used to generate day-ahead predictions, it yields more
accurate predictions. In comparison, Figures 7 and 8 plot the output of all gray-box
models. As shown in Figure 7, the addition of the heater state in TiTh leads to an im-
provement in the model fit and reduction in the errors over Ti. Furthermore, as shown
in Figure 8, the addition of a further state representing the building envelope yields
even greater improvements in model fit. This is similar to the trend observed in the
previous section. However, despite these improvements in the physical thermal model,
they are unable to match the predictive accuracy of LFM-TM. As evident in Figures 7
and 8, there are large deviations between the predictions of the gray-box models and
the observed internal temperature. Furthermore, the uncertainty in the predictions
grows over time, with both TiTh and TiTeTh inducing large uncertainty in predictions.

Finally, our experiments in the home setting also show that the performance of all
models at generating one-step (10-minute)-ahead predictions are comparable and the
differences are not statistically significant. Consequently, no definitive conclusion can
be drawn as to which model is better, in this setting, based on simply evaluating their
predictive performance over such a short time window. In contrast, by comparing the
models over a longer day-ahead window, we are clearly able to highlight the significant
improvements yielded by LFM-TM.

Table IV presents the total number of parameters in all the models that are tested.
As can be seen, LFM-TM needs fewer parameters than TiTh and TiTeTh. The extra
parameter in LFM-TM, in comparison with the Ti model, is due to the introduction of
the hyperparameters in the Matérn covariance function, as described in Section 2.1.
Table IV presents the results of assessing the impact of the number of parameters in
each model on the time it takes to train each model. The results presented here are
the mean cpu time in seconds that is required to train each model for varying number
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Fig. 7. Estimate of the internal temperature and the estimation error for Ti and TiTh models.

of days of training data. The results are averages over 14 days. For estimating the
cpu times, we implemented each model in MATLAB. We used maximum likelihood
estimation using conjugate gradients for learning the parameters. The configuration
of the learning algorithm was the same for all runs.

It is clearly evident from the results presented in Table IV and Table IV that as the
complexity of the gray-box models increases, the number of parameters correspondingly
increases and more time is required to learn the parameters. In a model such as TiThTe,
learning parameters takes longer than 7 minutes. This is because adding complexity
by introducing additional parameters results in more degrees of freedom in a model,
which results in parameter estimation taking longer to converge. It is important to
emphasize that although 7 minutes may not be prohibitively long, in deployment, this
computation is likely to be done in the cloud for multiple homes.3 Hence, the LFM-TM
will yield a 10-fold reduction in the cloud computation used in comparison with TiTh
and TiThTe, which across multiple homes is significant. Finally, the results also show
that LFM-TM’s performance is a tradeoff between the Ti model, whose parameters can

3For instance, all computation in the Nest thermostat is done in the cloud.
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Fig. 8. Estimate of the internal temperature and the estimation error for TiTeTh model.

be learned quickly, and the more complex TiTh and TiThTe models, whose parameters
take longer to run.

From these experiments, it is possible to conclude that although the residual ε(t)
is not defined on the basis of the actual physical elements of a home, it is in effect
capturing the effect of these elements, such as the structural envelope and lags in
the heating system, which need to be explicitly represented in the process models of
existing gray-box models. Consequently, the LFM-TM, in spite of having a relatively
simple structure and fewer parameters than the more complex gray-box models, is
accurate and improves on their predictive performance. This makes it an attractive
model to implement in practice. Further speedups can be achieved by implementing it
in compiled code.

To conclude, our experiments have enabled us to systematically evaluate the per-
formance of existing gray-box models at modeling data collected from real homes. In
previous work, such evaluation either was limited to data from a single residential
building or used simulated data only [Mozer et al. 1996; Yu et al. 2012; Rogers et al.
2011].

7. CONCLUSIONS

We propose a novel model for the thermal dynamics of buildings, which we refer to
as the latent force thermal model, or LFM-TM. We showed how the LFM-TM is an
adaptation of an existing Ti gray-box model that is augmented with a time-varying
residual, ε(t), which is modeled as a Gaussian process. We thoroughly evaluated the
ability of the LFM-TM to produce accurate thermal models based on data collected
from two different settings: (1) data from FlexHouse and (2) data collected from homes
located on our university campus, which we specifically instrumented to collect heating
data. The first setting represents an experimental house without any occupants. Thus,
only the physics of the building is of salience in this setting. In contrast, the homes in
the second setting are inhabited by occupants. This enables us to evaluate how well
LFM-TM performs at modeling the thermal dynamics when human-induced dynamics
interplay with the physics of a residential building.

In both these settings, we showed that our LFM-TM outperforms all existing gray-box
models in terms of fitting observed data, generating accurate day-ahead predictions and
explaining more of the variability in the future observations. Furthermore, we showed
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how LFM-TM yields improvements in spite of having a simpler structure compared to
the more complex gray-box models, as the residual is able to accommodate the effect of
various physical elements that are explicitly modeled in gray-box models.

From the evidence presented in this article, it is possible to conclude that the key
advantage of the LFM-TM is that it can be used of -the shelf to model the thermal
dynamics of a building without requiring any detailed understanding of the structure
of a building. A possible limitation of LFM-TM is that unlike existing gray-box models,
where the physical elements within a building are explicitly represented, LFM-TM’s
residual soaks up the effect of these physical elements, leading to a slight loss of inter-
pretability. However, in the development of intelligent controllers for HVAC systems
of buildings, having accurate internal temperature predictions from a thermal model
is more important than having a complete understanding of all the physical elements
within a building or an accurate specification of the physical parameters [Privara et al.
2013]. This enables an intelligent controller to formulate a more efficient heating plan
that can potentially save money, as well as reduce carbon emissions, without impacting
the comfort of the occupants of a building.

As a next step, we intend to embed LFM-TM within an intelligent-model-based
predictive controller for home heating that will be deployed in each home, which will
attempt to minimize consumption without impacting householders’ comfort [Mozer
et al. 1996]. We believe that a controller equipped with LFM-TM will yield significantly
better heating plans, which achieve a better tradeoff between cost and comfort in
comparison with existing work. Moreover, an accurate thermal model is also important
for cooling. We are currently investigating how LFM-TM can be embedded within an
HVAC controller for cooling a home in a hot country. More specifically, we are calibrating
LFM-TM to data collected from a set of homes in Saudi Arabia. However, discussion of
this specific application is beyond the scope of this article and will be covered in detail
in a separate publication. Finally, validation of the learned residual by communicating
with the householders to understand the correspondence between their activities and
the residual induced in the data will also be addressed as future work.

APPENDIX

A. GRAY-BOX MODELS

We describe gray-box models of the thermal dynamics of buildings. This approach com-
bines physical knowledge of a building (thermodynamics within a building) with actual
data collected from the same setting in the development of a thermal model [Jimenez
and Madsen 2008]. This combination facilitates insight into otherwise hidden informa-
tion about the physical properties of a building [Bacher and Madsen 2011]. Although
it is possible to represent a gray-box model graphically as a resistor capacitor network
(RC network) [Bacher and Madsen 2011], for consistency and ease of interpretability,
we present their differential forms in this article.

We start with a description of the overall heat dynamics within any built environment
that can be expressed as a heat balance equation as per Madsen and Holst [1995]:

Ca
dTint

dt
=

∑
∅in +

∑
∅out, (27)

where a day has been divided into a set of discrete time slots, t ∈ N. Here, Ca (J/◦C)
represents the heat capacity, and the internal temperature of a residential building at
time t is Tint(t) ∈ R

+. ∅ (W) denotes the heat transfer that influences the overall heat
dynamics. To capture the heat dynamics more accurately, it is necessary to deconstruct
∅ into the appropriate convective, conductive, and radiative heat transfer components
[Madsen and Holst 1995]. We now provide a brief description of a number of gray-box
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models that have been proposed previously [Bacher and Madsen 2011], which will be
used for the experiments described later in this article.

A.1. The Ti Model

One can derive a simple thermal model that only considers the heat input by the
heating system and the convective heat transfer (leakage) to the ambient air outside
as per Equation (28):

dTint(t)
dt

= 1
Ci

ηh(t) + 1
Ci Ria

(
Text(t) − Tint(t)

) + σidωi. (28)

In this article, we refer to this model as the T i model and the coefficients in this
thermal model are

—Ci: the heat capacity for the interior of a built environment (kWh/◦C)
—Ria: thermal resistance between the interior and the ambient (◦C/kW)

We also denote the external temperature (in ◦C) as Text(t) ∈ R
+ and define the

variable ηh(t) to be the total heater output (in kW) at t. Equation (28) is a linear first-
order stochastic differential equation. ωi is a standard Wiener noise process having
incremental variance σ 2

i that represents the noise in the physical process.
In some situations, it might be possible to record observations of the global solar

irradiance incident on a building. In such cases, T i can be augmented as per

dTint(t)
dt

= 1
Ci

ηh(t) + 1
Ci Ria

(
Text(t) − Tint(t)

) + Aw

Ci
ηs(t) + σidωi, (29)

where ηs(t) is the measured solar irradiance at a building (kW/m2) and Aw is the effective
window area of the building (m2). One can continue to add more complexity by adding
additional states, resulting in thermal models of increasing complexity, all represented
as coupled stochastic first-order differential equations.

A.2. The TiTh Model

This model is derived by augmenting Ti with an additional state that captures the
temperature of the heaters as per

dTint(t)
dt

= 1
Ci Ria

(
Text(t) − Tint(t)

) + 1
Ci Rih

(
Th(t) − Tint(t)

) + σidωi

dTh(t)
dt

= 1
ChRih

(
Tint(t) − Th(t)

) + 1
Ch

ηh(t) + σhdωh. (30)

We refer to this model as the TiTh model. Th(t) represents the temperature of the
internal heaters (in ◦C) at t. It is a latent variable that is not directly observed, but
inferred from the data. The additional parameters in this model are

—Ch: the heat capacity of the internal heaters in a building (kWh/◦C)
—Rih: thermal resistance between the interior and the heaters (◦C/kW)

Again, if observations of the global solar irradiance incident on a building are avail-
able, Equation (30) can be augmented to derive

dTint(t)
dt

= 1
Ci Ria

(
Text(t) − Tint(t)

) + 1
Ci Rih

(
Th(t) − Tint(t)

) + Aw

Ci
ηs(t) + σidωi

dTh(t)
dt

= 1
ChRih

(
Tint(t) − Th(t)

) + 1
Ch

ηh(t) + σhdωh. (31)

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 1, Article 7, Publication date: March 2015.



7:24 S. Ghosh et al.

Again, in Equations (30) and (31), ωi and ωh are the corresponding Wiener noise
processes.

A.3. The TiTeTh Model

This model is derived by augmenting TiTh with a further state that captures the state
of the building envelope as per

dTint(t)
dt

= 1
Ci Rih

(
Th(t) − Tint(t)

) + 1
Ci Rie

(
Tenv(t) − Tint(t)

) + σidωi

dTenv(t)
dt

= 1
Ce Rie

(
Tint(t) − Tenv(t)

) + 1
Ce Rea

(
Text(t) − Tenv(t)

) + σedωe

dTh(t)
dt

= 1
ChRih

(
Tint(t) − Th(t)

) + 1
Ch

ηh(t) + σhdωh. (32)

Here, Tenv(t) represents the temperature of the building envelope (in ◦C) at t. It too
is not directly observed, but inferred from the data. The additional parameters in this
model are

—Ce: the heat capacity of the building envelope (kWh/◦C)
—Rie: thermal resistance between the interior and the envelope (◦C/kW)
—Rea: thermal resistance between the envelope and the ambient air (◦C/kW)

Again, if observations of the global solar irradiance incident on a building are avail-
able, Equation (30) can be augmented as per

dTint(t)
dt

= 1
Ci Rih

(
Th(t) − Tint(t)

) + 1
Ci Rie

(
Tenv(t) − Tint(t)

) + σidωi

dTenv(t)
dt

= 1
Ce Rie

(
Tint(t) − Tenv(t)

) + 1
Ce Rea

(
Text(t) − Tenv(t)

)

+ Ae

Ce
ηs(t) + σedωe

dTh(t)
dt

= 1
ChRih

(
Tint(t) − Th(t)

) + 1
Ch

ηh(t) + σhdωh. (33)

Here, Ae is the effective area through which solar radiation enters the building
envelope (in m2). In Equations (32) and (33), ωi, ωe, and ωh are the corresponding
Wiener noise processes.
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A.4. The TiTeThTs Model

This model is derived by augmenting TiTeThTs with the state of the sensor that mea-
sures the ambient internal temperature as per

dTint(t)
dt

= 1
Ci Rih

(
Th(t) − Tint(t)

) + 1
Ci Rie

(
Tenv(t) − Tint(t)

)
+ 1

Ci Ris

(
Ts(t) − Tint(t)

) + σidωi

dTenv(t)
dt

= 1
Ce Rie

(
Tint(t) − Tenv(t)

) + 1
Ce Rea

(
Text(t) − Tenv(t)

) + σedωe

dTh(t)
dt

= 1
ChRih

(
Tint(t) − Th(t)

) + 1
Ch

ηh(t) + σhdωh

dTs(t)
dt

= 1
Cs Ris

(
Tint(t) − Ts(t)

) + σsdωs. (34)

Here, Ts(t) represents the temperature of the temperature sensor (in ◦C) at t. The
additional parameters in this model are

—Cs: the heat capacity of the sensor (kWh/◦C)
—Ris: thermal resistance between the interior and the sensor (◦C/kW)

Again, if observations of the global solar irradiance incident on a building are avail-
able, Equation (30) can be augmented to derive

dTint(t)
dt

= 1
Ci Rih

(
Th(t) − Tint(t)

) + 1
Ci Rie

(
Tenv(t) − Tint(t)

)
+ 1

Ci Ris

(
Ts(t) − Tint(t)

) + σidωi

dTenv(t)
dt

= 1
Ce Rie

(
Tint(t) − Tenv(t)

) + 1
Ce Rea

(
Text(t) − Tenv(t)

)
+ Ae

Ce
ηs(t) + σedωe

dTh(t)
dt

= 1
ChRih

(
Tint(t) − Th(t)

) + 1
Ch

ηh(t) + σhdωh

dTs(t)
dt

= 1
Cs Ris

(
Tint(t) − Ts(t)

) + σsdωs. (35)

In Equation (34) and Equation (35), ωs is an additional Wiener noise process. For
all the gray-box models described previously, barring the TiTeThTs model, the corre-
sponding observation model is given by

y(t) = Tint(t) + e(t), (36)

where e(t) is the measurement noise and is assumed to be i.i.d Gaussian.
For all the TiTeThTs models, the corresponding observation model is given by

y(t) = Ts(t) + e(t). (37)
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A.5. Estimation and Parameter Learning in Existing Gray-Box Models

The stochastic differential equation representations of the aforementioned gray-box
models can also be represented as continuous time state-space models as per

dX = AXdt + BUdt + dW (38)

Y = CX + DU + e. (39)

Here, Equations (38) and (39) represent the process and observation models, respec-
tively; X is the state vector that contains all the state variables; and U contains all the
exogenous inputs (external temperature, solar radiation, etc.). The matrices A, B, C,
and D are all parameters (θ ) of the state-space model [Simon 2006], while W and e
represent the process and observation (Wiener) noise processes. In Equation (39), the
observations over time t, Y = [Y (1), . . . , Y (t)], are assumed to be noise-corrupted ob-
servations of the state X = [X(1), . . . , X(t)]. Since Equations (38) and (39) are linear
continuous-time models, they can be appropriately discretized, with states estimated
using a Kalman filter [Jimenez and Madsen 2008]. The parameters θ can be learned
from data using a range of different techniques such as least squares, maximum like-
lihood, or subspace identification [Privara et al. 2012]. Further details on parameter
estimation in state-space models can be found in Madsen and Holst [1995], and Bacher
and Madsen [2011].

All the aforementioned gray-box models described in this section are developed based
on an understanding of the various physical elements that make up the physical lay-
out of a building. Each model introduces additional dynamics through extra states and
parameters. In effect, the physical factors that influence thermal dynamics are grad-
ually accommodated in models of increasing complexity. However, for these models
to be deployed in practice, all the factors that influence the evolution of the internal
temperature have to be specified a priori. In the event that there are any unspecified
residual dynamics, existing gray-box models will erroneously attempt to accommodate
them as the variance in the process noise having white noise properties. However, as
explained in Section 1, this assumption is invalid in many cases, causing structure to
appear in the model’s residual. To address this limitation, we introduced LFM-TM in
Section 3, which is essentially the Ti model augmented with a time-varying term that
is specifically introduced to model a residual having structure.
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