
Beyond Parameterized Verification

Marco Bozzano and Giorgio Delzanno

Dipartimento di Informatica e Scienze dell’Informazione
Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy

{bozzano,giorgio}@disi.unige.it

Abstract. We present a sound and fully automated method for the ver-
ification of safety properties of parameterized systems with unbounded
local data variables, a new class of infinite-state systems parametric in
several dimensions. The method builds upon a specification and an as-
sertional language based on the combination of multiset rewriting and
constraints. We introduce new classes of parameterized systems for which
verification of safety properties is decidable, and we introduce abstrac-
tions, defined at the level of constraints, to handle examples outside these
classes. As case-study, we apply the method to verify fully automatically
mutual exclusion properties for formulations of the ticket mutual exclu-
sion algorithm parametric in the number of clients, servers, and in which
both clients and servers have unbounded local data.

1 Introduction

In recent years several attempts have been made in order to develop tools for
the automated verification of infinite state systems. Interesting results have been
specifically obtained for the class of parameterized systems. A typical parameter-
ized system consists of a collection of an arbitrary but finite number of finite-state
components interacting via synchronous or asynchronous communication [5, 7,
20]. In many practical cases verification problems for this kind of systems can
be reduced to problems related to Petri Nets by applying a counting abstraction
that simply forgets local data while keeping track of the number of processes in
a given state. Reachability procedures can then be used to verify the original
property on the resulting Petri Net like model [10, 14, 15, 19]. New results have
also been obtained for the verification of another class of infinite-state systems,
i.e., concurrent systems with a fixed number of components but unbounded data.
As an example, in [8, 12, 18], constraints are used to symbolically represent and
manipulate infinite collections of states for these systems.

In this paper we address the definition of techniques for the automatic verifi-
cation of systems and protocols parametric in several dimensions. As an example,
we mention mutual exclusion protocols for multi-client systems that make use of
global and local variables, like, e.g., the ticket and bakery protocols [8]. In these
case-studies the counting abstraction turns out to be too rough to prove cor-
rectness. Inspired by the seminal paper [2] of Abdulla and Jonsson, in [11], we
introduced a specification language and a corresponding assertional language for

systems parametric in several dimensions. The specification language is based
on multiset rewriting over first order formulas as proposed by Cervesato et al. in
[9] enriched, however, with constraints. This way, we keep separate the structure
of processes from the relations over their local data. The assertional language
combines symbolic reasoning (unification and subsumption of multisets of first
order atomic formulas) and constraint programming (satisfiability, entailment,
and variable elimination). Symbolic operations like predecessor operators and
comparison tests exploit the operations of the underlying constraint system.
In this paper we extend the approach presented in [11] as follows.

We have isolated classes of multiset rewriting rules with constraints for which
the verification of safety properties of practical interest is decidable. We consider
a subclass of linear integer constraints, called NC, which allows us to handle an
infinite collection of discrete values (e.g. integers) and to compare them using
relations like >, ≥, and =. This domain can be used to represent local variables,
process identifiers, priorities, and so on. The safety properties we can handle
are such that the corresponding unsafe states consists of upward closed sets of
configurations. Our algorithm follows the general approach of backward reacha-
bility proposed in [1] and exploits the theory of well and better quasi orderings
for proving termination [1, 4, 17]. To attack verification problems for systems
defined over linear integer constraints that lay outside the class for which termi-
nation is guaranteed, we use an automated abstraction that maps linear integer
constraints into NC-constraints. This abstraction always returns a conservative
approximation of the original property. Furthermore, it can be viewed as the
counterpart of the counting abstraction used in [10] for systems properties that
are data-sensitive. This way, we obtain a fully-automatic and sound algorithm
for checking safety properties for a wide class of systems parametric in several
dimensions.

We have implemented our automated verification method and applied it to
analyze mutual exclusion for different formulations of the ticket protocol. As
shown in [8], this protocol has an infinite-state space even for system configu-
rations with only 2 processes. In this paper we extend the results of [8], where
safety properties were proved for this special case, as follows. We have consid-
ered both a multi-client, single-server formulation, i.e., with an arbitrary but
finite number of dynamically generated clients but a single shared resource, and
a multi-client, multi-server system in which both clients and servers are created
dynamically. Both examples have been modeled using multiset rewriting rules
with difference constraints, that support arithmetic operations like increment
and decrement of data variables. Our models are faithful to the original formu-
lation of the algorithm, in that we do not abstract away global and local integer
variables attached to individual clients, that in fact can still grow unboundedly.
Using our symbolic backward reachability procedure combined with the dynamic
use of abstractions, we have automatically verified that both models are safe for
any number of clients and servers and for any values of local and global variables.
To our knowledge both the techniques and the practical results are original.

The system with n processes

Program
global var s, t : integer;
begin
t := 0;
s := 0;
P1 | . . . | Pn;

end.

The i-th component

Process Pi ::=
local var a : integer;
repeat forever266664

think : 〈 a := t;
t := t+ 1; 〉

wait : when 〈 a = s 〉 do

use :

»
critical section
〈 s := s+ 1; 〉

end.

Fig. 1. The Ticket Protocol: n is a parameter of the protocol.

Plan of the Paper In Section 2, we present the case-study. In Section 3, we
introduce our specification language. In Section 4, we introduce the assertional
language used to reason about safety properties. In Section 5, we describe the
verification algorithm. In Section 6, we discuss decidability issues. In Section 7,
we discuss experimental results. In Section 8 and 9, we discuss related works and
address future works.
We leave the proofs of all results for a long version of the paper.

2 The Case-study: the Ticket Protocol

The ticket protocol is a mutual exclusion protocol designed for multi-client sys-
tems operating on a shared memory. The protocol is based on a first-in first-
served access policy. The algorithm is given in Fig. 1 (where we use P | Q to
denote the interleaving parallel execution of P and Q, and 〈·〉 to denote atomic
fragments of code). The protocol works as follows. Initially, all clients are think-
ing, while t and s store the same initial value. When requesting the access to
the critical section, a client stores the value of the current ticket t in its local
variable a. A new ticket is then emitted by incrementing t. Clients wait for their
turn until the value of their local variable a equals the value of s. After the elab-
oration inside the critical section, a process releases it and the current turn is
updated by incrementing s. During the execution, the global state of the protocol
consists of the current values of s, t, and of the local variables of n processes. As
remarked in [8], even for n = 2 (only 2 clients), the values of the local variables
of individual processes as well as s and t may get unbounded. This implies that
any instance of the scheme of Fig. 1 gives rise to an infinite-state system. The
algorithm is supposed to work for any value of n, and it should also work if new
clients enter the system at running time.

3 MSR(C): Multiset Rewriting with Constraints

The ticket protocol presented in the previous section is a practical example of
protocol parametric in several dimensions: the number of processes and the value

of their local variables (denoted by a in Fig. 1). In this paper we will adopt the
specification language proposed in [11] that combines aspects peculiar of High
Level and Colored Petri Nets and of Constraint Programming. The framework
called MSR is based on multiset rewriting systems defined over first-order atomic
formulas and it has been introduced by Cervesato et al. [9] for the formal specifi-
cation of cryptographic protocols. In [11], the basic formalism (without existential
quantification) has been extended to allow for the specification of relations over
data variable using constraints, i.e., a logic language interpreted over a fixed
domain. Multiset rewriting rules allow one to locally model rendez-vous and in-
ternal actions of processes, and constraints to symbolically represent the relation
between the data of different processes, thus achieving a clear separation between
process structure and data paths. This formalism can be viewed as a first-order
extension of Petri Nets in which tokens carry along structured data. In this
section we will review the definitions of [11] and call the resulting formalism
MSR(C). Lets us start from the formal definition of constraint system.

Definition 1 (Constraint System). A constraint system is a tuple C = 〈V,
L,D, Sol,vc〉 where: V is a denumerable set of variables; L is a first-order lan-
guage with equality and closed with respect to ∃ and ∧; we call an open formula
ϕ ∈ L with free variables in V a constraint; D is the domain of interpretation of
the variables in V; Sol(ϕ) is the set of solutions (mappings V ; D) for ϕ; vc is
a relation such that ϕ vc ψ implies Sol(ψ) ⊆ Sol(ϕ).

We say that a constraint ϕ ∈ L is satisfiable whenever Sol(ϕ) 6= ∅. An example
of constraint systems is given below.

Definition 2 (DC-constraints). We call difference constraints the subclass of
linear arithmetic constraints having the form

ψ ::= ψ ∧ ψ | x = y + c | x > y + c | x ≥ y + c | true, c ∈ Z.
Given D = Z, Sol maps constraints into sets of variable evaluations from V to
Z; by definition true is always satisfiable.

For instance, let ϕ be x ≥ y ∧ x ≥ z, then σ = 〈x 7→ 2, y 7→ 1, z 7→ 0, . . .〉 ∈
Sol(ϕ). Furthermore, ϕ is satisfiable and entails x ≥ y, and ∃y.ϕ is equivalent
to the constraint x ≥ z.
Let C = 〈V,L,D, Sol,vc〉 be a constraint system, and P be a set of predicate
symbols. An atomic formula p(x1, . . . , xn) is such that p ∈ P, and x1, . . . , xn are
distinct variables in V. A multiset of atomic formulas is indicated as A1 | . . . | Ak,
where Ai and Aj have distinct variables, and | is the multiset constructor. The
empty multiset is represented as ε. In the rest of the paper will use M, N , . . .
to denote multisets of atomic formulas.

Definition 3 (MSR(C) Rules). Let C = 〈V,L,D, Sol,vc〉 be a constraint
system. An MSR(C) rule has the form M −→M′ : ϕ, where M and M′ are
two multisets of atomic formulas with distinct variables and built on predicates
in P, and ϕ ∈ L.

Note that M→ ε : ϕ and ε→M : ϕ are possible MSR(C) rules. An example of
MSR(DC) rule R is p(x, y) | r(u, v) −→ t(w) : x ≥ y, w = v. Let us call ground

an atomic formula having the form p(d1, . . . , dn) where di ∈ D for i : 1, . . . , n.
A configuration is a multiset of ground atomic formulas. The ground instances
of a multiset rewriting rule are defined as follows: Inst(M −→ M′ : ϕ) =
{σ(M) −→ σ(M′) | σ ∈ Sol(ϕ)}, where σ(M) denotes the straightforward
extension of the mapping σ from variables to multisets. In the previous example
we have that p(1, 0) | r(0, 5) −→ t(5) ∈ Inst(R).

We are now in the position to define formally an MSR(C) specification. In the
following we will use ⊕ and 	 to denote multiset union and multiset difference.

Definition 4 (MSR(C) Specification). An MSR(C) specification S is a tuple
〈P, C, I,R〉, where P is a set of predicate symbols, C is a constraint system, I
is a set of initial configurations, and R is a set of MSR(C) rules over P.

The operational semantics of a specification S = 〈P, C, I,R〉 is defined as follows.

Definition 5 (One-step Rewriting). Given two configurationsM1 andM2,
M1 ⇒ M2 if and only if there exists a multiset of ground atomic formulas Q
s.t. M1 = N1 ⊕Q, M2 = N2 ⊕Q, and N1 −→ N2 ∈ Inst(R).

Definition 6 (Images and Reachable States). Given a set of configurations
S, the successor operator is defined as Post(S) = {M′|M ⇒M′,M ∈ S}, the
predecessor operator as Pre(S) = {M|M ⇒M′,M′ ∈ S}, and the reachability
set as Post∗(I).

3.1 The MSR(DC) Encoding of the Ticket Protocol

In this section we exemplify the notions introduced in Section 3. Multiset rewrit-
ing allows us to give an accurate and flexible encoding of the ticket protocol. We
will first consider a multi-client, single resource system.

One Server, Many Clients Let us first consider a single shared resource controlled
via the counters t and s as described in Section 2. The infinite collection of
admissible initial states consists of all configurations with an arbitrary but finite
number of thinking processes and two counters having the same initial value (t =
s). The specification is shown in Fig. 2. The initial configuration is the predicate
init, the seed of all possible runs of the protocol. The counters are represented
here via the atoms count(t) and turn(s). Thinking clients are represented via the
propositional symbol think, and can be generated dynamically via the second
rule. The behaviour of an individual client is described via the third block of
rules of Fig. 2, in which the relation between the local variable and the global
counters are represented via DC-constraints. Finally, we allow thinking processes
to terminate their execution as specified via the last rule of Fig. 2. The previous
rules are independent of the current number of clients in the system. Note that
in our specification we keep an explicit representation of the data variables;
furthermore, we do not out any restrictions on their values. As a consequence,
there are runs of our model in which s and t grow unboundedly as in the original
protocol. A sample run of a system with 2 clients (as in [8]) is shown in Fig. 3.

Initial States

init −→ count(t) | turn(s) : t = s

Dynamic Generation

ε −→ think : true

Individual Behaviour

think | count(t) −→ wait(a) | count(t′) : a = t ∧ t′ = t+ 1

wait(a) | turn(s) −→ use | turn(s′) : a = s ∧ s′ = s

use | turn(s) −→ think | turn(s′) : s′ = s+ 1

Termination

think −→ ε : true

Fig. 2. Ticket protocol for multi-client, single-server system, with an example of run.

init⇒ . . .⇒ think | count(8) | turn(8)⇒ think | think | count(8) | turn(8)
⇒ wait(8) | think | count(9) | turn(8)⇒ wait(8) | wait(9) | count(10) | turn(8)
⇒ use | wait(9) | count(10) | turn(8)⇒ use | wait(9) | count(10) | turn(8) | think

⇒ think | wait(9) | count(10) | turn(9) | think

Fig. 3. Example of run.

Many Servers, Many Clients Let us consider now an open system with an ar-
bitrary but finite number of shared resources, each one controlled by two local
counters s and t. We specify this scenario by associating a unique identifier to
each resource and to use it to stamp the corresponding pair of counters. Fur-
thermore, we exploit non-determinism in order to simulate the capability of each
client to choose which resource to use. The resulting specification is shown in Fig
4. We have considered an open system in which new clients can be generated dy-
namically via a demon process. The process demon(n) maintains a local counter
n used to generate a new identifier, say id, and to associate it to a newly created
resource represented via the pair count(id, t) and turn(id, s). A thinking process
non-deterministically chooses which resource to wait for by synchronizing with
one of the counters in the system (the first rule of the third block in Fig. 4).
After this choice, the algorithm behaves as usual w.r.t. to the chosen resource id.
The termination rules can be specified as natural extensions of the single-server
case. Note that in this specification the sources of infiniteness are the number
of clients, the number of shared resources, the values of resource identifiers, and
the values of tickets. An example of run is shown in Fig. 5.

4 Specification of Properties via an Assertional Language

Let us focus for a moment on the single-server ticket protocol. It should ensure
mutual exclusion for any number of clients, and for any value of the global and
local variables. In our specification mutual exclusion holds if every reachable
configurationM∈ Post∗(init) contains at most one occurrence of the predicate

Initial States

init −→ demon(n) : true

Dynamic Process and Server Generation

ε −→ think : true

demon(n)→ demon(n′) | count(id, t) | turn(id′, s) :
n′ = n+ 1 ∧ t = s ∧ id = n ∧ id′ = id

Individual Behaviour

think | count(id, t) −→ think(r) | count(id′, t′) : r = id ∧ id′ = id ∧ t′ = t

think(r) | count(id, t) −→ wait(r′, a) | count(id′, t′) :
r = id ∧ a = t ∧ t′ = t+ 1 ∧ r′ = r ∧ id′ = id

wait(r, a) | turn(id, s) −→ use(r′, a′) | turn(id′, s′) :
r = id ∧ a = s ∧ a′ = a ∧ s′ = s ∧ r′ = r ∧ id′ = id

use(r, a) | turn(id, s) −→ think | turn(id′, s′) : r = id ∧ s′ = s+ 1 ∧ id′ = id

Termination

think(r) −→ ε : true
think −→ ε : true

Fig. 4. Ticket protocol for multi-server, multi-client systems.

init⇒ demon(3) ⇒ count(3, 0) | turn(3, 0) | demon(4)⇒ . . .
. . .⇒ count(3, 0) |turn(3, 0) | think | think | demon(4)

⇒ count(3, 0) | turn(3, 0) | count(4, 8) |turn(4, 8) | think | think | demon(5)⇒ . . .
⇒ count(3, 0) | turn(3, 0) | count(4, 8) |turn(4, 8) | think(4) | think(3) | demon(5)
⇒ count(3, 0) | turn(3, 0) | count(4, 9) |turn(4, 8) | wait(4, 8) | think(3) | demon(5).

Fig. 5. Example of run.

use. The state-space we have to generate to check the previous condition is
infinite both in the size of the generated multisets and in the number of multisets
of the same size (the latter due to the unboundedness of ticket variables). The
only way to algorithmically check this property is using an adequate assertional
language to finitely represent infinite collections of configurations. In [11], we
proposed to use a special assertional language based on constrained multisets.
To explain this idea, let us first note that an alternative way of formulating
the validity of mutual exclusion is as follows: init 6∈ Pre∗(U), where U is the
infinite collection of unsafe states. U consists of all the configurations in which
there are at least two occurrences of the predicate use. This set can be finitely
represented using the following idea. Let us introduce the following ordering
between configurations:

M 4 N if and only if OccA(M) ≤ OccA(N) for any ground atom A,

where OccA(M) is the number of occurrences of A inM. A set of configurations
S generates its upward closure Up(S) defined as Up(S) = {N | M 4 N , M ∈
S}. A set S is upward-closed whenever Up(S) = S. Let us go back to our case-
study. It is easy to verify that the set of unsafe states U of the ticket protocol is

indeed upward closed. Furthermore, U can be represented as the upward closure
of the set S of configurations having the form use(c1) | use(c2) where c1 and
c2 are arbitrary integer values. Though S is still an infinite set, we can finitely
represent it by re-introducing constraints as annotations of a multiset of atomic
formulas. Specifically, if we define M = use(x) | use(y) : true, S corresponds
to the set of instances of M w.r.t. the solutions of the constraint true (all possible
values for x and y). Similarly, the unsafe states for the multi-server ticket protocol
can be expressed via the constrained configuration use(id, x) | use(id′, y) : id =
id′ meaning that at least two clients are in the critical section associated to the
same resource with identifier id. This observation is at the basis of our verification
method. Fixed S = 〈P, C, I,R〉 and C = 〈V,L,D, Sol,vc〉, we generalize the
previous ideas as follows.

Definition 7 (Constrained Configuration). A constrained configuration is
a multiset of atomic formulas with distinct variables, annotated with a satisfiable
constraint, i.e., p1(x11, . . . , x1k1) | . . . | pn(xn1, . . . , xnkn

) : ϕ where p1, . . . , pn ∈
P, xi1, . . . , xiki ∈ V for any i : 1, . . . n and constraint ϕ ∈ L.

Given a constrained configurationM : ϕ, the set of its ground instances is defined
as Inst(M : ϕ) = {σ(M) | σ ∈ Sol(ϕ)}. This definition can be extended to sets
of constrained configurations with disjoint variables (indicated as S,S′, . . .) in the
natural way. However, instead of taking the set of instances as ‘flat’ denotation of
a set of constrained configuration S, we will choose the following rich denotation.

Definition 8 (Rich Denotation). The denotation of a set S of constrained
configurations is the upward closed set of its ground instances [[S]] = Up(Inst(S)).

We conclude this section by introducing a comparison test between (sets of) con-
strained configurations whose definition relies on the operations of the underlying
constraints system C. Given the atoms A = p(x1, . . . , xk) and B = q(y1, . . . , yl),
we will use A = B as an abbreviation for the constraint x1 = y1 ∧ . . .∧ xk = yk,
provided p = q and k = l.

Definition 9. The entailment relation vm between constrained configurations
is defined as follows: (A1 | . . . | An : ϕ) vm (B1 | . . . | Bk : ψ) provided
n ≤ k, and there exist j1, . . . , jn distinct indices in {1, . . . , k}, such that γ ≡
∃x1. . . .∃xr. ψ∧A1 = Bj1 ∧ . . .∧An = Bjn and γ is satisfiable, where x1, . . . , xr
are the variables in B1, . . . , Bk, and, finally, ϕ vc γ.

Definition 10. The entailment relation vp (p stands for pointwise extension of
the vm relation) between sets of constrained configurations is defined as follows:
S vp S′ iff for every M ∈ S′ there exists N ∈ S such that N vm M .

The entailment relation vp provides sufficient conditions (that are fully paramet-
ric w.r.t. C) for testing containment and equivalence of the denotations of sets of
constrained configurations. Let S, S′ be two sets of constrained configurations.

Proposition 1. If S vp S′ then [[S′]] ⊆ [[S]].

Procedure Pre∗(U : Set of DC-constrained config., Useα : Bool, UseInv : Bool)
begin

S := U;
R := ∅;
while S 6= ∅ do

remove M from S;
if UseInv and Inv(M) = false then skip
else 266664

if Useα then M ′ = α(M)
else M ′ = M ;
if @ N ∈ R s.t. N vm M ′ then»

R := R ∪ {M ′};
S := S ∪Pre({M ′})

end

Fig. 6. Symbolic backward reachability (Inv(M : α) = true iff the statically computed
place invariants hold in M).

5 A Sound Verification Procedure

In order to lift to the symbolic level an ideal verification algorithm based on the
computation of Pre∗ (backward reachability), we need a symbolic Pre operator
working on sets of constrained configurations. We first introduce the notion
of unification between constrained configurations (with disjoint variables) as
follows: (A1 | . . . | An : ϕ) =θ (B1 | . . . | Bm : ψ) provided m = n and
the constraint θ = ϕ ∧ ψ ∧

∧n
i=1 Ai = Bji is satisfiable, j1, . . . , jn being a

permutation of 1, . . . , n. The symbolic operator Pre is defined as follows:

Definition 11 (Symbolic Predecessor Operator). Given a set S of con-
strained configurations, (A ⊕ N : γ) ∈ Pre(S) if and only if there exist a
renamed rule A −→ B : ψ in R, and a renamed constrained configurationM : ϕ
in S such that M′ 4 M, B′ 4 B, (M′ : ϕ) =θ (B′ : ψ), N = M	M′, and
γ ≡ ∃x1 . . . ∃xk.θ where x1, . . . , xk are the variables of θ not in A⊕N .

The symbolic operator Pre returns a set of constrained configurations and it is
correct and complete with respect to Pre, i.e., [[Pre(S)]] = Pre([[S]]) for any S.

Based on this definition, we define a symbolic backward reachability procedure
(see Fig. 6) we can use to check safety properties whose negation can be expressed
via an upward closed set of configurations. The algorithm is not complete since
it is possible to encode undecidable reachability problems (e.g. for two counter
machines) as verification problems of generic MSR(C) specifications.

As shown in Fig. 6, the theory of structural invariants for Petri nets can
be used to optimize the backward search computation. Namely, we can use the
so-called counting abstraction [10] to transform any MSR(C) specification S into
a Petri Net NS , which can then be used to automatically discover invariants
that must hold for all reachable configurations of the original specification. For
instance, in our case-study we can automatically infer that the number of tokens

in place turn and count are always bounded by one. Since this analysis is conser-
vative w.r.t. the abstraction, it follows that in all reachable configurations for the
ticket specification, Occcount(v)(M) ≤ 1 and Occturn(v)(M) ≤ 1 for any v ∈ Z.
A similar reasoning can be applied to the multi-server protocol concerning the
counters associated to a given identifier (at most one copy of each counter) and
the demon process (at most one copy). The invariants can be used during the
fixpoint computation to prune the search space, by discharging every constrained
multiset which violates the invariants, without any loss of precision.

6 Sufficient Conditions for Termination

We will now introduce a subclass of DC-constraints, called NC (name con-
straints), and corresponding MSRs for which computation of Pre∗ (starting from
an upward closed set of configurations) is effective.

Definition 12 (The Constraint System NC). The class NC consists of the
constraints ϕ ::= ϕ ∧ ϕ | x > y | x = y | x ≥ y | true, interpreted over the
integers and ordered with respect to the entailment vc of linear constraints.

Being a subclass of linear constraints and closed with respect to existential quan-
tification, any constraint solver for linear constraints can still be used to handle
NC-constraints. The class of monadic MSR over NC is defined as follows.

Definition 13 (The class MSR1(NC)). An MSR1(NC) specification S =
〈P,NC, I,R〉 is such that all predicates in P have arity less or equal than one,
i.e., atomic formulas have the form p or p(x) for p ∈ P and some variable x.

Let A1 be the set of constrained configurations with the same restrictions of the
class MSR1(NC). As an example, the rule a | p(x) | q(y)→ q(z) : x > y ∧ y = z
is in MSR1(NC), and p(x) | q(y) : x > y is an element of A1. Then, the following
properties hold.

Lemma 1. (i) The classA1 is closed under applications of Pre for an MSR1(NC)
specification; (ii) the entailment relation vp (see Def. 10) between sets of con-
strained configurations in A1 is a well quasi ordering.

Point (ii) is based on the notion of well and better quasi orderings [1, 4] (the
proof is available in the extended version of the paper). As a consequence, we
obtain the following result.

Theorem 1. The backward reachability algorithm of Section 5 is guaranteed to
terminate when taking as input an MSR1(NC) specification and a set U ⊆ A1.

The formulation of the ticket protocol for the multi-server system requires pred-
icates with at least two arguments. Therefore, it seems natural to ask whether
it is possible to extend Theorem 1 to the general case of arbitrary arity. How-
ever, the entailment relation vm (see Def. 9) between NC-constrained mul-
tisets in which atoms have arbitrary arity is not a well quasi ordering. The

counterexample to the well quasi ordering of vm is as follows. Consider the se-
quence of constrained configurations M2, . . . ,Mi, . . . such that Mi is defined as
p(x1, x2) | . . . | p(x2∗i−1, x2∗i) : x2 = x3, . . . , x2∗i−2 = x2∗i−1, x2∗i = x1. Every
constrained configuration in the sequence implicitly defines a simple cyclic rela-
tion with i edges. The well quasi ordering would imply for a subgraph of a simple
cycle of order i to be isomorphic to a simple cycle of order j < i. The key point
here is the possibility of using predicates in combination with NC-constraints to
form cyclic relations. One possible way of avoiding potential circularities consists
in restricting the form of constraints as follows.

Definition 14 (The Class MSRn(NCn)). It consists of predicates with at
most arity n, and rules annotated with special NC-constraints having the fol-
lowing form: ϕ ∈ NCn iff ϕ can be partitioned in the subconstraints ϕ1 . . . ϕn,
where ϕi contains only variables that occur in position i (arguments are ordered
from left-to-right).

We will call An the class of NCn-constrained configurations. As an example, the
constrained configuration p(y1) | p(x1, x2) | q(w1, w2) : y1 > x1 ∧ x1 > w1 ∧
x2 > w2 is in A2, whereas p(x1, x2) | q(w1, w2) : x1 > w2 is not. Then, the
following properties hold.

Lemma 2. (i) The classAn is closed under applications of Pre for an MSRn(NCn)
specification; (ii) the entailment relation vp (see Def. 10) between sets of con-
strained configurations in An is a well quasi ordering.

Point (ii) is based again on the notion of well and better quasi orderings [1, 4].
As a consequence, we obtain the following result.

Theorem 2. The backward reachability algorithm of Section 5 is guaranteed to
terminate when taking as input an MSRn(NCn) specification and a set U ⊆ An.

6.1 Automated Abstraction Procedures

By exploiting the property that NC-constraints are a subclass of DC-constraints,
we can enforce termination via the following abstraction.

Let # ∈ {>,=,≥}. The abstraction α from DC- to NC-constraints is defined
on a satisfiable DC-constraint as follows: α(true) = true; α(ϕ1 ∧ ϕ2) = α(ϕ1) ∧
α(ϕ2); α(x # y + c) = x # y if c = 0; α(x # y + c) = x > y if c > 0;
α(x# y+c) = y > x if c < 0 and # is =; α(ϕ) = true otherwise. Furthermore, we
define α(M : ϕ) =M : α(ϕ) and we extend this definition to sets of constrained
configurations in the natural way.

Since Sol(ϕ) ⊆ Sol(α(ϕ)) holds, it follows that [[M : ϕ]] ⊆ [[α(M : ϕ)]], and
[[S]] ⊆ [[α(S)]]. If we define Preα = α ◦ Pre, we have that Preα gives us a
conservative approximation of Pre when applied to an abstraction (via α) of
a set of DC-constrained configurations, i.e. [[Pre(S)]] ⊆ [[Preα(α(S))]]. As a
consequence, we have the following property.

Proposition 2. Let U be a set of DC-constrained configurations and I be the
initial configurations, then I ∩ [[Pre∗α(α(U))]] = ∅ implies I ∩ [[Pre∗(U)]] = ∅.

This observation leads us to a new backward reachability algorithm obtained by
interleaving every application of Pre with the application of the abstraction α.
Termination is guaranteed by Theorems 1 and 2.

7 Verification of the Parameterized Ticket Protocol

We have verified mutual exclusion for both models of the ticket protocol pre-
sented in Section 2. According to Section 4, the set of violations can be repre-
sented through the constrained configurations use(x)|use(y) : true for the single-
server formulation, and use(id, x)|use(id′, y) : id = id′ for the multi-server one.
Thanks to the results of Section 6 and using the abstraction α of Section 6.1,
our procedure is guaranteed to terminate (symbolic state explosion permitting).
In Fig. 7, we describe the experimental results obtained using both the concrete
(based on Pre) and abstract (based on Preα) backward reachability, on the
specifications given in Section 3.1. In Fig. 7,

√
indicates that the abstraction

α or the pruning technique based on static analysis has been applied after each
application of the symbolic predecessor operator; ↑ indicates that the procedure
was still computing after several hours. Furthermore, Steps denotes the number
of iterations needed to reach a fixpoint (before stopping the program); Size the
number of constrained configurations contained in the fixpoint (when the pro-
gram was stopped); and Time the execution time (in seconds). The backward
search engine with DC-solver described in Fig. 6 has been implemented in ML
and tested on the interpreter for Standard ML of New Jersey, version 110.0.7.
All experiments have been executed on a Pentium III 450 Mhz, Linux 2.2.13-
0.9. As shown in Fig. 7, using the abstract (theoretically always terminating)
backward reachability algorithm we managed to prove all safety properties we
were interested in (we prune the search space using the invariants discussed in
Section 5). Furthermore, we managed to prove mutual exclusion without pruning
the search for the first model, whereas it was necessary to cut the search space
using structural invariants in the second example in order to avoid the state
explosion problem. Note that pruning techniques do not introduce any kind of
approximations, in fact, when used without α the fixpoint computation does not
terminate as when executed on the pure symbolic algorithm. In an additional
series of experiments, we verified again both models adding the structural in-
variants to the unsafe states. This technique is perfectly sound and, basically, it
has the same effect as dynamic pruning.

8 Related Works

This work is inspired to the approach of [2, 4]. In [2], Abdulla and Jonsson pro-
posed an assertional language for Timed Petri Nets in which they use dedicated
data structures to symbolically represent markings parametric in the number
of tokens and in the age (a real number) associated to tokens. In [4], Abdulla
and Nylén formulate a symbolic algorithm using existential regions to represent
the state-space of Timed Petri Nets. Our approach generalizes the ideas of [2, 4]

Ticket Specification Seed α Prune Steps Size Time Verified?

Us ↑
Multi-client, Single-server Us

√
↑

(Fig. 2, Section 3.1) Us
√

17 222 150s yes
Us

√ √
10 32 < 1s yes

Us ⊕ Is
√

10 34 < 1s yes

Um ↑
Multi-client, Multi-server Um

√
↑

(Fig. 4, Section 3.1) Um
√

> 18 > 3500 > 4h
Um

√ √
19 141 15s yes

Um ⊕ Im
√

19 147 19s yes

Unsafe states
Us ≡ { use(x) | use(y) : true }
Um ≡ { use(id, x) | use(id′, y) : id = id′ }
Structural invariants
Is ≡ { count(x) | count(y) : true, turn(x) | turn(y) : true }
Im ≡ { count(id, x) | count(id′, y) : id = id′, turn(id, x) | turn(id′, y) : id = id′,

demon(id) | demon(id′) : true }

Fig. 7. Analysis of the ticket protocol.

to problems and constraint systems that do not depend on the notion of time.
Following [4], we use the technique of better quasi orderings to build new classes
of well quasi ordered symbolic representations. In [3], the authors apply similar
ideas to (unbounded) channel systems in which messages can vary over an infi-
nite name domain and can be stored in a finite (and fixed a priori) number of
data variables; however, individual processes have finite-state control structures.

For networks of finite-state processes, it is important to mention the automata
theoretic approach to parameterized verification followed, e.g., in [7, 6, 20–23]. In
this setting the set of possible local states of individual processes are abstracted
into a finite alphabet. Sets of global states are represented then as regular lan-
guages, and transitions as relations on languages. Symbolic exploration can then
be performed using operations over automata with ad hoc accelerations (see e.g.
[7, 20, 23]), or with automated abstractions techniques (see e.g. [6]). Differently
from the automata theoretic approach, in our setting we handle parameterized
systems in which individual components have local variables that range over
unbounded values. As an example, in our model of the ticket algorithm local
variables and tickets range over unbounded integers. Furthermore, note that the
abstraction with NC-constraints as target does not make the resulting symbolic
representation finite. Nevertheless, termination can be guaranteed by applying
the theory of well quasi ordering. This way, we do not have to apply manual ab-
stractions to describe individual processes. This is an important aspect to take
into account when comparing our results for the single-server model with those
obtained in [20, 22], in which an idealized version of the ticket algorithm has been
verified using the regular model checking method (actually, a real comparison is

difficult here because the verified model is not described in [20, 22]). The pre-
vious features also distinguish our approach from the verification with invisible
invariants method of [5]. Invisible invariants have been applied to automatically
verify a restricted version of the parameterized bakery algorithm in which a spe-
cial reducing process is needed to force the value of the tickets to stay within
a given range. Our ideas are related to previous works connecting Constraint
Logic Programming and verification, see e.g. [12, 18]. In this setting transition
systems are encoded via CLP programs used to encode the global state of a
system and its updates. We refine this idea by using multiset rewriting and con-
straints to locally specify updates to the global state. The notion of constrained
multiset extends that of constrained atom of [12]. The locality of rules allows us
to consider rich denotations (upward-closures) instead of flat ones (instances)
like, e.g., in [12]. This way, we can lift the approach to the parameterized case.
In [16] a combination of transformation of logic programs and of weak monadic
second order logic has been applied to verify a parameterized formulation of
the bakery algorithm. The proof however is done manually, furthermore, even
if implemented, the method is not guaranteed to terminate. Finally, the use
of constraints, backward reachability, structural invariants and better quasi or-
derings seem all ingredients that distinguish our hybrid method from classical
approaches based on multiset and AC rewriting techniques (see e.g. [9, 24]).

9 Conclusions

In this paper we have presented a sound and fully automated method to at-
tack verification of parameterized systems with unbounded local data. Sufficient
conditions for termination are given for new classes of infinite-state systems.
The method is powered by using static analysis techniques coming from the
structural theory of Petri Nets and by automatic abstractions working on con-
straints. As a practical application, we have automatically verified (as far as we
know for the first time) a very general formulation of the ticket mutual exclusion
protocol in which we allow many clients, many servers, and unbounded local
variables. A formulation of the single-server ticket algorithm with 2 processes,
but unbounded global and local variables, has been automatically verified using
constraint-based model checkers equipped with a Presburger constraint solver
[8], and a real arithmetic one [12]. However, we are not aware of other methods
that can automatically handle the parameterized models of Section 3.1 in their
generality.

Acknowledgment We would like to thank Moshe Vardi, Parosh A. Abdulla, Bengt
Jonsson, the people at VEPAS 2001, and James Larus and Microsoft Research
for having supported our research in the last two years.

References

1. P. A. Abdulla, K. Cerāns, B. Jonsson, and Y.-K. Tsay. General Decidability The-
orems for Infinite-State Systems. In Proc. LICS’96, pp. 313–321, 1996.

2. P. A. Abdulla and B. Jonsson. Verifying Networks of Timed Processes. In Proc.
TACAS’98, LNCS 1384, pp. 298–312, 1998.

3. P. A. Abdulla and B. Jonsson. Channel Representations in Protocol Verification.
In Proc. CONCUR’2001, LNCS 2154, p. 1–15, 2001.

4. P. A. Abdulla and A. Nylén. Better is Better than Well: On Efficient Verification
of Infinite-State Systems. In Proc. LICS’00, pp. 132–140, 2000.

5. T. Arons, A. Pnueli, S. Ruah, Y. Xu, and L. D. Zuck. Parameterized Verification
with Automatically Computed Inductive Assertions. In Proc. CAV’01, LNCS 2102,
pp. 221–234, 2001.

6. K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstracting WS1S Systems
to Verify Parameterized Networks. In Proc. TACAS’00, LNCS 1785, pp. 188–203,
2000.

7. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking. In
Proc. CAV’00, LNCS 1855, pp. 403–418, 2000.

8. T. Bultan, R. Gerber, and W. Pugh. Symbolic Model Checking of Infinite State
Systems Using Presburger Arithmetics. In Proc. CAV’97, LNCS 1254, pp. 400–411,
1997.

9. I. Cervesato, N.A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Scedrov. A Meta-
notation for Protocol Analysis. In Proc. CSFW’99, p. 55–69, 1999.

10. G. Delzanno. Automatic Verification of Parameterized Cache Coherence Protocols.
In Proc. CAV’00, LNCS 1855, pp. 53–68, 2000.

11. G. Delzanno. An Assertional Language for Systems Parametric in Several Dimen-
sions. In Proc. VEPAS ’01, ENTCS volume 50, issue 4, 2001.

12. G. Delzanno and A. Podelski. Model checking in CLP. In Proc. TACAS’99, LNCS
1579, pp. 223–239, 1999.

13. G. Delzanno, J.-F. Raskin, and L. Van Begin. Attacking Symbolic State Explosion.
In Proc. CAV’01, LNCS 2102, pp. 298–310, 2001.

14. E.A. Emerson and K.S. Namjoshi. On Model Checking for Non-Deterministic
Infinite-State Systems. In Proc. LICS’98, pp. 70–80, 1998.

15. J. Esparza, A. Finkel, and R. Mayr. On the Verification of Broadcast Protocols.
In Proc. LICS’99, pp. 352–359, 1999.

16. F. Fioravanti, A. Pettorossi, M. Proietti. Verifcation of Sets of Infinite State Sys-
tems Using Program Transformation. In Proc. LOPSTR’01, pp. 55-66, 2001.

17. A. Finkel and P. Schnoebelen. Well-Structured Transition Systems Everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

18. L. Fribourg. Constraint Logic Programming Applied to Model Checking. In Proc.
LOPSTR’99, LNCS 1817, pp. 30–41, 1999.

19. S. M. German and A. P. Sistla. Reasoning about Systems with Many Processes.
Journal of the ACM, 39(3):675–735, 1992.

20. B. Jonsson and M. Nilsson. Transitive Closures of Regular Relations for Verifying
Infinite-State Systems. In Proc. TACAS’00, LNCS 1785, pp. 220–234, 2000.

21. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. In Proc. CAV’97, LNCS 1254, pp. 424–
435, 1997.

22. M. Nilsson. Regular Model Checking. PhD thesis, Department of Information
Technology, Uppsala University, 2000.

23. A. Pnueli and E. Shahar. Liveness and Acceleration in Parameterized Verification.
In Proc. CAV’00, LNCS 1855, pp. 328–343, 2000.

24. M. Rusinowitch and L. Vigneron. Automated Deduction with Associative and
Commutative Operators. Applicable Algebra in Engineering, Communication and
Computing, 6:23–56, 1995.

