
This is a repository copy of Energy-based models for speech synthesis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/213148/

Version: Accepted Version

Proceedings Paper:
Sun, W., Tu, Z. and Ragni, A. orcid.org/0000-0003-0634-4456 (2024) Energy-based 
models for speech synthesis. In: ICASSP 2024 - 2024 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP). IEEE International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP 2024), 14-19 Apr 2024, COEX, Seoul,
Korea. Institute of Electrical and Electronics Engineers (IEEE) , pp. 12667-12671. ISBN 
979-8-3503-4486-8 

https://doi.org/10.1109/icassp48485.2024.10447218

© 2024 The Authors. Except as otherwise noted, this author-accepted version of a paper 
published in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP) is made available via the University of Sheffield 
Research Publications and Copyright Policy under the terms of the Creative Commons 
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, 
distribution and reproduction in any medium, provided the original work is properly cited. 
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ENERGY-BASED MODELS FOR SPEECH SYNTHESIS

Wanli Sun, Zehai Tu, Anton Ragni

Department of Computer Science, University of Sheffield, Sheffield, UK
{wsun20, ztu3, a.ragni}@sheffield.ac.uk

ABSTRACT

Recently there has been a lot of interest in non-autoregressive (non-

AR) models for speech synthesis, such as FastSpeech 2 and diffusion

models. Unlike AR models, these models do not have autoregressive

dependencies among outputs which makes inference efficient. This

paper expands the range of available non-AR models with another

member called energy-based models (EBMs). The paper describes

how noise contrastive estimation, which relies on the comparison

between positive and negative samples, can be used to train EBMs.

It proposes a number of strategies for generating effective negative

samples, including using high-performing AR models. It also de-

scribes how sampling from EBMs can be performed using Langevin

Markov Chain Monte-Carlo (MCMC). The use of Langevin MCMC

enables to draw connections between EBMs and currently popular

diffusion models. Experiments on LJSpeech dataset show that the

proposed approach offers improvements over Tacotron 2.

Index Terms— speech synthesis, energy-based models, itera-

tive inference

1. INTRODUCTION

Neural network based synthesis have made impressive improve-

ments over statistical speech synthesis. However, these deep learn-

ing based text-to-speech (TTS) approaches often feature inconsis-

tencies as did statistical approaches. For example, auto-regressive

(AR) models, such as Tacotron 2 [1], Transformer-TTS [2], are al-

most exclusively trained using teacher forcing [3], where reference

rather than predicted values are fed back into the generative process.

Such a mismatch between training and inference causes inconsis-

tency called exposure bias [4], which may lead to poor generated

speech quality (e.g. repetition, skipping, and long pauses [5]). So

far there have been a few attempts to alleviate exposure bias, such

as, scheduled sampling [6] and attention mechanisms [7]. How-

ever, their effective application is complicated due to a number of

“training hacks” employed to ensure stable learning [8].

Recently, there has been interest in non-AR models, such as

FastSpeech 2 [9] and diffusion models [10]. These models gener-

ally do not use teacher forcing as a part of their training and hence

should be free of the aforementioned inconsistencies. This paper

describes another class of non-AR models called energy-based mod-

els (EBMs) [11], which, as will be shown later, have connections

to currently popular diffusion models. Given a text, an EBM de-

fines an energy-function over all possible spoken realisations. Al-

though it is possible to formulate the conditional probability distri-

bution of speech given text for EBMs, the intractable normalisation

term would make training and inference approaches relying on the

probability distribution infeasible.

Instead, training of EBMs can be performed using noise con-

trastive estimation (NCE), which compares speech data (positive ex-

amples), which is assumed to represent high quality speech, and im-

perfect speech data (negative examples). The nature of imperfec-

tion, or negative examples, is crucial when training EBMs. This

paper describes a number of effective strategies to generate negative

examples, including by means of existing TTS models. Inference

with EBMs can be performed using Langevin Markov Chain Monte-

Carlo (MCMC) [12, 13]. Given that a similar iterative algorithm is

often used with diffusion models (e.g., Grad-TTS [10]), this paper

discusses connections between EBMs and diffusion models.

This paper makes the following specific contributions:

1. first energy-based text-to-speech model;

2. a range of methods for generating effective negative samples

to use in NCE and elsewhere;

3. link between diffusion models and energy-based models.

The rest of this paper is organized as follows. Section 2 de-

scribes energy-based models (EBM), which includes inference,

training and negative sampling methods. Section 3 relates EBMs to

filtering approaches and diffusion models. Experimental results and

discussion are presented in Section 4. Conclusions drawn from this

work and future research directions are presented in Section 5.

2. ENERGY-BASED MODELS

Given a text sequence x, an energy-based model (EBM) of speech

feature sequences Y (e.g. log-Mel spectrograms) can be defined by1

pθ(Y |x) = 1

Zθ(x)
exp (−Eθ(x,Y )) , (1)

where θ are model parameters, Eθ(x,Y ) is an energy between text

and speech, Zθ(x) is a normalisation term. Unlike speech signal en-

ergies commonly used in models like FastSpeech 2, EBM energies

Eθ(x,Y ) reflect the correspondence between text x and speech Y

pairs. Better matching pairs are expected to yield lower energies and

vice versa. The normalising term Zθ(x) is intractable to compute

exactly. Thus, only certain inference and parameter estimation ap-

proaches can be used for EBMs.

2.1. Inference

For tasks where outputs are represented by discrete tokens (e.g. char-

acters or words), such as text generation [14] and speech recogni-

tion [15], EBMs are commonly used to rerank hypotheses generated

during beam search. In contrast, for tasks where outputs are repre-

sented by continuous variables, such as speech synthesis, EBMs can

1An alternative formulation would involve parameterising the gradient of
energy instead. Such an approach is possible due to existence of inference
and training approaches that rely only on the gradient of energy.



be used for updating hypotheses themselves. This can be done us-

ing Langevin Markov Chain Monte-Carlo (MCMC). The Langevin

MCMC is an iterative process where, given an initial hypothesis

Y (0), the next hypothesis is obtained by

Y
(N+1)←Y

(N)−λ ∇Y Eθ(x,Y )|
Y =Y (N) +

√
2λZ(N)

, (2)

where Z(N) ∼ N (0, µI), λ is an updating rate and µ is com-

monly set to 1. The need to specify initial hypotheses Y (0) offers

a number of interesting options. In the standard Langevin MCMC

initial hypotheses are drawn from a simple prior distribution, such

as Gaussian [16]. However, more informative priors, such as high-

performing TTS models (e.g. Tacotron 2 and FastSpeech 2), can also

be explored.

2.2. Training

Since the normalising factor Zθ(x) is intractable, approaches rely-

ing on pθ(Y |x) can not be used with EBMs. Furthermore, popu-

lar gradient-based MCMC approaches [17] can not be applied with

discrete input, as in this work, and Gibbs sampling [18] would be

too computationally expensive. Fortunately, noise contrastive esti-

mation (NCE) [19] provides a feasible solution to optimize energy

functions. The NCE loss function for EBMs in eq. (1) is given by

Lθ(x,Y
+
,Y

−) =− log

(

1

1 + exp (Eθ(x,Y +))

)

− log

(

1

1 + exp (−Eθ(x,Y −))

) (3)

where Y + are called positive samples and Y − are called negative

samples. According to eq. (3), energy functions are optimal when

high energy is assigned to negatives and low energy is assigned to

positives. Once trained, energy functions can be used for ranking

hypotheses generated by other models or inferring hypotheses using

the Langevin MCMC in eq. (2).

Positive samples in NCE are usually represented by reference se-

quences. On the other hand, negative samples need to be designed.

In text generation [14] it is argued that negative examples with poor

quality make the task of learning the energy function easier which

leads to poor quality energy functions. This work proposes using

pre-trained TTS models to generate high-quality negative examples.

Note that when a pre-trained model is used as a part of training pro-

cess then it is also possible to adopt it for initialising the Langevin

MCMC in eq. 2, which is expected to speed up inference and lead to

higher quality hypotheses. The simplest method to generate negative

samples from pre-trained TTS models would use hypotheses gener-

ated by those models directly. Such approach may fail to work due

to high level of similarity between high-quality hypotheses and ref-

erence sequences. Other possible options include applying random

masking (RM) and SpecAugment [20] (i.e. time masking (TM), fre-

quency masking (FM) and time warping (TW)) to those hypotheses.

The TM and FM methods can be seen as specific cases of the RM

method and may prove less effective. For example, the FM may dras-

tically affect pitch information by masking a whole frequency range.

The TW method is also expected to face challenges as utterance-

wide shortening/elongation of all sounds may be hard to separate

from reference sequences.

2.3. Architecture

The architecture of EBM explored in this work is inspired by Trans-

former TTS [2] and is shown in Figure 1. The EBM in Fig. 1 consists
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Fig. 1: Architecture of EBMs examined in this work (inspired by

Transformer TTS)

of two blocks: energy estimator (top) and feature enhancement (bot-

tom). The goal of the energy estimator is to derive utterance-level

EBM energies Eθ(x,Y ) from the output of the feature enhance-

ment block. This work assumes that these energies can be derived

from frame-level EBM energies. As shown in Fig. 1, the energy

estimator consists of two key elements: frame-level EBM energy es-

timation and frame-level EBM energy weighting. The latter element

is motivated by an intuition that frame-level EBM energies are un-

likely to make equally important contributions. For example, speech

and non-speech frames will likely make different contributions to the

utterance-level EBM energy

Eθ(x,Y ) =

T
∑

t=1

αtet (4)

where α1:T is the sequence of attention weights generated by the

EBM energy weighting module, e1:T is the sequence of frame-level

EBM energies and T is the number of frames. The attention weights

are derived from the frame-level EBM energies. The frame-level

EBM energies e1:T are computed by

et = a
⊤
gt + b (5)



where gt is the output of the feature enhancement block, and a and

b are parameters of the frame energy module. The goal of the fea-

ture enhancement block is to enhance typically short-term spectral

information available in standard speech features, such as log-Mel

spectrograms, with more advanced acoustic and linguistic informa-

tion. The estimator is a transformer-based [2] model using text as the

input to encoder and and spectral features and the output of encoder

as the input to decoder. The output of decoder after linear transfor-

mation, gt, is passed to the energy estimator block. Note that the

decoder does not use masking to constrain the underlying attention

mechanism from attending over previous spectral features, which

makes gt a function of entire text and spectral feature sequences.

3. RELATED WORK

EBMs have been applied in a wider range of domains, e.g. natu-

ral language Processing [14, 21] and automatice speech recognition

[15]. The EBM proposed in this work can be related to a number

of previously proposed approaches in TTS. The use of hypotheses

generated by pre-trained TTS models as a part of training and in-

ference allows to connect this EBM to post-filtering methods. Sta-

tistical post-filtering approaches, such as [22], aim to address over-

smoothing in hypotheses generated by statistical speech synthesis

models. However, these approaches suffer from difficulties in ac-

curately modelling probability density functions of the underlying

speech parameterisations. Recently, there has also been interest in

deep learning based post-filtering approaches. In [23], frequency

band specific generative adversarial networks (GAN) were trained to

improve the quality of hypotheses generated by deep learning based

speech synthesis models. However, this approach assumes indepen-

dence among frequency bands which may lead to suboptimal results.

More recently, there has been a lot of interest in diffusion-based

TTS models [10], which have been extended to audio synthesis [24]

and singing voice synthesis [25]. In these models training (forward)

and inference (reverse) processes iteratively build a connection be-

tween data and noise. Although seemingly different, such diffusion

models and the EBM proposed in this work have clear connections.

Consider, for example, the iterative inference process used by one of

those diffusion models [26]

Y
(N+1)← 1√

1−λN

(Y (N)+λNSθ(x,Y
(N)

, N)) +
√
λNZ

(N)
,

(6)

Compared to the Langevin MCMC in eq. (2) the key difference

stems from modelling iteration, N , specific Sθ(x,Y
(N), N)

score (gradient of log-likelihood) rather than iteration indepen-

dent ∇
Y (N)Eθ(x,Y

(N)) score in the EBM given by eq. (1). In

addition, score matching approaches to training diffusion models

can also be adopted with EBMs [26], which further strengthens the

connection between these models.

4. EXPERIMENTS

4.1. Experimental setup

4.1.1. Dataset

The dataset used in this work is LJSpeech [27], which includes

13,100 audio clips totalling approximately 24 hours from one fe-

male speaker. The dataset is split randomly into training (10,000

clips), validation (1800 clips) and test (1300 clips) sets. Objective

evaluation is performed over the entire test set whilst subjective

evaluation is performed over 100 randomly chosen test set clips.

Front-end pre-processing of audio follows the open-source imple-

mentation available as a part of NVIDIA’s Tacotron 2. 2

4.1.2. Models

The pre-trained TTS model providing hypothese for training and

inference is Tacotron 2 [1]. The open-source implementation of

NVIDIA using default configuration was adopted in this work.

The structure of EBM follows the corresponding elements of

Transformer-TTS [2] available through an open-source implemen-

tation 3 except that: 1) positional and character embeddings are

256-dimensional; 2) two EBMs with different dimensions of hid-

den features, 128 and 256 respectively, are explored in the study.

Utterance-level energy is predicted by frame-level EBM energy

prediction module, which consists of two 512-dimensional fully-

connected layers. Although it is possible to backpropagate gradients

through the pre-trained TTS model, for simplicity this was not ex-

plored in this work. Both EBMs are trained for 125K iterations

using Adam optimizer using batch size of 16 and a constant learning

rate of 1 × 10−4 on a single NVIDIA 3090 GPU. The number of

parameters of these 2 EBMs and Tacotron 2 are shown in Table

1. We use an open-source implementation4 of the WaveGlow [28]

vocoder and adopt its default settings.

4.1.3. Evaluation

Mel cepstral distortion (MCD) , F0 frame error (FFE) and log-scale

F0 root mean square error (log F0 RMSE) are adopted as objective

metrics in this work. The MCD metric calculates distance between

cepstral coefficient sequences of different lengths on the Mel fre-

quency scale. The FFE metric measures discrepancy of fundamental

frequency (F0) between synthesized and reference waveforms. Be-

fore objective calculating, dynamic time warping (DTW) is used to

align the predicted mel-spectrogram and the reference. FAIRSEQ

S2 toolkit [29] is used to compute MCD and FFE scores. Mean opin-

ion score (MOS) evaluation is conducted to evaluate speech natural-

ness by scoring each speech sample on a scale between 1 to 5 with

1 point intervals. Waveforms synthesized by 3 models compared in

this work are mixed with test set waveforms. Each audio is listened

to by 5 listeners, who are native English speakers, on the Amazon

Mechanical Turk platform.

Model MCD ↓ FFE ↓ log fo ↓ Parameters

Tacotron 2 4.218 47.31% 0.292 28.19M

EBM(1) (small) 4.163 47.06% 0.289 2.30M

EBM(1) (large) 4.178 47.05% 0.291 7.64M

Table 1: Comparison between Tacotron 2 and two EBMs utilising

Tacotron 2 hypotheses as negative samples

4.2. Negative sampling methods

Table 1 compares Tacotron 2 and two initial EBMs. These EBMs

were trained using Tacotron 2 generated hypotheses as negative sam-

ples and a single step (N = 1) Langevin MCMC, where µ was set to

0 for simplicity and Adam rather than gradient descent update rule

2https://github.com/NVIDIA/tacotron2
3https://github.com/soobinseo/Transformer-TTS
4https://github.com/NVIDIA/waveglow



was adopted. Both large (256 hidden features) and small (128 hidden

features) EBMs perform slightly better than the baseline.

Table 2 summarises performance of the alternative negative sam-

pling methods (see Sec. 2.2) with the large EBM, where the simpli-

fied Langevin MCMC was run for N = 100 steps. Many of these

methods show significantly better performance than the baseline.

Comparing between compressed and stretched spectral features sug-

gest no strong preference for any particular method of time warping

(TW). The method of 5% time masking (TM) achieves lower MCD

and FFE compared to other time masking methods, while the trend

is opposite for frequency masking (FM), where higher percentage

points (15%) appear to be yielding better MCD results and worse

FFE results. The likely reason is the negative interaction between

FFE and frequency masking.

Condition MCD ↓ FFE ↓ log fo ↓
TM: 5% 4.149 46.89% 0.290

10% 4.166 46.98% 0.284

15% 4.161 47.30% 0.285

FM: 5% 4.166 46.88% 0.292

10% 4.138 47.27% 0.286

15% 4.097 47.35% 0.284

TW: 1.2 (compress) 4.134 47.05% 0.291

1.1 (compress) 4.170 47.03% 0.291

0.9 (stretch) 4.168 47.28% 0.284

0.8 (stretch) 4.159 47.29% 0.286

RM: 25% 3.943 46.16% 0.282

30% 4.013 46.57% 0.280

Baseline 4.218 47.31% 0.292

Table 2: Negative sampling methods (95% confidence intervals)

Table 3 investigates the impact of the Langevin MCMC steps on

the performance of the best system in Table 2. As the number of

Step MCD↓ FFE↓ log fo ↓
0 4.218 47.31% 0.292

1 4.217 47.31% 0.292

100 3.943 46.16% 0.282

300 3.937 45.85% 0.276

Table 3: Simplified Langevin MCMC (95% confidence intervals)

steps increases, the EBM applying 25% random masking to negative

samples performs better and better.

Although random masking appears to be the most effective neg-

ative sampling method, the other masking methods may bring addi-

tional complementary information. Table 4 summarises performance

of different combination approaches involving the RM 30% EBM in

Table 2. All combinations examined perform better than using only

random masking. The EBM making use of all masking methods

performs the best.

4.3. Subjective evaluation

To solicit subjective assessment, a range of listening tests were con-

ducted (see Sec. 4.1.3). Table 5 shows that the proposed EBM shows

generally better MOS scores than the baseline Tacotron 2. Further-

RM TM FM TW
MCD ↓ FFE ↓ log fo ↓

30% 5% 5% 1.2

✓ 4.013 46.57% 0.280

✓ ✓ 3.958 46.31% 0.276

✓ ✓ 3.997 45.63% 0.278

✓ ✓ 3.927 45.98% 0.267

✓ ✓ ✓ ✓ 3.882 45.36% 0.258

Table 4: Combination of negative sampling methods (95% confi-

dence intervals)

Method MOS

Ground Truth 4.53±0.05

Ground Truth (log-Mel + WaveGlow) 4.39±0.07

Tacotron 2 (log-Mel + WaveGlow) 3.77±0.11

EBM (log-Mel + WaveGlow) 3.84±0.13

Table 5: Subjective evaluation

more, the detailed breakdown of MOS score counts in Table 6 shows

that the EBM significantly reduced the number of MOS scores 2 (-2)

and 3 (-27) and increase the number of MOS scores 4 (+26) and 5

(+3).

MOS 1 2 3 4 5

Tacotron 2 0 3 121 344 15

EBM 0 1 94 370 18

Table 6: MOS score counts

5. CONCLUSIONS

This paper proposed a new class of non-autoregressive (non-AR)

text-to-speech (TTS) models called energy-based models (EBM). As

an example, it shows how powerful forms of EBMs can be designed

by adopting architectures of state-of-the-art AR models like Trans-

former TTS. Although training models like EBMs is more compli-

cated due to the intractability of normalisation terms, a range of

training approaches is available. This paper describes how one such

approach called noise contrastive estimation (NCE) can be adopted

for training. As the NCE critically relies on the quality of negative

samples used to contrast reference speech feature sequences, this pa-

per proposed and evaluated a wide range of negative sampling meth-

ods. It found that random masking is the single best method but the

combination of all proposed methods yielded the best performance.

The paper also shows how sampling from EBMs can be performed

by means of Langevin Markov Chain Monte-Carlo (MCMC). Since

Langevin MCMC is closely linked with an iterative method used by

popular diffusion models, the paper discusses similarities between

EBMs and diffusion models. The paper concludes by subjective

evaluation and finds that the proposed model provides improvements

over Tacotron 2. Future work with EBMs will explore score parame-

terisation and the use of alternative TTS models for architectural and

negative sampling choices.
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