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Learning to Sequence Multiple Tasks with Competing Constraints

Anqing Duan1,2, Raffaello Camoriano3, Diego Ferigo1,4, Yanlong Huang5,

Daniele Calandriello3, Lorenzo Rosasco2,3 and Daniele Pucci1

Abstract— Imitation learning offers a general framework
where robots can efficiently acquire novel motor skills from
demonstrations of a human teacher. While many promising
achievements have been shown, the majority of them are
only focused on single-stroke movements, without taking into
account the problem of multi-tasks sequencing. Conceivably,
sequencing different atomic tasks can further augment the
robot’s capabilities as well as avoid repetitive demonstrations.
In this paper, we propose to address the issue of multi-tasks
sequencing with emphasis on handling the so-called competing
constraints, which emerge due to the existence of the concurrent
constraints from Cartesian and joint trajectories. Specifically,
we explore the null space of the robot from an information-
theoretic perspective in order to maintain imitation fidelity
during transition between consecutive tasks. The effectiveness
of the proposed method is validated through simulated and real
experiments on the iCub humanoid robot.

I. INTRODUCTION

Imitation learning, also known as learning by demonstra-

tion or kinesthetic teaching, allows robots to learn new skills

from a human teacher [1]. The demonstrated trajectories are

usually represented through the well-established movement

primitives [2], [3], [4] for later reproduction and adaptation

on robot platforms. Following this paradigm, robots can learn

a variety of hard-to-engineer motor skills, such as table tennis

[5] and baseball batting [3].

Although imitation learning algorithms have endowed

robots with quite intricate skills, most of the related re-

search is only focused on mimicking single-stroke move-

ments. In order to enable robots to perform more complex

tasks, it seems a natural requirement to sequence several

basic atomic tasks. For example, modern robots, especially

general-purpose humanoid robots, usually possess several

different skills in their armory. When operating in the real

world, instead of executing these tasks separately, they are

expected to execute one task after another sequentially.

Conceivably, the ability of multi-tasks sequencing plays an
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important role in pushing robots towards a higher level of

flexibility and autonomy.

In addition to further enhancing robots’ capabilities, an-

other benefit brought by multi-tasks sequencing is to exempt

a human teacher from repetitive demonstrations. Considering

the combinatorial number of basic tasks could be explosive,

learning all the possible combinations exclusively through

human demonstrations would be impracticable. Autonomous

planning of trajectories for sequential tasks is especially

meaningful when a multi-step task is difficult to demonstrate

using a single demonstration or requires very lengthy demon-

strations.

A. Related Work

In the literature, task sequencing can be roughly addressed

from two perspectives, namely trajectory manipulation and

sequences generation.

On trajectory manipulation, two methods were proposed in

[6] to realize action sequencing, namely proper initialization

of the third-order dynamic movement primitives or using

online Gaussian kernel functions modification of the second-

order dynamic movement primitives. Other alternatives for

joining movement sequences include modification of the

original dynamic movement primitives by overlapping ker-

nels with a specific application to the handwriting task [7].

Sequencing of simple demonstrations can also be applied to

achieve a complex bi-manual manipulation task [8].

On sequences generation, a variety of techniques can be

employed. For example, in [9] a motion primitive graph

was constructed to learn the temporal relationship between

motion primitives. The constructed motion primitive graph

was then used to generate motion consisting of sequences of

motion primitives. Sequences and transitions between skills

can also be realized by bifurcating dynamical systems based

on continuous-time recurrent neural networks, whose output

was used as activation signal for movement primitives in

[10]. By representing demonstrations with a sequence graph,

transitions between consecutive basic movements could also

be identified by tackling a classification problem using

support vector machines or Gaussian mixture models [11].

Recent research also focused on learning multi-stage tasks

from a single video of a human performing the task [12].

B. Problem Statement

Although the problem of multi-tasks sequencing can be

tackled from various perspectives as mentioned above, a

common issue in the existing literature is the lack of methods



Fig. 1: Illustration of the proposed method for multi-tasks sequencing. First, both Cartesian and joint trajectories of several

tasks are demonstrated, which are subsequently used for retrieving probabilistic trajectories through GMR. After that,

Cartesian trajectory is blended by Gaussian product and joint trajectory is modeled by GMM, both according to the activation

function π. Finally, the competing constraints are addressed by optimizing robot null-space parameter Θ.

for imitating both Cartesian and joint trajectories simul-

taneously. Arguably, learning in either space only is not

always satisfying. For example, humanoid robots are usually

required to behave resembling a human. This implies that

both Cartesian space, which is responsible for the completion

of a task, and joint space, which affects robot posture, are

involved. In fact, relevant studies have shown that the more

robots act like humans, the more willing humans are to trust

and work side-by-side with them [13]. However, in order

to learn Cartesian and joint trajectories simultaneously, one

has to deal with the inconsistency between the two spaces

encountered in multiple demonstrations. Such phenomena in

imitation learning are referred to as competing constraints

[14]. There has been relevant research effort dedicated to this

topic, but without considering multi-tasks sequencing [15].

C. Scope of the Paper

In this paper, we propose to address the problem of multi-

tasks sequencing with competing constraints. Specifically, we

propose to exploit robot redundancy by exploring the robot

null space to alleviate the conflicts resulting from Cartesian

and joint space. The optimization of the null-space parameter

is formulated as a reinforcement learning (RL) problem with

the optimization objective designed from an information-

theoretic perspective. An illustration of the proposed method

is shown in Fig. 1.

This paper is organized as follows. Section II briefly re-

views probabilistic modeling of multiple demonstrations. The

proposed method for multi-tasks sequencing is introduced

in Section III. Subsequently, the evaluative experiments are

reported in Section IV. Finally, Section V concludes our

results and discusses possible future work.

II. PROBABILISTIC MODELING OF DEMONSTRATIONS

In order to exploit the probabilistic properties of trajecto-

ries, multiple demonstrations are required. We assume that

we have M demonstrations, each of fixed length N . The

dataset comprises the robot’s end-effector Cartesian position

x ∈ R
3 and joint positions q ∈ R

d, with d the number

of active degrees of freedom. Both quantities are indexed

by time t. Thus, we denote the dataset obtained from the

demonstrations as {{tn,m,xn,m,qn,m}
N
n=1}

M
m=1.

A. Gaussian Mixture Model

Upon collecting the demonstrations dataset, Gaussian mix-

ture models (GMMs) are employed to model the joint prob-

ability distributions p(t,x) and p(t,q), respectively. Without

loss of generality, we use st to denote either xt or qt. A

GMM with H ∈ N
+ components is defined by a probability

density function

p(t, st) =
H
∑

h=1

ηhN (µh,Σh), (1)

where

µh =

[

µt,h

µs,h

]

, (2)

Σh =

[

Σtt,h Σts,h

Σst,h Σss,h

]

. (3)

ηh, µh and Σh are the parameters of the h-th Gaussian

component, defining the prior, mean, and covariance, respec-

tively. Note that ηh is subject to
∑

h ηh = 1. Typically, there

are several covariance constraints that can be used in GMM

and the one used here is called full covariance type [16]. The

mixture parameters can be obtained from maximum likeli-

hood estimation using the standard expectation maximization

algorithm [17].

B. Gaussian Mixture Regression

Gaussian mixture regression (GMR) has a simple formu-

lation that has been employed to generate robot movements



[4]. The corresponding output ŝ(t) at each reproduction step

t can be estimated in terms of conditional probability:

ŝ(t) ∼
H
∑

h=1

wh(t)N
(

µ̂h(t), Σ̂h(t)
)

, (4)

where wh(t) are the activation functions defined as

wh(t) =
ηhN (t | µt,h,Σtt,h)

∑H

i=1 ηiN (t | µt,i,Σtt,i)
, (5)

with

µ̂h(t) = µs,h +Σst,hΣ
−1
tt,h(t− µt,h), (6)

Σ̂h(t) = Σss,h −Σst,hΣ
−1
tt,hΣts,h. (7)

Note that (4) can also be represented using a unimodal

output distribution for the generated trajectory, i.e. ŝ(t) ∼
N (µ̂s

t , Σ̂
s

t ). By resorting to the law of total mean and vari-

ance, the approximated normal distribution can be derived

as in [4]:

µ̂
s
t =

H
∑

h=1

wh(t)µ̂h(t), (8)

Σ̂
s

t =
H
∑

h=1

wh(t)
(

Σ̂h(t) + µ̂h(t)µ̂h(t)
⊤
)

− µ̂
s
t µ̂

s
t
⊤. (9)

III. MULTI-TASKS SEQUENCING

As discussed in Section I-B, behaving like a human is a

highly desirable capability for robots, since it can increase

human acceptance. We aim at maintaining imitation fidelity

in the context of multi-tasks sequencing. In the language

of robot control, human-like behavior implies that robots

need not only follow Cartesian trajectories to accomplish the

sequenced tasks (III-A), but also exploit redundancy at joint

level (III-B) by optimizing null-space parameters (III-C) for

human-like configuration.

A. Cartesian Trajectory Sequencing

Here, we consider the problem of multi-tasks sequencing

in robot Cartesian space. Usually, in order to continuously

combine and blend multiple movement primitives which

are probabilistically encoded into a single movement, a

common technique is to employ the Gaussian product [18].

By taking the product of trajectory distributions at each

time step, the resulting trajectory again satisfies the Gaussian

distribution. An important advantage of the Gaussian product

is that it can capture the overlapping area of the activated

trajectories. In general, the shape of the obtained trajectory

shares higher similarity to the movement primitive that has

higher probability density.

Suppose that there are in total K tasks that the robot

has previously learned and for each task k the trajectory

distribution xk(t) ∼ N
(

µk(t),Σk(t)
)

is retrieved using

GMR. To allow for multi-tasks sequencing, we propose to

modulate the activation status of the trajectories so that the

tasks are executed one by one smoothly. Let us write the user-

defined time-varying activation functions of each task k at

time t as πk(t) with
∑

k πk(t) = 1. The resulting trajectory

x̄ can be obtained by co-activating the movement primitives:

p(x̄) ∝
∏

k

p(xk)
πk . (10)

At each time step, the resulting distribution obeys Gaussian

x̄(t) ∼ N
(

µ̄(t), Σ̄(t)
)

, with its mean and covariance matrix

given by [18]

µ̄(t) = Σ̄(t)
(

∑

k

(

Σk(t)/πk(t)
)−1

µk(t)
)

,

Σ̄(t) =
(

∑

k

(

Σk(t)/πk(t)
)−1

)−1

.
(11)

Thus, multi-tasks sequencing in Cartesian space is accom-

plished by following the obtained trajectory.

B. Transformation from Cartesian Space to Joint Space

We need to transform Cartesian trajectories into joint space

in order to control the robot. To do so, the Jacobian-based

inverse kinematics technique ẋ = J(q)q̇ is employed, where

J ∈ R
3×d is the robot Jacobian matrix [19]. In general, the

corresponding discrete implementation incorporating null-

space exploration is given by

qt = qt−1 + J
†
t−1(xt − xt−1) + (I− J†J)N(Θ)∆t,

N(Θ) = Θ⊤Φ(t),
(12)

where J† = J⊤(JJ⊤)−1 represents the Moore-Penrose pseu-

doinverse of J when JJ⊤ is invertible, ∆t > 0 is the time

step, I ∈ R
d×d denotes an identity matrix, N corresponds to

joint movement in null space, which is parameterized by Θ ∈
R

O×d, and Φ(t) ∈ R
O×1 are basis functions with the total

number O and the i-th element defined using the normalized

Gaussian kernel function e−hi(t−ci)
2

/
∑

j e−hj(t−cj)
2

with

hi > 0 and ci equally spaced in the execution time interval.

When transforming the sequenced probabilistic Cartesian

trajectory x̄ into joint space using (12), the obtained joint

trajectory q̄C
t also satisfies the probabilistic distribution

N (µ̄C(t), Σ̄
C
(t)) with mean µ̄

C(t) and covariance matrix

Σ̄
C
(t) given by [15]

µ̄
C(t) = q̄C

t−1+J†(µ̄t−µ̄t−1)+(I−J†J)N(Θ)∆t,

Σ̄
C
(t) = J†Σ̄tJ

†⊤.
(13)

It should be noted that the obtained joint trajectory upon

transformation can only guarantee that the Cartesian con-

straint is respected. In order to take into account joint level

imitation, the parameter Θ needs to be optimized according

to the criteria proposed in the next section.

C. Optimization of Null-Space Parameters

The demonstrated joint trajectories can also be retrieved

using GMR in a similar way to Cartesian trajectories. To

represent different tasks, we propose to fuse the joint trajec-

tories by GMM. It should be noted that joint trajectories are

formulated in a different way from Cartesian ones, which

are treated using the Gaussian product. This choice has been



made since GMMs can preserve complete information on

the robot’s configuration for each sub-task together with

their corresponding activation degree at each time step. Such

information is very important, since one of the main goals for

joint-level imitation is that the robot posture should be altered

accordingly during the transition between consecutive tasks.

In contrast, the Gaussian product only results in a single

Gaussian with its mean value calculated by the summation

of weighted sub-task means. In this way, the information

on the original robot joint configuration for each sub-task

is lost. Therefore, GMMs are a more reasonable choice for

modeling multi-tasks joint trajectories, in that it can capture

richer information than the Gaussian product.

For each task k, we denote the corresponding joint

trajectory distribution as qJ
k (t) ∼ N

(

µ
J
k (t),Σ

J
k (t)

)

. As

mentioned above, the reference joint trajectory q̄J(t) is

formulated in terms of GMM as

p(q̄J(t)) =
∑

k

πk(t)N
(

µ
J
k (t),Σ

J
k (t)

)

. (14)

One can observe that there are concurrent conflicts between

Cartesian trajectory q̄C
t and joint trajectory q̄J

t , which are

usually referred to as competing constraints1 [14]. In order

to minimize such conflicts, we propose to formulate the

optimization objective from an information-theoretic per-

spective. A widely used technique in statistics and pattern

recognition to measure the distance between two probability

distributions is the Kullback-Leibler (KL) divergence, also

known as relative entropy [20]. Its usage in addressing com-

peting constraints has been shown in [21], where the main

purpose was to design a minimal intervention controller.

By contrast, our focus is on sequencing multiple tasks. In

order to minimize the inconsistency between q̄C
t and q̄J

t ,

the null space will be explored by optimizing the null-

space parameter Θ according to the KL-divergence-based

objective:

JKL(Θ) =
∑

t

DKL

(

p(q̄J
t ) ‖ p(q̄

C
t ;Θ)

)

, (15)

where the expression for the KL divergence is defined as

DKL

(

p(q̄J
t )‖p(q̄

C
t ;Θ)

)

,

∫

p(q̄J
t ) log

p(q̄J
t )

p(q̄C
t ;Θ)

dqt. (16)

It should be noted that the KL divergence is asymmetric.

The choice of the direction of the KL divergence is problem-

dependent. In our case, the moment projection form rather

than the information projection form is employed, since

during the task transition period when p(q̄J
t ) has multiple

modes, p(q̄C
t ;Θ) will choose to blur different modes to-

gether so as to yield more natural action for tasks switch.

One issue arising from the optimization objective in (15)

is that the calculation of the KL divergence between GMMs

and a Gaussian is not analytically tractable. Therefore, an

approximation method for (16) is necessary to facilitate

solving the optimization problem. Theoretically, there are

several approaches to the calculation of the KL divergence

1Time dependence is moved to subscript for simplicity.

Algorithm 1 Multi-tasks sequencing with competing con-

straints

1: Collect the dataset of K tasks, each containing M
demonstrations having length N :

{{{tkn,m,xk
n,m,qk

n,m}
N
n=1}

M
m=1}

K
k=1

2: Retrieve Cartesian and joint trajectory distribution

{xk(t),qk(t)} from demonstrations using GMR

3: Specify task sequencing schedule πk(t)
4: Initialize RL hyperparameters Θ0, Σε, λ, hi, ci, L
5: repeat

6: for l = 1 to L do

7: Sample εl ∼ N (0,Σε)
8: Θ← Θ+ εl

9: for t = 1 to N do

10: Blend Cartesian trajectory using (11)

11: Transform into joint trajectory using (13)

12: Estimate time step cost by (17) and (18)

13: end for

14: Compute trial cost as (15)

15: end for

16: Update Θ according to (19)

17: until Θ converge

18: Calculate the optimal trajectory {q∗}Nt=1 from (12)

19: return {q∗}Nt=1

between GMMs, such as Monte Carlo sampling, unscented

transformation, matched bound approximation, etc. Here, the

one based on the variational lower bound to the likelihood is

chosen because of its simple closed-form expression as well

as its high accuracy [22]. Formally, we approximate (16) as

(please refer to Appendix for the derivations)

DKL

(

p(q̄J
t ) ‖ p(q̄

C
t ;Θ)

)

≈

∑

k

πk(t) log

∑

k′ πk′(t)e−DKL

(

p(qJ
k,t)‖p(q

J
k′,t

)
)

e
−DKL

(

p(qJ
k,t

)‖p(q̄C
t ;Θ)

) .
(17)

Now the involved KL divergence calculation in (17) is only

between multivariate Gaussian distributions, which has an

analytical solution. Taking the KL divergence between qJ
k,t

and qC
t as an example, its form is given by [22]

DKL

(

p(qJ
k,t) ‖ p(q̄

C
t ;Θ)

)

=
1

2

(

Tr(Σ̄
C

t
−1ΣJ

k,t)+

(µ̄C
t − µ

J
k,t)

⊤Σ̄
C

t
−1(µ̄C

t − µ
J
k,t) + log

|Σ̄
C

t |

|ΣJ
k,t|
− d

)

,
(18)

where Tr(·) and | · | denote the trace and the determinant

of a matrix, respectively. The KL divergence between other

terms can be calculated similarly.

Given the complexity of the formulated optimization prob-

lem, it can be addressed with the help of RL algorithms. In

this work, we apply the simplified path improvement with

path integrals in search for the optimal null-space parameter

Θ [23]. The update rule for Θ is given as

Θi+1 ← Θi +

∑L

l=1 εle
− 1

λ
J(Θi+εl)

∑L

l=1 e−
1

λ
J(Θi+εl)

, (19)



Fig. 2: GMM modeling of the demonstrated Cartesian trajec-

tories for the pick-and-place task (top row) and the cleaning

task (bottom row). The grey trajectories represent multiple

demonstrations and the red ellipses are Gaussian components

in GMM.

where Θi is the initial parameter value for the i-th iteration,

λ > 0 is a constant which can be considered as a factor

controlling the learning rate and εl ∼ N (0,Σε) is the ex-

ploration noise for the l-th trial. The update rule keeps being

executed until no further improvement on Θ is observed.

The complete proposed method for multi-tasks sequencing

with competing constraints is summarized in Algorithm 1.

IV. EXPERIMENTS

The proposed method is validated on the iCub humanoid

robot [24], both in simulation [25] as well as in real exper-

iments. The case study we choose for concept proof is to

sequence a pick-and-place task as well as a cleaning task. In

this section, we will show that by teaching the robot these

two tasks separately, the robot can learn by itself to sequence

them together.

Firstly, the robot is taught two tasks individually with each

one demonstrated for 5 times. A GMM with 5 states is used

for modeling the joint probabilistic distribution between time

and the corresponding output. The demonstrated Cartesian

and joint trajectories with GMM modeling are shown in Fig.

2 and Fig. 3, respectively. For robot control, GMR is em-

ployed to extract the reference trajectory. The reproduction

of the demonstrated tasks on the real iCub humanoid robot

is shown in Fig. 4.

Next, iCub is required to sequence two demonstrated tasks

together. To this end, the experimental set-up is conceived as

follows: iCub will firstly pick a kitchen sponge handed over

by a user, then perform the cleaning task, and, lastly, place

the kitchen sponge at the destination. To start with, Cartesian

trajectories of the two demonstrated tasks will be blended

by Gaussian product. The extracted Cartesian trajectories

for each task as well as the resulting blended trajectory are

shown in the top row of Fig. 5. The corresponding weights

used in the Gaussian product are given by a time-varying

activation function, as shown in the bottom row of Fig. 5.

Fig. 3: GMM modeling of the demonstrated joint trajectories

(shoulder roll, yaw, and elbow) for the pick-and-place task

(top row) and the cleaning task (bottom row). The grey

trajectories represent multiple demonstrations and the red

ellipses are Gaussian components in GMM.

Fig. 4: Snapshots of reproduction for the pick-and-place task

(top row) and the cleaning task (bottom row).

According to the given activation function, the pick-and-

place task will last for 15 s, during which the cleaning task

will be triggered and last for 5 s.

Upon the availability of the blended Cartesian trajectories,

the corresponding joint trajectories shall be obtained by

Jacobian-based inverse kinematics (IK) with the null-space

parameters exposed. These parameters will be optimized

to drive the robot configuration towards the demonstrated

joint trajectories, which are modeled using GMM. The

optimization is tackled by the reward-weighted RL algorithm

[23] with the hyperparameters empirically set as Θ0 = 0,

Σε = 10−2I, λ = 0.3, and L = 5. The resulting optimized

joint trajectories and their comparison with the trajectories

from Jacobian-based inverse kinematics are shown in Fig.

6. The trajectories from inverse kinematics deviate from

the demonstrated joint trajectories very much and therefore

the imitation of the joint trajectories is broken. Instead,

the trajectories with the optimal null-space parameters tend

to match the corresponding demonstrated joint trajectories.

The robot is trying to maintain the configuration of each

demonstrated task during the process of sequencing the two

tasks together. The RL algorithm performance is reported

in Fig. 7. The parameters to be optimized are updated for



Fig. 5: Cartesian trajectories sequencing (top row) with their

corresponding activation functions (bottom row). The blue

trajectory represents the pick-and-place task, the red trajec-

tory represents the cleaning task and the green trajectory

shows the result of sequencing.

0 5 10 15
0

1.2

2.4

0 5 10 15
-1

0.3

1.6

0 5 10 15
0

1.1

2.2

Fig. 6: Comparison of the joint trajectories with the optimal

null-space parameters and inverse kinematics. The joint

trajectories for two tasks are also included for reference.

20 times with each one running 5 trials. The error bar is

obtained by repeating the learning process for 5 times.

Finally, we evaluate our proposed method on the real iCub

humanoid robot. The comparison between the optimized

joint trajectories and the inverse-kinematics-based solution is

provided in Fig. 8. It can be easily observed that the robot’s

movement appears more natural by running the optimized

joint trajectories. This is evidenced by the fact that when the

robot is undergoing task switch, the corresponding imitation

emphasis also shifts from one task to another gradually.

V. CONCLUSIONS AND FUTURE WORK

We addressed the issue of multi-tasks sequencing with

competing constraints. To sequence Cartesian trajectories,

the Gaussian product is employed for blending the tra-

jectories from different tasks. By contrast, in joint space,

the trajectories are modeled using GMMs to capture richer

information. To handle competing constraints, null-space

parameters are optimized according to a KL-divergence-

based objective. Moreover, due to the analytical intractability

of the KL divergence between GMM and a Gaussian, the

optimized objective is approximated via the variational lower

bound approach. We demonstrated the effectiveness of the

proposed method through the case study of sequencing a

Fig. 7: The error-bar curve of the KL-divergence based cost

during learning of the optimal null-space parameters. The

vertical bars denote the standard deviations

Fig. 8: Snapshots of the results of sequencing two tasks.

The joint trajectories with the optimal null-space parameters

(bottom row) result in more natural behavior than inverse

kinematics solution (top row).

pick-and-place task and a cleaning task, with experiments in

simulation and on the real iCub humanoid robot.

It should be noted that, in this paper, our consideration

was limited to kinematic position tasks only. For future

work, this limitation could be resolved by incorporating

force-based constraints for compliant interactions [26] and

considering orientation issues [27]. In addition to the lack

of torque learning, even though we used cleaning task as a

showcase, we neither dealt with the contacts issue nor with

the grasping problem. More widely applicable results could

be obtained by further investigating these aspects. Also, to

make robots safely operate in uncluttered environments, it

can be considered to incorporate obstacle and joint limit

avoidance [19]. Another interesting extension would be to

learn the activation function profile π in response to the

surrounding environment. With task sequences automatically

generated instead of given beforehand, robots would be

capable of operating more flexibly and autonomously.

APPENDIX

First let us denote Ep(q̄J
t )
[log

(

p(q̄C
t ;Θ)

)

] as LJ(C). The

KL-divergence from (16) can be decomposed as2

DKL

(

p(q̄J)‖p(q̄C ;Θ)
)

= LJ(J)− LJ(C). (20)

2Without ambiguity, time dependence is dropped out here for simplicity.



We define variational parameters φk′|k > 0 with
∑

k′ φk′|k =
1. The lower bound to LJ(J) can be derived based on the

Jensen’s inequality [22]:

LJ(J) = Ep(q̄J )[log
(

p(q̄J)
)

]

= Ep(q̄J )[log
∑

k′

πk′p(qJ
k′)]

= Ep(q̄J )[log
∑

k′

φk′|k
πk′p(qJ

k′)

φk′|k
]

≥ Ep(q̄J )[
∑

k′

φk′|k log
πk′p(qJ

k′)

φk′|k
]

, LJ(J, φ). (21)

The obtained lower bound is maximized with respect to

the variational parameters φk. Such constrained optimization

problem can be solved by using Lagrangian multiplier. The

maximum value is achieved when [28]

φ∗
k′|k =

πk′e
−DKL

(

p(qJ
k )‖p(q

J
k′ )

)

∑

k̂
π
k̂
e
−DKL

(

p(qJ
k
)‖p(qJ

k̂
)
) . (22)

By substituting (22) into (21), the lower bound now becomes

[28]

LJ(J, φ
∗) =

∑

k

πk log
∑

k′

πk′e
−DKL

(

p(qJ
k )‖p(q

J
k′ )

)

−
∑

k

πkH
(

p(qJ
k )
)

,
(23)

where H(p(qJ
k )) is the entropy of p(qJ

k ) with its expression

given as [17]

H
(

p(qJ
k )
)

, −

∫

p(qJ
k ) log p(q

J
k )dq. (24)

For the calculation of LJ(C), the exact expression is avail-

able immediately since p(q̄C) has only one component:

LJ(C) =
∑

k

πk log e
−DKL

(

p(qJ
k )‖p(q̄

C)
)

−
∑

k

πkH
(

p(qJ
k )
)

.
(25)

By substituting (23) and (25) into (20), we can finally obtain

the approximation as (17).
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