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Affine Formation Maneuver Control of

Multi-Agent Systems
Shiyu Zhao

Abstract—A multi-agent formation control task usually con-
sists of two subtasks. The first is to steer the agents to form a
desired geometric pattern and the second is to achieve desired
collective maneuvers so that the centroid, orientation, scale, and
other geometric parameters of the formation can be changed
continuously. This paper proposes a novel affine formation
maneuver control approach to achieve the two subtasks simulta-
neously. The proposed approach relies on stress matrices, which
can be viewed as generalized graph Laplacian matrices with
both positive and negative edge weights. The proposed control
laws can track any target formation that is a time-varying
affine transformation of a nominal configuration. The centroid,
orientation, scales in different directions, and even geometric
pattern of the formation can all be changed continuously. The
desired formation maneuvers are only known by a small number
of agents called leaders, and the rest agents called followers
only need to follow the leaders. The proposed control laws are
globally stable and do not require global reference frames if the
required measurements can be measured in each agent’s local
reference frame.

Index Terms—Formation control, multi-agent systems, affine
transformation, stress matrices

I. INTRODUCTION

A multi-agent formation control task is usually constituted

by two subtasks. The first is formation shape control, which

is to steer a group of mobile agents to form a desired

geometric pattern given any initial configuration. The second

is formation maneuver control, which is to steer the mobile

agents to maneuver as a whole such that the centroid, orienta-

tion, scale, and other geometric parameters of the formation

can be changed continuously. Formation maneuver control

is important for a formation of agents to achieve desired

navigation tasks or dynamically respond to the environment

to, for example, avoid obstacles.

Multi-agent formation control has been studied by various

approaches in the last two decades. The approaches proposed

in the early stage such as behavior-based ones can handle

complicated formation tasks subject to various agent dynam-

ics and constraints (see, for example, [1]–[4]). However, the

system convergence of these approaches is difficult to prove

mathematically [4]. From the practical point of view, system

convergence is vital for a multi-agent control system because

it guarantees the system to behave as expected.

Since the successful application of the consensus theory

in formation control [5], [6], tremendous research efforts

have been devoted to developing convergence-guaranteed
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formation control approaches (see [7], [8] for recent sur-

veys). These existing formation control approaches can be

classified by how the target formation is defined. For exam-

ple, displacement-based, distance-based, and bearing-based

approaches are three conventional approaches that define

target formations by using constant constraints on inter-agent

displacements, distances, and bearings, respectively [8]–[10].

The invariance of the constant constraints of the target forma-

tion has critical impact on the formation maneuverability. In

particular, inter-agent displacement constraints are invariant

to formation translation. As a result, displacement-based for-

mation control laws can be applied to track target formations

with time-varying translations [11], [12]. However, the scale

or orientation of the formation is difficult to control using this

approach because changing the scale or orientation requires

changing the displacement constraints. As a comparison,

distance-based control laws can be applied to track target

formations with time-varying translations and orientations

[13], [14], but it is difficult to track time-varying formation

scales. Bearing-based control laws can track formations with

time-varying translations and scales [9], [10], but it is difficult

to track time-varying orientations.

Motivated by the limitations of the three approaches,

researchers have proposed some methods to modify them in

order to achieve desired formation maneuvers. For example,

the work in [15] modified the displacement-based formation

control approach by adding a formation scale estimation

mechanism, and the work in [16] modified the distance-based

formation control approach to allow the final formation has

an unspecified scale. These modifications, however, usually

result in complicated control and estimation problems, and

may require additional sensing or communication abilities for

each agent. An approach that can track general time-varying

formations has been proposed recently in [17]. However, the

desired maneuver of each agent must be pre-specified in this

approach.

Very recently, researchers have proposed some approaches

defining target formations using new types of constant con-

straints such as local bearings [18], barycentric coordinates

[19], complex Laplacians [20], [21], and stress matrices

[22]. These approaches are appealing due to the enhanced

invariance of the new constraints. For example, a complex

Laplacian is invariant to the translation, rotation, and scaling

variations of a formation. As a result, the approach based on

complex Laplacians can be applied to simultaneously achieve

translational, rotational, and scaling formation maneuvers.

This approach is, however, merely applicable to formation

control in two dimensions.
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Among these new approaches, the one based on stress

matrices is promising to achieve general formation maneu-

vers. The stress matrix of a formation can be viewed as

a generalized graph Laplacian. Its structure is determined

by the underlying graph, but the values of the entries are

jointly determined by the formation configuration. Unlike

conventional graph Laplacian matrices, in a stress matrix the

weight of an edge may be positive, negative, or zero. Stress

matrices have been applied in stabilization of stationary target

formations in [22], but their great potential to solve formation

maneuver control has not been explored yet. In fact, the

stress matrix is invariant to any affine transformation of the

formation configuration. An affine transformation is a general

linear transformation that may correspond to a translation,

rotation, scaling, shear, or compositions of them. As a result,

stress matrices provide a powerful tool to achieve various

formation maneuver behaviors.

In this paper, we adopt the leader-follower strategy to solve

the problem of formation maneuver control based on stress

matrices. The main contributions of this paper are threefold.

First, we address the leader selection problem and introduce

the notion of affine formation localizability that indicates

whether or not the selected leaders can fully control the

entire formation to achieve desired affine transformations.

Necessary and sufficient conditions for affine localizability

are proved. Second, we propose a variety of distributed

control laws for single- and double-integrator agent dynamics

based on different types of measurements. With the proposed

control laws, not only the desired formation pattern can be

achieved, any time-varying affine transformation such as a

translation, rotation, scaling, or even shape deformation of

the formation can be tracked. The proposed control laws

are globally stable and applicable to formation control in

arbitrary dimensions. Third, we propose control laws for uni-

cycle models subject to linear and angular velocity saturation

constraints. The proposed nonlinear control laws are proved

to be globally stable in the case of stationary leaders. It

is worth mentioning that the proposed control laws do not

require global reference frames if the desired measurements

can be measured in each agent’s local reference frame.

The paper is organized as follows. Notations and prelim-

inaries are given in Section II. In Section III, the problem

of affine formation control is described and necessary results

are presented. The problem of leader selection and affine

localizability are studied in Section IV. Control laws for

single- and double-integrator agent dynamics are proposed

in Section V. Nonlinear control laws for unicycle agents are

proposed in Section VI. The implementation of the control

laws and simulation examples are given in Section VII.

Conclusions are drawn in Section VIII.

II. NOTATIONS AND PRELIMINARIES

This section presents some notations and preliminary re-

sults that will be used throughout this paper.

A. Notations for Formations

Consider a group of n mobile agents in R
d where d ≥ 2

and n ≥ d + 1. Let pi ∈ R
d be the position of agent i

and p = [pT1 , . . . , p
T
n ]

T ∈ R
dn be the configuration of all

the agents. The interaction among the agents is described

by a fixed graph G = (V, E) which consists of a vertex set

V = {1, . . . , n} and an edge set E ⊆ V × V . The edge

(i, j) ∈ E indicates that agent i can receive information from

agent j, and agent j is a neighbor of i. The set of neighbors

of vertex i is Ni = {j ∈ V : (i, j) ∈ E}. This paper only

consider undirected graphs where (i, j) ∈ E ⇔ (j, i) ∈ E .

Let m be the number of undirected edges. An orientation

of an undirected graph is the assignment of a direction to

each undirected edge. An oriented graph is an undirected

graph together with an orientation. The incidence matrix H ∈
R

m×n of an oriented graph is the {0,±1}-matrix with rows

indexed by edges and columns by vertices [9].

A formation, denoted as (G, p), is the graph G with its ver-

tex i mapped to point pi. Without loss of generality, suppose

the first nℓ agents are leaders and the rest nf = n−nℓ agents

are followers. Let Vℓ = {1, . . . , nℓ} and Vf = V \ Vℓ be the

sets of leaders and followers, respectively. The positions of

the leaders and followers are denoted as pℓ = [pT1 , . . . , p
T
nℓ
]T

and pf = [pTnℓ+1, . . . , p
T
n ]

T , respectively.

Denote ⊗ as the Kronecker product and vec(·) the vector

obtained by stacking all the columns of a matrix. A useful

property of vec(·) is that vec(ABC) = (CT ⊗ A)vec(B),
where A,B,C are real matrices of appropriate dimensions.

As a special yet useful consequence, x ⊗ y = vec(yxT ) for

any real vectors x, y, because vec(yxT ) = vec(y1xT ) =
(x⊗y)vec(1) = x⊗y. The two properties will be frequently

used in this paper.

Let Null(·) and Col(·) be the null and column spaces of

a matrix, respectively. Let ‖ · ‖ be the Euclidian norm of

a vector or the spectral norm of a matrix, Id ∈ R
d×d the

identity matrix, 1n ∈ R
n the vector with all entries equal

to one, and dim(·) the dimension of a linear space. For any

vector x, diag(x) denotes the diagonal matrix whose iith
diagonal entry is the ith entry of x.

B. Affine Span and Affine Dependence

Given a set of points {pi}
n
i=1 in R

d, the affine span of

these points, denoted as S , is

S =

{
n∑

i=1

aipi : ai ∈ R for all i and

n∑

i=1

ai = 1

}

.

For example, the affine span of two distinct points is the 1-

dimensional line passing through the two points. The affine

span of three points that are not collinear is the 2-dimensional

plane passing through the three points. The affine span of four

points that are not coplanar is R
3. If ai is restricted to be

nonnegative, affine span degenerates to convex hull.

Given any affine span, we can always translate it to contain

the origin to obtain a linear space. The dimension of the

obtained linear space is defined as the dimension of the affine
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span. If the dimension of the affine span is d, then we say

that these points affinely span R
d.

The set of points {pi}
n
i=1 are called affinely dependent if

there exists scalars {ai}
n
i=1 that are not all zero such that

∑n

i=1 aipi = 0 and
∑n

i=1 ai = 0, and affinely independent

otherwise. Define the configuration matrix P ∈ R
n×d and an

augmented matrix P̄ ∈ R
n×(d+1) as

P (p) =






pT1
...

pTn




 , P̄ (p) =






pT1 1
...

...

pTn 1




 = [P (p),1n],

where 1n , [1, . . . , 1]T ∈ R
n. By definition, {pi}

n
i=1 are

affinely dependent if and only if the rows of P̄ (p) are linearly

dependent, i.e., there exists a = [a1, . . . , an]
T such that

P̄T (p)a = 0; and {pi}
n
i=1 are affinely independent if and

only if the rows of P̄ (p) are linearly independent. Since P̄ (p)
has d+ 1 columns, there exist at most d+ 1 points that are

affinely independent in R
d.

If {pi}
n
i=1 affinely span R

d, there must exist d+ 1 points

that are affinely independent. As a result, P̄ (p) has d+1 rows

that are linearly independent and consequently rank(P̄ (p)) =
d+ 1. This useful result is given as a lemma.

Lemma 1 (Rank Condition for Affine Span). The set of

points {pi}
n
i=1 affinely span R

d if and only if n ≥ d+1 and

rank(P̄ (p)) = d+ 1.

C. Stress Matrices

For formation (G, p), a stress is a set of scalars,

{ωij}(i,j)∈E where ωij = ωji ∈ R, assigned to all the edges.

A stress is called an equilibrium stress [23]–[25] if it satisfies
∑

j∈Ni

ωij(pj − pi) = 0, i ∈ V. (1)

The mechanical interpretation of equilibrium stresses is as

follows. The value ωij represents an attracting force in edge

(i, j) when ωij > 0 and a repelling force when ωij < 0. The

vector ωij(xj−xi) represents the force applied on agent i by

agent j through edge (i, j). Thus, equation (1) means that the

forces applied on joint i by joints j ∈ Ni are balanced. See

Fig. 1 for an illustration. Denote ω = [ω1, . . . , ωm] ∈ R
m as

the stress vector where ωk corresponds to the kth undirected

edge (k = 1, . . . ,m). Note that equilibrium stresses can be

only determined up to a scalar factor. That means if ω is an

equilibrium stress, then kω is also an equilibrium stress for

any k ∈ R 6=0.

Equation (1) can be expressed in a matrix form as

(Ω⊗ Id)p = 0,

where Ω ∈ R
n×n is the stress matrix satisfying

[Ω]ij =







0, i 6= j, (i, j) /∈ E ,
−ωij , i 6= j, (i, j) ∈ E ,
∑

k∈Ni
ωik, i = j.

The stress matrix has a similar structure as graph Laplacian

matrices. The difference is that the weight for an edge in a

1 2

34

ω12 = 1

ω
2
3
=

1

ω34 = 1

ω
1
4
=

1

ω13
=
−
1 ω

24
=
−
1

Ω =







1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1







Fig. 1: An example to illustrate equilibrium stresses and stress matrices. In
this example, the four points form a square where the length of each side

is equal to 1 and the length of each diagonal chord is equal to
√
2. The

corresponding stress matrix is positive semi-definite and its eigenvalues are
{4, 0, 0, 0}.

stress matrix may be positive, negative, or zero whereas the

weight for an edge in a graph Laplacian is usually positive.

See Fig. 1 for an illustrative example of stress matrices.

The properties of stress matrices have intimate connections

to the structural rigidity of the formation. We next review

some necessary notions in the distance rigidity theory [23]–

[25]. In R
d, two formations (G, p) and (G, p′) are equivalent

if ‖pi − pj‖ = ‖p′i − p′j‖ for all (i, j) ∈ E , and congruent

if ‖pi − pj‖ = ‖p′i − p′j‖ for all i, j ∈ V . Formation (G, p)
is globally rigid if an arbitrary formation that is equivalent

to (G, p) is also congruent to it. Formation (G, p) in R
d is

universally rigid if it is globally rigid in any R
d1 where d1 ≥

d. A configuration is generic if the coordinates of all the

nodes do not satisfy any nontrivial equations with rational

coefficients [25, Section 7.2]. The following result establishes

the connection between stress matrices and universal rigidity.

Lemma 2 (Generic Universal Rigidity [23], [26], [27]).

Given an undirected graph G and a generic configuration p,

formation (G, p) is universally rigid if and only if there exists

a stress matrix Ω such that Ω is positive semi-definite and

rank(Ω) = n− d− 1.

III. PROBLEM STATEMENT OF AFFINE FORMATION

MANEUVER CONTROL

This section first defines the time-varying target formation

and then explores the properties of an important notion

termed affine image.

A. Time-Varying Target Formation

The objective of affine formation maneuver control is

to steer a group of agents to track the time-varying target

formation defined below.

Definition 1 (Target Formation). The time-varying config-

uration of the target formation has the form of

p∗(t) = [In ⊗A(t)]r + 1n ⊗ b(t),

where r = [rT1 , . . . , r
T
n ]

T = [rTℓ , r
T
f ]

T ∈ R
dn is a constant

configuration, and A(t) ∈ R
d×d and b(t) ∈ R

d are contin-

uous of t. The desired position of agent i ∈ V in the target

formation is p∗i (t) = A(t)ri + b(t).
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1 2

34

(a) Nominal

1

2

3

4

(b) Rotation

1 2

34

(c) Scaling

1 2

34

(d) Shear

1 2

34

(e)

1 2 34

(f)

Fig. 2: An illustration of affine transformations of a nominal configuration.
The formations in (b), (c), and (d) are obtained by rotating, scaling, and
shearing the original formation in (a), respectively. The formation (e) is
obtained from (d) by reducing the scale in the vertical direction. The
formation (f), where the four points are collinear, is obtained from (e) by
reducing the scale in the vertical direction to zero.

The constant configuration r represents a typical geometric

pattern that the formation would like to maintain. Here, r
is called the nominal configuration and (G, r) the nomi-

nal formation. The target configuration is actually a time-

varying affine transformation of the nominal configuration.

Affine transformation is a general linear transformation that

may correspond to a translation, rotation, scaling, shear, or

compositions of them. Note that shearing or scaling of the

formation in different directions would deform the formation

shape (see Fig. 2 for an illustration). Affine transformation

preserves straight lines and planes. As a result, collinear

(or coplanar) points remain collinear (or coplanar) after any

affine transformations. Parallel lines are also preserved by

affine transformations.

With the notion of the target formation, the problem to be

solved in this paper is to control the group of agents to track

the time-varying target configuration so that p(t) → p∗(t) as

t → ∞. A trivial control strategy to solve this problem is

to let each agent know A(t), b(t), and ri so that each agent

can track its individual reference trajectory. The disadvantage

of the strategy is that it requires A(t) and b(t) for all t to

be specified in advance and stored on each agent, which is

impractical because the formation is not able to dynamically

respond to unexpected situations such as pop-up obstacles.

In order to achieve the target formation in a distributed

manner, we adopt the leader-follower strategy, where the

desired formation maneuvers are merely known by a small

number of agents, called leaders, and the other agents, called

followers, only need to follow the motion of the leaders. As

will be shown later, the leaders’ positions will have a one-

to-one correspondence to the affine transformation (A, b).
Therefore, the affine transformation of the entire formation

is achieved by controlling the positions of the leaders. Since

the number of the leaders is usually small, in this work

we do not specifically design coordination control laws for

the leaders, and simply assume that they can be controlled

properly. In practice, the leaders may be controlled by human

operators or intelligent decision making programs. Suppose

the position of each leader is equal to the desired value in

the target formation, i.e., pℓ(t) = p∗ℓ (t) for all t. Then, the

control objective becomes steering the followers such that

pf (t) → p∗f (t) as t → ∞. In order to achieve the control

objective, we need to study an important notion termed affine

image in the rest of the section.

B. Affine Image of Nominal Configuration

The affine image of the nominal configuration is defined

as [22]

A(r) =
{
p ∈ R

dn : p = (In ⊗A)r + 1n ⊗ b,

A ∈ R
d×d, b ∈ R

d
}

=
{
p = [pT1 , . . . , p

T
n ]

T ∈ R
dn : pi = Ari + b,

A ∈ R
d×d, b ∈ R

d, i = 1, . . . , n.
}
.

The affine image is a set consisting of all the affine trans-

formations of the nominal configuration r. The time-varying

target configuration p∗(t) is in A(r) for all t.

The affine image A(r) is a linear subspace because it is

closed under addition and scalar multiplication. The dimen-

sion of A(r) is analyzed in the following lemma, which is a

fundamental result for the subsequent analysis in the paper.

Lemma 3 (Dimension of Affine Image). The dimension of

A(r) equals d2 + d if and only if {ri}
n
i=1 affinely span R

d.

Proof. Denote Eij ∈ R
d×d as a matrix with its ijth entry

equal to one and the others zero, and ei ∈ R
d a vector with

its ith entry equal to one and the others zero. Consider the

following d2 + d vectors

(In ⊗ Eij)r, i, j = 1, . . . , d; 1n ⊗ ei, i = 1, . . . , d. (2)

It is easy to verify that these vectors are all in A(r) and

any other vectors in A(r) can be expressed as a linear

combination of them. As a result, dim(A(r)) is equal to the

number of linearly independent vectors in (2).

Consider the set of coefficients αij (i, j = 1, . . . , d) and

βi (i = 1, . . . , d) that satisfy

d∑

i=1

d∑

j=1

αij(In ⊗ Eij)r +

d∑

i=1

βi(1n ⊗ ei) = 0. (3)

By using the properties that vec(ABC) = (CT ⊗A)vec(B)
for any real matrices A,B,C of appropriate dimensions and

x⊗ y = vec(yxT ) for any real vectors x, y, we have

(In ⊗ Eij)r = vec[(In ⊗ Eij)r]

= vec(EijP
T (r)In) = vec(EijP

T (r))

1n ⊗ ei = vec(1n ⊗ ei) = vec(ei1
T
n ).

As a result, equation (3) is equivalent to

d∑

i=1

d∑

j=1

αijEijP
T (r) +

d∑

i=1

βiei1
T
n = 0,
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which can be rewritten as
[

d∑

i=1

d∑

j=1

αijEij

d∑

i=1

βiei

]

︸ ︷︷ ︸

M∈Rd×(d+1)

[
PT (r)
1
T
n

]

︸ ︷︷ ︸

P̄T (r)

= 0.

Note that MP̄T (r) = 0 ⇔ P̄ (r)MT = 0.

(Sufficiency) If {ri}
n
i=1 affinely span R

d, it follows from

Lemma 1 that rank(P̄ (r)) = d+1 and hence Null(P̄ (r)) =
0. As a result, MT must be zero and hence all the coefficients

αij , βi are zero. It then follows that all the vectors in (2)

are linearly independent and hence dim(A(r)) = d2 + d.

(Necessity) If {ri}
n
i=1 do not affinely span R

d, there exist

nonzero vectors in Null(P̄ (r)). As a result, there exist

nonzero values of αij , βi such that P̄ (r)MT = 0, and

consequently the vectors in (2) are linearly dependent. Since

there are less than d2+d linearly independent vectors in (2),

dim(A(r)) < d2 + d.

Remark 1. The dimension of A(r) has also been analyzed

in [22, Lemma 3.1]. However, the conclusion in [22] that

dim(A(r)) = d2 + d if {ri}
n
i=1 “linearly” span R

d is

inaccurate, because the proof of [22, Lemma 3.1] merely

considers the linear dependency of (In ⊗ Eij)r (i, j =
1, . . . , d) without incorporating 1n ⊗ ei (i = 1, . . . , d).

Specifically, if {ri}
n
i=1 linearly span R

d, it can be proved

that (In ⊗ Eij)r (i, j = 1, . . . , d) are linearly independent,

but it is not sufficient to show all the vectors in (2) are

linearly independent. Lemma 3 corrects this inaccuracy and

generalizes the condition to be both necessary and sufficient.

When dim(A(r)) = d2 + d, any point in A(r) will corre-

spond to a unique pair of (A, b). When dim(A(r)) < d2+d,

for any p ∈ A(r), there exist an infinite number of (A, b)
satisfying p = (In⊗A)r+1n⊗b. More information on how

to compute A and b given any p ∈ A(r) can be found later

in Theorem 1 and Corollary 1.

Motivated by Lemma 3, we make the following assumption

on the nominal formation.

Assumption 1 (Affine Span of Nominal Formation). For

the nominal formation (G, r), assume {ri}
n
i=1 affinely span

R
d.

C. Affine Image as Null Space

This subsection explores under what conditions A(r) is

the null space of a matrix. In the sequel of the paper, we

write Ω(r) as Ω in short, and Ω always represents the stress

matrix of the nominal formation.

Lemma 4. For any nominal configuration r, it always holds

that

A(r) ⊆ Null(Ω⊗ Id), (4)

Col(P̄ (r)) ⊆ Null(Ω). (5)

Proof. First, since {ri}
n
i=1 satisfies (1), it can be verified

that {Ari + b}ni=1 also satisfies (1) for any A ∈ R
d×d

and b ∈ R
d. As a result, any point in A(r) is also in

Null(Ω⊗Id) and consequently A(r) ⊆ Null(Ω⊗Id). Second,

since r = vec(PT (r)), it follows from (Ω ⊗ Id)r = 0 that

(Ω ⊗ Id)vec(P
T (r)) = vec(IdP

T (r)ΩT ) = 0. As a result,

PT (r)ΩT = 0 ⇔ ΩP (r) = 0. Since Ω1n = 0, we have

ΩP̄ (r) = 0 and consequently Col(P̄ (r)) ⊆ Null(Ω).

Next we show when the equalities in (4)-(5) hold. In order

to do that, we make the following assumption on the nominal

formation.

Assumption 2 (Stress Matrix of Nominal Formation).

Assume that the nominal formation (G, r) has a positive semi-

definite stress matrix Ω satisfying rank(Ω) = n− d− 1.

Assumption 2 is satisfied if (G, r) is generically universally

rigid according to Lemma 2. This assumption may still be

valid even if r is not generic [28]. Figure 1 shows a nominal

formation that satisfies Assumption 2. The configuration of

this formation is not generic because the four agents are

located on a circle [25, Section 7.2].

The next result shows when the equalities in (4)-(5) hold.

Lemma 5 (Null Space of Stress Matrix). Under Assump-

tion 2, the following conditions are equivalent to each other:

1) {ri}
n
i=1 affinely span R

d.

2) Null(Ω⊗ Id) = A(r).
3) Null(Ω) = Col(P̄ (r)).

Proof. First, since A(r) ⊆ Null(Ω ⊗ Id) as shown in

Lemma 4, we have that Null(Ω⊗ Id) = A(r) if and only if

dim(Null(Ω ⊗ Id)) = dim(A(r)). Note that dim(Null(Ω ⊗
Id)) = d(d + 1) by Assumption 2. Since dim(A(r)) =
d(d+1) if and only if {ri}

n
i=1 affinely span R

d according to

Lemma 3, the equivalence between 1) and 2) follows. Second,

since Col(P̄ (r)) ⊆ Null(Ω) as shown in Lemma 4, we have

that Col(P̄ (r)) = Null(Ω) if and only if dim(Col(P̄ (r)) =
dim(Null(Ω)). Note that dim(Null(Ω)) = d + 1 by As-

sumption 2. Since dim(Col(P̄ (r))) = rank(P̄ (r)) and

rank(P̄ (r)) = d+ 1 if and only if {ri}
n
i=1 affinely span R

d

by Lemma 1, the equivalence between 1) and 3) follows.

IV. AFFINE LOCALIZABILITY AND LEADER SELECTION

This section studies the problem of leader selection. In

order to manipulate the entire formation through the leaders,

we must select sufficient and appropriate leaders. First of all,

we define a notion termed affine localizability.

Definition 2 (Affine Localizability). The nominal formation

(G, r) is affinely localizable by the leaders if for any p =
[pTℓ , p

T
f ]

T ∈ A(r), pf can be uniquely determined by pℓ.

Affine localizability indicates that if a configuration is

in A(r), then the positions of the leaders can uniquely

determine those of the followers. As will be shown later, it

is the key property to ensure the followers track any desired

affine transformation maneuvers. We next give a necessary

and sufficient condition of affine localizability.

Theorem 1 (Leader Selection for Affine Localizability).

Under Assumption 1, the nominal formation (G, r) is affinely

localizable if and only if {ri}i∈Vℓ
affinely span R

d.
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Proof. For any p ∈ A(r), there exist (A, b) such that

p1 = Ar1 + b,

...

pn = Arn + b.

Since Ari = vec(Ari) = [rTi ⊗ Id]vec(A), the above

equations can be rewritten as





p1
...

pn






︸ ︷︷ ︸

p

=






rT1 1
...

...

rTn 1






︸ ︷︷ ︸

P̄ (r)

⊗Id

[
vec(A)

b

]

︸ ︷︷ ︸

z∈Rd2+d

,

which can be partitioned to be

pℓ = (P̄ (rℓ)⊗ Id)z, (6)

pf = (P̄ (rf )⊗ Id)z. (7)

(Sufficiency) If {ri}i∈Vℓ
affinely span R

d, it follows from

Lemma 1 that rank(P̄ (rℓ)) = d+1. Then, z can be uniquely

determined as

z =
[(
P̄T (rℓ)P̄ (rℓ)

)−1
P̄T (rℓ)

]

⊗ Idpℓ. (8)

Then, pf can be uniquely determined using (7) and hence

the nominal formation is affinely localizable. (Necessity) If

{ri}i∈Vℓ
do not affinely span R

d, rank(P̄ (rℓ)) < d + 1
and there will be an infinite number of z satisfying (6). In

particular, if z∗ is a solution of (6), then z = z∗ + z0 with

z0 6= 0 and z0 ∈ Null(P̄ (rℓ)⊗ Id) is another solution of (6).

Assumption 1 implies that P̄ (r)⊗ Id is of full column rank.

As a result, z0 /∈ Null(P̄ (rf ) ⊗ Id) (otherwise, P̄ (r) ⊗ Id
is not of full column rank). Therefore, z = z∗ + z0 and

z = z∗ would yield different values of pf . Hence, pf cannot

be uniquely determined and hence the nominal formation is

not affinely localizable.

Theorem 1 suggests that any agents in the nominal forma-

tion that affinely span R
d can be selected as leaders to ensure

affine localizability. Since the affine span of R
d requires at

least d+ 1 points, the minimum number of leaders is d+ 1.

For example, we need at least 3 leaders in R
2, and at least

4 leaders in R
3. When there are exactly d+1 leaders, given

any leader positions pℓ, there always exists (A, b) solving

(6). When there are more than d + 1 leaders, the positions

of the leaders must be dependent on each other; otherwise,

there may not exist (A, b) solving (6), because (6) is an

overdetermined linear system in this case.

The leader selection problem has been studied in [22,

Theorems 7.1 and 7.2]. These results address under what

conditions A can be uniquely determined by some agents as

a rotational or identity matrix. Theorem 1 is a generalization

of these results in the sense that it addresses under what

conditions a general matrix A can be uniquely determined.

When the leaders affinely span R
d, there is an one-to-one

correspondence between the positions of the leaders and the

affine transformation (A, b). The next result shows how to

calculate (A, b) using the positions of the leaders.

Corollary 1 (Calculation of Affine Transformation). If

{ri}i∈Vℓ
affinely span R

d, for any p ∈ A(r), the correspond-

ing A and b can be uniquely determined by

A =

(
∑

i∈Vℓ

pir̃
T
i

)(
∑

i∈Vℓ

r̃ir̃
T
i

)−1

, (9)

b =
1

nℓ

∑

i∈Vℓ

pi −

(
∑

i∈Vℓ

pir̃
T
i

)(
∑

i∈Vℓ

r̃ir̃
T
i

)−1

r̄ (10)

where r̄ =
∑

i∈Vℓ
ri/nℓ and r̃i = ri − r̄.

Proof. This result can be proved in two ways. The first is to

solve (8) to obtain A and b. In this direction, note that

P̄T (pℓ)P̄ (pℓ) =

[ ∑

i∈Vℓ
rir

T
i

∑

i∈Vℓ
ri

∑

i∈Vℓ
rTi nℓ

]

.

The Schur complement of nℓ in the above matrix is ∆ =
∑

i∈Vℓ
rir

T
i − (

∑

i∈Vℓ
ri)(
∑

i∈Vℓ
ri)

T /nℓ. It can be verified

that ∆ =
∑

i∈Vℓ
r̃ir̃

T
i . By using the inverse of block matrices

[29, Equation 2.3], we obtain

(P̄T (pℓ)P̄ (pℓ))
−1 =

[
∆−1 −∆−1r̄

−r̄T∆−1 1/nℓ + r̄T∆−1r̄

]

.

It follows that

z = [(P̄T (pℓ)P̄ (pℓ))
−1P̄T (pℓ)]⊗ Idpℓ

=

[ ∑

i∈Vℓ
(∆−1r̃i)⊗ Idpi

∑

i∈Vℓ
pi/nℓ −

∑

i∈Vℓ
(r̄T∆−1r̃i)⊗ Idpi

]

.

As a result, vec(A) =
∑

i∈Vℓ
(∆−1r̃i) ⊗ Idpi =

vec(
∑

i∈Vℓ
pir̃

T
i ∆

−1), which implies (9), and b =
∑

i∈Vℓ
pi/nℓ −

∑

i∈Vℓ
(r̄T∆−1r̃i) ⊗ Idpi =

∑

i∈Vℓ
pi/nℓ −

∑

i∈Vℓ
pir̃

T
i ∆

−1r̄, which is (10).

The second way to prove is to directly substitute pi =
Ari + b into (9)-(10) to verify. In particular, rewrite pi as

pi = A(ri− r̄)+Ar̄+b := Ar̃i+c. Note that
∑

i∈Vℓ
r̃i = 0.

Substituting pi = Ar̃i+c into the right hand side of (9) leads

to A, which verifies (9). Substituting it into the right hand

side of (10) leads to c−Ar̄ = b, which verifies (10).

Remark 2. Corollary 1 also implies that {ri}i∈Vℓ
affinely

span R
d if and only if

∑

i∈Vℓ
r̃ir̃

T
i is nonsingular.

While Theorem 1 gives an intuitive condition for affine

localizability, we next give another mathematical condition

expressed in terms of stress matrices. This mathematical

condition will be widely used in the stability analysis of the

control laws proposed in the following sections. In the sequel

of the paper, denote Ω̄ = Ω ⊗ Id for notational simplicity.

Partition Ω̄ according to the partition of leaders and followers

as

Ω̄ =

[
Ω̄ℓℓ Ω̄ℓf

Ω̄fℓ Ω̄ff

]

,

where Ω̄ff ∈ R
(dnf )×(dnf ) and Ω̄fℓ ∈ R

(dnf )×(dnℓ).

Theorem 2 (Stress Condition for Affine Localizability).

Under Assumptions 1 and 2, the nominal formation (G, r) is

affinely localizable if and only if Ω̄ff is nonsingular. When
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Ω̄ff is nonsingular, for any p = [pTℓ , p
T
f ]

T ∈ A(r), pf can

be uniquely calculated as pf = −Ω̄−1
ff Ω̄fℓpℓ.

Proof. (Sufficiency) Since any p ∈ A(r) is also Null(Ω̄) by

Lemma 4, any p ∈ A(r) satisfies Ω̄p = 0 which implies

Ω̄ffpf + Ω̄fℓpℓ = 0. If Ω̄ff is nonsingular, pf can be

uniquely determined as pf = −Ω̄−1
ff Ω̄fℓpℓ and hence the

nominal formation is affinely localizable.

(Necessity) Assume that Ω̄ff is singular and hence there

exists a nonzero vector x0 ∈ R
dnf such that Ω̄ffx0 = 0. Let

x = [0, xT
0 ]

T ∈ R
dn. Then, xT Ω̄x = xT

0 Ω̄ffx0 = 0. Under

Assumptions 1 and 2, it follows from Lemma 5 that A(r) =
Null(Ω̄). As a result, for any p ∈ A(r) = Null(Ω̄), we have

(p+x)T Ω̄(p+x) = 0, and consequently p+x ∈ Null(Ω̄) =
A(r). Therefore, for any p ∈ A(r), p+x is also in A(r). Note

that p and p+x have the same leaders’ positions but different

followers’ positions because the first dnℓ elements of x are

zero. As a result, it is impossible to distinguish p from p +
x merely using the leaders’ positions, and consequently the

nominal formation is not affinely localizable.

Now we are ready to make the third assumption of the

nominal formation.

Assumption 3 (Affine Localizability of Nominal Forma-

tion). Assume that the nominal formation (G, r) is affinely

localizable by the leaders.

Up to now, we have made three assumptions on the

nominal formation. Assumption 1 requires that the nominal

configuration affinely span R
d so that dim(A(r)) = d2 + d.

Assumption 2 requires that the nominal formation satisfies

some rigidity constraints so that Ω(r) is positive semi-definite

and rank(Ω(r)) = n−d− 1. Assumption 3 requires that the

selected leaders in the nominal formation affinely span R
d.

According to Theorem 2, the three assumptions imply an

important mathematical conation: Ω̄ff is positive definite.

Recall that the control objective is to achieve pf (t) →
p∗f (t) as t → ∞ where p∗f (t) is the desired position of the

followers in the target formation. If Ω̄ff is positive definite,

we have p∗f (t) = −Ω̄−1
ff Ω̄fℓp

∗
ℓ (t). Define the tracking error

as

δpf
(t) = pf (t)− p∗f (t) = pf (t) + Ω̄−1

ff Ω̄fℓp
∗
ℓ (t).

As a result, the control objective becomes steering the

followers so that δpf
(t) → 0 as t → ∞. The subsequent

sections will present distributed control laws to achieve this

objective.

V. AFFINE FORMATION MANEUVER CONTROL LAWS

In this section, we propose distributed affine formation

maneuver control laws for single- or double-integrator agent

dynamics based on different types of measurements.

A. Single-Integrator Agent Dynamics

We first consider the case where each mobile agent can

be modeled by a single integrator: ṗi = ui where ui is the

control input to be designed.

1) Stationary Leaders: We start by considering the sim-

plest case where the leaders are stationary, i.e., ṗi = 0 for

i ∈ Vℓ. In this case, the target formation is also stationary

and the affine formation control problem can be solved by

the following control law,

ṗi = −
∑

j∈Ni

ωij(pi − pj), i ∈ Vf . (11)

The matrix-vector form of (11) is

ṗf = −Ω̄ffpf − Ω̄fℓp
∗
ℓ . (12)

Since (12) can be rewritten as ṗf = −Ω̄ffδpf
, it can be

viewed as a gradient-decent control law for the Lyapunov

function V = 1/2δTpf
Ω̄ffδpf

. When there are no leaders,

(12) becomes ṗ = −Ω̄p, which is the control law studied in

[22].

Control law (11) can be implemented in each agent’s

local reference frame since ωij is a scalar. More specifically,

denote pij = pi − pj and suppose Ri is the rotational

transformation from a global frame to the local frame of

agent i. Then, p
(i)
ij = Ripij is the relative position of agent

j expressed in agent i’s local reference frame. Consider the

following control law: v
(i)
i = −

∑

i∈Ni
ωijp

(i)
ij , where v

(i)
i

is the velocity of agent i expressed in its own reference

frame. This control law merely requires the relative position

measured in agent i’s local reference frame. On the other

hand, since v
(i)
i = Riṗi, this control law can be written as

Riṗi = −
∑

i∈Ni
ωijRipij , which is the same as (11). It can

be similarly shown that the control laws presented in the rest

of the paper can also be implemented in each agent’s local

reference frame if the relative measurements can be measured

in each agent’s local reference frame.

The stability of control law (11) is analyzed below.

Theorem 3 (Zero Leader Velocities). Under Assumption-

s 1–3, if the leader velocity ṗ∗ℓ (t) is constantly zero, then the

tracking error δpf
(t) under the action of control law (11)

converges to zero globally and exponentially fast.

Proof. Substituting (12) into δ̇pf
gives

δ̇pf
= ṗf (t) + Ω̄fℓṗ

∗
ℓ = −Ω̄ffδpf

+ Ω̄fℓṗ
∗
ℓ . (13)

Since ṗ∗ℓ = 0, the tracking error δpf
is globally and expo-

nentially stable if Ω̄ff is nonsingular.

As shown in the error dynamics in (13), if ṗ∗ℓ (t) is not

identically zero, it may be viewed as a disturbance of the

system and can cause nonzero tracking errors. However,

since the control law is linear, if the leader velocities are

sufficiently small, the tracking error would also be sufficiently

small. We next present another two control laws that can

eliminate the tracking error even when ṗ∗ℓ (t) is nonzero.

2) Moving Leaders with Constant Velocities: If the leaders

move with constant nonzero velocities, then control law (11)

is not able to guarantee zero tracking errors. To handle this

case, we introduce an additional integral term and propose
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the following proportional-integral (PI) control law,

ṗi = −α
∑

j∈Ni

ωij(pi − pj)

︸ ︷︷ ︸

proportional term

− β

∫ t

0

∑

j∈Ni

ωij(pi(τ)− pj(τ))dτ

︸ ︷︷ ︸

integral term

, i ∈ Vf , (14)

where α, β are positive constant control gains. Note that

control law (14) does not require additional measurements

compared to (11). By defining a new state for the integral

term, control law (14) can be rewritten as

ṗi = −α
∑

j∈Ni

ωij(pi − pj)− βξi,

ξ̇i =
∑

j∈Ni

ωij(pi − pj), i ∈ Vf . (15)

Let ξ = [· · · ξTi · · · ]T ∈ R
dnf . The matrix-vector form of

(15) is

ṗf = −αΩ̄ffpf − αΩ̄fℓp
∗
ℓ − βξ,

ξ̇ = Ω̄ffpf + Ω̄fℓp
∗
ℓ . (16)

The stability of the control law is analyzed below.

Theorem 4 (Constant Leader Velocities). Under Assump-

tions 1–3, if the leader velocity ṗ∗ℓ (t) is constant, then the

tracking error δpf
(t) under the action of control law (14)

converges to zero globally and exponentially fast.

Proof. Substituting control law (16) into the error dynamics

gives

δ̇pf
= ṗf + Ω̄−1

ff Ω̄fℓṗ
∗
ℓ

= −αΩ̄ffpf − αΩ̄fℓp
∗
ℓ − βξ + Ω̄−1

ff Ω̄fℓṗ
∗
ℓ

= −αΩ̄ffδpf
− βξ + Ω̄−1

ff Ω̄fℓṗ
∗
ℓ .

Together with the dynamics of ξ, we obtain the error dynam-

ics as
[

δ̇pf
ξ̇

]

=

[

−αΩ̄ff −βIdnf

Ω̄ff 0

] [

δpf
ξ

]

+

[

Ω̄−1

ff Ω̄fℓ

0

]

ṗ∗ℓ . (17)

Suppose λ is an eigenvalue of the state matrix. By using the

results in [29], we obtain

det

([
λI + αΩ̄ff βI

−Ω̄ff λI

])

= det
(
λ2I + αλΩ̄ff + βΩ̄ff

)

= det

(

(αλ+ β)

(
λ2I

αλ+ β
+ Ω̄ff

))

= 0. (18)

It follows that either λ = −β/α < 0 or

λ2

αλ+ β
= −σ,

where σ is the eigenvalue of Ω̄ff . Since Ω̄ff is symmetric

positive definite and hence σ > 0, the solution to the above

equation satisfies λ < −β/α < 0. As a result, the error

dynamics is stable and the steady state satisfies
[

−αΩ̄ff −βIdnf

Ω̄ff 0

] [

δpf (∞)
ξ(∞)

]

+

[

Ω̄−1

ff Ω̄fℓ

0

]

ṗ∗ℓ = 0. (19)

It follows that δpf
(∞) = 0.

As can be seen from the error dynamics (17), the constant

leader velocity may be viewed as a constant disturbance.

The role of the integral term is to eliminate this disturbance.

This can be seen from (19) where ξ(∞) cancels the term

containing ṗ∗ℓ .

3) Moving Leaders with Time-Varying Velocities: When

the velocities of the leaders are time-varying, the PI control

law in (14) is not able ensure zero tracking errors. In order

to handle the time-varying case, we propose the following

control law that requires absolute velocity feedback,

ṗi = −
1

γi

∑

j∈Ni

ωij [(pi − pj)− ṗj ] , i ∈ Vf (20)

where γi =
∑

j∈Ni
ωij . Although ωij may be negative, the

nonsingularity of γi is guaranteed by the affine localizability

as shown below.

Proposition 1 (Nonsingularity of γi). Under Assumption-

s 1–3, γi > 0 for all i ∈ Vf .

Proof. Note that γi =
∑

j∈Ni
ωij = [Ω]ii. Since Ωff is

positive definite by Assumptions 1–3, all the diagonal entries

of Ωff is positive and consequently γi > 0 for all i ∈ Vf .

The stability of control law (20) is analyzed below.

Theorem 5 (Time-Varying Leader Velocities). Under As-

sumptions 1–3, if the leader velocity ṗ∗ℓ (t) is time-varying

and continuous, then the tracking error δpf
(t) under the

action of control law (20) converges to zero globally and

exponentially fast.

Proof. Multiplying γi on both sides of (20) gives
∑

j∈Ni

ωij(ṗi − ṗj) = −
∑

j∈Ni

ωij(pi − pj), i ∈ Vf .

Denote ǫi =
∑

j∈Ni
ωij(pi − pj) for i ∈ Vf . Then we have

ǫ̇i = −ǫi, which implies that ǫi converges to zero globally

and exponentially fast. If ǫi = 0 for all i ∈ Vf , then we have

−Ω̄ffpf − Ω̄fℓp
∗
ℓ = 0, which can be rewritten as Ω̄ffδpf

=
0 ⇒ δpf

= 0.

In practice, the absolute velocity measurement ṗj may be

transmitted from agent j to agent i via wireless communica-

tion or obtained by differentiating the position measurement

pj . Both of the methods will result in measurement errors

due to, for example, communication delays. However, since

the system is linear, if the velocity measurement errors are

bounded (or sufficiently small), the tracking error would also

be bounded (or sufficiently small). Note that control law (20)

cannot be implemented in each agent’s local reference frame

due to the requirement of the absolute velocity measurement.
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B. Double-Integrator Agent Dynamics

We now consider the case where each mobile agent can

be modeled by a double integrator: ṗi = vi and v̇i = ui

where vi is the agent velocity and ui is the control input to

be designed.

1) Moving Leaders with Zero Accelerations: We start by

considering the simplest case where the accelerations of the

leaders are zero. The following control law can be used to

handle this case,

ṗi = vi,

v̇i = −
∑

j∈Ni

ωij [kp(pi − pj) + kv(vi − vj)] , i ∈ Vf , (21)

where kp and kv are positive constant control gains. The

matrix-vector form of (21) is

ṗf = vf ,

v̇f = −kp(Ω̄ffpf + Ω̄fℓp
∗
ℓ )− kv(Ω̄ffvf + Ω̄fℓv

∗
ℓ ), (22)

where vf ∈ R
dnf and v∗ℓ = ṗ∗ℓ are the velocities of the

followers and leaders, respectively.

The stability of the control law is analyzed below.

Theorem 6 (Zero Leader Accelerations). Under Assump-

tions 1–3, if the leader acceleration v̇∗ℓ (t) is constantly zero,

then the tracking error δpf
(t) under the action of control law

(21) converges to zero globally and exponentially fast.

Proof. Define the velocity error as δvf
= δ̇pf

= vf +

Ω̄−1
ff Ω̄fℓv

∗
ℓ . Substituting (22) into δ̇vf

gives

δ̇vf = −kpΩ̄ffδpf
− kvΩ̄ffδvf + Ω̄−1

ff Ω̄fℓv̇
∗
ℓ .

The position and velocity error dynamics can be expressed

as
[
δ̇pf
δ̇vf

]

=

[
0 Idnf

−kpΩ̄ff −kvΩ̄ff

] [
δpf
δvf

]

+

[
0

Ω̄−1

ff Ω̄fℓ

]

v̇∗ℓ . (23)

Note that v̇∗ℓ = 0. Let λ be an eigenvalue of the state matrix of

(23). The characteristic equation of the state matrix is given

by det(λ2I + λkvΩ̄ff + kpΩ̄ff ) = 0. Similar to (18), it can

be shown that λ ≤ −kp/kv < 0. As a result, the state matrix

is Hurwitz and hence δp and δv globally and exponentially

converge to zero.

As can be seen from the error dynamics (23), when v̇∗ℓ
is nonzero, it would cause nonzero tracking errors. Control

laws that can eliminate the tracking errors in the presence of

nonzero v̇∗ℓ will be proposed in the following subsections.

2) Moving Leaders with Constant Accelerations: In order

to handle the case where the leaders move with nonzero

constant accelerations, we propose the following PI control

law,

ṗi = vi,

v̇i = −α
∑

j∈Ni

ωij [kp(pi − pj) + kv(vi − vj)]

− β

∫ t

0

∑

j∈Ni

ωij [kp(pi − pj) + kv(vi − vj)] dτ (24)

for i ∈ Vf . Note that control law (24) does not require

additional measurements compared to control law (21). The

stability of control law (24) is analyzed below.

Theorem 7 (Constant Leader Accelerations). Under As-

sumptions 1–3, if the leader acceleration v̇∗ℓ (t) is constant

for all t, then the tracking error δpf
(t) under the action of

control law (24) converges to zero globally and exponentially

fast.

Proof. By denoting a new variable ξi ∈ R
d for the integral

term, control law (24) can be rewritten as

ṗi = vi,

v̇i = −α
∑

j∈Ni

ωij [kp(pi − pj) + kv(vi − vj)]− βξi

ξ̇i =
∑

j∈Ni

ωij [kp(pi − pj) + kv(vi − vj)] .

Let ξ = [· · · ξTi · · · ]T ∈ R
dnf . The matrix-vector form is

ṗf = vf ,

v̇f = −αkpΩ̄ffδpf
− αkvΩ̄ffδvf − βξ

ξ̇ = kpΩ̄ffδpf
+ kvΩ̄ffδvf

.

The velocity error dynamics can be written as δ̇vf
= v̇f +

Ω̄−1
ff Ω̄fℓv̇

∗
ℓ = −αkpΩ̄ffδpf

−αkvΩ̄ffδvf −βξ+Ω̄−1
ff Ω̄fℓv̇

∗
ℓ .

Then we obtain the following error dynamics,




δ̇pf
δ̇vf
ξ̇



 =

[
0 I 0

−αkpΩ̄ff −αkvΩ̄ff −βI

kpΩ̄ff kvΩ̄ff 0

][
δpf
δvf
ξ

]

+

[
0

Ω̄−1

ff Ω̄fℓ

0

]

v̇∗ℓ .

Partition the state matrix into a two by two block matrix as

depicted above. By using the results in [29], it can be verified

that the state matrix is Hurwitz for any positive α, β, kp, kv .

The details are omitted here due to space limitations. Then,

by examining the steady state values, we obtain δpf
(∞) =

δvf
(∞) = 0.

3) Moving Leaders with Time-Varying Accelerations: In

order to handle the case where the leaders move with time-

varying velocities, we propose the following control law that

requires absolute acceleration measurements,

ṗi = vi,

v̇i = −
1

γi

∑

j∈Ni

ωij [kp(pi − pj) + kv(vi − vj)− v̇j ] , (25)

where γi =
∑

j∈Ni
ωij . The nonsingularity of γi has been

shown in Proposition 1. The design of control law (25) is

inspired by the consensus protocols for tracking time-varying

references in [11], [12].

The stability of control law (25) is analyzed below.

Theorem 8 (Time-Varying Leader Accelerations). Under

Assumptions 1–3, if the leader acceleration v̇∗ℓ (t) is time-

varying and continuous, then the tracking error δpf
(t) under

the action of control law (25) converges to zero globally and

exponentially fast.
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Proof. Multiplying γi on both sides of (25) gives

∑

j∈Ni

ωij(v̇i − v̇j) =
∑

j∈Ni

ωij [−kp(pi − pj)− kv(vi − vj)] ,

whose matrix-vector form is

Ω̄ff v̇f + Ω̄fℓv̇
∗
ℓ

= −kp(Ω̄ffpf + Ω̄fℓp
∗
ℓ )− kv(Ω̄ffvf + Ω̄fℓv

∗
ℓ )

= −kpΩ̄ffδpf
− kvΩ̄ffδvf .

It follows that v̇f = −kpδpf
− kvδvf − Ω̄−1

ff Ω̄fℓv̇
∗
ℓ . Conse-

quently, δ̇vf = v̇f +Ω̄−1
ff Ω̄fℓv̇

∗
ℓ = −kpδpf

−kvδvf . Then, the

error dynamics can be expressed as

[
δ̇pf

δ̇vf

]

=

[
0 I

−kpI −kvI

] [
δpf

δvf

]

. (26)

The eigenvalue of the state matrix is λ = (−kv ±
√
k2v − 4kp)/2, which always has negative real part for

any kp, kv > 0. The global and exponential convergence

follows.

As can be seen from the error dynamics (26), the role of the

absolute acceleration measurement is to eliminate the term

containing v̇∗ℓ . In practice, the acceleration can be transmitted

via wireless communication from agent j to agent i, or

calculated using differentiation of the velocity. In either case,

the acceleration measurement will be corrupted by errors. If

the measurement error is bounded (or sufficiently small), the

tracking error would be bounded (or sufficiently small). Note

that control law (25) cannot be implemented in each agent’s

local reference frame due to the requirement of the absolute

velocity measurement.

VI. AFFINE FORMATION CONTROL SUBJECT TO

CONSTRAINTS

This section studies affine formation control subject to

nonholonomic motion and velocity saturation constraints.

Here we only consider the case where the leaders are

stationary. The case of moving leaders will be studied in

the future.

A. Unicycle Agents in the Plane

Consider a group of unicycle agents moving in the plane.

Let pi = [xi, yi]
T ∈ R

2 and θi ∈ R be the position coordinate

and heading angle of agent i, respectively. The motion of

robot i is governed by the unicycle model

ẋi = vi cos θi,

ẏi = vi sin θi,

θ̇i = wi, (27)

where vi ∈ R and wi ∈ R are the linear and angular velocities

to be designed. Here vi > 0 means the agent moves forward,

and vi < 0 backward; and wi > 0 means the agent turns

its heading vector to the left (i.e., counterclockwise), and

wi < 0 to the right (i.e., clockwise). Suppose vi and wi are

constrained by

−vbi ≤vi ≤ vfi ,

−wr
i ≤wi ≤ wl

i,

where vfi , v
b
i > 0 are the maximum forward and backward

linear speeds, respectively. The constants wr
i ,w

l
i > 0 are the

maximum left-turn and right-turn angular speeds, respective-

ly. Define the saturation functions for the linear and angular

speeds for agent i as

satvi
(x) =







−vbi , x ∈ (−∞,−vbi ),
x, x ∈ [−vbi , v

f
i ],

vfi , x ∈ (vfi ,+∞),

satwi
(x) =







−wr
i , x ∈ (−∞,−wr

i),
x, x ∈ [−wr

i ,w
l
i],

wl
i, x ∈ (wl

i,+∞).
(28)

Note that the saturation bounds vfi , v
b
i ,w

r
i ,w

l
i may differ for

different agents.

1) The Case without Saturation Constraints: First consid-

er the case without velocity saturation constraints. Inspired

by [30], the affine formation control law for the unicycle

model is designed as

vi = [cos θi, sin θi]
∑

j∈Ni

ωij(pj − pi),

wi = [− sin θi, cos θi]
∑

j∈Ni

ωij(pj − pi), i ∈ Vf . (29)

Let hi = [cos θi, sin θi]
T , h⊥

i = [− sin θi, cos θi]
T , and fi =∑

j∈Ni
ωij(pj − pi), where hi represents the heading vector

of the unicycle and h⊥
i is orthogonal to hi. Note that fi is the

control law for the single-integrator model in (11). With these

notations, control law (29) can be written as vi = hT
i fi and

wi = (h⊥
i )

T fi. Substituting the control law into the unicycle

model in (27) yields

ṗi = hih
T
i fi,

ḣi = h⊥
i (h

⊥
i )

T fi. (30)

The geometric interpretation of (30) is that the linear and

angular velocities are the orthogonal projections of fi onto

hi and h⊥
i , respectively. The angular velocity aims to turn

the heading of the unicycle to align with fi.
Control law (29) can be implemented in each agent’s local

reference frame. To see that, let pji = pj − pi and Ri =
[hi, h

⊥
i ]

T . Then, Ri is the rotational transformation from the

global reference frame to agent i’s local reference frame.

As a result, p
(i)
ji = Ripji is the relative position of agent

j measured in agent i’s local frame. Consider the following

control law

ṗ
(i)
i = e1e

T
1

∑

j∈Vi

ωijp
(i)
ji ,

ḣ
(i)
i = e2e

T
2

∑

j∈Vi

ωijp
(i)
ji ,
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where ṗ
(i)
i , ḣ

(i)
i ∈ R

2 are the linear and angular velocities

expressed agent’s local reference frame, and e1, e2 ∈ R
2

are the first and second columns of the identity matrix,

respectively. Note that the above control law merely requires

locally measured relative positions, and it is equivalent to

(30) due to ṗ
(i)
i = Riṗi, ḣ

(i)
i = Riḣi, RT

i e1 = hi, and

RT
i e2 = h⊥

i .

The stability of control law (29) can be analyzed similar

to [30]. However, since the leader-follower affine formation

control law was not specifically analyzed in [30], we present

a proof here by fully considering the specific properties of

this control law.

Theorem 9 (Unicycles without Saturation Constraints).

Under Assumptions 1–3, if the leader velocity ṗ∗ℓ is constantly

zero, then the tracking error δpf
(t) under the action of con-

trol law (29) converges to zero globally and asymptotically.

Proof. Consider the Lyapunov function

V =
1

2
δTpf

Ω̄ffδpf
.

Note that f = −Ω̄ffδpf
where f = [· · · fT

i · · · ]T ∈ R
dnf .

The time derivative of V is

V̇ = δTpf
Ω̄ff δ̇pf

= −fT δ̇pf
= −

∑

i∈Vf

fT
i hih

T
i fi ≤ 0.

Since V̇ ≤ 0, V is nonincreasing and bounded from below.

As a result, V converges as t → ∞. Moreover, since V (t) ≤
V (0), ‖δpf

‖ is bounded from above for all t.

We next show that V̇ is uniformly continuous1 in t
by showing that hi and fi are both uniformly continuous

in t. First, since f = −Ω̄ffδpf
and ‖δpf

‖ is always

bounded, we know ‖f‖ is always bounded. Second, since

ḣi = h⊥
i (h

⊥
i )

T fi, we have ‖ḣi‖ ≤ ‖fi‖ and hence ḣi

is always bounded. It then follows that hi is uniformly

continuous in t. Third, since f = −Ω̄ffδpf
, we have

ḟ = −Ω̄ff δ̇pf
= −Ω̄ff ṗf = Ω̄ffDΩ̄ffδpf

, where D =
diag(hnℓ+1h

T
nℓ+1, . . . , hnh

T
n ) ∈ R

(2nf )×(2nf ). As a result,

‖ḟ‖ ≤ ‖Ω̄ff‖
2‖D‖‖δpf

‖ and hence ḟ is always bounded. It

then follows that f is uniformly continuous.

The uniform continuity of hi and fi implies that V̇ is

uniformly continuous in t. It then follows from the Barbalat’s

Lemma [31, Lemma 8.2] that V̇ → 0 as t → ∞. Note that

V̇ → 0 implies hT
i fi → 0 for all i ∈ Vf . It is further implied

that the system converges to either fi = 0 or hi ⊥ fi but

fi 6= 0. In the first case, it follows that f = −Ω̄ffδpf
= 0 ⇒

δpf
= 0. The second case is impossible. To see that, assume

hi ⊥ fi but fi 6= 0 for certain i. Since ṗi = hih
T
i fi = 0

for all i ∈ Vf , all the agents are stationary and hence fi
is time-invariant. However, when hi ⊥ fi, we have ‖ḣi‖ =
‖h⊥

i (h
⊥
i )

T fi‖ = ‖fi‖ 6= 0, vector hi keeps rotating. It is

1A function f(x) is uniformly continuous in x if for any ǫ > 0 there
exists δ > 0 such that ‖f(x1) − f(x2)‖ < ǫ for every pair of x1 and
x2 satisfying ‖x1 − x2‖ < δ. A useful sufficient (yet not necessary)
condition for uniform continuity is that if a function is differentiable and
its derivative is bounded, then the function is uniformly continuous. This
sufficient condition is frequently used in the proof of Theorems 9 and 10.

impossible to maintain hi ⊥ fi if fi is time-invariant whereas

hi is rotating.

The initial heading angles {θi(0)}i∈Vf
do not affect the

global convergence. The final heading angles of {θi(∞)}i∈Vf

are not specified.

2) The Case with Saturation Constraints: We now consid-

er the case with velocity saturation constraints. The proposed

affine formation control law for unicycle i ∈ Vf is

vi = satvi






[cos θi, sin θi]

∑

j∈Ni

ωij(pj − pi)






,

wi = satwi






[− sin θi, cos θi]

∑

j∈Ni

ωij(pj − pi)






. (31)

Control law (31) can be rewritten as vi = satvi
(hT

i fi) and

wi = satwi
((h⊥

i )
T fi). Substituting into the unicycle model

in (27) yields

ṗi = hisatvi
(hT

i fi),

ḣi = h⊥
i satwi

((h⊥
i )

T fi). (32)

The global stability of the control law is proved below.

Theorem 10 (Unicycles subject to Saturation Constraints).

Under Assumptions 1–3, if the leader velocity ṗ∗ℓ is constantly

zero, then the tracking error δpf
(t) under the action of con-

trol law (31) converges to zero globally and asymptotically.

Proof. First of all, rewrite the saturation function as

satvi
(hT

i fi) = κih
T
i fi,

where

κi =







vbi
−hT

i fi
, hT

i fi ∈ (−∞,−vbi ),

1, hT
i fi ∈ [−vbi , v

f
i ],

vfi
hT
i fi

, hT
i fi ∈ (vfi ,+∞).

(33)

It is easy to see that 0 < κi ≤ 1. Then, control law (32) can

be rewritten as

ṗi = κihih
T
i fi.

The time derivative of the Lyapunov function V =
δTpf

Ω̄ffδpf
/2 is

V̇ = −
∑

i∈Vf

κif
T
i hih

T
i fi ≤ 0.

Since V̇ ≤ 0, V is nonincreasing and bounded from below.

As a result, V converges as t → ∞. Moreover, since V (t) ≤
V (0), ‖δpf

‖ is bounded from above for all t. Since f =
−Ω̄ffδpf

, ‖f‖ is bounded from above and so is ‖hT
i fi‖. As

a result, there exists a lower bound κmin ∈ (0, 1) such that

κmin ≤ κi ≤ 1 for all t.
We next show that V̇ is uniformly continuous in t by

showing that hi, fi, and κi are all uniformly continu-

ous in t. First, since ‖ḣi‖ = ‖h⊥
i satwi

[(h⊥
i )

T fi]‖ ≤
max{wl

i,w
r
i}, hi is uniformly continuous in t for all
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i ∈ Vf . Second, since f = −Ω̄ffδpf
, we have ḟ =

−Ω̄ff δ̇pf
= −Ω̄ff ṗf = Ω̄ffDΩ̄ffδpf

, where D =
diag(κnℓ+1hnℓ+1h

T
nℓ+1, . . . , κnhnh

T
n ) ∈ R

(2nf )×(2nf ). As

a result, ‖ḟ‖ ≤ ‖Ω̄ff‖
2‖D‖‖δpf

‖. Since ‖D‖ =

maxi∈Vf
‖κihih

T
i ‖ = 1, ‖ḟ‖ is always bounded and hence

f is uniformly continuous. Third, it can be easily verified

that κi is uniformly continuous in (hT
i fi) by the definition

of uniform continuity (though κi is not differentiable). Since

both hi and fi are uniformly continuous in t as proved above,

κi is uniformly continuous in t.
The uniform continuity of hi, fi, κi implies that V̇ is

uniformly continuous in t. It then follows from the Barbalat’s

Lemma [31, Lemma 8.2] that V̇ → 0 as t → ∞. Since

κi ≥ κmin for all t, V̇ → 0 implies hT
i fi → 0 for all i ∈ Vf .

The rest of the proof is similar to the proof of Theorem 9.

Control law (32) can be further generalized to incorporate

obstacle avoidance by replacing the variable fi in ḣi with

another velocity vector. See Theorem 3 and Section V-A in

[30] for more information.

B. Nonholonomic Agents in Three Dimensions

Consider a group of nonholonomic agents moving in R
3.

Let pi = [xi, yi, zi]
T ∈ R

3 be the position of agent i. The

velocity direction of agent i is characterized by the yaw and

pitch angles αi and βi, respectively. The motion of agent

i is governed by the three-dimensional (3D) nonholonomic

model

ẋi = vi cosβi cosαi,

ẏi = vi cosβi sinαi,

żi = vi sinβi,

α̇i = wαi
,

β̇i = wβi
, (34)

where vi, wαi
, wβi

∈ R are the linear and angular velocities

to be designed. Suppose vi, wαi
, and wβi

are constrained

by −vmin
i ≤ vi ≤ vmax

i , −wmin
αi

≤ wαi
≤ wmax

αi
, and

−wmin
βi

≤ wβi
≤ wmax

βi
, where the bounds are constant. Let

satvi , satwαi
, and satwβi

be the saturation functions for vi,
wαi

, and wβi
, respectively. Their definitions are similar to

(28).

1) The Case without Saturation Constraints: We first

address the case without saturation constraints. The proposed

affine formation control law for agent i ∈ Vf is

vi = [cosβi cosαi, cosβi sinαi, sinβi]fi,

wαi
=
[

−
sinαi

cosβi

,
cosαi

cosβi

, 0
]

fi,

wβi
= [− sinβi cosαi,− sinβi sinαi, cosβi]fi, (35)

where fi = −
∑

j∈Vi
ωij(pi−pj). The global stability of the

control law is proved below.

Theorem 11 (3D Nonholonomic Agents without Satura-

tion Constraints). Under Assumptions 1–3, if the leader

velocity ṗ∗ℓ is constantly zero, the tracking error δpf
(t) under

the action of control law (35) converges to zero globally and

asymptotically.

Proof. The unit heading vector of agent i is

hi =





cosβi cosαi

cosβi sinαi

sinβi



 .

Then the 3D nonholonomic model in (34) can be rewritten

as

ṗi = vihi,

ḣi =





− cosβi sinαi − sinβi cosαi

cosβi cosαi − sinβi sinαi

0 cosβi





[
α̇i

β̇i

]

.

Substituting control law (35) into the above equations yields

ṗi = hih
T
i fi,

ḣi =





− cosβi sinαi − sinβi cosαi

cosβi cosαi − sinβi sinαi

0 cosβi





[
− sinαi

cos βi

cosαi

cos βi
0

− sinβi cosαi − sinβi sinαi cosβi

]

fi

= (I3 − hih
T
i )fi.

Consider the Lyapunov function V = 1/2δTpf
Ω̄ffδpf

. The

time derivative is V̇ = −
∑

i∈Vf
fT
i hih

T
i fi ≤ 0. The rest of

the proof is similar to the proof of Theorem 9.

The initial values of the angles, {αi(0), βi(0)}i∈Vf
, do not

affect the global convergence. The final values of the angles,

{αi(∞), βi(∞)}i∈Vf
, are not specified.

2) The Case with Saturation Constraints: We now consid-

er the saturation constraints and propose the following control

law,

vi = satvi
{[cosβi cosαi, cosβi sinαi, sinβi]fi} ,

wαi
= satwαi

{[

−
sinαi

cosβi

,
cosαi

cosβi

, 0
]

fi

}

,

wβi
= satwβi

{[− sinβi cosαi,− sinβi sinαi, cosβi]fi} ,
(36)

where fi = −
∑

j∈Vi
ωij(pi−pj). The global stability of the

control law is proved below.

Theorem 12 (3D Nonholonomic Agents with Saturation

Constraints). Under Assumptions 1–3, if the leader velocity

ṗ∗ℓ is constantly zero, then the tracking error δpf
(t) under

the action of control law (36) converges to zero globally and

asymptotically.

Proof. The unit heading vector of agent i is hi =
[cosβi cosαi, cosβi sinαi, sinβi]

T . Under control law (36),

we have ṗi = hisatvi(h
T
i fi) = κihih

T
i fi, where κi is

given in (33). The time derivative of the Lyapunov function

V = 1/2δpf
Ω̄ffδpf

is V̇ = −
∑

i∈Vf
κif

T
i hih

T
i fi ≤ 0. The

rest of the proof is similar to Theorem 10.

Note that the 3D nonholonomic model in (34) is valid only

if βi 6= ±π/2 because the yaw angle αi is undefined when
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Fig. 3: The nominal formation in the simulation example. The equilibrium
stress is plotted on each edge. Here the stress is normalized so that its
norm is one. The stress matrix is positive semi-definite and the eigenvalues
are {1.4432, 1.3218, 0.5967, 0.3383, 0, 0, 0}. Note that the configuration
of the nominal formation is not generic because there exist collinear agents.

βi = ±π/2. This singularity corresponds to the special case

where the agent’s heading is parallel to the z-axis of the

global reference frame. In this section, we simply assume

βi 6= ±π/2 for all t. If this assumption is invalid, this model

and the proposed control laws would become invalid. In order

to eliminate the singularity, one may use a unit vector to

represent the heading instead of parameterizing it by the yaw

and pitch angles.

VII. IMPLEMENTATION AND SIMULATION

To implement the proposed control laws, the first step is to

design a nominal formation satisfying Assumptions 1–3. To

satisfy Assumption 1, the nominal configuration must affinely

span R
d. To satisfy Assumption 2, the nominal formation

may be designed to be generically universally rigid. To satisfy

Assumption 3, at least d+ 1 agents that affinely span R
d in

the nominal configuration must be selected as leaders. Once

the nominal formation has been designed, the next step is to

calculate the stress matrix. Calculating the stress matrix is

nontrivial. It has been shown in [22] that this problem can

be formulated as a dynamic programming problem. Here we

present an alternative formulation.

A. Calculation of Equilibrium Stresses

Let ω be the stress vector of the nominal formation.

Consider an arbitrary orientation of the undirected graph G
and let H ∈ R

m×n be the incidence matrix. Let hi ∈ R
m be

the ith column of H and hence H = [h1, . . . , hn]. Define

E =






P̄T (r)HTdiag(h1)
...

P̄T (r)HTdiag(hn)




 ∈ R

n(d+1)×m. (37)

Let z1, . . . , zq ∈ R
m be a basis of Null(E). In practice, an

orthogonal basis of Null(E) can be obtained by calculating

the singular value decomposition (SVD) of E. On the other

hand, suppose the SVD of P̄ (r) is P̄ (r) = UΣV T . Let U =
[U1, U2] where U1 consists of the first d+ 1 columns of U .

Define Mi = UT
2 HTdiag(zi)HU2 for i = 1, . . . , q. Then,

the equilibrium stress can be calculated as below.

Proposition 2 (Calculation of Stress Matrix). The equilib-

rium stress of the nominal formation is

ω =

q
∑

i=1

cizi,

where c1, . . . , cq satisfy the linear matrix inequality

q
∑

i=1

ciMi > 0. (38)

Proof. Since Ω = HTdiag(w)H and ΩP̄ (r) = 0, we have

P̄T (r)HTdiag(ω)H = P̄T (r)HTdiag(ω)[h1, . . . , hn] = 0.

Since diag(ω)hi = diag(hi)ω, we obtain

P̄T (r)HTdiag(hi)ω = 0 for all i and consequently

Eω = 0 where E is given in (37). As a result, ω ∈ Null(E)
and ω can be expressed as ω =

∑q

i=1 cizi where

c1, . . . , cq ∈ R are the coefficients to be determined.

According to [22, Theorem 3.3], rank(Ω) = n − d − 1
if and only if UT

2 ΩU2 = UT
2 HTdiag(ω)HU2 > 0.

Substituting ω =
∑q

i=1 cizi, into UT
2 HTdiag(ω)HU2 gives

∑q

i=1 ciU
T
2 HTdiag(zi)HU2 =

∑q

i=1 ciMi > 0. In order to

calculate the coefficients, we only need to find c1, . . . , cq
that satisfies the LMI in (38).

The LMI problem in Proposition 2 is a feasibility prob-

lem that can be numerically solved using the Matlab LMI

Toolbox.

B. Simulation Examples

We next present two simulation examples. The nominal

formation for the two simulation examples is given in Fig. 3,

where the first three agents are selected as leaders and the

rest as followers. Since the three leaders in the nominal

formation are not collinear, they affinely span the plane. By

using the method proposed in Proposition 2, we calculate

an equilibrium stress, which has been depicted in Fig. 3.

The equilibrium stress is normalized so that its norm is unit.

The corresponding stress matrix is positive semi-define and

satisfies rank(Ω) = n− d− 1 = 4.

The first simulation example shown in Fig. 4 demonstrates

the control law in (25) for double-integrator agent dynamics.

As can be seen, the formation keeps maneuvering to change

its centroid, orientation, scale, and geometric pattern to avoid

obstacles such as passing through narrow passages. The

tracking error remains zero when the formation maneuvers.

In the simulation, the trajectories of the three leaders are

generated in advance. In practical applications, the leaders

may generate proper trajectories in real time based on the task

requirement and obstacles in the environment. In addition, it

must be noted that the affine span condition of the leaders

in Theorem 1 is for the nominal formation. The leaders

do not need to satisfy this condition when the formation

maneuvers. For example, as shown in the simulation result,

the leaders may become collinear and hence do not affinely

span R
2. Finally, in the simulation, the acceleration feedback

is delayed by 0.001 second. It is observed in the simulation
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Fig. 4: A simulation example to illustrate control law (25) for the double-integrator agent dynamics. The control gains are chosen as kp = 0.5 and kv = 2.
The simulation animation can be found at https://youtu.be/HyCn8r7LBZw.
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that larger delays would result in larger tracking errors though

the tracking errors are always bounded.

The second simulation example as shown in Fig. 5 demon-

strates the control law in (31) for unicycle agents subject to

velocity saturation constraints. In this example, the leaders

are stationary. The Lyapunov function converges monotoni-

cally to zero. Note that the relative positions of the leaders

are different from those in the nominal formation. As a result,

the final formation is an affine transformation of the nominal

formation. It is shown that the collinearity and parallel lines

are preserved in the final formation though the shape of the

final formation is distorted.

For the sake of simplicity, undirected lines are used to

represent the interactions among the agents in the above sim-

ulation results. However, it must be noted that the interaction

between a follower and a leader is directional instead of

bidirectional (or undirected) because the leaders do not need

to receive the followers’ information.

VIII. CONCLUSIONS

This paper proposed a new approach based on stress

matrices to achieve formation maneuver control in arbitrary

dimensions. Distributed control laws for single-integrator,

double-integrator, and unicycle agent models have been

proposed and proved to be globally stable. The proposed

control laws can track any target formation that is a time-

varying affine transformation of a nominal formation. As a

result, the centroid, orientation, scales in different directions,

and other geometric parameters of the formation can all be

changed continuously. The control laws do not require a

common global orientation if the relative measurements can

be measured in each agent’s local reference frame.

Stress matrices can be viewed as generalized graph Lapla-

cian matrices with negative or zero edge weights. The linear

affine formation control laws proposed in this paper have

similar expressions as consensus protocols or containment

control laws [32], [33] (i.e., consensus protocols with multi-

ple leaders). The work presented in this paper demonstrated

that with negative edge weights, the consensus-type control

laws may exhibit many new interesting features. Consensus

problems over networks with negative weights have received

growing research attention in recent years [34], [35]. There

are several important topics for future research. For example,

the results presented in this paper may be generalized by

considering more complicated agent dynamics, motion con-

straints, and directed underlying graphs.
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