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Abstract

It has been widely recognized that the cross‐correlation function of ambient 
seismic noise data recorded at two stations approximates to the part of 
Greens function between two stations. Therefore, the cross‐correlation 
function should include higher modes, aside from the fundamental mode. 
However, the problem of measuring or extracting overtones from ambient 
seismic noise data remains. In this paper, we propose the frequency‐Bessel 
transform method (F‐J method) for extracting the dispersion curves of higher 
modes from ambient seismic noise data. We then assess the validity, 
accuracy, and applicability of the F‐J method by conducting extensive 
numerical simulations and processing the observed ambient seismic noise 
data of the USArray. As demonstrated in this study, the F‐J method is a 
convenient, practical, and accurate method for extracting the dispersion 
curves of multimodes from ambient seismic noise data and therefore has 
significant potentiality in the field of ambient seismic noise tomography.

1 Introduction

Ambient seismic noise, which is also called microtremor in the field of 
geotechnique engineering, is a stochastic wavefield generated by various 
passive sources (e.g., Okada & Suto, 2003; Yang et al., 2007; Yang & 
Ritzwoller, 2008). After the pioneering works of Aki (1957) and other 
researchers (e.g., Campillo & Paul, 2003; Derode et al., 2003; Lobkis & 
Weaver, 2001; Sabra et al., 2005a, 2005b; Sánchez‐Sesma et al., 2011; 
Shapiro & Campillo, 2004; Shapiro et al., 2005; Snieder, 2004), once useless 
ambient noise data were converted to useful seismic data from which the 
group and/or phase velocity of surface waves can be extracted. 
Consequently, a new field of ambient seismic noise surface tomography 
quickly emerged and is widely used in mapping geological structures with 
various scales, from shallow structure for geotechnique engineering 
applications to the crustal and lithospheric structure (e.g., Bensen et al., 
2007, 2009; Lin et al., 2008; Moschetti et al., 2007; Nakamura, 1989; Nishida
et al., 2009; Okada & Suto, 2003; Satoh et al., 2001; Shapiro et al., 2005; 
Shen & Ritzwoller, 2016; Taylor et al., 2009; Tokimatsu, 1997; Yang & 
Ritzwoller, 2008; Yao et al., 2006).



The ambient noise cross‐correlation method provided an effective tool for 
measuring phase/group velocity in a relatively shorter period than 
conventional seismic surface wave method. Thus, it significantly improved 
the resolution of seismic surface wave tomography and extended its 
applicability (e.g., Bensen et al., 2009; Lin et al., 2011; Tian et al., 2013; 
Yang & Ritzwoller, 2008; Yang et al., 2011). However, it still suffers from 
similar problems as encountered by the classic surface wave tomography 
method, such as nonuniqueness and limited accuracy in inverting crustal and
lithospheric structure. Nonuniqueness occurs because only the fundamental 
dispersion curve is used in the inversion. Therefore, extracting the dispersion
curves of overtones and using them in the inversion are crucial for resolving 
or reducing nonuniqueness and increasing the accuracy of surface wave 
inversion. This notion has long been recognized in the study of surface wave 
tomography (e.g., Asten, 2006; Maraschini et al., 2010; Nolet & Panza, 1976; 
Wiggins, 1972; Yokoi, 2010).

Extracting dispersion curves from ambient noise is a key step in microtremor
survey and ambient seismic noise tomography. A number of methods have 
been developed during the past few decades, such as the spatial 
autocorrelation method (Aki, 1957), the frequency wave number (FK) method
(Capon, 1969; Lacoss et al., 1969), the phase velocity image analysis (Yao et
al., 2006), the multichannel analysis of surface wave (MASW) method (e.g., 
Park et al., 1998, 2007; Park & Miller, 2008), and the high‐resolution linear 
Radon transform (e.g., Luo et al., 2008; Pan et al., 2016). Methods for 
extracting the fundamental dispersion curve are considered mature. 
Recently, more and more researchers identified the higher modes from 
ambient seismic noise through careful analysis for certain cases (e.g., Brooks
et al., 2009; Gualtieri et al., 2015; Harmon et al., 2007; Kimman & Trampert, 
2010; Lin et al., 2013; Mordret et al., 2014; Nishida et al., 2008; Rivet et al., 
2015; Savage et al., 2013; Tomar et al., 2018; Yao et al., 2011).

In this paper, we propose a new method called frequency‐Bessel method 
(abbreviated as F‐J method) for extracting the dispersion curves of 
overtones. Its validity, accuracy, and applicability are systematically 
investigated through a variety of synthetic data. We also test this new 
method by applying it to the observed ambient seismic noise data of 
USArray.

2 Theory of Frequency‐Bessel Transform Method

In a flat multilayered isotropic elastic model, consider that ambient seismic 
noise is a stochastic field, which is stationary in space and time. The 
temporal cross‐correlation function (CCF) of ambient seismic noise records 
between two receivers is defined as (e.g., Jacobson, 1962)

(1)



where u(x,t) is a vertical component of ambient seismic noise recording in 
point x and r = x1 − x2. ⟨·⟩ denotes the average over the stochastic ensemble. 
According to the equipartition assumption (Campillo & Paul, 2003; 
Sanchezsesma & Campillo, 2006), the ambient seismic noise is an isotropic 
field, such that C(r,t) = C(r,t), r = |r| is the distance between two stations. In 
frequency domain, formula 1 becomes

(2)

where ,  and “∗” denotes the complex 
conjugate. Then, we define the frequency vector wave number 
transformation to the spectrum of CCF  as follows:

(3)

This integration is performed over the entire surface. In a cylindrical 
coordinate system, equation 3 becomes

(4)

where k = |k|. By using the integral representation of the Bessel functions 
(e.g., Temme, 1996),

(5)

equation 4 can be simplified to

(6)

Equation 6 reveals that for isotropic CCF, the vector wave number (two‐
dimensional) can be reduced to a one‐dimensional integral and depends only
on the norm of the vector wave number (k) rather than vector k. Noticed that
I(ω,k) is a simplified frequency‐Bessel transform. For this reason, we will use 
I(ω,k) instead of I(ω,k) hereafter in this paper and name it the frequency‐
Bessel spectrogram (abbreviated as F‐J spectrogram).

According to previous studies (e.g., Sanchezsesma & Campillo, 2006; Sato et
al., 2012), the Fourier transform of the CCF of ambient seismic noise data 
between two points is approximate to the imaginary part of Green's function 
between these points, that is,

(7)

where A is a constant and  is a spectrum of vertical component of 
Green's function with hypocentral distance r and recorded at the surface (z 
= 0).



For a flat‐layered elastic half space, Green's function due to an isotropic 
source (e.g., explosive and vertically vibrating source) presents with the 
following form (e.g., Chen, 1993, 1999; Hisada, 1994; Kennett, 1986; Luco & 
Apsel, 1983):

(8)

where g(z,κ,ω) is a kernel function that is independent of r. In addition, J0(kr) 
is the first kind of the Bessel function of zero order.

Substituting equations 7 and 8 into equation 6 yields

(9)

By exchanging integration orders and using the orthogonal property of 

Bessel function (e.g., Arfken et al., 2012): , the 
above equation can be reduced to

(10)

Lastly, we obtain

(11)

In terms of ω and c, (c = ω/k, c is phase velocity), the above equation can be 
recast as

(12)

We see that I(ω,c) can be accurately computed using equation 6 through 
integration. In practice, however, we cannot obtain such an exact I(ω,c) 
because of only limited available data for evaluating the integral. For 
instance, we only have data . As shown in the Appendix 
Appendix A, with use of the limited available seismic data from the 
observation array, we can obtain an approximate I(ω,c) through a finite 
discrete summation:

(13)

where rj is distance between the jth pair stations from which the CCF  is
calculated, with definition r0 = 0, function , and coefficient bj 
given by .

We note that the kernel function gz(z = 0,c,ω) is inversely proportional to the 

secular function  (I is an identity matrix; R is the reflection 
matrix; subscripts D and U denote the downgoing and upgoing; s,l, and f 
denote the source, half‐space boundary, and free surface, respectively; e.g., 



Kennett, 1986; McMechan & Yedlin, 1981). Obviously, the dispersion points 
(c = cn(ω),n = 0,1,2,…), which are the roots of the secular function, are 
singular points of the kernel function. Therefore, kernel function gz(z = 0,c,ω) 
tends to infinity at dispersion points. Figure 1 shows an example of Im{gz(z 
= 0,c,ω)} in the “f‐c” domain for a given flat‐layered model whose 
parameters are shown in Table 1. The black dotted lines are the theoretically
predicted dispersion curves, which perfectly match the areas with a large 
value of the imaginary part of kernel function. Theoretically, the values of 
kernel function at dispersion points should be infinity. Due to the finite pixel 
scanning, only finite though larger values can be observed in plotting 
Im{gz(z = 0,c,ω)}. According to this singular property of kernel function, we 
propose a new method for extracting the dispersion curves from array 
ambient noise data. This new method mainly consists of the following steps:

Step 1.For a given seismographic observation array, the spectral CCFs 
for all possible station pairs are calculated after performing the 
preprocessing of the ambient seismic noise records. This step is same as
the preprocessing procedure in ambient seismic noise surface wave 
tomography (e.g., Bensen et al., 2007; Lin et al., 2008; Prieto et al., 
2011; Shapiro & Campillo, 2004; Yao et al., 2006).

Step 2.Sort spectral CCFs as a function of interstation distance (rj) and 
conducting frequency‐Bessel transform to them, that is, calculating the 
F‐J spectrogram I(ω,c) by the discrete summation formula for each given
ω.

Step 3.Identify the dispersion curves from the I(ω,c) image with the help
of an image recognition algorithm.



We thus name this new method the frequency‐Bessel transform method, 
abbreviated as F‐J method. Our new method is similar to but different from 
the MASW (Park & Miller, 2008; Park et al., 2007) and Radon transform 
method (e.g., Luo et al., 2008; Pan et al., 2016; in short RTM). In MASW and 
RTM, the base function of transformation is “eikx” or “eiωpx,” thus represents a 
one‐dimensional spatial Fourier transformation. While in F‐J method, the base
function of the vector wave number transformation is “rJ0(kr).” This 
represents an isotropic two‐dimensional spatial Fourier transformation 
though only one‐dimensional transform integration involved. The former 1‐D 
wave number transform, or Radon transform, corresponds a 2‐D wave 
propagation problem in a horizontally layered medium or, physically, a wave 
propagation problem excited by an infinite‐long line source. However, the 2‐
D wave number transformation involved in the F‐J method corresponds a 3‐D 
wave propagation problem in a horizontally layered medium or wave 
propagation problem excited by a point source in horizontally layered 



medium. Almost all real problems encountered in our studies are 3‐D 
problems; therefore, F‐J method is an appropriate choice.

3 Tests With Synthetic Data

To assess the validity and accuracy of the F‐J method, several numerical 
tests were conducted. First, the ambient seismic noise data were generated 
by synthesizing a vast number of theoretical seismograms for a given flat‐
layered model whose dispersion curves can be calculated independently 
(Chen, 1993). Since the F‐J method is independent of scale, we only 
synthesize ambient seismic noise data for models with small scale. Second, 
we applied the F‐J method to these synthetic ambient noise data to image 
the dispersion curves for assessing the validity and accuracy of F‐J method.

3.1 Synthetic Ambient Seismic Noise Data

We follow the method (Bonnefoy‐Claudet et al., 2004) to synthesize ambient 
noise data; 1,000 sources were randomly distributed on the surface within a 
ring zone that spans 500 to 1,500 m, as shown in Figure 2a. Each source is a 
vertical point force with a Ricker wavelet. The center frequencies of the 
sources are randomly distributed between 6 and 10 Hz, as shown in Figure 
2b. The force intensities are also randomly distributed between 0.001 and 1, 
as shown in Figure 2c. The vertical components of the synthetic ambient 
noise are calculated for approximately 60 s with a frequency band of 0.5 to 
25 Hz. We employed the generalized reflection‐transmission coefficient 
method (e.g., Chen, 1993, 1999; Chen & Zhang, 2001; Hisada, 1994; Zhang 
et al., 2003) to calculate the synthetic seismograms. Figure 2d shows 
segment of simulated ambient noise records. Three types of observation 
arrays are considered in this study: linear array, trilines array, and randomly 
distributed array, as shown in Figure 3.





3.2 Structure With Soft Layers

The first model (referred model 1 hereafter) for the numerical test consists of
four layers with a low‐velocity zone (Table 1; Ikeda et al., 2012). Three 
observation arrays are investigated. The imaginary part of kernel function 
Im{gz(0,c,ω)} for this velocity model is computed and displayed in Figure 1, 
in which dispersion curves are indicated by black dotted lines. We see that 
the kernel function perfectly matches the theoretical dispersion curves. In 
addition, the energy of the first mode dominates at two frequency ranges, 
namely, 4–9 and 19–25 Hz. In 13‐ to 17‐Hz range, additional higher mode 
dispersion curves appear.

3.2.1 Linear Observation Array

In the linear observation array, 100 receivers are equally distributed along a 
line, as shown in Figure 3a. The total extent of array is 200 m, with 2‐m 
intervals between receivers. Synthetic ambient noise data are generated 
using the procedure described in section 3.1. After scanning over (ω,c), the 
F‐J spectrogram I(ω,c) is obtained by applying the F‐J method, as shown in 
Figure 4a.



As seen in Figure 4a, we can extract the dispersion curves of multimodes by 
tracing the peak points of the I(ω,c) image. The fundamental mode 
dispersion curve appears in frequency ranges of 4–5 and 7–17 Hz. The first 
higher mode dispersion curve appears in frequency ranges of 5–8 and 20–24 
Hz, and a further higher mode appears in a frequency range of 18–20 Hz. 
These dispersion curves perfectly match the theoretical dispersion curves 
calculated using the generalized reflection‐transmission coefficient method 
(Chen, 1993).

3.2.2 Trilines Observation Array

In this observation array, 100 receivers are equally distributed in three 
radiative lines from the center point, as shown in Figure 3b. The angle 
between any two lines is 120°, with consistent 3‐m intervals between 
receivers along each line. The maximum radius from the center point is 99 
m. We apply the F‐J method to synthetic ambient noise data to obtain the F‐J 
spectrogram I(ω,c), as displayed in Figure 4b.

By tracing the peak points of the I(ω,c) image shown in Figure 4b, we can 
determine not only the fundamental mode dispersion curve in frequency 
ranges of 3–5 and 7–20 Hz but also the first higher‐mode dispersion curve in 
frequency ranges of 4–9 and 20–25 Hz. These dispersion curves, although 
only partial segments, agree well with theoretical dispersion curves plotted 
as red dotted lines. Another interesting feature shown on the image I(ω,c) is 
that the clearly recognized segments of the dispersion curves correlate well 
to the areas with large values of the kernel function Im{gz(0,c,ω)}, as shown 
in Figure 1.

3.2.3 Random Observation Array

The third observation array is a random array in which the receivers are 
randomly distributed over an area. We now investigate the effectiveness of 
the F‐J method in this random observation array. Figure 3c shows the 
configuration of the observation array to be investigated. One hundred 
receivers were randomly distributed within a circle with a radius of 100 m.

Similarly, we apply the F‐J method to synthetic ambient noise data and 
obtain an image of I(ω,c), as shown in Figure 4c. In this image, the 



fundamental dispersion curve in the 3‐ to 5‐Hz and 7‐ to 20‐Hz frequency 
ranges can be clearly identified, whereas the dispersion curve of the first 
higher mode can be well determined in the 4‐ to 9‐Hz and 20‐ to 25‐Hz 
frequency ranges. We can also distinguish the dispersion curves of the 
overtones in other frequency ranges, such as those of the second and third 
modes in the 16‐ to 20‐Hz and 15‐ to 18‐Hz frequency ranges, respectively. 
We note that “osculation” seemed to occur between the first and second 
modes at 19 Hz, as shown in Figure 4c (e.g., Boaga et al., 2013; De Nil, 2005;
Malischewsky et al., 2008; Tuan et al., 2011; Zhang & Chan, 2003; Zhang & 
Lu, 2003; Zhang et al., 2016). The two modes do not cross, but their phase 
velocity are very close to each other at this frequency.

Further comparison of the results in Figures 4a–4c shows that the dispersion 
curves obtained by the F‐J method with a randomly distributed observation 
array are better than those of the linear and trilines arrays. Therefore, we 
shall implement the F‐J method with the random observation array in the 
following tests.

3.3 Monotonically Increasing Velocity Model

Model 2 is a four‐layer monotonically increasing velocity model (Foti et al., 
2014). Table 2 displays the parameters of the model. Figure 5a plots the 
corresponding kernel function Im{gz(0,c,ω)} of this model. Receiver 
distribution is same as that of the random observation array for model 1. By 
applying the F‐J method to the synthetic noise data, we obtain the image of 
I(ω,c), as shown in Figure 5b. The dispersion curves of the fundamental 
mode for a frequency less than 15 Hz and the first higher mode within a 
frequency range of 15 to 25 Hz can be clearly seen on the image, which are 
consistent with the kernel function map (Figure 5a).



3.4 Realistic 1‐D Velocity Model

Model 3 is a 1‐D velocity model based on actual near‐surface sandstone and 
silty loam structure in Shanghai, which contains six layers. Table 3 shows the
parameters of this model. Figure 6a shows the imaginary part of kernel 
function map of model 3. The observation array is the same as that for the 
problem in model 2. Furthermore, Figure 6b presents the image of I(ω,c), 
which was obtained by applying the F‐J method to the noise data. Once 
again, the multimode Rayleigh dispersion curves can be clearly identified in 
I(ω,c) image: The fundamental mode dispersion curve appears in frequencies
lower than 10 Hz, and the first, second, third, fifth, and sixth higher‐mode 
dispersion curves appear in frequencies higher than 8, 11, and 16 Hz and 
within frequency ranges of 14–20 and 19–24 Hz, respectively.



4 Preliminary Applications to USArray Data

We now apply the F‐J method to the USArray data recorded at an area of 
central United States, with latitude ranging from 35° to 43° and longitude 
from −97° to −88°, as shown in Figure 7a. We select the high broadband 
vertical data data of 147 USArray Transportable array stations recorded from
1 June 2011 to 1 December 2011, a total of 183 days. We apply a band‐pass 
filter in period band 2–50 s to 1‐day data segment. Subsequently, to reduce 
the effect of inhomogeneous distribution of ambient seismic field source, 
earthquake events and instrumental irregularities, preprocessings, such as 
temporal normalization, spectral whitening, are performed to the raw 
ambient seismic noise data before computing the cross‐correlation (Bensen 
et al., 2007). Daily CCFs are computed for every possible station pair and 
then stacked over 183 days. Finally, we reorder CCFs with hypocentral 
distance (interstation distance), as shown in Figure 7b. We apply the Fourier 
transform to CCFs to obtain the spectral CCFs. After getting the 1‐day base 
stacked spectral CCF, we calculate the I(ω,c) in the ω − c domain by the F‐J 
method using equation 13. The image of I(ω,c) is showed in Figure 7c. The 
appearance of overtones in the image is quite apparent in frequency range 
of 0.13–0.5 Hz, whereas the fundamental mode appears in frequencies below
0.3 Hz.



To understand the I(ω,c) obtained by the F‐J method, we calculate the 
theoretical dispersion curves of a one‐dimensional velocity model beneath 
the observation array. The one‐dimensional velocity model we used for this 
case is constructed by averaging the crustal velocity model of Shen and 
Ritzwoller (2016) beneath the area ranging from latitude 36° to 42° and 
longitude 96° to 90°, and depth down to 50 km. The averaged 1‐D velocity is
then discretized into 18 flat layers, as shown in Figure 7d. We calculate 
theoretical dispersion curves and project them onto the image of I(ω,c), as 
shown in Figure 7c. It can clearly be seen that the dispersion curves (thin, 
red dotted lines) of the fundamental, first higher, second higher, and third 
higher modes match the recognized “hot lines” (narrow area with larger 
values) on the F‐J spectrogram I(ω,c) very well. The fundamental mode is 
clear below 0.25 Hz, blurred between 0.25 and 0.33 Hz and cannot be 
recognized above 0.33 Hz. The fourth‐order and higher‐mode dispersion 
curves are unclear.



As shown in Figure 8a, the second application to USArray data is located in 
further west of the previous investigated area, with latitude ranging from 36°
to 44° and longitude from −104° to −96°. There are total 116 stations 
available in the study area, data were recorded from 1 June 2011 to 1 
December 2011 with total 183 days. With the same procedure as described 
in the previous application to USArray data, we obtain the I(ω,c) image 
shown in Figure 8b.

The dispersion curves of multimodes appear clearly in Figure 8b. The 
fundamental mode appears in frequency ranges of 0.02–0.35 Hz and the 
overtones appear in frequencies above 0.13 Hz. We also calculate the 
theoretical dispersion curves of a 1‐D structure model beneath the 
observation array to understand the obtained I(ω,c) image. The local 1‐D 
structure model used for calculating the theoretical dispersion curves, as 
shown in Figure 8c, is constructed by averaging the selected region (latitude 
36° to 44°, longitude −100° to −104°) from Shen and Ritzwoller's (2016) 
model. The computed dispersion curves (red dotted lines) are projected onto 



the I(ω,c) image shown in Figure 8d. It clearly shows that the dispersion 
curves of the fundamental, first higher, second higher, third higher, and even
the fourth higher modes match the discernible dispersion curves on the 
I(ω,c) image. The fundamental dispersion curve is clear below 0.22 Hz but 
unclear between 0.22 and 0.34 Hz.

Although the dispersion curves from our I(ω,c) image agree quite well with 
theoretical dispersion curves of the current averaged structure models from 
Shen and Ritzwoller (2016), slight discrepancies are discernible. The F‐J 
method assumes the survey region as a 1‐D structure, which can be 
regarded as the complicated weighted average of the actual structure. The 
reference models are the horizontal average of 3‐D structure of Shen and 
Ritzwoller (2016). It is reasonable that the two structures are slightly 
different as well as their corresponding dispersion curves. The approximation
to Green's function (caused by the approximate satisfaction of the 
equipartition assumption of the ambient field), lateral variation, and 
anisotropy also decrease the quality of the I(ω,c) image.

5 Discussion

As seen in previous sections, although the overtones are clear and obvious in
the I(ω,c) image generated by equation 13, there are some “noisy” images 
interfering the dispersion curves. These noisy images are mainly caused by 
the approximately evaluating of I(ω,c), namely, between the discrete 
summation and exact integral. According to the well‐known Nyquist‐Shannon
theorem (Nyquist, 1928; Shannon, 1949), spatial sampling rate (Δr) should 
satisfy the following condition to avoid aliasing,

(14)

And resolution of the image in f‐k domain is controlled by the maximum 
extent of the observation array,

(15)

To understand the cause of the noisy images, we use synthetic data to 
illustrate the effects of spatial sampling rate and the maximum extent of the 
observation array. For simplicity, instead of using the noise derived Green's 
function, we use the synthetic Green's function due to a vertical single force 
acting on the surface for model 1. We use the generalized reflectivity 
method (e.g., Chen, 1993, 1999; Chen & Zhang, 2001; Hisada, 1994; 
Kennett, 1986; Zhang et al., 2003) to calculate the synthetic seismograms, 
the observation array is a linear one, that is, all receivers locate along a 
straight line on the surface. Four arrays are considered as follows.

Array 1:interval of stations Δr = 1 m, extent of array rmax = 100 m;

Array 2:interval of stations Δr = 1 m, extent of array rmax = 500 m;

Array 3:interval of stations Δr = 5 m, extent of array rmax = 500 m;



Array 4:interval of stations is random, extent of array rmax = 500 m, number 
of stations is 100.

Applying the F‐J method to the synthetic seismograms of the three arrays, 
we obtain the images of I(ω,c) shown in Figure 9. Compared the images in 
top row with the ones in the second row of Figure 9, the resolution of the F‐J 
spectrogram I(ω,c) obviously improved with the increase in extent of the 
array rmax. The resolution of high frequency is better than low frequency in f‐c
domain with same rmax. However, the resolution of the image in f‐k domain is 
independent of frequency but is only controlled by rmax according equation 
15. The frequency dependence in f‐c domain is due to the conversion of k to 

c. Since , we have . For low frequency, the uncertainty of 

phase velocity |Δc| is amplified by a factor , for lower frequencies, we find 
larger amplification.



Figure 9. The F‐J spectrograms from synthetic Green's function with different arrays. The left column 
are the F‐J spectrograms in f‐k domain. The right column are the F‐J spectrograms in f‐c domain. The 
top row is the ones of the array1 (Δr = 1 m, rmax = 100 m), the sencond row is the ones of the array2 
(Δr = 1 m, rmax = 500 m), the third row is the ones of the array3 (Δr = 5 m, rmax = 500 m; the bottom is 
the ones of the array4 with the irregular interstation distance, rmax = 500 m).

In the third row of Figure 9, the streaks crossing over the theoretical 
dispersion curves are aliasing due to insufficient spatial sampling rate. The 
maximum wave number we could estimate from the I(ω,c) image is kmax = 
0.628 m−1 according to equation 14. This exactly is what showed in the left 
panel of the bottom row in Figure 9, where the spurious curves crossing over
those true dispersion curves are the extension of the images I(ω,c) in range 
of k ∈ ( − 1,0). The right panel is just the conversion into f‐c domain from the 
left image. The bottom row of Figure 9 are the I(ω,c) images of array 4. The 



minimum interval is min(Δr) = 1.08 m, the maximum interval is max(Δr) = 
16.24 m, the average interval is 5.07 m. This shows a same pattern as seen 
from Figures 7 and 8.

Aside from the effects of insufficient spatial sampling, there are other errors, 
such as the approximation to Green's function, laterally heterogenous 
variation, and lateral anisotropy. Although the theoretical basis for extracting
Green's function from ambient seismic noise data is solid (e.g., Kimman & 
Trampert, 2010; Sanchezsesma & Campillo, 2006; Sato et al., 2012), the 
assumptions for this theory, such as ergodicity, equipartition, or other 
statistical assumptions are never fully satisfied in practice. In practice with 
field data studies, there is poor agreement with these assumptions, which 
adds to the noise in the final I(ω,c) image.

Another issue regarding the accuracy of the F‐J method is the array pattern 
as shown in Figures 3 and 4. According to our numerical experiments, the 
array with randomly distributed geophones offers the best results under the 
same conditions in terms of total number of geophones (100) and array 
extent (200 m). In other words, the total raw data are the same for three 
arrays, but the results of the random array perform better than others. To 
understand this, we need to recall the basic formula we rely on. The key of F‐
J method is to calculate the F‐J spectrogram I(ω,c) by using equation 13, 
which is an approximation to the exact I(ω,c), the frequency‐Bessel 
transform of . I(ω,c) is defined by an integral along hypocentral 
distance. Therefore, the quality or resolution of the I(ω,c) image depends on 
the degree of approximation of the finite discrete summation. With a better 
approximation to the summation a better image quality could be obtained.

To explain why does the random distribution array perform best, we plot the 
interstation distances {rj} distribution of all possible stations pairs of each 
array in Figure 10. The horizontal axis is rj (j = 1,2,…), and the vertical axis of 
Figure 10a is the total number of all possible station pairs with same rj. For 
example, in the linear array, intervals between nearest neighbor station are 
same and equal to 2 m; therefore, there are total 99 of r1 = 2 m; similarly, 
there are 98 of r2 = 4 m, … and 1 of r99 = 200 m, as shown as black dots in 
Figure 10a. In the same way, the distributions of distances between all 
possible station pairs rj for other two arrays are plotted as red dots and blue 
dots in Figure 10. Theoretically, the number of all possible station pairs from 
a 100‐station array is . However, only 99 station pairs, rj, are 
nondegenerate for linear array, while 517 and 4,723 are nondegenerate for 
the trilinear and random arrays, respectively, as shown in Figure 10b. Only 
those nondegenerate rj can effectively be used to calculate the I(ω,c) image. 
For same integration extent, the more and smaller subintervals is, the more 
accurate the numerical integral I(ω,c) will be obtained. Therefore, the 
random array, with much more and finer subintervals, can produce better 
quality I(ω,c) as seen in Figure 4c.



6 Conclusions

In this study, we proposed a new ambient seismic noise analysis method 
called the frequency‐Bessel transform method (F‐J method), which can 
clearly image the dispersion curves of multimodes from ambient seismic 
noise data recorded by an observation array. By using synthetic data from 
given models, we systematically investigated on the validity and applicability
of the F‐J method. We applied this new method to process some ambient 
seismic noise data recorded by USArray and obtained clear dispersion curves
of overtones in addition to the fundamental mode. Moreover, we analyzed 
the main factors affecting the resolution and accuracy of the results of the F‐J
method.

On the basis of studies presented in this paper, we draw the following 
conclusions.

1. The F‐J method is a valid and applicable method for imaging the 
dispersion curves of the fundamental mode and overtones from 
ambient seismic noise data. It is an array analysis method and can be 
used for studies at different scales or frequencies.

2. The quality of dispersion curves extracted by the F‐J method from 
ambient seismic noise data of an observational array depends on both 
the extent and the intervals between neighbor stations of the array. 
The larger the extent, the higher the resolution of results; the smaller 
the interval, the better the quality of results.

3. The distribution of seismographic stations (or receivers) of the 
observation array used in the F‐J method is flexible and can be a linear 
or random pattern. Furthermore, under same other conditions, a data 
acquisition array with random distribution of receivers is the best 
suitable for applying the F‐J method.

4. The preliminary applications to the ambient seismic noise data of 
USArray show that the F‐J method is able to extract the dispersion 



curves of the fundamental mode as well as several overtones from a 
real‐field array data.
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Appendix A: Derivation of Equation (13) in the Text

As seen equation 6, only an approximate I(ω,c) can be obtained with the use 
of the available seismic data from the observation array. Here we show how 
to obtain an approximation I(ω,c) by using limited number of seismic data 
from available observation array.

First, we approximate the infinite integral in equation 6 by the following 
truncation.

(A1)

where 0 = r0 < r1 < r2 < … < rj < … < rN.

Within each interval , we can analytically evaluate the integral if 
integrand G(r) can be approximated by a linear function of r. Therefore, we 
first approximate G(r) by a linear function as follows:

(A2)

with

(A3)

Substituting equation A2 into equation A1, we have

(A4)

With recursive formulas of Bessel functions (e.g., Arfken et al., 2012), we can
easily proof the following formulas:

(A5)

(A6)

Finally, substituting equations A5 and A6 into equation A4 yields



(A7)

where .
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