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Abstract

We consider the problem of localizing one or more sources in a two-dimensional waveguide with
horizontal flat boundaries and random sound speed fluctuations. Our data is the acoustic pressure
field, measured on a vertical array of hydrophones that may span the entire depth of the waveguide
or a part of it. We use randomness to model the effect of internal waves on the sound channel.
Although the strength of the fluctuations is small, the transmitted signal is significantly affected
from the multiple scattering of the waves with the random inhomogeneities, especially since we
consider large propagation distances between the sources and the receiver array. Source localization
is performed following an incoherent approach relying on a transport system of equations that
describes wave propagation in random waveguides and that takes into account modal dispersion and
energy transfer between modes.
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1 Introduction

We consider the problem of multiple source detection and localization in a sea environment with fluc-
tuations in the sound speed profile caused by internal waves as in [1, 2]. The fluctuations depend on
the direction of propagation, called the range, as well as on the vertical depth direction. The strength
of the fluctuations, ε, is small but we consider very long distances of propagation between the sources
and the vertical array of hydrophones on which the acoustic pressure field p(t, ~x) is recorded. In such
regimes cumulative scattering due to the medium inhomogeneities becomes important and p(t, ~x) loses
its coherence. This means that its expectation with respect to the realizations of the random medium,
〈p(t, ~x)〉, decays exponentially with the propagation distance on the scale of the scattering mean free
path and becomes small with respect to the fluctuations p(t, ~x) − 〈p(t, ~x)〉. It is therefore a regime in
which coherent imaging methods fail [3].
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It is well known that in random acoustic waveguides the modes are coupled through the random
medium fluctuations and there is transfer of energy between modes due to scattering [1, 4, 2]. In the
review paper [5] which considers long range basin scale observations it is shown that narrow-band and
broad-band signals are affected in a different way when propagating in the random ocean. Another
important factor that should be taken into account to more accurately describe shallow-water wave
propagation is the presence of energy absorbing sub-bottom sediment layers as in [6, 7]. We also refer
the reader to the recent book [8] for a review of ocean wave propagation through random media theory.

We consider here an idealized marine environment with flat horizontal boundaries and a hard
bottom boundary condition. The deterministic velocity profile we use is depth dependent and the
fluctuations of the sound speed are two-dimensional. Although this is a simplified and rather ideal
model of a marine acoustic environment it still carries and exhibits the main features and challenges
appearing in the problem of source localization in the sea. As it was shown in [3] the behavior of
source localization methods depends primarily on the statistics of the propagating modes and for long
propagation distances coherent imaging fails. We refer also to [9] where coherent source imaging was
considered for two types of random waveguides: with fluctuations in the waveguide boundaries or in
the interior. In the random boundary case, the scattering mean free path is much longer for the lower
modes. Therefore successful coherent imaging can be achieved after introducing weights with which
each mode should be included in the imaging procedure. By reducing the weights of the higher modes
stability is gained but also resolution deteriorates. Optimal weights can be computed so as to achieve
an optimal trade-off between loss of resolution and stability. However, this does not help in the case
of internal inhomogeneities since in this case all the modes become incoherent at similar scales. This
means that the scattering mean free paths are of the same order for all propagating modes and therefore
coherent imaging cannot be improved by using weights and an incoherent approach should be used.

We follow in this paper the incoherent source localization methodology proposed and analyzed
in [3, 10] and further developed in [11]. This methodology uses the theory in [12, 4] and [13] to
derive a stochastic system of differential equations for the modal amplitudes. More precisely, under
the assumptions of diffusion and forward scattering approximation, in the asymptotic scale of small
fluctuations and long propagation distances, a system of transport equations is derived. This system
describes how mode coupling and transfer of energy between modes occurs in random waveguides (see
also [14] and [15]). Taking into account this system of transport equations an incoherent approach for
the source inverse problem has been developed [3, 16, 11].

In this work we focus on the generalization of this incoherent source localization methodology to
the case of multiple sources, as well as, depth dependent velocity profiles. We carefully design our
numerical experiments and use them in order to assess the performance of the incoherent methodology.
In particular, to simulate a sea water environment we use a numerical model for a waveguide with a
rigid bottom and a mean sound speed profile coming from the YELLOW SHARK ’94 experiment [17].
To model inhomogeneities due to internal waves we add to this profile, depth and range dependent
random fluctuations at the scale of the wavelength. We consider wave propagation in regimes close to
and beyond the equipartition distance, that is the distance at which energy is uniformly distributed
between the modes, independently of the initial state. Source localization in such regimes is very
challenging.

The key ingredient for the inversion is the dispersion function which expresses the fact that the
energy carried by different modes propagates with a different speed in the random medium compared
to the deterministic unperturbed case. This difference in the transport speed can be explained from the
asymptotic theory and an analytic form for the dispersion function is derived. Using a model for the
medium’s correlation function we essentially reduce our source localization problem to the estimation of
four parameters: the propagation distance, the depth of the source, the amplitude and the correlation
length of the random fluctuations.
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We illustrate with simulated, incoherent data that the inversion methodology is very accurate, and
stable with respect to the realizations of the random medium. The source range is recovered, even in the
case of only two receivers (see also [18]). It is not important to know the exact form of the correlation
function of the medium, and very good range estimation is obtained even when the wrong model is
used. Depth estimation is more delicate, and good results are obtained only when larger bandwidths
are used. In that case too we rely on the dispersion function and assume that the source range has
been already recovered.

In this paper the data used for the inversion are derived by solving the full acoustic wave equation
in two dimensions and this is certainly a very time consuming process. However, it allows us to check
our inversion approach without committing the inverse crime, that means without having perfect data
that follow exactly the model used in the inversion procedure. Novel approaches relying on random
matrix theory as the one developed in [19] look very promising and time efficient. It would be very
interesting to investigate the use of such approaches in combination with our inversion methodology.

The paper is organized as follows. In Section 2 we give the mathematical formulation for the source
localization problem. In Section 3 we describe briefly two coherent imaging methods and in Section 4
we show that they both fail to locate the sources in the wave propagation regime considered in this
paper. In Section 5 the incoherent methodology for estimating the source location is presented and in
parallel its performance is illustrated with numerical simulations. In Section 6 we place in context the
model for the random waveguide used and summarize the results. The main conclusions of this work
are recovered in Section 7. A description of the model used in the incoherent methodology, which is an
asymptotic model for wave propagation in random waveguides, is given in Appendix A.

2 Formulation of the Source localization Problem

z

z=0

z=H

x

f(t)

Figure 1: Schematic of the problem setup.

We consider acoustic wave propagation in a two dimensional inhomogeneous waveguide with planar
horizontal boundaries as the one depicted in Figure 1. The acoustic pressure field p(t, ~x) = p(t, x, z) is
governed by the scalar wave equation

∆p(t, x, z)− 1

c2(x, z)

∂2p(t, x, z)

∂t2
= F (t, x, z), (1)

with a pressure release boundary condition at the surface

p(t, x, z) = 0, z = 0,
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and a rigid bottom
∂p(t, x, z)

∂z
= 0, z = H.

While this simplified model problem does not adequately describe most shallow-water environments, it
suffices for illustrating the difficulties in the source localization problem resulting from random volume
inhomogeneities. We assume a source term in Eq.(1) of the form

F (t, x, z) = f(t)ρ(x, z),

which models a source with density ρ(x, z) emitting a pulse f(t) towards a vertical receiver array A,
located at xA. Note that we use a coordinate system with range origin at the array and assume that
propagation is from right to left. The pulse has a central frequency f0 and is supported in the frequency
band [f0−B, f0 +B]. We call B the bandwidth and we assume that f0

B ∈ [0.1, 1] so that we can consider
both the narrowband and the broadband cases.

We denote Ωρ the support of the source, a domain centered at ~x? = (x?, z?). When multiple (ns)
sources are considered the source term is of the form,

F (t, x, z) =

ns∑
j=1

fj(t)ρj(x, z).

with Ωρj the support of ρj(x, z) centered at ~x?j = (x?j , z
?
j ) for j = 1, . . . , ns.

We want to model sea water with internal waves caused by changes in temperature and salinity.
In such environments the sound speed c(x, z) has an (x, z) dependent fluctuating part (see [1] and [4])
that can be modeled by

c2
0(z)

c2(x, z)
= 1 + εν

(x
`
,
z

`

)
, (2)

where c0(z) is the unperturbed velocity profile corresponding to ε = 0. Here ν
(
x
` ,

z
`

)
is an isotropic,

statistically homogeneous random process with mean zero and integrable in range correlation function,

R(~x, ~x′) =

〈
ν
(x
`
,
z

`

)
, ν

(
x′

`
,
z′

`

)〉
.

The perturbation parameter, ε, is small and ranges between 1% and 3%. The length scale, `, is the cor-
relation length of the fluctuations and it is assumed here to be of the order of the wavelength. Although
the fluctuations are weak, after multiple interactions of the waves with the medium heterogeneities the
cumulative effect on the pressure field is important, especially for waves that travel over long distances
in the waveguide.

The source localization problem that we want to solve is to estimate the number ns and the loca-
tions ~x?j , j = 1, . . . , ns, of the sources, in range and depth, given the observed acoustic pressure field

pobs(t, xA, zr) on the array A. The observed pressured field could be obtained either by experimental
measurements or by numerical simulation.

3 Coherent Imaging

We define here two coherent imaging functions. We will illustrate in the next section how they fail to
give useful results in wave propagation regimes where the cumulative scattering by the random medium
inhomogeneities is strong.
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The first coherent imaging function is given by

I(~xs) =

∫
dω

2π

∑
zr∈A

p̂ ∗(ω, xA, zr)Ĝ0(ω, xA, zr; ~x
s), (3)

where ∗ denotes complex conjugation and Ĝ0(ω, x, z; ~xs) is the Green’s function for the Helmholtz
equation in the unperturbed waveguide between points ~xs and (x, z) at circular frequency ω. Here ~xs

denotes the search point that takes values in the imaging window at which we evaluate the imaging
function I(~xs). Eq. (3) can be interpreted as the back-propagation of the recorded pressure field
from each receiver on the array (xA, zr) to the hypothetical source location ~xs. In the absence of
the random fluctuations, the back-propagation performed in I(~xs) is exact since the Green’s function
G0(ω, xA, zr; ~x

s) is the correct Green’s function in the background medium. In that case I(~xs) produces
an image that has a peak at the correct source location ~xs = ~x?.

The second method we consider is Coherent INTerferometry (CINT) that was introduced in [20, 21]
for imaging in random, open environments. CINT back propagates to ~xs cross correlations of the
acoustic pressure field recorded at the array, instead of back-propagating the recorded pressure field as
in I(~xs). The cross correlations are over suitable time and receiver offset windows, and they introduce
a statistical smoothing in the imaging process for achieving stability [22]. The optimal smoothing
is determined by two decoherence parameters intrinsic to the data: the decoherence length Zd and
frequency Ωd [21, 22]. The decoherence length is the receiver offset |zr − zr′ | over which p̂(ω, xA, zr)
and p̂(ω, xA, zr′) become statistically uncorrelated. Similarly, Ωd is the frequency lag |ω − ω′| over
which p̂(ω, xA, zr) and p̂(ω′, xA, zr) become uncorrelated. It follows from [12, 4, 13] that in random
waveguides, at long source-array ranges, there is no decorrelation over the receiver offset, but there is
rapid decorrelation over the frequency (Ωd is small). Thus, CINT reduces to back propagating the cross
correlation of the received pressure field across the array, over long time windows of support (2Ωd)

−1,

ICINT (~xs) =

∫
|ω−ω0|≤2πB

dω

2π

∫
|ω−ω′|≤2πΩd

dω′

2π

∑
zr∈A

p̂(ω, xA, zr)Ĝ
∗
0(ω, xA, zr; ~x

s)

×
∑
zr′∈A

p̂ ∗(ω′, xA, zr′)Ĝ0(ω′, xA, zr′ ; ~x
s).

(4)

The CINT imaging function behaves better than the backpropagation method of Eq.(3) and its expected
value does not decay exponentially with range as is the case for Eq.(3). However, due to the dispersion
induced by the random medium fluctuations, it does not give reliable results in the incoherent wave
propagation regime considered in this paper. For a detailed theoretical analysis of the resolution and
stability properties of these two methods we refer the interested reader to [3].

There are other imaging methods that employ signal processing tools for mitigating additive noise
[23]. As long as these methods rely on a coherent p(t, xA, zr) (or p̂(ω, xA, zr)), they are not expected
to give reliable results when p(t, xA, zr) becomes incoherent as is the case for the numerical simulations
considered in the next section. It would be interesting to examine how the adaptive normal mode
back-propagation method proposed in [24] performs with incoherent data such as the ones considered
next. However this is beyond the scope of the present paper.

4 Numerical simulations

In this paper, we obtain the observed field pobs(t, xA, zr) (data) by computing numerically the solution
of the time dependent wave equation as a first order velocity-pressure system using the finite ele-
ment method described in [25] coupled with two perfectly matched layers (PMLs) [26] on the vertical
boundaries of the waveguide.
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Figure 2: The sound speed profile.

We choose either a constant background speed profile with c0 = 1500m/s or the depth dependent
c0(z) shown in Figure 2. This variable sound speed profile is coming from the YELLOW SHARK ’94
experiment in South Elba, in Italy, cf. [17]. We take fluctuations of the sound speed as in Eq.(2) with
ε = 2% or 3%, using a Gaussian correlation function

RG(~x, ~x′) = αe−
|x−x′|2+|z−z′|2

2`2 . (5)

We generate the process ν numerically using random Fourier series [27]. For each source configuration,
we compute eight data sets corresponding to different realizations of the random medium. The corre-
lation length is ` = 0.5λc with λc = c0/fc the wavelength and fc the central frequency. The amplitude
of the Gaussian is α = 1.

The depth of the waveguide is H = 20λc and our data are computed on an array with 201 equidistant
receivers, with the first and last receiver of the array being λc/4 far from the horizontal and flat
boundaries of the considered waveguide. We use data either with two unknown sources, one at ~x?1 =
(15λc, 393λc) and the other at ~x?2 = (5λc, 493λc) or with one source at ~x?2. The direct arrival from
the source at ~x?2 to the array in a homogeneous waveguide is at time x?2/c0 = 0.986s. The data are
computed in the time window t ∈ (0, 6.3306)s.

The source excitation used is a Ricker wavelet

f(t) = −2π2f2
c (1− 2(t− t0)2π2f2

c ) exp (−π2f2
c (t− t0)2)

with central frequency fc = 500Hz and t0 = 1/fc. This pulse is mainly supported in the frequency
range 50− 950Hz. For the case of the two sources we have used the same pulse for both sources (same
strength, phase and frequency). The Fourier coefficients p̂obs(ω, xA, zr) of the data are computed using
the Fast Fourier Transform algorithm. For the source localization we will consider data in sub-bands
[f0−B, f0 +B] for B = 62.5Hz and for different values of f0 to study how the central frequency affects
the results. We will also consider data for several sub-bands to study the effect of a larger bandwidth.

For the density of the source, in the numerical simulations we have used

ρe(x, z) = e
− |x−x

?|2+|z−z?|2

2σ2e ,

with σe =
√

2λc/20.
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Figure 3: I(~xs) (top row) and ICINT (~xs) (bottom row), with f0 = 500Hz, ε = 2% (left) and f0 = 887Hz,
ε = 3% (right). The bandwidth is B = 62.5Hz and Ωd = 14.8Hz. Data for two sources and the variable
sound speed profile. The correct source location is indicated with a white circle.

In Figures 3 and 4 we present the images obtained with the two coherent functionals I(~xs) and
ICINT (~xs) for the simulated data. We compute the functionals in Eqs. (3) and (4), using p̂ = p̂obs.

In Figure 3 we use the data for the two sources and the variable sound speed profile. The bandwidth
is B = 62.5Hz and Ωd = 14.8Hz. On the left plots we show results at f0 = 500Hz with ε = 2% (close to
the equipartition distance defined in Eq. (25), see also Figure 12-left) and on the right at f0 = 887Hz
with ε = 3% (beyond the equipartition distance, see Figure 12-right). The range interval contains
both sources ([315,575]λc). We take a step of λc in range and λc/4 in depth. The correct value of the
sources’ location is indicated with a white circle. We show here results for one realization of the random
medium but the results are similar for other realizations of the medium fluctuations. We observe that
both coherent methods fail to locate the sources correctly. A rough estimation about range may be
obtained but the images look noisy and have several spurious peaks. As the frequency and/or the
strength of the fluctuations increases, determining the sources’ location becomes more challenging.
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speed profile. The correct source location is indicated with a white circle.

7



In Figure 4 we use the data for one source located at ~x?2 = (5λc, 493λc) for a constant sound speed
profile. We use now a larger bandwidth B = 212.5Hz, Ωd = 50Hz and central frequency f0 = 600Hz.
We show results with ε = 2% (on the left plots) and 3% (on the right plots). We display the image for a
shorter range interval [463,523]λc. The imaging window dicsretization steps are as before. We observe
that despite the large bandwidth used, both coherent methods fail to locate the source correctly when
we increase the strength of the fluctuations from ε = 2% to 3%. We will present in the next section
an incoherent source localization methodology that provides robust results in this challenging wave
propagation regime.

5 Incoherent Source Localization Methodology

We assume that the density of the source is of separable form ρ(x, z) = ξ(z)η(x) and seek to extract
information about the functions ξ(z) and η(x). Since the source is located at a large distance from
the array, of the order of hundreds of wavelengths, the range profile of the source can be accurately
approximated by a delta function at the correct range, η(x) ≈ δ(x). We want to estimate the range of
the sources xest

j and their depth profiles ξest
j (z). Concerning the depth profile we will see below that we

can invert for the absolute values of its Fourier coefficients defined by

ξ̂j =

∫ H

0
dz ξ(z)φj(ω0, z), j = 1, . . . N, (6)

with N := N(ω0) the number of propagating modes, φj , in the unperturbed waveguide (see Appendix
A) and ω0 being the central frequency of the considered bandwidth.

We first project the Fourier coefficients of the acoustic pressure field on the array onto the propa-
gating modes and define

P̂j(ω, xA) =
∑
zr∈A

p̂(ω, xA, zr)φj(ω, zr), j = 1, . . . N.

Then by taking the cross-correlations of P̂j(ω) over long time windows of support (2Ωd)
−1 we compute

the following function which we call dispersion function

Dj(χ) =

∫
|ω−ω0|≤2πB

dω

2π

∫
|ω−ω′|≤2πΩd

dω′

2π
P̂j(ω, xA)P̂ ∗j (ω′, xA)e−i(βj(ω)−βj(ω′))χ, (7)

where χ = τ/β′j(ω0) with β′j(ω) the derivative of βj(ω) with respect to ω, τ being the arrival time

and Ωd the decoherence frequency, that is the frequency lag |ω − ω′| over which P̂j(ω) and P̂j(ω
′)

become uncorrelated. The decoherence frequency Ωd is a-priori unknown as it depends on the statistical
properties of the random medium. It can be estimated directly from the data using statistical signal
processing techniques like the variogram [28]. However, optimal imaging results are obtained when Ωd

is estimated during the image formation process as in adaptive CINT [21]. Here we follow the latter
approach.

In an unperturbed waveguide (ε = 0), for all modes j the Dj(χ) are aligned and they all peak at
the same location which corresponds to the range of the source X. In a random medium, however, each
Dj(χ) peaks at a different χj , which in general is not equal to X. This is a form of dispersion with
respect to the modes and is due to the fact that in the random waveguide the transport speed is not
β′j(ω). We will use this dispersion function for estimating the sources’ location.

To do so, we substitute the Fourier coefficients p̂obs of the observed field pobs into Eq.(7) and obtain
the dispersion function for the data, Dobsj . Moreover, using the asymptotic model for the random
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waveguide (described in Appendix A and derived under the diffusion approximation and neglecting
backscattering, in the asymptotic scale of small fluctuations and long propagation distances) we deduce
the following theoretical expression for the dispersion function

Dmodj (χ;Xs) ≈
N∑

q,l=1

|ξ̂l|2
βlβq

Q2
jqW(l)

q (ω0, β
′
jχ,X

s), (8)

where

W(l)
q (ω0, β

′
jχ,X

s) =

∫
dh

2π
Ŵ(l)
q (ω0, h,X

s)e−ihβ
′
jχ,

is the inverse Fourier transform of Eq.(21) and Xs the hypothetical scaled range of the source that
we seek to determine. Here we have assumed a small bandwidth, so that N(ω) ≈ N(ω0) = N and
βj(ω) ≈ βj(ω0) = βj , for j = 1, . . . N . Note that we have introduced Q, the mode coupling matrix on
the array A with entries

Qjq =

∫
A
dzφj(z)φq(z). (9)

Remark 1 In the data dispersion function Dobsj we consider cross-correlations of p̂obs projected onto
the waveguide modes. Phase information appears as the difference (βj(ω)− βj(ω′))χ in the dispersion
function (see Eq.(7)). In the model dispersion function Dmodj only the central circular frequency ω0 of
the source’s pulse appears, as can be seen from Eq.(8). Phase information is contained in the second

argument of W(l)
q which is evaluated at β′jχ.

5.1 Range estimation methodology

By comparing the theoretical model Dmodj with the data Dobjj an estimation for the range location of
the source is obtained. As pointed out in [11], this method is basically an arrival time analysis which
takes into account the modal dispersion. Although the model Eq.(8) depends on the absolute value of
the Fourier coefficients |ξ̂j | (defined in Eq.(6)), range estimation is not really affected by the value of

|ξ̂j | which can be replaced by a constant in Eq.(8).
What really affects Dmodj is the matrix Γ = Γ(ω0) which is a-priori unknown since it depends on the

correlation function of the medium’s fluctuations. We can however use a parametric model, such as the
Gaussian correlation function in Eq.(5) with amplitude α and correlation length `, and estimate the
model’s parameters as well as the unknown range X of the source by minimizing the following objective
function over the search space (Xs, `s, αs)

OD(Xs, `s, αs) =
∑
j∈S

∫ χ2

χ1

dχ

∣∣∣∣∣ Dobsj (χ)

Dobsj (χj)
−
Dmodj (χ;Xs, `s, αs)

Dmodj (χmodj ;Xs, `s, αs)

∣∣∣∣∣
2

, (10)

where
Dobsj (χj) = max

χ

∣∣∣Dobsj (χ)
∣∣∣

and
Dmodj (χmodj ;Xs, `s, αs) = max

χ

∣∣∣Dmodj (χ;Xs, `s, αs)
∣∣∣ .

The set S of the modes used in Eq.(10) is determined by Dobsj (χj) > δ, with δ a user defined tolerance.
The integral in χ in Eq.(10) is computed over the range interval of interest [χ1, χ2]. An adaptive
refinement approach is followed, where at first we scan a large range interval with a big discretization
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Figure 5: Results for the source at ~x?1 with f0 = 887Hz and ε = 3%. Data for two sources and the
constant sound speed profile. Top row: Left: Normalized Dobsj (χj) and the threshold δ = 0.2 for de-

termining the set S of indexes. Middle: Dobsj (χ)/Dobsj (χj). Right: Dmodj (χ;X, `, α)/Dmodj (χmodj ;X, `, α)

with X = ε2393λc, ` = 0.5λc, α = 1m2, the correct values of the unknown parameters. Bottom
row: Dmodj (χ;Xs, `s, αs)/Dmodj (χmodj ;X, `, α) for the correct values of the parameters, unless specified

otherwise. Left: Xs = X + ε220λc. Middle: `s = `/2.5. Right: αs = 2.5α.

step, and then, after the source(s) location is approximately determined, we narrow the search in a
small window around the detected range using a finer discretization step.

The cost function in Eq.(10) measures the discrepancy between the dispersion function Dobsj (χ)

coming from the data and Dmodj (χ;Xs, `s, αs) which comes from our asymptotic model. To illustrate
their behavior we plot in Figure 5 the data and the model dispersion functions for the source at ~x?1
with f0 = 887Hz and ε = 3%. We used here the data for the two sources and the constant sound speed
profile. The bandwidth is B = 62.5Hz and Ωd = 14.8Hz. In the top left plot in Figure 5 we show how
Dobsj (χj) varies with the mode index j and indicate the threshold value δ = 0.2 that defines the set S
to be used in the estimation. The set S contains the mode indexes j with peak amplitudes above this
threshold. The middle picture in the top row is a plot of Dobsj (χ)/Dobsj (χj), for j ∈ S. The abscissa

in the plot is ε−2χ in units of λc. The ordinate is the mode index in S. Note how the dispersion
effects induced by the random medium causes Dobsj (χ)/Dobsj (χj) to peak at different ranges than the
true one, indicated by the vertical black line. The right picture in the top row of Figure 5 shows
Dmodj (χ;X, `, α)/Dmodj (χmodj ;X, `, α), with X = ε2393λc, α = 1m2, ` = 0.5λc, the correct values of the
unknown parameters for j ∈ S. Compare this picture with the ones in the second row, where we fix two
parameters at the correct values, but vary the third one. We set from left to right Xs = X + ε220λc,
`s = `/2.5 and αs = 2.5α. We observe that as we increase X the dispersion function is shifted to the
right. We also observe that the variation in the parameters ` and α introduce a change in the form of
the dispersion function. It is obvious, that the range X affects more the dispersion function than the
other two parameters ` and α.
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Remark 2 It was shown in [10] that the range estimation methodology is not sensitive to the model that
we use for the correlation function. In particular, for a medium with a Gaussian correlation function
an exponential model was used instead and this did not affect the range estimation results. It affects
however the estimation of the model parameters which may not be close to their true values when the
wrong model for the correlation function is used.

We illustrate next with numerical simulations that range estimation is robust in the incoherent zone,
close to the equipartition distance and beyond this.

5.1.1 Range estimation results

We present here range estimation results, for the simulation setup described in section 4, for the two
sources case and the variable sound speed profile. The bandwidth is B = 62.5Hz and Ωd = 14.8Hz.
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Figure 6: First pass of range estimation with f0 = 500Hz, ε = 2% (left) and f0 = 887Hz, ε = 3%
(right). Data for two sources and the variable sound speed profile. The correct value of the sources’
range is indicated with a red circle.

In Figure 6 we plot OD(Xs, `s, αs) for the estimated values of `s = `est and αs = αest at f0 = 500Hz
with ε = 2% (close to the equipartition distance defined in Eq. (25), see also Figure 12-left) and
f0 = 887Hz with ε = 3% (beyond the equipartition distance, see Figure 12-right), over a range interval
that contains both sources. The first pass is done by using a large range interval [χ1, χ2] = [315, 575]λcε

2

with a step of 4λcε
2. The correct value of the sources’ range is indicated with a red circle. In Figure 6

we show results for one realization of the random medium, however, similar results have been obtained
for other realizations. The two minima we observe, indicate that we have two sources. We can locally
compute OD(Xs, `s, αs) around each source to determine their location more accurately. This is done
by restricting the integral in Eq.(10) in range (ε−2χ) at ±30λc around each source with a step of λc.

In Figure 7 we show cross-sections of OD(Xs, `s, αs) over these shorter range intervals that contain
each source, separately. The correct values of (X, `, α) are indicated with a red circle. In each plot
we fix two parameters at the estimated values and display the variation in the third parameter. We
show results for f0 = 500Hz with ε = 2%, and f0 = 887Hz with ε = 3%, for the data with the two
sources and the variable sound speed profile. We observe that the range estimation is extremely robust
even for the highest frequency in our bandwidth. The results are stable, that means that the estimated
quantities do not fluctuate, when we change the realization of the random medium as illustrated by
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Figure 7: Cross-sections of the objective function OD. First row: f0 = 500Hz, ε = 2%. Second row:
f0 = 887Hz, ε = 3%. Data for two sources and the variable sound speed profile. Left: ~x?1. Right: ~x?2.
The correct values of (X, `, α) are indicated with a red circle.

the results in Figure 8(a) where we plot the estimated results for the source at ~x?1 for three realizations
of the random medium. The results are similar for the source located at ~x?2.

Our results illustrate that we have a convex functional and therefore the minimization process is
easy. In general, our objective functional has a clear minimum close to the correct values of the unknown
parameters. The value of `est and αest can be slightly off but this does not significantly affect the range
estimation. Here we assumed a Gaussian model for the correlation function (see Eq.(5)) of the medium
and searched for ` and α. As mentioned in Remark 2 the range estimation is not sensitive to the value
of these parameters and can be successfully recovered even when the wrong model for the correlation
function of the medium is used [3, 10].

To further illustrate the robustness of the range estimation we show in Figure 8(b) the results for the
source at ~x?1, obtained for a vertical array with only 2 receivers located in the middle of the waveguide,
at 9.8050λc and 10.1950λc.

We observe that for the source at ~x?1 the range estimation continues to be accurate, although the
parameters of the correlation function are slightly off. For the source at ~x?2 the range estimation has a
15% error and the correlation function parameters become ambiguous, so we do not show them here.
If we decrease however f0 to 400Hz, we recover the range for the source at ~x?2. Remember that for
ε = 3% with f0 = 887Hz, ε2Lequip ∼ 200λc and with f0 = 400Hz, ε2Lequip ∼ 300λc. The source at ~x?2
is 493λc far from the array, that is with f0 = 887Hz we are already more than two times beyond the
equipartition distance Lequip defined in Eq. (25) (see Figure 12-right).
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(a) Full array aperture results.
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(b) Results obtained using only 2 receivers located at 9.8050λc and 10.1950λc.

Figure 8: Cross-sections of the objective function OD for ~x?1 for three realizations of the random medium
fluctuations. Data for two sources and the variable sound speed profile for f0 = 887Hz and ε = 3%.
The correct values of (X, `, α) are indicated with a red circle.

5.2 Depth estimation methodology

The depth estimation is more delicate than range estimation. We suppose that we have previously
obtained an accurate estimate of the range X with the method described in Section 5.1.

First, we note that the Fourier coefficients of the depth profile ξ̂j do not depend on χ. This is
because we assumed a source density of separable form. Moreover, we expect

Dobsj (χ) ≈ Dmodj (χ;Xest, `est, αest) (11)

due to the fact that Dobsj (χ) is close to its statistical mean by self-averaging. This is due to integration
over frequencies and rapid statistical decorrelation over frequencies [11]. By integrating in range both
parts of Eq.(11) and using Eq.(8) and Eq.(21), we get∫ χ2

χ1

dχDobsj (χ) := X obsj ≈ C
N∑

q,l=1

|ξ̂l|2
βlβq

Q2
jq[e

ΓXest
]jl, (12)

for j = 1, . . . N . The constant C in Eq.(12) depends mainly on the pulse and the integration intervals
used to define Dj(χ) in Eq.(7). However, we do not need to know the value of C for the depth
estimation since as we will see below we normalize by the average with respect to the modes in the
objective function Eq.(16). The range interval over which we integrate the data in Eq.(12) is centered
at the estimated range Xest and its width should be several wavelengths (> 50λc).
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Using now the eigenvalue decomposition of Γ, we can write the following expression for the matrix
exponential in Eq.(12)

eΓXest
=

N∑
j=1

e−|Λj |X
est
uju

T
j ,

with Λj being the eigenvalues (energy conservation implies that Λj ≤ 0) and uj the eigenvectors of the
matrix Γ.

We are interested in ranges beyond the equipartition distance, X > Lequip = 1/|Λ2|, and in this
case we have

[eΓX ]jl =
N∑
r=1

e−|Λr|Xujrulr ≈
1

N
,

where ujr is the j-th component of the eigenvector ur. Thus, we can write Eq.(12) in the following
form

X obs ≈ θQ

 1/β1
...

1/βN

 , θ =
1

N

N∑
j=1

|ξ̂j |2
βj

, (13)

where Q is the matrix with entries Q2
jl and Qjl has been defined in Eq.(9). Remark that the matrix Q

is the identity when the array spans the whole depth of the waveguide, due to the orthogonality of the
modes. We observe that it is impossible to recover |ξ̂j |2 from Eqs.(13). Nevertheless, we can extract
the weighted average θ from our processed data X obs and write Eqs.(13) as

θ ≈ 1

N
(β1, . . . , βN )Q−1X obs, |ξ̂1|2

β1
+ . . .+

|ξ̂N |2
βN

= Nθ. (14)

Considering now M different sub-bands with central circular frequencies ωj , number of propagating
modes Nj := N(ωj) and j = 1, . . . ,M , we can obtain from Eqs.(14) the following system 1/β1(ω1) · · · 1/βNj (ωj) 0 · · · 0

...
. . .

1/β1(ωM ) · · · 1/βNM (ωM )


 |ξ̂1|2

...

|ξ̂NM |2

 ≈
 N1θ1

...
NMθM

 . (15)

This is an underdetermined system, since it has more unknowns than equations, NM > M . Note that as
we add sub-bands, we increase the number of equations and therefore we can hope for an improvement
in our estimate of the unknowns.

Remark 3 For a constant sound speed profile the eigenfunctions φj, j = 1, . . . , N do not depend on

the frequency and therefore ξ̂j, j = 1, . . . , N as defined in Eq.(6) do not depend on ω0. Consequently,

the unknowns |ξ̂j |2, j = 1, . . . , Nl are the same for all sub-bands corresponding to different central
frequencies ωl, l = 1, . . . ,M and it is the higher frequency that determines the length of the unknown
which is NM . On the other hand the βj’s depend on frequency. Eq.(15) takes advantage of this remark.

Since the unknowns |ξ̂j |2, j = 1, . . . , NM are the same for all frequency bands, we obtain a system with
NM unknowns and M equations. This approach will work only for constant or slowly varying φj over

the bandwidth so that the assumption that the unknowns |ξ̂j |2 are the same for all frequency bands holds.
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Assuming now that the depth profile of the source ξ(z) is the indicator function of the interval
1[z?−σ/2,z?+σ/2], we introduce the following model for its Fourier coefficients

ξ̂modj (zs, σs) =
1

σs

∫ zs+σs/2

zs−σs/2
dzφj(ω0, z).

We can recover z? and σ by minimizing the following objective function, Oξ(z
s, σs), which measures

the misfit between the estimated |ξ̂j |2 and the model |ξ̂modj |2 values of the Fourier coefficients, divided
by their average value over j to remove the unknown multiplicative constant C appearing in Eq.(12):

Oξ(z
s, σs) =


N∑
j=1

 |ξ̂modj (zs, σs)|2〈
|ξ̂mod(zs, σs)|2

〉 − |ξ̂j |2〈
|ξ̂|2
〉
2

1/2

. (16)

In Eq.(16) we have used 〈·〉 to denote the average of the numerators with respect to j,

〈|ξ̂mod(zs, σs)|2〉 =
1

N

N∑
j=1

|ξ̂modj (zs, σs)|2

〈|ξ̂|2〉 =
1

N

N∑
j=1

|ξ̂j |2.

When σ is very small we can write approximately

ξ̂modj (zs) ≈ φj(ω0, z
s)

and Eq.(16) takes the following form

Oξ(z
s) =


N∑
j=1

[
|φj(ω0, z

s)|2
〈|φ(ω0, zs)|2〉

− |ξ̂j |
2

〈|ξ̂|2〉

]2


1/2

, (17)

so that we have only one parameter to estimate, the depth of the source zs.
In the case of multiple sub-bands the objective function in Eq.(17) becomes

OM
ξ (zs) =


NM∑
j=1

[
|φj(ωM , zs)|2
〈|φ(ωM , zs)|2〉

− |ξ̂j |
2

〈|ξ̂|2〉

]2


1/2

, (18)

where we use 〈·〉 as before to denote the average values of the numerators with respect to j. Note that
for the multiple sub-bands we recover one vector of |ξ̂j |2, j = 1, . . . , NM corresponding to the band with
the higher central frequency ωM and assuming that the φj are frequency independent the functional

that we are using compares the recovered |ξ̂j |2 with the corresponding φj in this band (M). We will
examine next, how this estimation performs in our numerical simulation setup.

5.2.1 Depth estimation results

We consider here the method with the multiple sub-bands described above, for the depth estimation.
More precisely, we estimate the Fourier coefficients of the depth profile by solving the ill-posed system
of Eq.(15) via a least squares method using the MATLAB function Isqnonneg. Using the estimated
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|ξ̂j |2 in Eq.(18) we obtain an estimate for the depth location of the source. The range interval over
which we integrate the data in Eq.(12) to obtain X obsj is [χ1, χ2] = [Xest − 30λcε

2, Xest + 30λcε
2]. In

each sub-band, the bandwidth is B = 62.5Hz and Ωd = 14.8Hz. In all plots of Figures 9 and 10 we
indicate the correct values of the source locations with a vertical, red, dashed line.

First we show in Figure 9 results for one source located at ~x?2 = (5λc, 493λc), with ε = 2% and a
constant sound speed profile. On the top row, the left plot corresponds to using one sub-band and as
we can see the result is quite bad. However by increasing the number of sub-bands used, the objective
function becomes less ambiguous and very good results are obtained for six or seven sub-bands (center
and right plots on the second row of Figure 9). The two minima of the objective function OM

ξ (zs) on
the bottom right plot of Figure 9 correspond to the source’s depth at 5λc and its mirror location with
respect to the center of the waveguide. Note that we cannot uniquely recover the source location since
from Eq.(15) we recover |ξj | and not ξj .
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Figure 9: The objective function OM
ξ (zs), with fj+1 = fj + 50Hz, for j = 1, . . . ,M − 1. First row:

f1 = 500Hz, M = 1 (left), M = 2 (middle), M = 3 (right). Second row: M = 4, f1 = 500Hz (left),
M = 6, f1 = 500Hz (middle), M = 7, f1 = 450Hz (right). Data for one source at ~x?2, with ε = 2% and
a constant sound speed profile. The correct values of the source locations are indicated with a vertical,
red, dashed line.

In Figure 10(a), we show the results for the data with the two sources and ε = 3% for the case of a
constant sound speed profile. The results with ε = 2% are similar, so we do not show them here. We
observe that the method finds the location of the sources up to the symmetric ghost that we obtain
similarly to the one source case. For the partial array aperture case the inversion of the matrix Q
needed in Eq.(14) is performed using the regularized pseudoinverse.

Finally, in Figure 10(b), we show the results for the data with the two sources and ε = 3% for the
case of the variable sound speed profile. We observe that now the method correctly locates the source at
~x?2 but not the one at ~x?1, even though this is the one closer to the array. This may be due to the sound
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(a) Results for the constant sound speed profile and 3% fluctuations.
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(b) Results for the varriable sound speed profile and 3% fluctuations.

Figure 10: The objective function OM
ξ (zs), with fj+1 = fj + 50Hz, for j = 1, . . . ,M − 1 with M = 7

and f1 = 450Hz. From left to right: results obtained with full array aperture, half array aperture and
using an array with 11 receivers located at the center of the waveguide. In each sub-figure the first
row is for ~x?1 and the second row for ~x?2. The correct values of the source locations are indicated with
a vertical, red, dashed line.
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speed profile we have used which destroys the symmetry and guides the energy towards the bottom
of the waveguide [17]. Note also that in this case the eigenfunctions φj depend on the frequency and
therefore Eq.(15) holds only approximately (see also Remark 3). It is remarkable that we obtain very
good results using only partial array aperture as shown in the results of Figure 10, where we decrease
the number of receivers successively from 201 to 101 and 11 by removing array elements symmetrically
from the top and the bottom.

To resume, this multiple band approach which requires a large bandwidth seems to be quite robust
and gives a good estimation for the depth of point-like sources, close to and beyond the equipartition
distance.

6 Discussion

In this work we consider a water column with small inhomogeneities in the index of refraction which
can be due to internal waves. For convenience, we use a simple model of random ocean with flat and
horizontal boundaries, depth/range isotropy and no attenuation. We want to focus on the saturated
regime where acoustic waves have lost their initial state because of strong scattering. We chose the
correlation length to be of the order of the wavelength so that we can reach the saturation regime at a
relative short propagation distance of the order of hundreds of wavelengths.

To make this more precise we show in Figure 11 how the correlation length of the fluctuations
affects the scattering mean path and the equipartition distance (see also Figure 12 in Appendix A).
For a correlation length of the order of ten wavelengths, as is the case in the ocean, we will have to
consider the array at very large distance from the sources in order to investigate the performance of
the incoherent method in the equipartition regime (see the right plot in Figure 11). This would be
extremely expensive in terms of computational time and memory requirements. Considering correlation
lengths of the order of the wavelength, we reach the saturated regime at smaller propagation distances.

Both range and depth estimations have been tested extensively for different realizations of the
random medium fluctuations. The accuracy of the estimation is of the order λc for the range and λc/4
for the depth. Range estimation uses one frequency band (sub-band) with small bandwidth B = 62.5Hz.
Depth estimation requires multiple sub-bands which corresponds to effectively using a larger bandwidth
(B = 187.5Hz and B = 212.5Hz for M = 6 and M = 7 bands, respectively). The results obtained by
the incoherent methodology are robust and reliable. There is a significant improvement compared to
the coherent imaging results shown in Section 4. To make our model more realistic we should consider
in the future depth/range anisotropy and attenuation.

7 Conclusion

In this work we exhibited the performance of the incoherent methodology proposed and analyzed in
[3, 11], for multiple source localization in a two dimensional acoustic waveguide with random inhomo-
geneities in the bulk medium.

We have seen that the incoherent approach for the range estimation of the source is very robust
and gives accurate and reliable results even in the case where the distance between the source and the
array is beyond equipartition, that is the distance at which energy is uniformly distributed between
the modes, independently of the initial state. The estimation of the source’s depth is more delicate.
It requires knowledge of the source’s range which has to be estimated first and a larger bandwidth
compared to the range estimation.

Both range and depth estimations results are reliable and statistically stable, that means that
they are independent of the realization of the random medium considered. Our numerical simulations
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Figure 11: The scales −1/Λj(ω0), for j = 2, . . . , N(ω0), the scattering mean free paths Sj(ω0), for
j = 1, . . . , N(ω0) and the scaled range of an hypothetical source at X = 2Lequip(ω0), with f0 = 887Hz
and ε = 3%. Left: ` = 0.5λc, X = 466.4λcε

−2. Middle: ` = 5λc, X = 1.331 ·105λcε
−2. Right: ` = 10λc,

X = 1.897 · 1017λcε
−2. Constant sound speed profile. The ordinate is in λcε

−2.

illustrate the potential of the approach for underwater acoustic applications.
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[26] Bérenger J. A perfectly matched layer for the absorption of electromagnetic waves. Journal of
Comp Physics. 1994;114:185–200.

[27] Devroye L. Non-uniform random variate generation. Springer; 1986.

[28] Ripley B. Spatial statistics. Wiley; 1981.

21



A The Asymptotic Model

We explain in this section our asymptotic model for describing the acoustic pressure field recorded
on the array. We first review the case of the unperturbed waveguide with velocity c0(z) and then we
consider the random waveguide case.

A.1 The case of the unperturbed waveguide

We know that for the unperturbed velocity profile c0(z), and for a point harmonic source, energy is
transmitted by independent guided modes so that the following model can be obtained.

We introduce λj(ω) the eigenvalues and φj(ω, z) the orthogonal eigenfunctions of the symmetric
differential operator ∂2

z + ω2/c2
0(z) with a Dirichlet boundary condition at the top of the waveguide

z = 0 and a Neumann boundary condition at the bottom z = H. The wavenumbers, βj(ω), are given
by

βj(ω) =

{ √
λj(ω), j = 1, 2, . . . N(ω),√
−λj(ω), j > N(ω),

where N(ω) is the number of propagating modes at frequency ω. The modes indexed by j > N(ω) are
evanescent. In this case the acoustic pressure field recorded on the array and due to a point source at
(x′, z′) is

p0(t, xA, zr) ≈
∫
dω
f̂(ω)

2π

N(ω)∑
j=1

a+
j,0(ω, z′)√
βj(ω)

φj(ω, zr)e
iβj(ω)(xA−x′)−iωt,

which is a superposition of propagating modes obtained by neglecting the evanescent modes for j >
N(ω) since the array is far from the source. The amplitude of the modes a+

j,0 does not depend on the
range and is given by

a+
j,0(ω, z′) =

1

2i
√
βj(ω)

φj(ω, z
′). (19)

When the background speed c0 is constant, the number of propagating modes is N(ω) =
⌊
ωH
c0π

+ 1
2

⌋
and we have, for j = 1, 2, . . . N(ω),

λj(ω) =

(
ω

c0

)2

−
(
π(j − 1/2)

H

)2

, φj(z) =

√
2

H
sin

(
π(j − 1/2)z

H

)
.

For a depth dependent wave speed c0(z), we do not know in general the analytic expression for the
eigenvalues λj(ω) and the eigenfunctions φj(ω, z) but we can always compute them numerically.

A.2 The case of random waveguides

Assuming now one extended source and following [13] and [11] we can write the Fourier coefficients of
the random pressure field at frequency ω, recorded at the receivers (xA, zr) as

p̂ε(ω, xA, zr) ≈
∫ ∫

Ωρ

dx′dz′ρ(x′, z′)f̂ ε(ω)

N(ω)∑
j=1

a+
j (ω,X/ε2, x′, z′)√

βj(ω)
φj(ω, zr)e

iβj(ω)(x′−X/ε2),

where we introduced the scaled range X = ε2|x? − xA| and the forward random amplitudes a+
j , for

j = 1, . . . N(ω), given by

a+
j (ω,X/ε2, x′, z′) =

N(ω)∑
l=1

1

2i
√
βl(ω)

φl(ω, z
′)T εjl(ω,X, x

′).
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Note that we have also scaled the bandwidth B relative to ε at central frequency ω0 = 2πf0 and define

f̂ ε(ω) =
1

εµ
f̂

(
ω − ω0

εµ

)
,

for 1 < µ ≤ 2. The scaling is performed with respect to the small parameter ε that controls the strength
of the fluctuations of the random medium Eq.(2). The difference with respect to the unperturbed

waveguide case is that the mode amplitudes aε =
(
a+

1 , . . . a
+
N(ω)

)T
are random functions that depend

also on the range (not only on frequency and z′ as in Eq.(19)) and satisfy the following system of linear
stochastic differential equations (see also [13, 3])

∂

∂x
aε(ω, x) =

[
1

ε
P(a,a)

(
ω,

x

ε2

)
+ E(a,a)

(
ω,

x

ε2

)]
aε(ω, x), x > 0,

aε(ω, 0) = a0(ω, z′) =
(
a+

1,0(ω, z′), . . . a+
N(ω),0(ω, z′)

)T
. (20)

Since the stochastic differential equations (20) are linear, we can write

aε(ω, x) = Tε(ω, x)a0(ω, z′),

where Tε is the transfer or propagator matrix and satisfies

∂

∂x
Tε(ω, x) =

[
1

ε
P(a,a)

(
ω,

x

ε2

)
+ E(a,a)

(
ω,

x

ε2

)]
Tε(ω, x), x > 0,

with initial condition
Tε(ω, 0) = I,

where I is the identity matrix.
The N(ω)×N(ω) matrices P(a,a) and E(a,a) are given by

P(a,a)
jl (ω, x) =

iω2

2c̄0
2

νjl(x)√
βj(ω)βl(ω)

ei[βl(ω)−βj(ω)]x,

and

E(a,a)
jl (ω, x) =

iω4

4c̄0
4

∑
l′>N(ω)

∫ ∞
−∞
ds

νjl′(x)νll′(x+ s)

βl′(ω)
√
βj(ω)βl(ω)

eiβl(ω)(x+s)−iβj(ω)x−βl′ (ω)|s|,

respectively, in terms of the random stationary processes

νjl

(x
`

)
=

∫ H

0
dz

c̄0
2

c2
0(z)

ν
(x
`
,
z

`

)
φj(ω0, z)φl(ω0, z), j, l = 1, 2, . . . .

In the definition of νjl, c̄0 denotes a reference constant wave propagation speed, the same reference speed
appears also in Eq.(22), while c0(z) is the depth dependent velocity profile. In the case of a constant
sound speed profile in the water column, c0(z) ≡ c̄0 and the ratio c̄0

2/c2
0(z) (index of refraction) is equal

to 1.
In the asymptotic limit ε→ 0, the expectation of the transfer matrix is given by

lim
ε→0
〈T εjl〉 = δjl e

− 1
Sj(ω)

X+i 1
Lj(ω)

X
,
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where δjl is the Kronecker delta symbol. The expectation of the mode amplitudes is

lim
ε→0
〈a+
j 〉 =

1

2i
√
βj(ω)

φj(ω, z
′) e
− 1
Sj(ω)

X+i 1
Lj(ω)

X
,

where we recover the mode amplitude in the unperturbed waveguide a+
j,0 multiplied by a factor that

exponentially decays in range at the scale of Sj(ω) and with a phase shift that increases with range
on the scale Lj(ω). We give below the definition of Sj(ω) and refer to [9] for the definition of Lj(ω)
which is not needed in our computations. We denote by S1(ω0) the scattering mean free path for the
first mode which is the largest of all Sj(ω0). We consider in this paper ω0 for which the array is at
distance X ≥ S1(ω0) from the source. In that case we are in an incoherent regime and the source
location cannot be determined by any method that relies on the coherent part of the pressure field. To
successfully determine the source location we rely on an incoherent methodology that describes how
energy propagates in the random waveguide.

We refer below to the results needed for the source localization. These are the second moments
of the transfer matrix Tε(ω,X) at nearby frequencies. At large distances (X > S1) the only second
moments that remain large are the mean energies of the modes.

To obtain the behavior for the second moments of the modes amplitudes we need to study the
two-frequency asymptotics of the propagator matrix. Thus we define

U εjl(ω, h, x) = T εjm(ω, x)T ε∗ln (ω − ε2h, x)

and its Fourier transform

V ε
jl(ω, τ, x) =

1

2π

∫
dhU εjl(ω, h, x)e−ih(τ−β′l(ω)x).

Applying the diffusion approximation theorem we can obtain the limiting equation for V ε
jl as ε → 0

which satisfies the following system of transport equations[
∂

∂x
+ β′j(ω)

∂

∂τ

]
W(l)
j (ω, τ, x) =

∑
n6=j

Γjn(ω)
[
W(l)
n (ω, τ, x)−W(l)

j (ω, τ, x)
]
, x > 0,

with initial condition
W(l)
j (ω, τ, 0) = δ(τ)δjl,

and δ(τ) being a Dirac delta distribution.
This system describes the expectation of the energy of the j-th mode when the initial excitation is

on the l-th mode. Its solution in the Fourier domain is given by

Ŵ(l)
j (ω, h, x) =

∫
dτW(l)

j (ω, τ, x)eihτ = [e[Γ(ω)+ihB′(ω)]x]jl (21)

with B′(ω) = diag(β′1(ω), . . . , β′N (ω)) a diagonal matrix and β′j(ω) the derivative of βj(ω) with respect
to ω. The matrix Γ(ω) depends on the frequency and the correlation function of the random fluctuations
and can be written in the following form,

Γjl(ω) =
ω4`

4c̄0
4βj(ω)βl(ω)

R̂νjl [(βj(ω)− βl(ω)) `] , j 6= l,

Γjj(ω) = −
N(ω)∑

l′ 6=j,l′=1

Γjl′(ω), (22)
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for j, l = 1, . . . , N(ω) and with R̂νjl the power spectral density of νjl
We can also define the scales SPj (ω)

SPj (ω) = − 2

Γjj(ω)
, (23)

and write for the scattering mean free paths

1

Sj(ω)
=

ω4`

8c̄0
4βj(ω)

N(ω)∑
l=1

1

βl(ω)
R̂νjl [(βj(ω)− βl(ω)) `] . (24)

Let Λj(ω) be the eigenvalues of the matrix Γ(ω), in descending order, and uj(ω) the corresponding
eigenvectors. Conservation of energy implies that all the eigenvalues are less or equal to zero. In the
long range limit the matrix exponential

E(ω, x) = eΓ(ω)x =

N(ω)∑
j=1

eΛj(ω)xuj(ω)uTj (ω)

is determined by the null space of Γ(ω). Under the assumption that the power spectral density does
not vanish for any of the arguments in Eq.(22), then Γ(ω) is a Perron-Frobenius matrix with simplest
largest eigenvalue Λ1(ω) = 0 and the leading eigenvector is

u1(ω) =
1√
N

(1, 1, . . . , 1)T .

As the propagation distance grows we have

sup
j,l=1,...,N

∣∣∣∣Ejl − 1

N

∣∣∣∣ ≤ O(eΛ2x),

which implies that the energy is uniformly distributed over the modes for distances

x ≥ Lequip(ω) := −1/Λ2(ω), (25)

where we introduced the equipartition distance Lequip(ω).
To illustrate in which regime our numerical simulations have been carried out in terms of these

length scales, we plot in Figure 12 the eigenvalues −1/Λj(ω0), for j = 2, . . . , N , the scales SPj (ω0)
defined in Eq.(23) and the scattering mean free paths Sj(ω0) (see Eq.(24)) for j = 1, . . . , N . We
also plot the scaled ranges X1 = ε2|x?1 − xA| and X2 = ε2|x?2 − xA| for the sources at ~x?1 and ~x?2,
respectively. We use either f0 = 500Hz with ε = 2% or f0 = 887Hz with ε = 3%. We observe that X1

and X2 are above the scattering mean free paths in both plots. This means that we expect our data
to be incoherent for f0 ≥ 500Hz and ε ≥ 2%. As we increase the frequency and the strength of the
fluctuations ε, we expect our data to become more and more incoherent, since the distance between
X1 or X2 and Sj increases. We also observe that for ε = 3%, X1 and X2 are beyond the equipartition
distance −1/Λ2(ω0), whereas for ε = 2%, X2 is close to this limit.
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Figure 12: The scales −1/Λj(ω0), for j = 2, . . . , N(ω0), SPj (ω0), the scattering mean free paths Sj(ω0),
for j = 1, . . . , N(ω0) and the scaled ranges X1 and X2. Left: f0 = 500Hz, ε = 2%. Right: f0 = 887Hz,
ε = 3%. Constant sound speed profile. The ordinate is in λcε

−2.
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