Standard lattices of compatibly embedded finite fields

Luca De Feo, Hugues Randriam, Édouard Rousseau

JNCF 2019

CONTENTS

Context

Overview

Standard lattices

CONTEXT

- Use of Computer Algebra System (CAS)
- ▶ Use of many extensions of a prime finite field \mathbb{F}_p
- ightharpoonup Computations in $\bar{\mathbb{F}}_p$.

EMBEDDINGS

- ▶ When $l \mid m$, we know $\mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}$
 - ► How to compute this embedding *efficiently*?
- Naive algorithm: if $\mathbb{F}_{p^l} = \mathbb{F}_p[x]/(f(x))$, find a root ρ of f in \mathbb{F}_{p^m} and map \bar{x} to ρ . Complexity strictly larger than $\tilde{O}(l^2)$.
- ▶ Lots of other solutions in the litterature:
 - ► [Lenstra '91]
 - ► [Allombert '02] $\tilde{O}(l^2)$
 - ► [Rains '96]
 - ► [Narayanan '18]

COMPATIBILITY

- ▶ K, L, M three finite fields with $K \hookrightarrow L \hookrightarrow M$
- ▶ $f: K \hookrightarrow L, g: L \hookrightarrow M, h: K \hookrightarrow M$ embeddings

Compatibility:

COMPATIBILITY

- \blacktriangleright *K*, *L*, *M* three finite fields with $K \hookrightarrow L \hookrightarrow M$
- ▶ $f: K \hookrightarrow L, g: L \hookrightarrow M, h: K \hookrightarrow M$ embeddings

Compatibility:

$$g \circ f \stackrel{?}{=} h$$

- monic
- irreducible
- ▶ degree *m*
- ▶ primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)
- ightharpoonup norm-compatible (i.e. $C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0\mod C_m$ if $l\mid m$)

- monic
- irreducible
- ▶ degree *m*
- ▶ primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)
- ▶ norm-compatible (i.e. $C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$ if $l\mid m$)
- Standard polynomials

- monic
- irreducible
- ▶ degree *m*
- ▶ primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)
- ▶ norm-compatible (i.e. $C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$ if $l\mid m$)
- Standard polynomials
- ► Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^m-1}{p^l-1}} \tilde{O}(m^2)$

- monic
- irreducible
- ▶ degree *m*
- ▶ primitive (*i.e.* its roots generate $\mathbb{F}_{p^m}^{\times}$)
- ▶ norm-compatible (i.e. $C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$ if $l\mid m$)
- Standard polynomials
- ► Compatible embeddings: $\bar{X} \mapsto \bar{Y}^{\frac{p^m-1}{p^l-1}} \tilde{O}(m^2)$
- ► Hard to compute (exponential complexity)

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework used in MAGMA
- ▶ Based on the naive embedding algorithm
- Constraints of the embedding imply that adding a new embedding can be expensive

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- ► Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints of the embedding imply that adding a new embedding can be expensive
 - ► Inefficient as the number of extensions grows

ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints of the embedding imply that adding a new embedding can be expensive
 - ▶ Inefficient as the number of extensions grows

Non standard polynomials

IDEAS

- Plugging Allombert's embedding algorithm in Bosma, Cannon, and Steel
- Generalizing Bosma, Cannon, and Steel
- Generalizing Conway polynomials

Goal: bring the best of both worlds

ALLOMBERT'S EMBEDDING ALGORITHM I

- ▶ Based on an extension of *Kummer theory*
- ► For $p \nmid l$, we work in $A_l = \mathbb{F}_{p^l} \otimes \mathbb{F}_p(\zeta_l)$, and study

$$(\sigma \otimes 1)(x) = (1 \otimes \zeta_l)x \tag{H90}$$

- Solutions of (H90) form a $\mathbb{F}_p(\zeta_l)$ -vector space of dimension 1
- $ightharpoonup lpha_l = \sum_{j=0}^{a-1} x_j \otimes \zeta_l^j$ solution of (H90), then x_0 generates \mathbb{F}_{p^l} .
 - Let $\lfloor \alpha_l \rfloor = x_0$ the projection on the first coordinate
- $(\alpha_l)^l = 1 \otimes c \quad \in 1 \otimes \mathbb{F}_p(\zeta_l)$

ALLOMBERT'S EMBEDDING ALGORITHM II

Input: \mathbb{F}_{p^l} , \mathbb{F}_{p^m} , with $l \mid m$, ζ_l and ζ_m with $(\zeta_m)^{m/l} = \zeta_l$ **Output:** $s \in \mathbb{F}_{p^l}$, $t \in \mathbb{F}_{p^m}$, such that $s \mapsto t$ defines an embedding $\phi : \mathbb{F}_{p^l} \to \mathbb{F}_{p^m}$

- 1. Construct A_l and A_m
- 2. Find $\alpha_l \in A_l$ and $\alpha_m \in A_m$, nonzero solutions of (H90) for the roots ζ_l and ζ_m
- 3. Compute $(\alpha_l)^l = 1 \otimes c_l$ and $(\alpha_m)^m = 1 \otimes c_m$
- 4. Compute $\kappa_{l,m}$ a *l*-th root of c_l/c_m
- 5. Return $\lfloor \alpha_l \rfloor$ and $\lfloor (1 \otimes \kappa_{l,m})(\alpha_m)^{m/l} \rfloor$

ALLOMBERT AND BOSMA, CANON, AND STEEL

- ▶ Need to store one constant $\kappa_{l,m}$ for each pair $(\mathbb{F}_{p^l}, \mathbb{F}_{p^m})$
- ▶ The constant $\kappa_{l,m}$ depends on α_l and α_m

We would like to:

- get rid of the constants $\kappa_{l,m}$ (e.g. have $\kappa_{l,m} = 1$)
- equivalently, get "standard" solutions of (H90)
 - select solutions α_l , α_m that always define the same embedding
 - such that the constants $\kappa_{l,m}$ are well understood (*e.g.* $\kappa_{l,m} = 1$)

THE CASE $l \mid m \mid p-1$

Let $l \mid m \mid p-1$

$$A_l = \mathbb{F}_{p^l} \otimes \mathbb{F}_p \cong \mathbb{F}_{p^l}$$

- $ightharpoonup A_m = \mathbb{F}_{p^m}$
- $ightharpoonup \sigma(\alpha_l) = \zeta_l \alpha_l \text{ and } \sigma(\alpha_m) = \zeta_m \alpha_m$
- $(\alpha_l)^l = c_l \in \mathbb{F}_p \text{ and } (\alpha_m)^m = c_m \in \mathbb{F}_p$
- $ightharpoonup \kappa_{l,m} = \sqrt[l]{c_l/c_m}$
- $ightharpoonup \kappa_{l,m} = 1 \text{ implies } c_l = c_m$

In particular, for m = p - 1 we obtain

$$\sigma(\alpha_{p-1}) = (\alpha_{p-1})^p = \zeta_{p-1}\alpha_{p-1}$$

- $(\alpha_{p-1})^{p-1} = c_{p-1} = \zeta_{p-1}$
- ▶ this implies $\forall l \mid p-1, c_l = \zeta_{p-1}$

COMPLETE ALGEBRA

Let
$$A_l = \mathbb{F}_{p^l} \otimes \mathbb{F}_p(\zeta_l)$$

Definition (degree, level)

- \blacktriangleright degree of A_l : l
- ▶ *level* of A_l : $a = [\mathbb{F}_p(\zeta_l) : \mathbb{F}_p]$

Idea: consider the largest algebra for a given level

Definition (Complete algebra of level *a*)

STANDARD SOLUTIONS

How to define standard solutions of (H90)?

Lemma

If α_{p^a-1} is a solution of (H90) for ζ_{p^a-1} , then $c_{p^a-1}=(\zeta_{p^a-1})^a$.

Definition (Standard solution)

Let A_l an algebra of level a, $\alpha_l \in A_l$ a solution of (H90) for $\zeta_l = (\zeta_{p^a-1})^{\frac{p^a-1}{l}}$, α_l is **standard** if $c_l = (\zeta_{p^a-1})^a$

Definition (Standard polynomial)

All standard solutions α_l define the same irreducible polynomial of degree l, we call it the **standard polynomial** of degree l.

Let $l \mid m$ and A_l , A_m algebras with the same level a, $\zeta_l = (\zeta_m)^{m/l}$

 $ightharpoonup \alpha_l$ and α_m standard solutions of (H90) for ζ_l and ζ_m

Let $l \mid m$ and A_l , A_m algebras with the same level a, $\zeta_l = (\zeta_m)^{m/l}$

- α_l and α_m standard solutions of (H90) for ζ_l and ζ_m
 - $c_l = c_m = (\zeta_{p^a-1})^a$

Let $l \mid m$ and A_l , A_m algebras with the same level a, $\zeta_l = (\zeta_m)^{m/l}$

- α_l and α_m standard solutions of (H90) for ζ_l and ζ_m
 - $c_l = c_m = (\zeta_{p^a 1})^a$
 - $\kappa_{l,m}=1$

Let $l \mid m$ and A_l , A_m algebras with the same level a, $\zeta_l = (\zeta_m)^{m/l}$

- α_l and α_m standard solutions of (H90) for ζ_l and ζ_m
 - $c_l = c_m = (\zeta_{p^a-1})^a$
 - $ightharpoonup \kappa_{l,m} = 1$
- ► The embedding $\lfloor \alpha_l \rfloor \mapsto \lfloor (\alpha_m)^{m/l} \rfloor$ is **standard** too (only depends on ζ_{p^a-1}).

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

▶ Natural norm-compatibility condition, we want:

$$(\zeta_{p^b-1})^{\frac{p^b-1}{p^d-1}} = N(\zeta_{p^b-1}) = \phi_{\mathbb{F}_{p^a} \to \mathbb{F}_{p^b}}(\zeta_{p^a-1})$$

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

▶ Natural norm-compatibility condition, we want:

$$(\zeta_{p^b-1})^{\frac{p^b-1}{p^d-1}} = N(\zeta_{p^b-1}) = \phi_{\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}}(\zeta_{p^a-1})$$

We let
$$\mathcal N$$
 be the "norm-like" map $\mathcal N(\alpha)=\prod_{j=0}^{b/a-1}(1\otimes\sigma^{aj})(\alpha)$

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

Natural norm-compatibility condition, we want:

$$(\zeta_{p^b-1})^{\frac{p^b-1}{p^d-1}} = N(\zeta_{p^b-1}) = \phi_{\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}}(\zeta_{p^a-1})$$

We let $\mathcal N$ be the "norm-like" map $\mathcal N(\alpha)=\prod_{i=0}^{b/a-1}(1\otimes\sigma^{aj})(\alpha)$

• We obtain $\mathcal{N}(\alpha_{p^b-1}) = \Phi_{A_{p^a-1} \hookrightarrow A_{p^b-1}}(\alpha_{p^a-1})$

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

▶ Natural norm-compatibility condition, we want:

$$(\zeta_{p^b-1})^{\frac{p^b-1}{p^d-1}} = N(\zeta_{p^b-1}) = \phi_{\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}}(\zeta_{p^a-1})$$

We let \mathcal{N} be the "norm-like" map $\mathcal{N}(\alpha) = \prod_{j=0}^{b/a-1} (1 \otimes \sigma^{aj})(\alpha)$

- We obtain $\mathcal{N}(\alpha_{p^b-1}) = \Phi_{A_{p^a-1} \hookrightarrow A_{p^b-1}}(\alpha_{p^a-1})$
- ▶ We know that

$$(\alpha_{p^b-1})^{\frac{p^b-1}{p^a-1}} = (1 \otimes \kappa_{p^a-1,p^b-1}) \Phi_{A_{p^a-1} \hookrightarrow A_{p^b-1}}(\alpha_{p^a-1}) \text{ with }$$

$$\kappa_{p^a-1,p^b-1} = (\zeta_{p^b-1})^{\frac{(a-b)p^{a+b}+bp^b-ap^a}{(p^a-1)^2}}$$

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$.

▶ Natural norm-compatibility condition, we want:

$$(\zeta_{p^b-1})^{\frac{p^b-1}{p^d-1}} = N(\zeta_{p^b-1}) = \phi_{\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}}(\zeta_{p^a-1})$$

We let $\mathcal N$ be the "norm-like" map $\mathcal N(\alpha) = \prod_{j=0}^{b/a-1} (1 \otimes \sigma^{aj})(\alpha)$

- We obtain $\mathcal{N}(\alpha_{p^b-1}) = \Phi_{A_{p^a-1} \hookrightarrow A_{p^b-1}}(\alpha_{p^a-1})$
- We know that

$$(\alpha_{p^b-1})^{\frac{p^b-1}{p^a-1}} = (1 \otimes \kappa_{p^a-1,p^b-1}) \Phi_{A_{p^a-1} \hookrightarrow A_{p^b-1}}(\alpha_{p^a-1}) \text{ with }$$

$$\kappa_{p^a-1,p^b-1} = (\zeta_{p^b-1})^{\frac{(a-b)p^a+b+bp^b-ap^a}{(p^a-1)^2}}$$

▶ If α_l and α_m are standard solutions, then

$$\kappa_{l,m} = (\zeta_{p^b-1})^{\frac{(a-b)p^a+b+bp^b-ap^a}{(p^a-1)l}}$$

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$ and

$$(\zeta_{p^b-1})^{\frac{p^b-1}{p^a-1}} = N(\zeta_{p^b-1}) = \phi_{\mathbb{F}_{p^a} \to \mathbb{F}_{p^b}}(\zeta_{p^a-1})$$

$$\blacktriangleright \zeta_l = (\zeta_{p^a-1})^{\frac{p^a-1}{l}}$$

- $ightharpoonup \alpha_l$ and α_m standard solutions of (H90) for ζ_l and ζ_m
- $ightharpoonup \kappa_{l,m}$ only depends on ζ_{p^b-1} and is easy to compute
- ▶ The embedding $\lfloor \alpha_l \rfloor \mapsto \lfloor (1 \otimes \kappa_{l,m})(\alpha_m)^{m/l} \rfloor$ is standard too (only depends on $\zeta_{p^a-1}, \zeta_{p^b-1}$).

Let $l \mid m$ and A_l of level a, A_m of level b, $a \neq b$ and

$$(\zeta_{p^b-1})^{\frac{p^b-1}{p^a-1}} = N(\zeta_{p^b-1}) = \phi_{\mathbb{F}_{p^a} \hookrightarrow \mathbb{F}_{p^b}}(\zeta_{p^a-1})$$

- $\blacktriangleright \zeta_l = (\zeta_{p^a-1})^{\frac{p^a-1}{l}}$
- $\blacktriangleright \zeta_m = (\zeta_{p^b-1})^{\frac{p^b-1}{m}}$
- ightharpoonup and α_m standard solutions of (H90) for ζ_l and ζ_m
- $\kappa_{l,m}$ only depends on ζ_{p^b-1} and is easy to compute
- ▶ The embedding $\lfloor \alpha_l \rfloor \mapsto \lfloor (1 \otimes \kappa_{l,m})(\alpha_m)^{m/l} \rfloor$ is standard too (only depends on $\zeta_{p^a-1}, \zeta_{p^b-1}$).

COMPATIBILITY AND COMPLEXITY

Proposition (Compatibility)

Let $l \mid m \mid n$ and $f : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}$, $g : \mathbb{F}_{p^m} \hookrightarrow \mathbb{F}_{p^n}$, $h : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^n}$ the standard embeddings. Then we have $g \circ f = h$.

Proposition (Complexity)

Given a collection of Conway polynomials of degree up to d, for any $l \mid m \mid p^i - 1$, $i \leq d$

- Computing a standard solution α_l takes $\tilde{O}(l^2)$
- ► Given α_l and α_m , computing the standard embedding $f: \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}$ takes $\tilde{O}(m^2)$

IMPLEMENTATION

Implementation using Flint/C and Nemo/Julia.

Figure: Timings for computing α_l (left, logscale), and for computing $\mathbb{F}_{p^2} \hookrightarrow \mathbb{F}_{p^l}$ (right, logscale) for p=3.

STANDARD POLYNOMIALS

$$\begin{array}{c}
 x + 1 \\
 x^3 + x + 1 \\
 x^5 + x^3 + 1 \\
 x^7 + x + 1 \\
 x^9 + x^7 + x^4 + x^2 + 1 \\
 x^{11} + x^8 + x^7 + x^6 + x^2 + x + 1 \\
 x^{13} + x^{10} + x^5 + x^3 + 1 \\
 x^{15} + x + 1 \\
 x^{17} + x^{11} + x^{10} + x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + x + 1 \\
 x^{19} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^8 + x^7 + x^6 + x^5 + x^3 + 1
 \end{array}$$

Table: The ten first standard polynomials derived from Conway polynomials for p=2.

CONCLUSION, FUTURE WORKS

- We implicitly assume that we have **compatible roots** ζ (*i.e.* $\zeta_l = (\zeta_m)^{m/l}$ for $l \mid m$
 - ► In practice, this is done using Conway polynomials
- ▶ With Conway polynomials up to degree d, we can compute embeddings to finite fields up to any degree $l | p^i 1, i \le d$
 - quasi-quadratic complexity

Future works:

Make this less standard, but more practical

Thank you! Merci!