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ABSTRACT OF THE DISSERTATION

Constrained Coding and Signal Processing for Data StorageyStems

by

Sharon Aviran
Doctor of Philosophy in Electrical Engineering
(Communications Theory and Systems)

University of California San Diego, 2006
Professor Jack K. Wolf, Chair

Professor Paul H. Siegel, Co-Chair

Constrained codes for digital storage systems are studietethod for improving signal
detection in digital magnetic recording systems is alsestigated.

The bit stuffing algorithm is a technique for coding consteai sequences by the
insertion of bits into an arbitrary data sequence. Thisagg was previously introduced
and applied to the family ofd, k) constraints. Results show that the maximum average
rate of the bit stuffing code achieves the Shannon capacignwh= d + 1 or k£ = oo,
and fails to achieve capacity for all othet, k) pairs. A modification to the bit stuffing
algorithm is proposed that is based on the addition of cdat it flipping. It is shown
that the modified scheme achieves improved average ratebiostuffing for most(d, k)
constraints. All(d, k) constraints for which this scheme produces codes with aragee
rate equal to the Shannon capacity are determined.

A general framework for the construction @f, k)-constrained codes from variable-
length source codes is presented. Optimal variable-lezagths under the general frame-
work are investigated. The construction of constraineagsdbm variable-length source
codes for encoding unconstrained sequences of indepehdebtased (as opposed to
equiprobable) bits is also considered. It is shown that areuse the Tunstall source
coding algorithm to generate optimal codes for a partiad<iaf(d, k) constraints.

Bit-stuffing schemes which encode arbitrary inputs into-tlimensional (2-D) con-
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strained arrays are presented. The class of @[Bo) constraints as well as the ‘no

isolated bits’ constraint are considered. The proposeedrsel are based on interleaving
biased bits with multiple biases into a 2-D array, while fiitgf extra bits when necessary.
The performance of the suggested schemes is studied thsomghations.

A method for joint detection and decoding of coded transimissver magnetic record-
ing channels is considered. The standard framework of teqo@lization is modified to
account for the colored noise present in high-density m@agnecording systems. The
modified scheme incorporates a noise prediction algoritkiich iteratively and selec-
tively whitens the noise, while utilizing the informationgaluced by the turbo equaliza-
tion scheme. Simulation results demonstrate the perfocemanprovements obtained by

the proposed scheme.
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Introduction

1.1 A Communications Channel View

The notion of a communications channel is commonly assediatith a medium
through which two objects at separate physical locatiomsesa@hange information. A
communications system enables the flow of information tghothe medium by trans-
mitting at one end and receiving at the other. A typical exianga television broadcast
via cable or air. A less recognized notion is that the stoEgaformation and its sub-
sequent retrieval also constitute a form of a communicatgystem. We can juxtapose a
communications system which transmits information in spadth a data storage system,
which transmits information in time.

Consider digital storage systems, also caliggital recorders where data is stored
and retrieved in the form of binary information or bits. Eatbred bit occupies a section
of the entire storage medium, and corresponds to a singl®fudee communications
channel, or equivalently, to one transmission. Bit valuesstored as one of two possible
physical states of the medium. For example, magnetic hakddiives use a thin layer of
magnetic material which can be magnetized entirely in emfievo directions. In optical
storage devices, such as the Compact Disc (CD), bit val@espacified by the presence
or absence of minuscule pits on the disc’s surface.

The focus of this dissertation is on coding and signal preiogstechniques that im-
prove the reliability and efficiency of communications gyst. Their application to data
storage systems can contribute to higher storage capsaaitebto improved immunity to

1



errors.

1.2 Reliable Digital Communications

In general, the aim of communications systems is to overcthreesarious imper-
fections of communications channels. In any real commuioica system, the received
signal is not a perfect replica of the transmitted signat rather a degraded owoisyver-
sion of it. Noise can arise from imperfections in the trarssian and reception devices, as
well as from disruptive channel conditions, like scratcbeshe disc. In digital systems,
the noise results in erroneous bit values and in corrupttad &nce most systems can tol-
erate only a very low incidence of incorrect information,aacurate retrieval of the sent
information in the presence of noise is vital. The fields gfitdl communications and in-
formation theory are dedicated to developing efficient aagllg-implementable methods
as well as theoretical tools for achievirgjiable transmission through noisy channels.

The foundation for these fields was laid out by Claude Shammad®48. In his sem-
inal work, he introduced a mathematical framework whichcdégsd and quantified the
transmission of digital information over generic noisyheals [1]. Using these new con-
cepts, he established that digital systems should be algentonunicate reliably over a
noisy channel, under a certain limitation. The limitatisrgiven in terms of a maximum
rate or speed at which the information can be transmittezlititr the channel. This fun-
damental result, known as theisy channel theorephas triggered a paradigm shift from
analog communications to digital communications.

In the proof of the theorem, Shannon argued that reliablgadligommunication is
obtained by means afhannel coding In general, channel coding relates to converting
the sender’'s messages into other messages which are theemtebrough the channel.
The transmitted messages include redundant informatioohadan be exploited at the
receiving end in order to reconstruct the sent messagestfrelthannel outputs. Finally,
the sender’s original messages are recovered from thes&aoted data. We demonstrate
the idea of channel coding with the following well-known axale.

Suppose we represent the message to be sent as a sequertse Wesend these
bits over any type of a noisy channel, for example, by burtivegn on a CD. As a result



of noise, there is a certain likelihood that some of the bitslve read out erroneously,
i.e., they will be flipped (from 0 to 1 and vice versa). The @bitity of such an event
serves as a measure of the transmission (or recordingbitiglighrough this channel.
Consider now the following coding strategy: an encoder gns five copies of each bit,
to be burned on the CD, instead of the original single bit. &foke, the retrieval process
introduces some errors. The retrieved bits are fed to a @ecadhich knows of the five-
copies encoding strategy and hence reviews all five bitsceSnot all five copies may
agree on the same value, the decoder can make an “educatsi gad choose the bit
value that is most probable given the five copies. An examipgech a guess is by taking
a majority vote, which yields the most probable value unéetatn assumptions. Such a
scheme can be seen to reduce the probability of input-lmt®or to improve reliability.

The described coding scheme replaces each bit with a comdsypy five-bit block
which contains redundant information, i.e., all bits are $ame. The amount of added
redundancy is usually measured in terms of the resuttiamgsmission ratedefined as
the average number of information bits that are conveyedhaahannel use. The rate
of transmission in the example above%isThe rate reflects the efficiency in which the
scheme utilizes the channel. Now, if we would like to furthextuce the error probability,
we could use the same scheme with longer blocks or more tiepsti However, this
comes at the cost of lower transmission rates or decreaBeety.

From this example, it may seem that this tradeoff is ine\@amnd that obtaining a
vanishingly small error probability requires infinite redlancy. The essence of Shan-
non’s result is that this is not true. More precisely, one ttansmit information through
the channel with an arbitrarily small error probability atyarate less than thehannel
capacity The capacity is a unique property of the channel and may loelated or at
least estimated for certain channels.

Although Shannon provided the guiding concept of channéingp he left the prob-
lem of finding practical coding methods unresolved. In thd fiee decades, considerable
research was dedicated to finding practical coding teclesiquhose rates approach the
channel capacity and whose complexity is acceptable. Auhdit research was devoted
to finding the capacity of various channels of interest. Thallenge in code design is
to provide a prescribed error probability with minimal ingp@n efficiency. It is also



essential that the scheme will be simple to implement. \ridever and practical cod-
ing schemes are available today which obtain both highesrand better performance
than in the example above. Furthermore, some of these ssheaneget very close to
the capacity of several simple channels. All of these sclsean® more complex than the
illustrated scheme in terms of the code structure and eslpeiri their decoding strategy.
However, they retain the same basic principle of mappingtlgnal messages to longer
messages which contain redundant information in the foroedin relations among the
transmitted bits. In what follows, we describe how chanrmelicg is accomplished in

digital recorders.

1.3 Channel Coding and Signal Processing for Storage

Figure 1.3.1 shows a simplified model of a recording systeit, & emphasis on its
channel coding and signal processing components. Regpsggiems typically employ a
concatenation of two distinct coding schemeseamnr-correction codingECC) scheme
and amodulation codinggcheme. Each coding scheme realizesde which is a set of
rules for assigning certain output sequences to each ofassilge input sequences. An
encoder converts the inputs to their assigned outputs, amtehing decoder attempts to
recover the inputs from the retrieved outputs. Téte of a code is defined as the ratio of
the average input length and the average output length.dsuares the average number of
user bits that are conveyed in each stored bit. The two cqaliogedures are inherently
different in their approach to obtaining improved recogialiability, as we explain next.

As shown in Figure 1.3.1, user information first undergoedimg by an ECC en-
coder, which adds extra bits to the input message bits [k ffansformation is intended
to protect the recorded data against multiple random ethatsmay occur during its re-
trieval. The encoder systematically generates the extsaabia function of the input bits
by imposing certain mathematical relations on the outpist Gihe resulting structure of
the output allows the decoder to correct and/or detectiodotberrors. The five-copies
encoding-decoding strategy we mentioned earlier is an pkawf the simplest error-
correcting code. In Chapter 6, we describe in detail the @ingoand decoding of a fam-
ily of error-correcting codes, called low-density parityeck (LDPC) codes [3]. LDPC
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User Data
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Channel
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Figure 1.3.1 A simplified model of channel coding and signalcpssing components

in digital recording systems. Channel coding is composetivofconcatenated coding
schemes employing an error-correcting code and a modualatide.

codes are currently regarded as potential candidatestéggration into future-generation
recording systems.

The next encoding step involvesmodulationcode. Here, a modulation encoder
converts arbitrary input sequences into sequences thstysegrtain predefined restric-
tions [4]. The output sequences are calbedistrained sequenceblence the nameon-
strained codewhich is a more familiar term for a modulation code in the teah of
digital recording. The constrained sequences are theadstwr the medium instead of
the original input. This approach is motivated by the obatown that particular recorded
sequences are more prone to errors during retrieval tharti herefore, their exclu-
sion from the collection of admissible channel inputs caprione the overall reliability
of the system. The role of constrained codes is to avoid icerédrieval failures that are
typical of the system. This stands in contrast with errar@cting codes, which attempt
to correct those errors that already occurred. Constraiodihg for storage systems con-
stitutes the main topic of this dissertation. Chapter 2 e a comprehensive overview
of this topic. Chapters 3, 4, and 5 deal with the design antysisaof constrained codes.

The system model in Figure 1.3.1 illustrates another corapbna channel detec-
tor. Before we explain its functionality, we assume thatrérding channel component
incorporates the following operations: converting thealbyndata to an analog signal,
recording the analog signal on the medium, and retrievingnt this model, channel



detection corresponds to processing the retrieved anajoglsn order to accurately de-
termine the binary values of the stored bits. A channel det@an incorporate a variety
of signal processing techniques with different functiaies [5]. This includes filtering,
sampling, resolving the interference between signals fidjacent stored bits in the pres-
ence of noise, and manipulating the noise portion of theadggrSome systems, like op-
tical disc recorders, employ relatively simple detectarsile others, like magnetic hard
disk drives, employ more sophisticated devices. Chaptdal@eates on the detection
techniques used in current disk drives. Chapter 6 studesadhptation of new detection
techniques to improve the reliability of current disk drieehnology.

1.4 Coding for Noiseless Channels

In his work, Shannon introduced two powerful concepts wtach important in the
design and analysis of constrained codes. We briefly revimset concepts here, and
we refer to them later in Chapters 3-5. Since we deal withtaligiystems, we limit our
discussion to discrete channels, that is, to channels timait @ finite number of symbols
as their input.

The first concept is thenput-constrained noiseless channelhich forms a special
case of themoisy channetliscussed earlier. A channel is input-constrained if itaigdible
inputs do not include all possible sequences of symbolstharavords, some restrictions
are imposed on the sequences that can be transmitted, stich asler of symbols in
the sequence. In a noiseless channel, the received messagas exact replica of the
sent messages, So no errors can occur. The maximum posaitdenlission rate over this
channel is theshannon capacitgf the channel. It is easy to see that constrained codes
in digital recorders serve as a transformation of arbitta@inary messages into binary
messages that can be sent over an input-constrained rssisél@nnel.

A second concept is thentropy which measures the information content of messages
generated by an information source. The simplest infomnatburce generates symbols
that are statistically independent and are drawn accorttirmne specified probability
distribution. The basic idea is to establish a link betwéerpredictability of probabilistic
events and the amount of information they contain. It issaable that the occurrence of



an unlikely event brings more new information than the omue of a very likely event.
Following this reasoning, Shannon proposed to measurevdrage information content
of each generated symbol by

M
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=1

wherepy, - - - , pys are the probabilities to observe each of fealifferent symbols. Here,
log, p; quantifies the amount of information contained in the o@nee of an event whose
probability isp;. The base of the logarithm is 2 since it is convenient to isgmethe
amount of information with binary units such as bits. Shanextended the definition of
entropy to more complex information sources which canséilcharacterized by a fixed
probabilistic behavior.

The relevance of entropy to constrained coding is twofolaistfFthe conversion of
unconstrained sequences to constrained sequences soblgnge in the entropy per
symbol. In digital recorders, we represent the informasissequences of binary symbols
(0 and 1). This means that the entropy per user bit is diftetem the entropy per stored
“constrained” bit. The higher the entropy of a stored big thore information it conveys.
Therefore, we are interested in designing codes that genesastrained sequences with
the highest possible entropy per bit. Second, the maximwssiple rate of a constrained
code is determined bg, where(C' is the Shannon capacity of the constrained channel
andH is the entropy peuserbit. If we model the user data as sequences of independent
and equiprobable bits, theih = 1 andC' is the maximum code rate.

1.5 Dissertation Overview

This dissertation considers two major themes: constraiodihg and signal process-
ing, as they apply to recording systems. Chapter 2 providekdround on these topics,
Chapters 3 - 5 are concerned with design and analysis ofreimesti codes, and Chapter 6
is concerned with the integration of signal processing wdthnto new iterative decoding
and detection techniques.

The first part of Chapter 2 describes various aspects of i@nstl coding for storage
systems. The rest of the chapter is devoted to a detailedipiésic of the magnetic



recording channel and the detection process in computdrdisk drives.

Chapters 3 and 4 consider constrained coding methods fomanoaly used family
of constrained channels, calledgn-length-limited (RLL)d, k) constraints These chan-
nels impose limitations on the lengths of runs of conseeutke symbols. The coding
schemes we study in these two chapters were motivated byi@psé/ suggested coding
scheme, called thieit stuffing algorithm The bit stuffing algorithm generates constrained
sequences by inserting extra bits into an arbitrary inpatst in a manner that guarantees
that the resulting output meets the limitations [6].

In Chapter 3, we propose to modify the bit stuffing algorithyraldding a controlled
flipping of unconstrained bits. This modification maintatihe simplicity and underlying
principles of the bit stuffing technique, and is calledbitdlipping algorithm We analyze
the bit stuffing and bit flipping algorithms to show that bipfling achieves improved
average rates over bit stuffing for mdst k) constraints. We further determine &dl, k)
constraints for which the bit flipping algorithm producesles with an average rate equal
to the Shannon capacity.

In Chapter 4, we study codes faf, k) constraints from @ource codingerspective.
In general, source coding, also knowndata compressiqgrrefers to encoding data into
a shorter representation in a recoverable manner. The wedepted in this chapter
was inspired by a recent extension of the bit stuffing and ipipithg algorithms, called
the symbol sliding algorithm [7]. We first extend the thregamithms into a general
framework for the construction of constrained codes fromabde-length source codes.
We show that it gives rise to new codes which achieve imprgertbrmance over the
aforementioned algorithms. We then search for optimal sadeder this framework,
optimal in the sense of their achievable rates. Howeverjriighduch codes appears to
be a difficult problem. In an attempt to solve it, we are led emsider the encoding
of unconstrained sequences of independent but biased ffasegto equiprobable) bits.
Here, our main result is that one can use the Tunstall sowdmg algorithm [8] to
generate optimal codes for a partial clas$dft) constraints.

In Chapter 5, we design constrained codes for use in nexrggan storage tech-
nologies. These technologies give rise to communicatibasrels of a two-dimensional
nature, which can be viewed as an extension of the traditmmadimensional channel.



New coding and detection techniques are required, as mahg akisting techniques are
not readily applicable to these channels. We present cadingmes that are based on an
adaptation of the bit-stuffing algorithm to the encodingwbtdimensional constrained
arrays. The proposed schemes can be viewed as an extensieveodl previously sug-
gested bit stuffing schemes for two-dimensional constcaameays [9], [10]. We compare
the performance of the various schemes through simulations

Chapter 6 focuses on channel detection in hard disk drives.pkdpose a method
to harness the advantages of novel detection and decodihgit¢eies for dealing with
problems that are specific to current disk drive technokgi®pecifically, we consider
an iterative decoding and detection framework knowtuaso equalizationwhich is the
state-of-the-art method for channels such as the magmeticding channel [11]. How-
ever, turbo equalization is designed for channels withevhdise, a condition which does
not apply in magnetic recording systems. In this chapterpvesent a modified turbo
equalization scheme that accounts for the special chaistats of the noise in magnetic
recording systems. It incorporates@ise predictioralgorithm, which iteratively whitens
the noise in a selective manner, while utilizing the infotimia produced by the turbo
equalization scheme. Simulation results demonstrateg¢Henmance improvements ob-
tained by the proposed scheme.
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2

Background on Digital Recording
Systems

This chapter provides the background for topics discussedbsequent chapters. In
the following sections, we elaborate on two components@stmplified model of a data
storage system, namely, modulation coding and channettiteate Section 2.1 reviews
constrained codes and their role in optical and magnetiagéo It is mostly based on
material in [1], [2], and [3]. Section 2.2 provides a brieoview of magnetic recording
technology for computer hard disk drives. In this sectioe, @ncentrate on channel
detection techniques. A more detailed description of tlaglirey process in disk drives
appears in [3] and [4]. For a recent survey of the state-efdit in disk drive technology,
we refer the reader to [5] and [6].

2.1 Constrained Coding for Storage

Constrained codes, also known as modulation codes, seax®id the recording of
those sequences whose retrieval is likely to cause an emugnead by the system. There
are several sources for such retrieval failures, inclugtargpus deficiencies in the reading
technology, such as the timing recovery and detection nmesims. Impairments of the
physical recording channel itself may also severely distome sequences while only
slightly affecting others. Therefore, the characteraatof problematic sequences and
the definition of effective restrictions to eliminate thesnpiart of the process of system

11
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design. The chosen restrictions are usually prescribeerimg of special properties that
an acceptable sequence must have, and are system-dependent

We motivate and illustrate the use of constrained codesutfiran example. Con-
sider a magnetic recording device, where the recordinggsomagnetizes portions of
a magnetic medium in one of two possible polarities. Thedmiésconsecutively written
onto fixed-size spaces, called bit cells, along a strip. féidil.1 shows a magnetiza-
tion pattern that arises from the recording of a certain flyis@quence. When reading
the data, the device can only sense transitions in the direof magnetization, i.e., it
detects the boundary between contiguous bit cells of opp@silarities. The system
electronics respond to such a transition with voltage changs depicted by the ana-
log voltage waveform in Figure 2.1.1. It can be seen from thgeform that the effect
of a transition on the measured voltage is not spatiallytechi However, it decreases
significantly with increasing distance from the transitfwoint. This means that nearby
transitions might significantly contribute to the overal$ponse of the system at a current
transition, whereas sufficiently distant transitions Wwélve a more negligible effect. This
phenomenon is often observed in communication systemssamimonly referred to as
intersymbol interferenc@Sl). If transitions are too close, the system may no lorigger
able to accurately sense them or distinguish between them.

We would like to store binary information on the describedtsyn, while obeying
the following writing convention. Each 1 in the input streaiotates a reversal in the
direction of magnetization and each O stipulates a nonrsavén direction. Figure 2.1.1
shows an input stream that follows this convention and spads to the magnetization
pattern in the figure. Suppose that our system can detediticars reliably only if they
are at leasD microns apart. In the absence of coding, we should accouatlfpossible
input patterns, hence we allocaie microns for each bit cell. In this scenario, each
recorded bit represents one user information bit. Considera coding scheme that can
convert arbitrary data into special bit streams with no eelja 1's, i.e., where there is at
least one 0 between any two 1's. Applying the scheme on upet,ive guarantee that
recorded patterns will contain transitions which are astéao bit cells apart. We can
take advantage of the new constellation by decreasing theebisize to%D microns,
thus increasing theecording densityo % bits per micron.
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Figure 2.1.1 A simplified model of data retrieval in digitahgnetic recording systems.

We are now able to record more bits on a strip of a given lenigth,we should
also consider the overhead incurred by coding. Suppose w¢hesscheme described
in Table 2.1.1, where the encoder simply replaces block$&fet bits at a time with
five-bit blocks, as specified by the table. After correctidriransmission errors by the
ECC scheme, the decoder converts the blocks back usingrtieetahle. One can readily
observe that the encoded stream indeed contains no adjsemhe code rate i%, ie.,
each recorded bit represergtS)f a user bit. Since two recorded bits occupymicrons,
we now Writeg user bits-peD microns, as opposed to one user bit pemicrons without
coding. In the example above, we used a constrained codéta agher storage volume
for a given reliability requirement. Alternatively, we dduetain the same bit-cell size
and use the code to obtain greater physical separation betire@nsitions. In this case,
we gain better system performance due to improved deteatidime cost of loss in the
effective storage capacity. Clearly, there is a tradedfirben these two benefits, therefore
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Table 2.1.1 A constrained code for a run-length-limitédoo) constraint, where there
must be at least one 0 between any two 1’s.

Input Block | Output Block
000 00000
001 10000
010 01000
011 00100
100 00010
101 10100
110 10010
111 01010

using coding in conjunction with a smaller bit size may ofeme compromise between
them.

The example above is a simplification of a real problem thatigsigners of magnetic
recording systems faced until the late 80's. At this timestegns were using a peak
detection method, which searches for individual peakserothitput voltage as a means of
detecting the recorded bits. A related but slightly différproblem still exists in current
optical disc recorders. This problem gave rise to a genéaas ©f restrictions, known as
run-length-limited(RLL) (d, k) constraints or simply(d, k) constraints Here, the term
constraintrefers to the set of restrictions that are imposed on theesexgs.

The bulk of this dissertation deals with constrained codesd, k) constraints and
with recent extensions af?, k) constraints to two-dimensional lattices. (&, k) con-
straint requires that successive 1's are separated by sitdé€¥s and prohibits runs of
more thank consecutive zeros, whekte> d. The parametek can be set to infinity, in
which case only the restriction applies. It is easy to see that the restrictiescdbed
in the example (i.e., no adjacent 1's) is in factlaco) constraint. Thel restriction ad-
dresses the above-mentioned problem by ensuring a certaimom distance between
transitions. Thek restriction is essential for extracting timing information order to
maintain read-clock accuracy. This can be further expthagefollows. The reading pro-
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cess constantly adjusts the phase and frequency of a reeklstich that the clock keeps
track of the estimated locations of the bit cell boundariéss is useful for accurate de-
tection as well as for avoiding spurious or missing bits. Wkiee device responds to a
reversal in magnetization, the timing recovery mechanisesthe resulting analog signal
to derive positioning information. Since only transitiggr@duce nonzero output signal,
it is desirable to ensure that transitions are frequent gindor adequate clock synchro-
nization. We meet this goal by limiting the number of cons@eu0’s in the recorded
data.

The family of (d, k) constraints has been found to be useful both in magnetic and
optical recording applications. It therefore received mattention and is well under-
stood. Various codes fdid, k) constraints have become part of virtually all magnetic
and optical recording systems over the last four decadesselbodes were initially
adopted by the magnetic recording industry and were intedrimto various disk and
tape-based products. They have greatly contributed torémeeindous growth in stor-
age densities that this industry has achieved. Nowaday$, constraints are mostly
found in consumer-electronics products that are based ticabptorage technology. For
example, the CD and the DVD employ constrained codes {2r B)) constraint. In mag-
netic recording, however, these constraints have becomewbat obsolete following the
abandonment of the peak detection method in the early 90'sevAtechnology, called
partial-response maximume-likelihood (PRML) detectiomsvadopted. PRML detection
has circumvented the problem of detecting close transtiand hencéd, k) constraints
were no longer suitable for it. Present-day disk drives famputers are using PRML
technology together with another type of run-length-laditonstraint called &, G/I)
constraint. Neverthelessd, k) constraints are used in less prominent magnetic storage
products such as magnetic tapes, floppy disks, and the new DVR

A variety of other constraints have been found useful intdlgiecording. The re-
striction toDC-freesequences is notably the most common of these constraiGtéree
sequences have a spectral null at zero frequency, i.e. hidney no zero-frequency con-
tent. The enforcement of a spectral null also results in tippression of low-frequency
components near the zero frequency. This is advantagesystems which intentionally
cut-off low frequencies in order to avoid the adverse effebey have on certain mech-
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anisms. Since the cut-off will additionally affect seques@ontaining low-frequency
components, it is desirable to avoid them. The actual coastn of DC-free sequences
relies on one of their characteristics in time rather thathm frequency domain. In

essence, one needs to keep track of the sequence and cgrestante that the total num-
ber of observed 0's does not deviate much from the total numibebserved 1's. Since

this criterion does not conflict with RLL limitations, manyssems, such as optical disc
recorders, impose a combination of DC-free and RLL constsai

Another popular constraint is the run-length-limiteédd G/I) constraint, which we
mentioned earlier in the context of computer hard disk drivelimits the length of runs
of consecutive 0's between 1's, whekespecifies the overall permissible maximum, and
I specifies the maximum in each of the even and odd interleaVhs. constraint ad-
dresses two problems arising in PRML technology. Firsttithéeng recovery techniques
employed are based on the sampled signal and do not opeogiterlyrin the presence of
long runs of 0's. The- restriction solves this problem and is identical to kheonstraint
used by old disk drives. Theconstraint is used to limit the memory and delay involved
in the PRML detection process.

The introduction of PRML technology has also given rise theotproposed con-
straints that aim at improving its detector performanceis Hpproach is based on the
fact that the detector cannot distinguish very well betweemain pairs of recorded se-
guences and commonly replaces one with the other. Sincésttiie cause of the most
common detection errors, a suitable constraint can obtapraved detection by elim-
inating either one or both sequences of each pair. Conwrairthis category include
matched-spectral-null (MSN) constraints, defined in tegfiency domain, and the RLL-
type maximume-transition-run (MTR) constraints. In praetihard disk drives use another
approach to improve detection performance, called pastgasing. We will refer to this
technique in the next section.

The practical need for constrained codes has stimulateshsive research, mostly
aimed at devising high-rate yet simple codes. The code sageadluated with respect to
the Shannon capacitgf the constraint, defined as

log, N,
cap(C) = lim ~22"C1 c(n),

n—oo n

whereN¢(n) is the number of sequences of lengtlthat meet the constraigt[7]. The
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capacity represents the amount of information that can bréedaby the constrained se-
guences. It therefore plays an important role in code dediga common assumption in
constrained-code design is that the unconstrained uselisdastream of independent and
equiprobable bits. Under this assumption, the Shannonctgdarms an upper bound
on the rate achievable by any coding scheme that encodesénelata into constrained
data. The capacity of the various constraints discussedeatemn be calculated using a
general method that Shannon prescribed. The method afgliasy constraint that can
be described by a finite labeled directed graph, as long daltleés of the outgoing edges
at each state are distinct.

When considering constrained coding schemes, itis alsoritapt to bear in mind that
in current storage systems, the decoder operates on thy bihastimates generated by
the channel detector. Since erroneous detector estintateseaitable, we might observe
scenarios where the decoding of a sequence with few errenstsen significantly more
errors at the recovered input. In this case, the ECC schemyenotasuffice to protect
against such a volume of errors. For this reason, avoidirgggtoblem, called error
propagation, is another major concern in code design. A cehgmsive survey of the
many available coding schemes exceeds the scope of thestdissn and can be found,
for example, in [1]. In what follows, we briefly mention soméiely-used approaches to
constrained-code design, as well as key characteristicsradtrained codes.

Block codesare probably the most prominent and broad class of consttatnde
constructions. A block coding scheme repeatedly mapsarpinput blocks of lengtin,
calledsource wordsinto selected output blocks of length calledcodewords Encoding
involves the partitioning of the input stream and the rephaent of input blocks with
output blocks. Decoding is done in a similar fashion. Theeevarious possible mappings
and different ways in which the encoder and decoder redieat The code we described
earlier (see Table 2.1.1) is an example of the simplest béocle in terms of encoding
and decoding. Since the output blocks in Table 2.1.1 candstyficoncatenated without
violating the constraint, the encoder can instantaneaaplace each source word without
accounting for previous or future codewords. The same pleapplies at the decoder.

More sophisticated block coding schemes involve encodet®adecoders that must
consider other neighboring blocks in order to determiné& tharent output. In particu-
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lar, block codes witlstate-dependergncoders andliding-blockdecoders are of major
importance in digital recording. A state-dependent encauteoduces memory to the
encoding process by keeping track of part of its prior outfiteach state of the encoder
corresponds to a set of possible past outputs. The nexttogtthen a function of both
the current input and the current state, and is usually Bpediy a lookup table that is as-
sociated with each state. A sliding-block decoder can deter the currentn-bit source
word by looking at the current-bit codeword as well as at several past and/or future
neighboringn-bit codewords.

The importance of these codes is derived from two sourceast, Fney obtain high
rates while using relatively small lookup tables and emguhimited error-propagation.
Second, there is a systematic design procedure for suck dau®vn as thetate-splitting
algorithm The algorithm, introduced by Adler, Coppersmith and Hassm 1983, has
made notable progress in block code design. It was the fgstrithm that provided a
general method for constructing block codes of any givesibda rate with the above-
noted properties. Furthermore, it is applicable to a brdadscof practical constraints.
It is worth noting that the above-mentioned codes fall siureén large block lengths are
desired, as the search in large lookup tables becomes ilniea8lock codes that are
based on enumerative coding avoid this problem, but on tier diand, are susceptible to
error propagation.

Block codes are prominent in digital recorders mainly dueaidous system consid-
erations that dictate usage of fixed-length blocks. Nonesise non-block codes were
studied as well. Arariable-length(VL) code permits input source words and/or output
codewords of variable size. If the ratio of lengths of a seword and its corresponding
codeword is fixed, we say that the code hd&ed rate With fixed-rate VL codes, it is
still possible to compute the output length that corresgdnd large input block, regard-
less of the input content. This property is important in ssatems and makes these codes
a possible alternative to block codes. Numerous fixed-rateddes which are based on
small lookup tables have been proposed.

We are left to consider the class\adriable-ratecodes, where the length of the output
can vary depending on the actual content of the input andmigiom its size. These codes
were less thoroughly investigated compared with the foralesses due to the reasons
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mentioned earlier. However, they can offer very simple ngdichemes with very high
rates. Chapters 3 and 4 study a number of variable-rate gadimremes that are based on
a previously-suggested variable-rate coding technigliedchit stuffing The bit stuffing
technique obtains near-capacity rates using very simmeding-decoding principles. It
is also applicable to a wide range of constraints. Receatltgmpts have been made to
adapt the bit stuffing approach to the practical needs ofstmguin particular, fixed-rate
codes that are based on the simple principles of bit stuffiegevroposed fof0, &) and

(0, G/I) constraints [8], [9].

We conclude by mentioning recent progress in storage téagynavhich presents new
challenges for constrained coding. Newly emerging tealesgsuch as holographic data
storage [10] and multi-track optical recording [11], giveerto two-dimensi-onal (2-D)
models of the stored data. These technologies store theybitffarmation either along
contiguous tracks or as pages that are projected onto araploig medium. For example,
Figure 2.1.2 shows a simplified model of a holographic segtem. The data are first
organized in the form of a page, using a pixelated devicedallspatial light modulator.
The information page is then carried by an object beam thed gwrough the device. The
object beam intersects another beam (a reference beani) wifihoto-sensitive storage
material, and the resulting optical interference pattéranges certain properties of the
material. Reading is performed by illuminating the matew#h the reference beam.
This reconstructs the object beam, which is then sensed byray of detectors.

From a communications standpoint, these systems can bedigs\a 2-D channel that
introduces noise and ISI. Similarly to the one-dimensidfaD) case, imposing a con-
straint on a two-dimensional data array can be an effeabgkfor improving detection
performance. Two-dimensional constraints that elimir@eain problematic patterns
were proposed in [10], [11]. This reasoning motivates th& field of 2-D constrained
coding, which turns out to pose a collection of intriguinglatifficult problems. In par-
ticular, many conventional 1-D constrained coding techagjare not readily applicable
to 2-D. This is primarily due to lack of a finite-state graplsdeption of many 2-D con-
straints of interest. Moreover, the fundamental limit oa #tthievable code rates, i.e., the
Shannon capacity, is currently unknown for many constsaamid is deemed to be more
difficult to compute than its 1-D counterpart.
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Figure 2.1.2 The basic components of a holographic datagtosystem. Taken from
[10].

Two-dimensional constraints are the topic of Chapter 5his ¢thapter, we consider
coding schemes that are based on a generalization of thatlsiffing technique. As we
will show, the bit stuffing approach can be easily extendetiariety of 2-D constraints,
and is independent of a graph-based representation. Taeséxh to 2-D maintains the
simplicity of the original technique and often achieveshigtes. Furthermore, in cases
where it is amenable to analysis, it serves as a tool for ueyi@nalytical bounds on the

unknown capacity of the constraint.

2.2 Magnetic Recording in Hard Disk Drives

Hard disk drives store data along concentric circular samk the surface of a disk
coated with a magnetic medium. During the writing procdss,disk rotates while a de-
vice called a write head induces a magnetic field on the medilime applied magnetic
field is strong enough such that the medium remains magudediter the head has pro-
gressed along the track. llongitudinal magnetic recordinghe write head can magnetize
the medium either along the direction of the disk motion aaiast it, as shown in Fig-
ure 2.1.1. Each cell along the track is magnetized entiregnie of two directions, hence
it can represent the value of a bit. The induced magnetic fetgenerated by an elec-
trical current flowing into the write head, where the direntof the current determines
the magnetization direction. Hence, the binary bits traeshto a corresponding current,
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which can change its direction only at the bit cell boundariReading is performed by a
different device called a read head. It is constructed of terie that reacts to changes
in the direction of magnetization by changing its electriesistance. These changes are
translated by the reading circuitry into registered vadtabanges.

2.2.1 Channel Model

The measured voltage is the analog signal that is genergtédebread head and
processed by the system. The response of the read head tolatedstransition in the
direction of magnetization is usually approximated by thiéfving function:

A
S
L+ (7o)

wheret represents timed is the peak amplitude, and PW50 is the width of the function

h(t)

at 50% of its peak amplitude. A transition will produce eittiee pulseh(t) or the pulse
—h(t), depending on its type (i.e— | «— or «—— | —). The functionh(t) is well-
known as the.orentzian pulsand is illustrated in Figure 2.2.1 fot = 1 andPW50 = 1.
One can observe the extent of ISI for a given recording deriin the pulse shape.
Specifically, letl;, denote the time required for the read head to move over alhit.eg
the bit duration Thelinear recording densitys defined ad) = PW50/7,, measuring
how many bits are packed into the center of the pulse (seed-R@.1 for an example
when D = 2). It can be seen that for a giveAll’ 50, decreasing the bit size does not
change the generated pulses. However, the transitiondagetr dcogether and therefore
there is stronger interference between them.

The model of the overall response of the system to the emib@ded pattern is based
on the assumption that the recording channel is linear. thatdilly, it is convenient to
model the recorded information as a stream of bipolar sympol}, =; € {—1,+1},
which are modulated to form a rectangular current wavefoith amplitude+1 or —1.
The waveform amplitude corresponds to the direction of timeent that flows into the
write head. The binary user inp{it;} is mapped into bipolar symbols before the actual
writing takes place. Using these conventions and assungtibcan be shown that the
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Figure 2.2.1 Lorentzian head response to an isolated tiam&r A = 1 andPW50 = 1.
For a recording density) = PW50/T, = 2, the bit duratiori} is equal to%.

read-back signal takes the form
y(t) = Z z;9(t — i1}) + n(t), (2.2.2)
wheren(t) describes the noise due to the readout electronics and

g9(t) = 5 (h(t) = h(t = Ty)). (2.2.2)

N | —

Here,g(t) represents the response of the channel to a single isoliatsddh as a single 1
preceded and followed by an infinite number of 0’s. The fomtioh in (2.2.1) expresses
the ISI between adjacent bits rather than between transitibhe noise.(t) is typically
modeled as white and Gaussian. It is important to note ttitaedtigh recording densities

of state-of-the-art disk drives, material granularity ecbming a significant source of
noise. This noise, callechedia noisgeis not white and depends on the recorded patterns.
Although more accurate models that accommodate media exisie we shall work with

the simpler white Gaussian model, which still provides adyapproximation of present
systems.
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2.2.2 Partial-Response Maximume-Likelihood Detection

We have seen that the read and write processes introducgyimieol interference and
noise. The task of the receiver is then to estimate or detecadtual recorded bit values
from the read-back signal, which takes the form of (2.2.1)e dld approach to channel
detection in disk drives is callgokak detectionln essence, it scans the analog signal and
identifies large-enough peaks, which correspond to triansit It then reconstructs the
recorded sequence from the peak locations. However, thisadés limited in its ability
to resolve ISI. At certain recording densities, the aridfdigresults in missed and shifted
peaks, leading to poor detection.

Further increases in recording densities were facilitdtgdhe introduction of the
partial-response maximum-likelihood (PRML) approachdtedtion. As opposed to peak
detection, PRML accounts for the existing ISI and hencedaetgequences of many bits
together, rather than each bit separately. At the basisigfajpproach is a well-known
method for optimal sequence detection of signals in ISI neEnwith additive white
Gaussian noise [12]. According to this method, the analggadiis first filtered and
then sampled, such that each sample corresponds to oneubise@iently, a sequence
of samples is fed to maximume-likelihoodML) sequence detector, based on the Viterbi
algorithm [13]. The detector’s estimate is the sequencehvhiaximizes the likelihood
of receiving the observed samples over all possible se@senthe estimate is derived
from a known interference model of the channel, i.e., froengdhannel response.

Unfortunately, the complexity of the Viterbi algorithm gve drastically with the dura-
tion of the channel response, which renders this approapheaictical for the Lorentzian
channel. The PRML approach circumvents this problem byntpkine following two
steps:

e Equalizing the read-back signal to a target signal that imageld I1SI or shorter
response.

e Performing maximume-likelihood detection that is matchedhe target channel

response.

The basic idea is to allow for limited interference from rimabits but also to take this
interference into account during detection. This is oftefiemred to as controlled ISI.
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Figure 2.2.2 A tapped delay line finite impulse response Y kler used for equalization.

Equalization takes place after filtering and sampling. Hpss the samples of the
original channel response into another set of samples of @rshorter duration. For
example, consider the target response whose samples aesarted by the polynomial
1 — D? whereD is a delay operator. This means that after shaping, theleessample
values can be expressedsas- x; — x;_, Where{z;} is the bipolar input to the channel.
Therefore, the shaping has eliminated the interferenceechby all bits except for the
next-to-nearest neighboring bit. Present systems impiéthe shaping by using a finite
impulse response (FIR) linear filter, as modeled by the tdpladay line in Figure 2.2.2.
As noted earlier, the Viterbi detector derives its estimatging the known channel struc-
ture. Since the Lorentzian channel has been transformée tatget channel, the detector
operates according to the new target channel model.

Reducing ISI by means of equalization comes at a cost, nae@hancement of the
electronics noise and the introduction of correlation itsosamples. This is referred
to asnoise enhancement and coloratioBuch effects are undesirable as they degrade
the performance of the Viterbi detector, which is optimal ¥ehite noise but not for
correlated noise. In general, we can say that the severityese effects is a function of
the differences between the original and the target shayese precisely, it depends on
the differences between their spectral characteristios.thits reason, it is important to
choose a target which provides a good approximation to tdehannel response. On the
other hand, one should keep in mind that a practical targst aiso be sufficiently short.
Since increased recording densities introduce more I8khlosen target also depends on
the density. Usually, longer targets provide a better fitnvtiensities increase.
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PRML systems use several targets from a general class qatédl-respons€PR).
This class includes targets of the general polynomial farm D)(1+ D)™, N > 1. The
primary reason for this choice is that PR targets provideagoatch to the actual chan-
nel response. Furthermore, the use of small integer caaitEereduces the complexity of
the Viterbi detector. The most frequently used targets alle¢ PR4 and EPR4, and cor-
respond to the polynomials — D)(1+ D) = 1 — D?* and(1 — D)(1 + D)?, respectively.
Their short duration facilitates acceptable detection glexity. However, the steady in-
crease in recording densities has created a need for maebleuhigher-order targets.
Today, disk drives employ targets with longer duration and-mteger coefficients, as
will be discussed in the next subsection and in Chapter 6.

2.2.3 System Overview

In this subsection, we briefly review the signal processing eoding modules that
constitute a PRML system. Before we start, it is importamate that PRML systems
have evolved since their introduction in 1992 [3], mainlyotligh the addition of several
signal processing techniques [5], [6]. Here, we will refettie original PRML architec-
ture, and only briefly mention the more recent additions. ha@er 6, we will elaborate
more on one of these techniques, called NPML.

Figure 2.2.3 shows a block diagram of a PRML system. The dapadcessed in
blocks of 512 bytes, called sectors. It is first fed to an EC€oder, which adds extra
bytes to the data in order to correct possible random erhaisdccur due to noise and
due to failures of other components in the system. The codd issReed-Solomon,
which is also common in a wide range of other communicatiatesyis [11]. The code is
designed such that it is capable of correcting up to a spdcifienber of erroneous bytes.
Additionally, Reed-Solomon codes can cope well with buptsrors. This renders them
especially suitable for disk drives, where error-propegeataused by the modulation
decoder as well as defects on the medium might result in brnats. To further combat
error bursts, the sector data is partitioned into sevecaisl, where each block is encoded
separately. The output blocks are then interleaved befairglpassed to the modulation
encoder.

The modulation encoder imposeg(®G/I) constraint on the data. At the output of
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Figure 2.2.3 Block diagram of a partial-response maximikalhood (PRML) system.

the encoder, an additional operation calpedcodingis required. The reason for precod-
ing can be explained as follows. Recall that in constraireing, we use a convention
where a 1 indicates a transition and a 0 indicates no transitiowever, the write head
is controlled by a current which flows in one of two directipascording to input values
of 0 and 1. Consequently, the 1's and O's are interpretedféeseht directions of mag-
netization and not as transitions/no-transitions. Thasfi@mation between these two
conventions is performed by the precoder. The inversefoamsation takes place prior to
modulation decoding. We consider precoding as part of theutation component and
do not explicitly specify it in Figure 2.2.3.

During a read operation, the read head generates a consirsignal that is filtered
by a low-pass filter and sampled at the symbol raté,§1/An FIR equalizer shapes the
noisy samples of the read-back signal into samples congisfia sampled PR signal and
additive total distortion component, consisting mainlycofrelated Gaussian noise. The
outputs of the equalizer are fed to the Viterbi detector,olwloutputs bit estimates, or
bit decisions for the entire sector data. These decisions undergo mialuldecoding,
which provides estimates of the input to the modulation deco These estimates are
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de-interleaved and processed by the RS decoder, which@temcorrect any existing
bit errors and to reproduce the user input.

In the last decade, two additional techniques have imprthwederformance of PRML
systems. One technique combats the effects of noise enhantend coloration. It
simply whitens the noise component before the noisy sangrkeded into the Viterbi
detector. This involves the addition of an FIR filter at thepat of the PR shaping
equalizer. The filter manipulates the correlated noise aomapt as well as the signal
component. It results in noise that is approximately whiidg, also in a more complex
signal or channel response. The resulting channel moddbhger duration and non-
integer coefficients. Consequently, the Viterbi detectamodified to accommodate the
new channel response, at the cost of increased complexieyn&w architecture is called
noise-predictive maximume-likelihood (NPML) detectiondas the topic of Chapter 6. In
that chapter, we adapt the ideas that serve as the basis oi¢tihod to new and promising
next-generation signal processing and coding techniques.

A second addition to PRML architecture ipast-processingnit. It aims to improve
the performance of the Viterbi detector by detecting andemting some of the errors
made by the Viterbi detector, before its estimates are sahttmodulation decoder. The
post-processor utilizes both the estimates of the detacithe noisy outputs of the PR
equalizer. Based on these inputs and on the channel modalnihinfers whether one
of several most likely detection errors has occurred. Thitiaeh of a small number of
extra bits to the outputs of the modulation encoder aids @s¢-processor in evaluating
the actual error events that have occurred.
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The Bit Flipping Algorithm for
Run-Length-Limited Constrained
Coding

3.1 Introduction

Digital recording systems commonly use a constrained natidul code to improve
detection reliability. Such a code applies an invertibleopiag from arbitrary user-data
sequences into a set of binary sequences that have spepalies. The set of permissi-
ble target sequences is defined in terms obastraint One constraint, which has found
widespread use in magnetic and optical recording appbinafiis therun-length-limited
(d, k) constraint[1], [2]. A binary sequence is &, k)-sequencef it has the follow-
ing two properties: successive ones are separated by at/lleasos and the number of
consecutive zeros does not excéed hed restriction serves to alleviate intersymbol in-
terference and therestriction assists in timing recovery. Relevéditk) pairs range over
all integersd, k, such thab < d < k£ < co. One can use a labeled directed graph to gen-
erate all possiblé&d, k)-sequences by reading off the labels along paths in the giidps
graph is referred to as @, k) constraint graph A graph that produces these sequences
for k < oo is shown in Figure 3.1.1.

Let Ny x(n) be the number of distindid, k)-sequences of length. The Shannon

29
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Figure 3.1.1 Constraint graph for the k) constraint withd > 0 andk finite.

capacityof a (d, k) constraint is defined as

log, N,
C(d, k) = lim logy Nax(n)

n—oo n

The capacity can be computed by applying a more general sived by Shannon [3].
It was shown (see e.g. [1]) that

C(d, ]{7) = 10g2 )\d,ka

where); ; is the largest real eigenvalue of the adjacency matrix ottrestraint graph.
Therefore, A\, is the largest real root of the characteristic polynomiakied matrix
P, (), which takes the form

Pui(c) At S LI ks finite
dk\R) =
21, k= o0.

It was further shown that for all values @taindk the capacity exists and thaj ;. € (1,2)
for all (d, k) pairs such thatd, k) # (0, co).

The idea of constrained coding by insertion of extra bite art uncoded data stream
was introduced by Lee [4]. Bender and Wolf [5] proposed a riicattion to Lee’s algo-
rithm which is intended for encodin@l, k)-sequences. Their technique is known as the
bit stuffing algorithm The bit stuffing algorithm first converts the input sequeinte a
sequence having different statistical properties. It tingerts additional bits in a manner
that guarantees that the resulting sequences satisfy/th¢ constraint. Both operations
are invertible so that the input sequence can be reproduced.

Bit stuffing has been used in various applications, such #iX.25 protocol, where
it has been used to ensure that the bit pattern of the franmmitksl flag will not appear
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in the data sequence [9]. The emphasis of this work is on finthe most efficient bit
stuffing algorithm in terms of the asymptotical rate that barachieved.

It is well known that the maximum possible rate of a constedicode equals the
capacity of the constraint [3]. The most efficient code isstauwcode whose rate equals
the capacity. We say that such a ca@dieves capacitgr is capacity-achievingBender
and Wolf [5] showed that the bit stuffing algorithm achievaparcity for all(d, d+ 1) and
(d, 00) constraints and fails to achieve capacity for all other sa3#is leaves room for
improvement whenevet+ 2 < k < c.

In this chapter, we modify the bit stuffing algorithm by flipgi certain bits from the
converted input sequence while the logic of insertion ofaelstts remains unchanged. We
name the proposed maodification thi¢ flipping algorithm We analyze the performance
of both algorithms to obtain the following main results oftbhhapter (see Section 3.2.4
for the precise statement of Theorem 3.2.6):

Theorem 3.2.6:Letd > 1 andd + 2 < k < oo. Then the bit flipping algorithm achieves
a greater maximum average rate than the bit stuffing algorith

Theorem 3.3.1:Letd > 0 andd + 2 < k < co. Then the bit flipping algorithm achieves
(d, k) capacity if and only it = 2 andk = 4.

In Section 3.2, we give an example that motivated the ideapgfifig. In this section,
we study in detail both the bit stuffing and the bit flipping @ihms. We devote the
rest of Section 3.2 to establishing a sequence of lemmasddegrove the performance
improvement (Theorem 3.2.6). In Section 3.3, we charazgall (d, k) constraints for
which the bit flipping algorithm achieves capacity (Theoraid.1).

3.2 Improving the Performance of Bit Stuffing by Bit Flip-
ping

In this section, we introduce the bit stuffing algorithm amdgmse a modification to
it - the bit flipping algorithm. We derive explicit expresamfor the asymptotic average
rates of both algorithms. We use these expressions to shaivihi proposed algorithm
yields a higher average rate than the bit stuffing algoritormafld > 1 andd + 2 < k <

.
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3.2.1 The Bit Stuffing Algorithm

We begin by describing the bit stuffing encoder, which enscaibitrary data se-
quences intdd, k)-constrained sequences. The encoder consists of the fofawo
components:

e A binary distribution transformer,
e A constrained encoder.

Assume that the input is a sequence of independent andgdéwntilistributed unbi-
ased (i.e., Bernoulli with probabiliti') random bits. Théinary distribution transformer
(DT) converts the unbiased sequence into a sequence ofendept bits, whose proba-
bility of a 0 is somep € [0, 1] (i.e., Bernoulli with probabilityp). We say that the output
sequence ip-biasedand refer to it as thbiased sequencé&\Ve also refer t as thebias
This conversion can be implemented in a one-to-one manregrcéiwe can apply the re-
verse transformation to recover the unbiased data. The@syimexpected rate of such
a scheme i%(p), whereh(p) = —plog,(p) — (1 — p)log,(1 — p) is the binary entropy
function. A possible method of conversion would be to useBles code [6, pp. 61-62].
However, this approach was designed for infinite input segee. One modification to
this idea that applies to finite sequences and can be implechesing a finite precision
arithmetic appears in [7]. A brief overview of other appbtamethods appears in the
introduction of Chapter 4 in the context of general (i.en4inary) DT’s.

The constrained encodealso referred to as that stuffer, inserts extra bits into the
biased sequence in order to avoid possible violations ofdhe) constraint. It writes the
biased sequence while keeping track of the number of cotige@eros in the sequence,
called therun length Once the run length equals the bit stuffer inserts & followed
by d 0’'s. This guarantees that both thleand k restrictions are satisfied. Whenever
encountering a biaseq the bit stuffer insertd 0’'s so as to satisfy thé limitation. The
inserted bits are also calleduffed bits The graph in Figure 3.2.1(a) describes the bit
stuffer, where the edge labels are the output symbols. Tufedtbits are highlighted.
Note that ford > 0 and finitek the bit stuffer is in fact a realization of the graph in
Figure 3.2.1(b), which is similar to the constraint graphFigure 3.1.1 except for the
edge labels. Here the edge labels represent the probedbthiat the next bit will assume
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(b)

Figure 3.2.1 Graph description of a bit stuffing encoderfier(t, k) constraint withd > 0
andk finite.

the value0 or 1. If the bit assumes a value 6f then we move to the next state to the
right. Ifitis a1, then we return to staté We will find this graph representation of the
bit stuffer useful in Sections 3.2.2 and 3.2.3.

The decoder is comprised of the corresponding two compenamanged in a reverse
order. The constrained decoder reads the encoded comstrs@guence and keeps track
of the run length. Whenever reaching a run lengtlt ot deletes thel + 1 stuffed bits
that follow it. If it encounters &, then it removes the nextstuffed(’s. This results in the
encodeg-biased sequence, which is then fed into the inverse digioib transformer, so
as to obtain the original unbiased data.

The proposed scheme produces a variable rate code. Itstedpate is the product of
the expected rates of the two components, the first bieipgwhen the code length goes
to infinity. Note that we could directly apply just the bit &r component to the unbiased
input data to obtain &1, k) constrained sequence. However, adding the DT in fact esult
in an improved overall average rate. This sheds some ligth®role of the transformer,



34

namely to better fit the data to the constraint. To furthedarp observe that eachin
the biased sequence resultslistuffed0’s. On the other hand; — d consecutive biased
0’s will result in the stuffing of a singlé followed byd 0's. Thus, ag: — d increases we
would expect that fewel’s in the input sequence will result in fewer stuffed bits.cBu
sequences will yield a higher rate in the bit stuffing encgdinocess. The distribution
transformed sequences have this desired property on &/e@gthe other hand, as we
increase the probability of @ the rate of the first componehtp) decreases. Thus, we
need to optimize in order to maximize the average overall rate. Optimizatgodone
numerically due to the complexity of the rate expression.sal show in Section 3.2.4
that, as expected, having madiis than 1’s indeed yields a better overall rate for most
cases wheré > 0, though this is not always true.

Bender and Wolf [5], [8] analyzed the performance of the hiffsng algorithm by
deriving an expression for its average asymptotic rate. ikivie bur discussion to a finite
k and follow the methods of their derivation. We will later ghthhat an infinitek is not of
interest to our work due to the fact that bit stuffing achiesagsacity in this case. We start
by modeling the constrained, k)-sequences by a one-state constraint graph, depicted
in Figure 3.2.2(a). The edges in our graph represent thevallite runs of consecutive
0’s followed by al. In order to get a description of the corresponding biaspdtidata
sequences we remove the stuffesland1’s and obtain the graph in Figure 3.2.2(b).

We can now calculate the average rate of the constrainedlencomponent. Having
assumed that the biased sequence is i.i.d.jBet{e average input length is

k—d—1 . 1- pk—d

Z]+1 )+(k—d)Pk_:ﬁ

Jj=0

for all p such that) < p < 1, and the average output length is
Lout - Lin +d+ pk_d

Therefore, the asymptotic average information rate of therdahm is

Lin (1 —p")h(p)
](pvdv k) = m X h(p) = 1 _pk_d+1 +d(1 _p)

for all p such that < p < 1 andI(p,d, k) = 0forp = 1.
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(a) (b)

Figure 3.2.2 Graph description of(d, k) constraint where the edge labels are the allow-
able runs.

Bender and Wolf [5], [8] used this expression to obtain a abi@rization of all cases
where the bit stuffing algorithm is capacity-achieving,,iié&s maximum average rate
equals the capacity of thée, k) constraint. Their results are summarized in the following
proposition.

Proposition 3.2.1. The bit stuffing algorithm fofd, k) constraints achieve@l, k) capac-
ity for the following cases:

e k=d+1foralld>0

e k=ocforall d > 0.
It does not achieve capacity for all other valuesiandk.

For the remaininghon capacity-achieving cases, numerical optimization of ther-a
age rate shows that bit stuffing codes achieve rates thaeayeclose to capacity. Thus,
the algorithm is said to beear-capacity achievinfpr these cases. For detailed results
see [8].

3.2.2 Motivating Example - Maxentropic Measure for the(2, 4) Case

In this subsection we demonstrate an example that triggbeedevelopment of the
bit flipping algorithm. Before we go through the example wedh# introduce the notion
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Figure 3.2.3 Edge probabilities for maxentrofick)-sequences.

of themaxentropic measure

Consider a constraint graph where we assign nonzero pilalesio the labeled edges
leaving each state, thus producing an information sourceesAlt by Shannon [3] states
that for any such graph one can always assign certain prdiesbto the edges at each
state, such that the resulting constrained sequences haxienom entropy. This set
of probabilities can be computed by formulas that Shannesquibed and is called the
maxentropic measureShannon further showed that this maximum entropy is equal t
the capacity of the constrained system. An encoding schsrtieis capacity-achieving
if it induces a maxentropic measure on its generated canstt@autput. Applying Shan-
non’s result tqd, k) constraints (see [1] for a complete derivation) yields trebpbilities
shown in Figure 3.2.3, wherg; ;, = 2¢(45).

Recently, Wolf [9] proposed a modification to bit stuffing bdsn Shannon’s result.
He showed that the modified scheme achieves rates that aaktegapacity for all values
of d andk. The idea is to let the bit stuffer realize the maxentropi@asuee by feeding
it with several distinct biased streams. For example, whes finite we have states
d,d+1,---, k—1with two edges exiting from each state, while the other stagse only
one exiting edge. Each pair of emanating edges correspordahdom bit with a certain
bias. The single edges correspond to stuffed bits. Denetentiixentropic probability
when moving from statéto statei + 1 by p;, thenp; = 1for: =0,1,--- ,d — 1, k. We
first “break” the unbiased data inke- d distinct streams, denote, Sy.1,- -+, Sx_1, and
input the streams intb — d different DT’s with biase®,, ps.1,- - - , pr_1. Note that each
stream is fed into exactly one of the transformers. Thisltesu % — d biased streams,
Sy, S50+, Si_y, with biasespy, pit1, - - -, pr—1 respectively. Having multiple biased
streams, the bit stuffer takes a bit from stre@fnwhen in state. Clearly, the encoded
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Figure 3.2.4 Edge probabilities for tli2, 4) maxentropic measure.

sequences have maximum entropy.

Let us look at the maxentropic measure for tBe4) case, shown in Figure 3.2.4.
Denote the probability of moving from stafeto state3 by p*. It turns out (as will be
confirmed in Section 3.3) that the probability of moving fratate3 to state4 equals
1 —p*, wherep* ~ 0.5699. This special property suggests that in this case we do mat ne
two DT’s in order to achieve capacity. We can use a singlestamer withPr(0) = p*
and modify the bit stuffing algorithm to obey the followindeu

¢ If the current run length equalsthen write the next biased bit.

¢ If the current run length equalsthen write the complement of the next biased bit,
i.e.,flip the next biased bit before writing.

In other words, flip the biased bit only when in state

Recall that bit stuffing does not achieve capacity in(thel) case. Yet, the addition
of bit flipping resulted in a capacity-achieving algorithmthis case. Thus, at least in
this case, a conditional bit flipping improves the perforoenf bit stuffing with only a
single transformer. This observation motivated us to eramihether we could do better
by flipping in the general case. We generalize the flipping ialed analyze the resulting
algorithm in the subsection to follow.

3.2.3 The Bit Flipping Algorithm

Consider the case whetfeis finite andk > d + 2 and letl be an integer such that
d+1 <1 < k— 1. Suppose we run the bit stuffing algorithm using a single D& W
modify the logic of the bit stuffer in the following manner:
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Figure 3.2.5 Graph description of a possible bit flippingaeter for the(d, k) constraint.

e If the current run length is smaller thathen write the next biased bit

e If the current run length is greater or equal tthen flip the next biased bit before

writing.

In other words, flip the biased bit starting from stateThe bit flipping algorithmis
illustrated by the constraint graph in Figure 3.2.5.

Four interrelated questions arise. What is the optimal iftiggposition? For which
constraints can we improve bit stuffing rate by flipping? Canaghieve capacity for
more constraints using flipping? If not, how far from capgaeite we? In the rest of this
chapter we settle these four questions. This subsectiorSantion 3.2.4 deal with the
first two questions. Section 3.3 addresses the latter two.

We first derive an expression for the average rate. When figopibit starting from
statel, the average biased input length is

+ (l—d+j+1)p 1 —p)p
=0

+ (k= d)p' (1 — p)F!

1—pt I—d—1 k-1
S 1—(1—
1—p p ( ( p) )

and the average output length is

Lout - LG +d +pl_d(1 - p)k_l‘



39

The asymptotic overall average rdtép, [, d, k) is given by:

Lin
X h(p)

Lout
h(p)

= dapl—d(1—p)k—1
14+ +p L( P)
m

_ [pl—d—l(l _ 2p _ (1 _ p>k’—l+1> + 1]h<p)
P (I —2p— (1= p) %) + L+ d(1—p)

for all p suchthat) < p < 1and foralll suchthati+1 <[ < k,and byR(p,l,d, k) =0
for p = 1. Note that the rate of the bit stuffing algorithm, where nogilifg occurs, is a

R(p,l,d, k) =

special case of this expression witk- &, i.e.,R(p, k,d, k) = I(p,d, k).

Our main goal is to show that under certain conditions thea@sed algorithm can
achieve a better average rate than bit stuffing. HowevendRkelemma suggests a more
extensive result. It states that when using a transformé#r aibias greater thaf.5,
statek — 1, i.e., one state before the last, is always the optimal $tatélipping. A
special case of this result is th&(p, k,d, k) < R(p,k — 1,d, k) when0.5 < p < 1.

In other words, whei is set tok — 1, the bit flipping algorithm performs better than bit
stuffing for the constraints given in Lemma 3.2.2. As one daseove in the proof, it is
actually straightforward to prove this special case. Noeless, we are looking for the
best possible performance. Moreover, finding that the agitflipping position is always
k — 1 provides a simple and general formulation of the algorittamnich is independent
of d andk for the considered cases.

Lemma3.2.2.Letd > 1,d+2 < k <ooand0.5 < p < 1. Then
R(p,l,d, k) < R(p,k —1,d, k)
forall [suchthai + 1 <[l <k—2o0rl=k.

Proof. Define

Cd+pi(1 - p)h
B Lin
d + p=(1 — p)k—!
= —d l(—d—l ) (1 —p).
1 —p=d+ (1 —p)p!=a=1(1 — (1 —p)*)

Then we can write

Ay

h(p)

R(p7l7d7k):1+Al'

(3.2.1)
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Clearly,A; > Oforalld +1 < < k. Therefore A; > A, ifand only if R(p,i,d, k) <
R(p,j,d, k). We now show thatl,_, is strictly smaller than any othet;. First observe
thatA,_; < A, forany0.5 < p < 1, as can be seen directly from the simplified forms

_d+phe

Ak - 1 _pk_d(]' _p)

and o
d—+pvai(1 —

In order to prove thatl,_; < A, foranyd+1 <1< k—1and0.5 < p < 1 it suffices to
show thatd; < A;_; foranyd +2 <[ <k — 1.
It is easy to verify that the denominators of

[d+p=*(1—p)(1—p)

A p—
T (1= p)p (1 — (1 p)k))

and
[d+p"~" (1 = p)* (1 - p)
1—p==t + (1= p)p==2(1 = (1 — p)*=*1)
are both positive for ang < p < 1 and anyd + 1 < [ < k. Therefore, multiplying the

Ay =

inequality A; < A, by the product of the two denominators and dividing(by- p) we
obtain the following equivalent inequality:

(d+p"1—p*
(L=p T+ (L =p)p (L= (1 —p))
< (d _|_pl—d—1(1 _p)k—l-l—l)
(A=p T+ 1 =pp A= (1= p)). (3.2.2)
For any0.5 < p < 1, inequality (3.2.2) reduces to
1—p)" "1 = p)d+p(1 —p9)] < d. (3.2.3)

Now, observe that for an.5 < p < 1 the expression in the square brackets is a convex
combination of? and1 — p'~?. Also, note that — p'~¢ < 1 < d. Hence,

(1=p)d+p(1—p~7) <d
Sincel < k —1and0.5 < p < 1, we have

0<(1-pH't<i1
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Figure 3.2.6 Graph description of an optimal bit flipping eder for the(d, k) constraint.

implying that inequality (3.2.3) holds forany > 1,7 < k — 1, and0.5 < p < 1, as
desired. ]

Looking at the graph in Figure 3.2.6 we can interpret thisltess follows. At each of
the stated, d + 1, --- , kK — 2, we would rather have @and move to the right than have a
1 and move back to state where we would have to studf > 0 bits. However, this is no
longer the case when at stdte- 1. Having a0 will result in d + 1 stuffed bits as opposed
to d stuffed bits due to a. In this case, we prefer to go back to statather than move
to the right, a preference reflected in the bit flipping.

Also, note that this result holds only fpr> 0.5 and in fact is not true fop < 0.5.
However, the former suffices for our purposes, as we will staer that the optimal bias
for bit stuffing is greater tha.5 for all cases considered but one.

3.2.4 Performance Improvement

Recall that the bit stuffing algorithm achieves capacitytfar (d, o) and(d, d + 1)
constraints for any and does not achieve capacity for all other cases. Therdgfaee is
room for performance improvement for &, k) constraints such that+ 2 < k£ < oo
andd > 0. In this subsection, we prove that the bit flipping algoritaomieves a higher
rate than bit stuffing for most of these constraints.

As mentioned earlier, the result of Lemma 3.2.2 is limitedramsformers with a
bias greater than.5. Since the optimal bias for bit stuffing may be smaller tivah
Lemma 3.2.2 does not guarantee that flipping at Statel is superior to bit stuffing.
Because of the complexity of the bit stuffing rate derivative cannot find an explicit
form for the optimal bias. Instead, in the next sequencemitas we examine the rate
derivative to show that the optimal bias for bit stuffing is@ed greater than5 for the
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following (d, k) pairs:
e d+3<k<oocandd>1
e k=d+2andd > 2.

This result together with Lemma 3.2.2 guarantees the pagnce improvement in these
cases.

Lemma 3.2.3.Let0 < p < 0.5,d > 1andd + 3 < k < oo, then

dI(p,d, k)

dp > 0.

Proof. Consider the bit stuffing rate derivative

i ry  O0) o) 0Ny sy

dp (f(p))?

wheref(p) = 1 — p*=4*1 4+ d(1 — p). We denote the derivative’s numerator Hy,,. (p)
and shall showthat .. (p) > 0forall0 < p < 0.5,d > 1 andk—d > 3. By rearranging

terms we can rewrite

DrnP) = R(p) - | =k = d)p" U1 = g 4 d(1 = p)]
+[(k = d+ 1)p - d)(1 - p?) |

+ 1P d( ) |-,

DefiningA =1 —p*~ ' 4 d(1 —p), B=(k—d + 1)p" ¢ +d, andC =1 — p"~,
we seethatd, B,C' > 0forall 0 < p<0.5,d>1, k—d>3,and

I (p) =h(p)| = (k= d)p—+14 + BC] + dz—g’)AC.

Now, 42 >0 V0 < p < 0.5, implying that ™2 AC' > 0. Hence, sincé,(p) > 0 we
need only show that
[—(k — d)p**"A+ BC] > 0 (3.2.4)
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for the given values op, k, andd. Writing the latter expression explicitly and rearranging

terms yields

[—(k—d)p*"A+ BC =p" " [(k—d—1)(d+ 1)+ 2 — p*7]
+d—p T k= d)(d+1)

> 0.

We distinguish between two casés:- d > 4 andk — d = 3.
In the first case we use the fact that

1
(k—d—1)d+1)+2-p"*>3x2+2—— >0
16

hence,
PPk —d—1)(d+1)+2—p* >0 V 0<p<05 d>1, k—d>4.
It follows that showing that
d—p" "k —d)(d+1)>0

will guarantee that inequality (3.2.4) holds. Define k — d; then, we want to prove that

Ip=Yd+1) < dor

4
d+1’

We first consider the derivative of the left-hand side of undy (3.2.5)

d(lp'=1)
di

Ipt < V>4 (3.2.5)

1
=p ' n(p) = ptt (1 - lln(}—))) :

Forany0 < p < 0.5we have).693 ~ In(2) < In(}) < oo, whichimplies thatIn(}) > 1

and 22 < (. Consequently, for any < p < 0.5 and anyl > 4 we have

p=3

Ip't < dp® < 4p?

The right-hand side of inequality (3.2.5) is lower boundgd}ﬁor all d > 1, yielding

d
<— . Yd>1 1>4, 0<p<05.

W< d+1’

N —
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In the second case, we assigr d = 3 in the left-hand side of inequality (3.2.4) and
get
[—(k = d)p" "' A+ BO) = d[1 + 2p° — 3p?] + 4p® — p° — 3p”.
Sincel + 2p* — 3p? is positive for all0 < p < 0.5, then inequality (3.2.4) holds if and
only if 22242°~40> g |nstead, we show that

1+2p3_3p2
3p% 4 p% — 4p® < 1+ 2p° — 3p? (3.2.6)
resulting in
2 6 _ 43
S+ p i <1<d.
14 2p3 — 3p?

Differentiating both sides of inequality (3.2.6) we obsethkiat for0 < p < 0.5, the left-
hand side is an increasing function;ofind the right-hand side is a decreasing function
of p. Therefore,

17

3+ 0" =4’ < B+ ) =
p=3

1
<5 =[1+2p° - 3p?

2 .
<1+2p° —3p°

NI

confirming inequality (3.2.4). O

Lemma 3.2.4.Let0 < p <0.5,d > 2,andk — d = 2, then

dI(p,d, k)
dp

Proof. We proceed along the lines of the preceding proof and warttdw shat

> 0.

[—(k — d)p*~**A+ BC] > 0

for the given values of, k, andd. Fork — d = 2 we need to show that(1 — p)? +
3p* — 2p — p* > 0. Now, for0 < p < 0.5 andd > 2 we have the following inequalities:

d1—p)?>4%>1 -4 <3p—2p <0and—;: < —p* < 0. Combining the three

inequalities we conclude that

111
d1—p)?+3p* =2p—p' > - — 2 —

573 1_6>0'
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We are now ready to conclude that the optimal bit stuffing tsatrictly greater than
0.5 for the above mentione@, k) pairs.

Lemma 3.2.5.Let (d, k) satisfy one of the following conditions:

1.d+3<k<occandd >1

2. k=d+2andd > 2.

Then

Dax I (p,d. k) =1(p",d, k)
for somep* € (0.5, 1).
Proof. It is easy to verify that the bit stuffing rate functié(p, d, k) is continuous irp on
the compact s€b, 1]. Thus, it attains a maximum somewhere in that set. The maximu
must be attained for someé € (0, 1) sincel(p,d, k) = 0 for p € {0,1} and is strictly
positive for anyp € (0, 1). The rate derivative exists in the g6t 1), hence, a necessary
condition for a maximum at* < (0, 1) is thatZ2%~) (;,+) — (. Lemmas 3.2.3 and 3.2.4

dp
show that’®%% ~ ( for any0 < p < 0.5, thus implying that the maximum is attained
P
for somep* > 0.5. O

This result brings us back to our discussion in Section 3.2A% said, each we
encounter results id stuffed0’s, while only k. — d consecutivé’s result ind + 1 stuffed
bits, or% stuffed bits per biased. It seems that the asymmetry betw%é_% andd
determines the best bias. We would expect that wher@}?K d then inputting fewer
1's will result in fewer stuffed bits and in a better overaltea Indeed,,‘jjil < dif and
only if d > 0 andk — d > 1, with equality only whenl = 1 andk — d = 2. For all other
case% > d. Thus, a transformer that biases the data towards fi®(p > 0.5) would

perform better and the optimum is achieved for 0.5. The cas€1, 3) is not covered

by these arguments but can be analyzed explicitly. Alse tiadt the optimal bit flipping
bias may differ from the optimal bit stuffing bias. Nonettssleonce bit flipping performs
better than bit stuffing’s best performance, then optingzhre bit flipping rate may even
further improve its performance.

We are finally in a position to state the main result of thigisec We show that for
alld > 1andd+2 < k < oo, flipping the biased bit at state— 1 strictly improves upon
bit stuffing.
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Theorem 3.2.6.Letp*, p** € [0, 1] be the optimal biases for the bit stuffing and the bit
flipping algorithms, respectively. Then for @l> 1 andd + 2 < k < oo the following
holds:

I(p*,d, k) < R(p™, k—1,d,k).

Proof. Combining Lemmas 3.2.2 and 3.2.5 we obtain that
I(p*,d, k) = R(p*, k,d, k) < R(p*, k — 1,d, k) < R(p™, k — 1,d, k)

foralld+3 < k < coandd > 1 and fork = d + 2 andd > 2. Itis left to examine
the case of thél, 3) constraint. In this case, we numerically optimize both athms’
rate functions and obtain the following optimal biases apithoal ratesp* = 0.4906 and
I(p*,d, k) = 0.5456 versusp™ = 0.5557 and R(p**, k — 1,d, k) = 0.5501. O

The result of Theorem 3.2.6 is reasonable since the asyrylmelween% andd
still dictates a biasing of the input data towards m@se However, the option of flipping
allows for more flexibility when fitting the data to the corasiit. It enables us to change
our preference at a certain state. Indeed, when reachinglamgth ofs — 1 we can save
a single stuffed bit by having Aversus &. Consequently, this changes our preferences
in favor of 1's at this state and the opportunity to do so results in an avgxt rate.

We would like to point out that the case whete= 0 was not dealt with in Theo-
rem 3.2.6. In this case, it is easy to show that bit stuffingpgnoeal for p* € (0,0.5)
and that there is no bias for which the bit flipping algorithamémprove on the bit stuff-
ing optimum. This observation agrees with the intuitivesagang that was given for
Lemma 3.2.5 and Theorem 3.2.6.

3.3 When Does the Bit Flipping Algorithm Achieve Ca-
pacity?

In this section, we characterize the constraints for whinghtit flipping algorithm is
capacity-achieving. We shall prove that, as numericalewie suggests, bit flipping is
capacity-achieving for th&, 4) constraint. Moreover, we shall find that this is the only
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capacity-achieving case. We conclude with performanadtsefor the(2, 4) case and for
some selected other constraints.

Recall that an encoder for(d, k) constraint is capacity-achieving if it induces a max-
entropic probability measure on the generatéd:)-sequences. A well-known property
of thesemaxentropidd, k)-sequenceis that the probability of a run af(’s followed by

alis equal tox;} . This property follows from results of Shannon [3] and of Zeh
and Wolf [10]. We use it in the proof of the next theorem, whatltlines a complete

characterization of capacity-achieving cases.

Theorem 3.3.1.Letd > 0 andd + 2 < k < oo. Then the bit flipping algorithm achieves
(d, k) capacity if and only itl = 2 andk = 4.

Proof. Let us parse the encodéd k)-sequence into a concatenation of (possibly empty)
runs of 0’s followed by a singlel. Let X; be a random variable denoting the length
of the i’'th phrase in the parsed sequence. As mentioned earliebittkpping algo-
rithm achieves capacity if and only if it generates maxauitrdd, k)-sequences. These
sequences must satisfy the following properties [1], [BD]{

1. TheX;'s are i.i.d.
2. Pr(X — Z) — )\;2, Where)\d,k et 2C(d7k).

We start with the case whetke+ 2 < k < oo and then proceed to deal with= d + 2.
We now use the bit flipping graph description in Figure 3.2164f+ 2 < k < oo Iin
order to translate these optimality properties to the Wiy set ofk — d + 1 equations

whered + 1 <i < k — 1. The firstt — d — 1 equations yield

Pr(X =i+1) 1 |
T = Vd+l1<i<k-2 3.3.1
Prx =i) T, Cdtisrs (33.1)

Dividing the equation foi = k by the equation foi = k& — 1 yields

PriX=%k _  p _ p 1
Pr(X=k—1) pkad2(1—-p) 1-p Ak

(3.3.2)
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Combining (3.3.1) and (3.3.2) we have

< p2p—1)=0

1
& p=0 or pzé.

Sincep = 0 results in zero entropy and zero rate then we are left with % However,
p= % implies A\, = 2, which contradicts: being finite. Consequently, the bit flipping
algorithm can never achieve capacity when 2 < k < oc.

We now refer to the graph in Figure 3.2.6 as it appears forgheial case of = d+2.
An argument similar to that at the beginning of the proof skidhat the bit flipping
algorithm achieves capacity if and only if the followingélerequations hold:

PriX=d+1)=1—-p= )\ d+1

Pr(X =d+2)=pxp=A} d+2

Pr(X =d+3)=px (1 —p) = A
The first two equations reduce to

—(d+1
b= _)‘d,gng)

We now substitute the two expressions we havepfimto the third equation and get

(d+2)
— (d+1) d+3
Ad g X Agk = )‘

s A [1—)\d,§+1]:0
-~ )\dk—() or )\ 2+1—1.
_d
Since);r € (1,2) we are left with>\d7,§Jrl = 1, which requires-% +1 = 0 ord = 2.

Consequently, the bit flipping algorithm produces a cageaathieving code if and only
if d=2,k=d+2=4and\,y,is aroot ofz4+! — 22 — 1.
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Table 3.3.1 Simulation results for optimal performance ibbtuffing versus bit flipping
for some(d, k) constraints.

Bit Stuff | Bit Stuff | Bit Flip | Bit Flip Bit Stuff Bit Flip
Constraint| Avg. |Optimal | Avg. |Optimal |Capacity| Avg. Rate | Avg. Rate

Rate Bias Rate Bias Capacity | Capacity

(1,3) 0.5456 | 0.4906 | 0.5501| 0.5557 | 0.5515 | 98.94% 99.76%
(1,4) 0.6103 | 0.5275 | 0.6157| 0.5628 | 0.6175 | 98.83% 99.71%
1,7) 0.6754 | 0.5831 | 0.6779| 0.5928 | 0.6792 | 99.44% 99.81%
(2,4) 0.4006 | 0.5206 | 0.4057| 0.5699 | 0.4057 | 98.74% | 100.000
(2,5) 0.4579 | 0.5634 | 0.4638| 0.5930| 0.4650 | 98.47% 99.74%
(3,6) 0.3680 | 0.5845 | 0.3730| 0.6097 | 0.3746 | 98.24% 99.57%
(4,8) 0.3364 | 0.6320 | 0.3403| 0.6480 | 0.3432 | 98.02% 99.16%
(5,9) 0.2914 | 0.6434 | 0.2946| 0.6577 | 0.2978 | 97.85% 98.93%

d
It remains to show that(*' — A2, —1 = 0inthe(2,4) case, i.e.A], — Ay —1=0.
Recall that\, ; is the largest real root of the characteristic polynonig}(z), which for

a finite k takes the form o

Pyp(z) = 2" — Z 2,

j=0
Whend = 2 andk = 4 we can factot”, 4(z) and write it as

Poyz)=2" -2 —2—-1=(—2-1) x (22 +1).
Since)\, is real, then it must be a root of — >z — 1, which completes the proof. [

For the remaining non capacity-achieving cases we can ncafigroptimize the rates
of both algorithms. Table 3.3.1 shows optimal average ratethe bit stuffing and the
bit flipping algorithms for a number of constraints. Also simoare the corresponding
optimal biases (i.e., the probability ofig the capacity of each constraint and the relative
performance of the algorithms.

AcknowledgmentThis chapter is in part a reprint of the material in the pap8&t Aviran,
P. H. Siegel, and J. K. Wolf, “An improvement to the bit studfialgorithm,” in Proc.



50

2004 IEEE Int. Symp. Inform. Thegi@hicago, IL, Jun./Jul. 2004, p. 190 and S. Aviran,
P. H. Siegel, and J. K. Wolf, “An improvement to the bit stufialgorithm,”IEEE Trans.
Inform. Theoryvol. 51, no. 8, pp. 2885-2891, Aug. 2005.

Bibliography

[1] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for dig recorders,1EEE
Trans. Inform. Theoryol. 44, no. 6, pp. 2260-2299, Oct. 1998.

[2] B. H. Marcus, P. H. Siegel, and J. K. Wolf, “Finite-stat@dulation codes for data
storage,1EEE J. Select. Areas Communwol. 10, no. 1, pp. 5-37, Jan. 1992.

[3] C. E. Shannon, “A mathematical theory of communicatid@gll Syst. Tech. Jvol.
27, pt. I, pp. 379—-423, Jul. 1948.

[4] P. Lee, “Combined error-correcting/modulation redngdcodes,” Ph.D. disserta-
tion, Univ. California, San Diego, La Jolla, 1988.

[5] P. E. Bender and J. K. Wolf, “A universal algorithm for ggating optimal and
nearly optimal run-length-limited, charge constrainedaly sequences,” iRroc.
1993 IEEE Int. Symp. Inform. Thegotgan Antonio, TX, Jan. 1993, p. 6.

[6] N. Abramson|nformation Theory and Coding New York: McGraw-Hill, 1963.

[7] C. B. Jones, “An efficient coding system for long sourcquences,1EEE Trans.
Inform. Theoryvol. 27, no. 3, pp. 280-291, May 1981.

[8] P. E. Bender, “Redundancy re-organization for the mégmdannel,” Ph.D. disser-
tation, Univ. California, San Diego, La Jolla, 1992.

[9] J. K. Wolf, “An information theoretic approach to bit $ting for network protocols,”
in Proc. 3rd Asia-Europe Workshop on Information thedfgmogawa, Japan, Jun.
2003, pp. 18-21. Also presented at DIMACS Workshop on Netwoformation
Theory, New Jersey, USA, 2003.

[10] E. Zehavi and J. K. Wolf, “On runlength code$ZEE Trans. Inform. Theoryol.
34, no. 1, pp. 45-54, Jan. 1988.



A

Optimal Parsing Trees for Run-Length
Coding of Biased Data

4.1 Introduction

In constrained-code design, one typically models the usttaimed user-data as a
stream of independent and equiprobable bits (i.e., Belin@dom bits withPr(0) =
Pr(1) = %). An important, but not the only, design goal is convertinglsinputs into
constrained sequences with high efficiency. As in the presschapter, efficiency relates
to asymptotic encoding rates and the emphasis of our workdeeigning efficientd, k)-
codes.

The central theme of this chapter is twofold: a study of pfibik)-code constructions
from a source coding perspective and the construction of(dei)-codes based on vari-
able input-length source codes. The idea of construgting)-codes from source codes
is not new. Numerous previous constructions have arisen the following duality be-
tween constrained coding and source coding. One first mduelsonstrained stream as
a structured source from which redundancy can be removeatrio finconstrained and
nearly Bernoulli{ /2)-distributed output. By reversing a source encoder-decqair,
the decoder of a suitable source code is used to encode urainad Bernoulli{ /2)-
distributed input into constrained sequences, in a reaermmanner. Applications to
(d, k)-code design include the adaptation of arithmetic codirgrigues [1], [2], [3],
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pioneered by Martin, Langdon, and Todd. An interesting waykKerpez [4] derives
three(d, k)-codes from a Huffman code [5], a Tunstall code [5], [6], anceaumerative
code [7]. The rates of the four above-mentioned constrostigere shown to converge
to the(d, k) capacity with increasing block length [4]. A principle coramto all meth-
ods is that the choice of source code is guided by the specpkpies ofmaxentropic
(d, k)-sequences. As mentioned before, such sequences arebtieagdhey correspond
to maximizing the constrained-code rate [8]. It is well-wmy8], [9] (see also Chapter 3)
that they can be parsed into a concatenation of binary stfnogn a predefined set of size
M =k — d+ 1, where the strings are statistically independent and iciiyt distributed
(i.i.d.). The source code then serves alstribution transformebetween an i.i.dM -ary
maxentropic source and an i.i.d. Bernodlfif) source. The correspondirid, k)-code
simply applies the inverse transformation so as to inducexeemtropic distribution on
the output.

An alternative design approach emerges from the literaburéossless coding of
i.i.d. sources for transmission over noiseless, memaosydkannels with unequal symbol-
transmission costs. One can accommodeéité)-codes into this framework by modeling
(d, k)-sequences as the outputs of a special memoryless cha®helldis approach is
closely related to our work and is much less investigatedstiy literature is mainly
concerned with two types of source codes: fixed-to-varildsigth and variable-to-fixed
length, the latter being sparsely studied [5]. The mostvealework of the first type
is a recent algorithm by Golin and Rote [11], which efficigniinds a prefix-code of
minimum average transmission cost per source symbol whendsts are integers. An
application to(d, k)-codes is straightforward and appears in the paper. As ésé¢aond
type, Lempel, Even, and Cohn [12] derived an algorithm farstnucting a prefix-free
code of minimum average transmission cost per source sywteEn the source symbols
are equiprobable. Section 4.3 in this chapter provides rdetails on this method, in
the context of(d, k) constraints. It is interesting to note that both papers dowigov the
problem from an information-theoretic standpoint, bubeattreat it from a combinatorial
optimization perspective. As such, they are not concerrigfdmaxentropic distributions.
Our work relates tdd, k)-codes of the second type, but relaxes the equiprobableeour
assumption.
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This work builds upon three pridil, k)-code constructions: that stuffing bit flip-
ping, andsymbol slidingalgorithms. Recall that in Chapter 3, we showed that a simple
modification to the bit stuffing algorithm can achieve imprdwaverage rates for most
(d, k) constraints. In a following work, Sankarasubramaniam awtd&dghlin [13], [14]
generalized both bit stuffing and bit flipping into an imprdwede construction, called
the symbol sliding algorithm One of their key insights in [13] was an interpretation of
bit stuffing and bit flipping as applying bijective mappinggween two distinct predeter-
mined sets of binary strings. Symbol sliding is essentiafiyadjustment of the mapping
to obtain further improved rates. Indeed, they demonstedéegains over bit flipping for
several constraints and prove that symbol sliding addiligrachieves capacity for all
(d,2d + 1) constraints.

The constructions we consider here have a distinctive ctexrsatic - a binary DT as
a first encoding step. Although one can diregtlyk)-encode the standard equiprobable
input, it turns out that the introduction of a bias into théeda key to achieving improved
asymptotic rates (see Chapter 3 and [13]). Intuitively Epeg this transformation better
conforms the data to the characteristics of maxentropjé)-sequences [13]. This in
turn leads to improved rates at the constrained encodimgastd to improvedverall
rates. It is important to note that the binary DT is a speaalecof general distribution
transformers, such as the ones introduced by Kerpez [4] tred0[1]. In fact, some of
the above-noted methods can be readily applied to the bozesy, where a Bernoulfif
distribution replaces thé/-ary maxentropic one. Hence, a direct transformation to a
maxentropic distribution has a similar implementation techeme that uses a binary
DT. Still, the schemes presented here provide alternatiethods of approximating a
maxentropic distribution. Since they perform the actuaistmined coding on a biased
source, the challenge is to approximate the target distoibwvith this non-conventional
source, while using simple techniques. This is, in a semsat, $ource and constrained
coding.

In this work, we first examine bit stuffing, bit flipping and sloi sliding from a
source coding viewpoint. This new perspective has motivateto extend them into a
general framework for constructind, k)-codes from variable-length source codes. We
first put the framework in the context of relevant source ogditerature. We next demon-
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strate that it gives rise to new code constructions whicth@&rrimprove upon the three
aforementioned algorithms. This prompts us to search famab codes under the gen-
eral framework, optimal in the sense of maximal achievaklargtotic rates. Never-
theless, finding such codes is a complex and difficult probl&ke therefore resort to
studying a simplified related problem, where we seek an @btith k)-code for an i.i.d.
Bernoulli(p)-distributed source. In this case, some interesting ptigseof optimal(d, k)-
codes arise, leading to a simplified solution for a partiakslof(d, k) constraints. The
solution makes use of the Tunstall algorithm [15], which wagjinally developed to
generate optimal variable-to-fixed length source codes.

The rest of the chapter is organized as follows. The symiudihgl algorithm is re-
viewed in Section 4.2. In Section 4.3, we outline a framewadaken from the source
coding literature, for variable-length codes for noiselegemoryless channels with arbi-
trary transmission costs. Here, we introduce notationsbasit source coding concepts
as well as survey relevant algorithms and results. Sectibnwhich is the essence of
the chapter, is devoted to studyifig k)-codes that are based on variable-length source
codes. We conclude in Section 4.5 with some related opergmsand with a discussion
of the core differences between the various constructions.

4.2 Background: the Symbol Sliding Algorithm

The work presented in this chapter was inspired by the rgcenggested interpre-
tation of bit stuffing and bit flipping and by their generatipa to the symbol sliding
algorithm [13]. In this section, we describe the above-nosetd interpretation and re-
view the symbol sliding algorithm.

Recall that for a finitd:, any(d, k)-sequence can be viewed as a unique concatenation
of strings, each string corresponding to an allowable rutookecutivé’s followed by a
1. LetTg, = {091,041, .- [ 0*~11,0%1} be the set of pertinent strings, whé¥estands
for a run oft consecutive)’s. Throughout the chapter, we refer to the string$'in as
constrained phrasedNote that wherk = oo, there exists an equivalent description that
uses strings fron'; ., = {0, 091}.

Let us start by taking a closer look at the bit stuffer. Coasits graphical description
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Figure 4.2.1 Graph description of a bit stuffer fof& k) constraint withd > 0 andk
finite.

in Figure 4.2.1, and suppose that we start at state zero. Yestudf d 0’s and progress
to stated, from which we continue walking on the graph by readingjtH@ased bits. At
some point, after reading at least one and at nhostd bits, we return to the zero state,
thus completing a cycle on the graph. Encoding continuesewbapeatedly completing
cycles at the zero state. By observing that the output geatbed each cycle corresponds
to one of the constrained phraseslipy, it is possible to associate segments of the
biased input stream with each of these phrases. By insgetttengraph, one can see
that the bit stuffer associates the— d + 1 input strings that are listed in Figure 4.2.2
with the various constrained phrases, according to the mggpat is specified by the
arrows in the figure. To further illustrate these input-auttgelations, we distinguished
the biased input bits from the stuffed bits by highlightihg tatter. Figure 4.2.2 also lists
the probability of occurrence of each of the input stringa &snction of the biag. The
generated constrained phrases are statistically indepéadd obey the same distribution

Pé(p) = {1-p.p(Lt=p), -, p* (1 —p),p* D}, (4.2.1)

where position (0 < i < k — d) represents the probability of the phrageil. At this
point, we note that these relations were demonstratecearlChapter 3 by the one-state
constraint graph in Figure 3.2.2.

A similar interpretation of the bit flipping algorithm is demstrated in Figure 4.2.3.
First observe that bit stuffing and bit flipping operate ideaity on the topk — d — 1
input strings. The algorithms differ in the constrainedgs®s that they associate with
each of the two input strings on the bottom. The flipping oftiheat statek — 1 translates
into a switching between the two associated phrases. Megaly, the longest phrase
0*1 is now associated with the inp0t—¢-'1, whereas the second longest phrase'1
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Input words Constrained phrases BS phrase prob.
d
/_H
1 —  00...01 1p
01 —>  00...001 p(1-p)
001 —>  00...0001 p’(1-p)
kd1l k-d-1 :
00....... 01 —> 00...000....... 01 p*dD(1-p)
00....... 00 —> 00...000....... 001 e
k-d k-d

Figure 4.2.2 The bit stuffer induces a mapping between afsapat words and the set

of (d, k)-constrained phrases.

is associated with the inpot—9. The algorithm is specified by the modified associations
between the two leftmost lists in Figure 4.2.3. This modif@ahas only one effect on the
generatedd, k)-sequences - it changes the distribution that is induceti®@odnstrained
phrases. The two longest phrases exchange their prolaiilitccurrence, as illustrated
by the right-hand side of Figure 4.2.3.

With this interpretation in mind, we now try to explain thee@amprovements gained
by bit flipping, as stated in Theorem 3.2.6. We first remindrieder of the statistical
characteristics of capacity-achievif k)-encoders, which produce maxentrofick)-
sequences. As we will soon show, analysis of such encodarguide us in improving
the performance of existing encoding algorithms, suchtasiifing. As we have noted in
Chapter 3 (see Section 3.3), the output of capacity-aaigesncoders has the following
properties:

1. The constrained phrases are statistically independentantically distributed.

2. The probability of a constrained phrase of length equal to2—*“(%¥) | or equiva-

lently, to A}

Following [13], we denote the maxentropic distribution loé tconstrained phrases as the

vector
Ak = (Mgl A, g g ) (4.2.2)
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Input Output BS Output prob. BF Output prob.

1 —s 041 1-p 1-p

01 —> 0901 p(1-p) p(1-p)

001 —> 07001 pz(l—p) pz(l—p)

00.......01 Od'()'(')'.'.' ...01 plbed: 1)(1—p) S

00.......007" X 0400.......001 p<k 2 1>(1 P
k-d bits

Figure 4.2.3 Bit flipping corresponds to switching betwelea probabilities of the two
longest constrained phrases.

An apparent property of\,;;, is the positive correlation between a phrase’s length and
its scarcity. Next, we find whether this property also holoisthe bit-stuffing induced
distribution P> (p).

Suppose we run the BS algorithm with a bjashat is greater thaf.5. This is
a reasonable assumption given that the optimum is oftemattan the rang€0.5,1)
(see Lemma 3.2.5). Comparing the bit-stuffing phrase piitbhed with the maxen-
tropic probabilities, we see that the fikst- d bit-stuffing probabilities mimic the above-
described behavior of the maxentropic probabilities, thalonger phrases are less fre-
quent. The only exception is the last probability, whichisfsp* =% > pk=d=1)(1 — p)
with respect to the probability preceding it, as opposedﬁf“) < A;g“). In their
paper [13], Sankarasubramaniam and McLaughlin noticelitidlipping is essentially
switching between the positions of the last two probaksiti This leads them to view
bit flipping as altering the bit-stuffing induced distrilbariso as to alleviate the discrep-
ancy between the generated and the maxentropic phrasiulisins. They argue that
the modified distribution provides a better match\{g, than the initial distribution, and
attribute the rate gains when> 0.5 (see the special case of Lemma 3.2.2 whenk)
to the improved match.

Is it possible to extend the idea of phrase-probability swiitg to obtain further im-
proved rates? Sankarasubramaniam and McLaughlin rasetleistion and suggest the
symbol slidingalgorithm as a construction that results in improved rabesrfany con-
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straints. The guiding principle of construction is to impedhe matching to the maxen-
tropic vectorA, . The algorithm obtains this goal by altering the assoamstibetween
the constrained phrases and the bit-stuffing input wordsitiag in the switching of cer-
tain phrase probabilitiesSymbol sliding with index, denoted byS.S(j), corresponds to
sliding p*~% up by j positions, while pushing each pf*=?=7)(1 — p), pk=d=7+(1 —
p),---,p*~4D(1 — p) down by one position. Figure 4.2.4 illustrates the modifisd a
sociations as well as the new induced distribution that mvelved inSS(j). It easily
follows from the preceding discussion that BS and BF areiapeases of symbol sliding
with indicesj = 0 andj = 1, respectively.

In practice, one can implement a symbol sliding encoder inidlex j by replacing the
bit stuffer with a component that performs the following gedure on the biased input
stream.

e If j =0, then run thebit stuffingalgorithm.
e If j =1andd+ 2 < k < oo, then run thevit flipping algorithm.

e If2 < j<k-—dandd+ 2 < k < oo, then initialize by writingd consecutive
0’s. Continue by writing the biased stream while keepingkratthe run length
of 0’s in theencoded stream In parallel, perform the following operations on the
encoded stream:

1. When encountering a biasédinsertd 0’s.
2. Once the run length equdls- 7, insert a.

3. Once the run length equdlst 1, replace thé: + 1 consecutivé’s (including
the inserted at a run length of: — ;) with the stringd*~710¢.

At the decoder, the biased stream is recovered by invetti@gperations of the encoder.
Whenj = 0, 1, the decoder is simply the BS or BF decoder, respectivelye@iise, we
treat the case where < 57 < k — d — 1 and the case wherg = k — d differently, as
described below.

o If 2 < j <k—d-—1,discard the first/ 0’s in the constrained stream and set the
run length to0. Scan the rest of the stream while keeping track of the rugtken
and applying the following two operations.
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Input Output BS Output prob. SS(j) Output prob.
| —> 09 1-p 1-p

01 —> U] p(1-p) p(1-p)
6(k_d_j_1)1 N O(k:j'l)l p(k—d:j-l)(l_p) p(k-d—}-l) (1_p)
Qa1 0®1 p&H(1-p) P
Oledi+1)] 0k p(k—d—j+1)(1_p) p(k-d—j) (1-p)
0kED] 5 0®D1 pkd-D(1-p) peE(1-p)

k- 0k1 plkd) pEaD(1-p)

Figure 4.2.4 Symbol sliding with indekcorresponds to sliding®*~% up by j positions,
while pushing each gf*=4=7)(1 — p), p*=4=3+(1 — p), - - -, p*=4=D(1 — p) down by
one position.

1. When encountering B remove the nexi 0's and set the run length tb

2. If the run length equals — d — 5 and the next bit i§, discard thé) bit. If the
run length equalsé — d — j and the next bit ig, replace the string*=4-710¢
with the string0*~—¢ and set the run length to

e If j =k — d, discard the firstl 0’s in the constrained stream and check the value of
the next bit. If it is0, discard it. Otherwise, insekt— d consecutivé)’s beforeit.

Perform the following two scans consecutively.

Scan 1 When encountering & remove the nexd 0’'s and check the value of the
next bit. If it is 0, discard it and resume scanning, starting at the next hit. If
is 1, insertk — d consecutivé’s beforeit and resume scanning, starting at the
currentl (i.e., move the scanner pointer to this bit and rejS=an J).

Scan 2 Scan the output dbcan 1 Whenever encounteringlaafter k — d con-
secutive)’s, remove thd.

We have seen that both BS and BF are special cases of symtiiogslilt follows
from Proposition 3.2.1 and Theorem 3.3.1 that symbol sfjdinhieves capacity for all
(d,d + 1) and (d, c0) constraints, as well as for th@, 4) constraint. The following

proposition extends the capacity-achieving property ohlsgl sliding to an additional
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class of(d, k) constraints, namely, the class(@f 2d + 1) constraints [13].

Proposition 4.2.1.Let0 < d+2 < k < occand2 < j < k — d. The symbol sliding
algorithm with indexj achievesd, k) capacity ifand only it = 2d+1andj = k—d =
d+1. O

Proposition 4.2.1 further states that there are no othestraints for which symbol
sliding achieves capacity. Nevertheless, for all rem@mionstraints, symbol sliding in-
troduces the sliding index as an additional parameter to optimize. This provides more
flexibility in fitting the resulting distribution to the mar&opic target distribution, com-
pared to the rate optimization of BS and BF. Numerical optation results that are re-
ported in [13] demonstrate that symbol sliding indeed impsoover BS and BF for some
constraints, yet not for all. Since optimization is essahtiperformed jointly ovenp
andj, it is important to note the following proposition, whicheidatifies certain relations
between the bias and the sliding index [13].

Proposition 4.2.2.Let0 < d < k < oo. Then for0 < j < k — d, the average rate of
SS(j) is greater than the average rate 865(;5 — 1) if and only ifp’ + p > 1. O

Unfortunately, Proposition 4.2.2 does not suffice to dedheesuperiority of a certain
sliding index for a giver{d, k) constraint, as is established by Theorem 3.2.6 for the bit
flipping algorithm (i.e., forj = 1). Itis only possible to infer that if.S(j — 1) is optimal
for a biasp such thap’ + p > 1, then the optimized S(;) will outperform the optimized
SS(j — 1). The difficulty thus is in determining the range in which th@imal bias of
SS(j — 1) falls. Proposition 4.2.2 does, however, provide some hidigto the jointly
optimal values by implying the optimal sliding index fpr Specifically, it follows from
the proposition thaf S(;*) maximizes the rate at a biasf and only if 1 — p < p/" <
(1—p)/p. Equivalently, the optimal index must satisfy the conditiop*~%=7") (1 —p) <
pth=d) < plk=d=3"=1)(1 — p), which is indicative of the relations between the optimally
shuffled constrained-phrase probabilities. In other wdtdsbest performance is attained
when positioning*~¢ in a location such that the induced probabilities form a elasing
series, as illustrated in Figure 4.2.5. Recall that thidge the case with the maxentropic
probabilities. The reason for pointing this out at this stagthat it will prove relevant to
the different perspective on symbol sliding we present ictiSe 4.4.1.
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Input Word SS(j) prob. Output Phrase
1 1-p 041

\Y)

01 p(1-p) 0401
vV

0...01 plkedi*D (1-p) 040...01
vV

00...000...0 p'd 040...001
Vv

0...001 p&d (1-p) 040...0001
vV
Vv

00...000...1 pkd(1-p) 0400...000...01

Figure 4.2.5 The optimal sliding index;, depends op and satisfiep*~%=7") (1 — p) <
plE=d) < plk=d="=1) (1 _ p).

4.3 Preliminaries: Variable-Length Source Codes for

Noiseless and Memoryless Channels

Consider the system depicted in Figure 4.3.1. A memoryl@sarp information
source produces-biased sequences for a given bjasThe sequences are to be trans-
mitted over a memoryless, noiseless channel which admi@@rabet of ' symbols
Y = {ai,as,...,ax}. Each channel symbal; has an associated transmission cost
¢;. For notational convenience, we assume that the channddadgrare given ordered by
nondecreasing cost, i.e;, < ¢; < --- < cg. An encoder converts thebiased binary se-
guences intd{-ary channel-admissible sequences by parsing the ingatratinto binary
strings, hereafter callesburce wordsand by replacing each source word with a channel
symbol. A coding scheme of this type usesaale which can be thought of as a dictio-
nary with K entries that correspond to each of the source words in a feredeed set
W = {wy,wy, -+ ,wg}. The parsing step partitions the input stream into a conediten
of words from the dictionaryi’. The code additionally specifies a bijective assignment of
the K channel symbols to the words#i. The replacement step replaces each dictionary
string with its assigned channel symbol. Thus, a code haparameters: a set of source
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p Llp
0011... Word |y Word-to-Symbol | ¢ ¢ Memoryless
1 W e SICTTTIN .
Parser Assignment > Noiseless
p-biased )
sequence () (frW—>2) Channel

Figure 4.3.1 Block diagram of a system for variable-lengticagling of p-biased se-
guences for transmission over a memoryless, noiselessiehan

words W and an assignment : W — X of the output channel symbols to the input
source words. Throughout the remainder of this chaptergsteict our attention to codes
that use exhaustive and prefix-free source-word sets. \@bepehaustivity is required to
guarantee the parsing of any input stream, the prefix prgpelnich leads to unique pars-
ing and encoding without delay, is not necessary for theraase of unique decodability
of the input. Word-sets that are exhaustive and prefix-freesaid to beeomplete

When studying prefix-free word sets, it is convenient to waith their tree repre-
sentations. Specifically, there is a well-known bijecti@iviieen complete word sets and
complete labeled treesSuch trees are also callgdrsing treesn the source-coding lit-
erature [5]. In the sequel, we will deal mostly with binaryrgiag trees, in which each
internal node has exactly two children. We shall label thedeanch with a0 and the
right branch with al. Each leaf node corresponds to the binary string that is offad
the labels along the path from the root to the leaf. If a tfeeepresents a word set
W = {wy,ws, - ,wg}, then we shall use the notatidh= {wy,w,, - ,wg}. To de-
scribe a cod¢g : W — ¥ on the tree descriptiofl of the word set?, we simply label the
K leaves according to the assignment specified .bip particular, we list the codewords
wy, -+, wg iNavectorV = (vy,vq, - - - , v ), Wherey; corresponds to the word; such
that f(w;) = ;. In light of the assumption that < ¢, < --- < ¢, the labelingV’ lists
the source words in a nondecreasing order of their assddiaesmission costs. Here-
after, we shall refer to a code: W — X by specifying the tree-representation parameter
pair (T, V). Figure 4.3.2 illustrates five trees which represent all glete word sets of
size4. It also shows leaf labels that correspond to different satidined on these trees.

Suppose that we are parsipgbiased sequences into words from a given parsing
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VsV,
Py )= Py = P yvp)= Py = Py =

Q. o pQ-p) 1p) (2 1p p(pP P (p) (P pQep)p(p), p2?) (o p20p), -p2p(1p) (oo p(1p). p(1-p) (1-p))

Figure 4.3.2 Tree representations of all five complete wetd ef size4, together with
leaf labelings that correspond to codes defined on these seis] and with the code-
induced distributions.

treeT = {wy,ws, -+ ,wk}, and that we are encoding the words using a cbde-
(v1,v9, -+ ,v). INthis case, we can compute the asymptotic probabilityitigion that

is induced on the source-word sequences as well as on theelreymbol sequences. The
zero-memory and stationarity of the binary input extendsdih sequences. Hence, one
can fully characterize their statistics by specifying alyadoility distribution on the set of
source words and on the set of channel symbols. It is eastihaeif a wordy; consists
of [; 0’s andr; 1's, then it occurs with probabilitpr(v;, p) = p'i(1—p). Clearly, the asso-
ciated channel symbal; occurs with the same probability. We call the arising dugttion
the code-induced distributioand denote it byPry (p) = (P(v1), P(v2), ..., P(vk)),
where P(v;) represent®r(v;, p). The distributions that are induced by the codes in Fig-
ure 4.3.2 appear below each tree.

Throughout this work, the parameter of interest isaegmptotic average information
rateof a code(7T', V'), defined as the asymptotic expected input-message lengtimpef
transmission cost. In our setting, we can formulate the asgtic expected input length
as

LT,V(P) = Z P(v;) - L(vy),
v; EV
where L(v;) stands for the length af;. The corresponding expected transmission cost
can be expressed as

Crv(p) =Y Pv)- ¢ (4.3.1)

v, €V
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and the code rate is given by

_ Ly (p) _ 2ev Plwi) - L(w)
Crv(p) Sev Ploi) ¢

A natural problem of interest is finding a code that maximitesrate for a given fixed

Rryv(p)

(4.3.2)

p. Such a code is said to leptimal Although this problem is mentioned in the literature
(see [5] and [12]), to the best of our knowledge, it has nonhbeeated in its general
form. Nonetheless, we point out two special cases of thelgnolhat were previously
addressed and solved. In both cases, the solution takesrmeof an algorithm that
constructs an optimal tree.

Lempel, Even, and Cohn [12] studied the case where the iapestricted to unbiased
sequences, and thus the code-induced distribution is dyatieir algorithm is based on
an adaptation of the principle underlying the well-knowrffishan algorithm. More pre-
cisely, an optimum code exists in which the two most costliylsgls are assigned to two
source words which are of maximal (and identical) length différ only in the last bit.

A tree is then constructed from the bottom up by successimelging the corresponding
sibling leaves into a leaf that represents a new channel glynvhose cost is a function of
the merged-symbols costs. However, unlike the Huffmanrtiegle, such a construction
does not necessarily result in an optimal tree. Insteadneads to iterate over a sequence
of tree constructions, while improving the merging costction between iterations. The
resulting tree sequence is guaranteed to converge to anatee. Unfortunately, this
algorithm relies on key properties of optimal trees that dohold in the general case
of p-biased input. Hence, a straightforward adaptation doéseem to solve the gen-
eral problem. We are unaware of any other reported atterapéckle either the general
problem or this special case.

The second special case relates to the minimization of ttmpoession ratio of variable-
to-fixed length codes, and is more extensively document#tkisource coding literature.
A variable-to-fixed length (VFL) code partitions dr-ary source sequence into a con-
catenation of variable-length/-ary source words that are encoded into uniform-length
codewords, possibly defined on a differdiary alphabet. Under the assumption of a
memoryless and stationary source, which is ruled by a pibtyadistribution P, the
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compression ratio for this class of codes takes the form

> wer Pwi) - L(w;)’

wherem is the common length of all output codewords ahds the parsing tree used

Ry (P) =

by the code. Note that the compression ratio is independetiteospecific codeword
assignment that the VFL code applies. The optimizationlpralithus reduces to finding
the parsing tree that maximizes the expected parse-samnugh

Ly(P) =) P(w;) - L(w,).

wi; €T

One can now easily derive the binary (i.8Z, = 2) version of this problem from the
general problem by assigning a constant cost to all chaiynébsls ¢; = cforall 1 <
i < K).

In [15], Tunstall provided a simple procedure to construttM-ary parsing tree
which maximized.r(P) for a memoryless source with a given probability distribntP
and for any valid parsing tree siZ€. The idea is to grow the tree from the top down
by successively extending it along the leaf of largest podltg More formally, let
us denote the source alphabet By= {si,sq, -+, sy} and its letter probabilities by
P ={p1, -+ ,pu}; then, the following algorithm produces an optimal pardieg.
Tunstall's Algorithm

1. Initialize: letT = S = {s1,s9, -+, sy} be the tree containing the root and its
M children. The leaves df correspond to each of the source letters and their
respective probabilities are listed in

2. If T hasK leaves then stop, else perform the following operation¥’on

e Select a leatw; € T with maximal probability and add itd/ children to
the tree (equivalently, replace; with its M single-letter extensions);s;,

W;iS2, *+ WiSnr),

e Compute the leaf probabilities for the extended tree.

Go to step 2.
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Numerous papers investigated the performance and prepeftTunstall codes under
the source model assumptions made above (a comprehensiey sind a list of refer-
ences appear in [5]). A particularly interesting perspectin these codes follows from a
result by Jelinek and Schneider [6]. They show that

H(T) = H(P) - Ly(P), (4.3.3)
whereH (P) = — _, ., pilog, p; is the source entropy and
H(T) = - P(w;)log, P(w)
w; €T
is the entropy of the tree-induced distribution. As pointed by Abrahams [5], this

implies that the Tunstall tree maximizes the entropy of #igel distribution among all
parsing trees. Additionally, it minimizes the measure

5 e (74

w; €T ¢

(known as the Kullback-Leibler distance), with respect toréform distribution) =
{a1, -+ ,ax} = {#}X, [5]. Thus, we can think of this technique as attempting toegen
ate fixed-length codewords which are fairly close to beingwbable [5], [16].
In the general case, one can analogously show that the maxiraie code also min-
imizes a “distance” measure defined by
ZwieT P(w;)log, g;
> w,er Pwi) logy Pw;)’

with respect to a given distributio = {qi,--- ,qx} = {27 }£, [5]. Here,C stands

(4.3.4)

D(T,Q) =

for the Shannon capacity of the memoryless channel [8] amgiven by C = log, X,
where X is the largest real root of the channel’s characteristiagqn X~ + X~ +
---+ X% = 1. The distribution is the familiar maxentropic distribution of the
channel [8]. We also note that the reduction of the problesmfmaximizing (4.3.2) to
minimizing (4.3.4) follows from (4.3.3) and from a divisi@f (4.3.2) by—C. Intuitively,
we seek to best approximate the channel’'s capacity-acigelistribution with a leaf-
distribution of a parsing tree. The criterion for proximisy(4.3.4).

Finally, in the next section, we focus on another relatedl@m which arises in the
context of the bit-stuffing approach. We remind the readat the bit stuffing and the
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Figure 4.3.3 Block diagram of a variable-length encodingtey with a binary distribu-
tion transformer for memoryless, noiseless channels.

other algorithms presented here operate on unbiased sexgugmd rely on the availability
of a DT, with the flexibility of properly choosing the bias. @BT introduces an additional
parameter to optimize, with the potential benefit of betténfj the maxentropic measure.
One can apply this concept to coding for a general memorgkasnel by assuming
unbiased sequences as input and by adding a DT to the systeiguire 4.3.1, yielding
the system in Figure 4.3.3. The problem, then, is to find a(paifl’, V")) of a bias and a
code that jointly maximize thasymptotic average overall ratd the system, given by

Irv(p) = Rry(p) - h(p).

Although this problem is most interesting to us, it is not aantional source coding
problem and has not been reported in that literature before.

4.4 A Source Coding Perspective old, k) Codes

We devote this section to studying binary-transforifag¥)-codes from a source cod-
ing point of view. In Section 4.4.1, we present a general &éaork for the construction
of variable-length(d, k)-codes from source codes. We derive this framework as aapeci
case of the general setting described in Section 4.3. We&vesit the bit stuffing, bit flip-
ping, and symbol sliding algorithms, and formulate thempesci®l cases of source codes
under this framework. The proposed perspective on the Higegithms has motivated us
to examine the performance of other code constructionfidtetter two subsections, we
consider two problems which concern optimal variable-tbrid, k)-codes. Section 4.4.2
considers the problem of jointly optimizing the code andiitaes. Section 4.4.3 addresses
an optimization problem in which the bias is fixed.
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4.4.1 Binary-Transformer Algorithms Revisited

Recall the alternate description of binde, k)-sequences as a free concatenation of
strings from the set of constrained phrakgs = {091, 0411, ... 0¥1}. We now define
a super-alphabet = {«a1, ay, . .., ax_qs1}, Such that the symbal; represents the string
0°~1*41 for all i; henceX: represents’y ;.. This allows one to view the encoding pf
biased sequences intd, k)-sequences as equivalent to the encoding of such sequences
for transmission over a memoryless noiseless channelvddmits the super-alphabet
Y [10], [1]. Hereafter, we assume we use the system and chamoa| of Section 4.3,
and we set the symbol transmission costs to equal the lerfighie sepresented strings,
i.e.,c; = L(0°=1%41) = i+dfor all i. Under this framework, &l, k)-code(T, V) replaces
the parsed input words with constrained phrases figm while inducing a probability
distribution on the statistically independent constrdiphrases. Thasymptotic average
information rate of théd, k)-codeis
_ Lev(p) _ ey P0) - L)
L It

whereL?F“fV (p) is theexpected binary output lengdf the code, and is given by

R7Y (p) (4.4.1)

L3 (p) = > P(vi) - L{ew). (4.4.2)

v, €V
Here, L(«;) stands for the length of the string that represents, i.e., fok (0°1791) =
i + d. Itis through the definition of costs = L(0°~!91) that the expected transmission
cost of the code”'r,(p) becomes its expected binary output lengtf, (p). Conse-
quently, the averaggl, k)-code rateRdT:’“V(p) equals the average transmission-code rate
Rry(p). An optimal parsing-tree code for the above defined chaniietherefore yield
a maximal rate parsing-trge, k)-code. Similarly, we can derivgl, k)-codes for sys-
tems that operate on unbiased data and utilize a DT to inteétbias into the data. The
overall rate of théd, k)-code is

IFV(p) = RS (p) - h(p). (4.4.3)

Before we proceed to examine parsing trees in more detadl ,useful to introduce
the following lemma, which states an important property pfimal parsing-tree codes
for transmission over an arbitrary memoryless channel.
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Lemma 4.4.1. Assume a channel admitting an alphabet/ofsymbols with associated
costse; < ¢ < -+ < ¢ck. LetT be a parsing tree withi{' leaves ang be the bias of a
memoryless information source. Uf = (v, vq,- -+ , v ) iS @ labeling of the leaves of T
such that

Pr(vi,p) > Pr(va,p) > -+ > Pr(vi, p) (4.4.4)

thenRry (p) is maximum over all possible labelings of the leave® of

Proof. We wish to find a labeling of the leaves @f which maximizes the resulting

rate Ry v (p) = é;;g ; A key observation is that the asymptotic expected inpugtlen
Lty (p) is independent of the labeling, but rather is a function efttiee and bias only.

We can then write

Lry(p) = Z Pr(vi,p) - L(vi) = Z Pr(wi, p) - L(w;) = Lr(p)

v; eV w; €T

forall V(7). Thus, we need only find a labeling that minimizes the expktesmission

cost
K
Cry(p) = ) Pr(vi,p) - i
i=1

It is easy to see that the minimum is attained when sortingethees in order of non-
increasing probability and by assigning tté leaf (in the sorted list) to théth channel
symbol. This is reflected in the labeling proposed in (4.4.4) 0J

Lemma 4.4.1 implies that a search for a maximal rate codesn@dgl account for the
one code that optimizes the assignment for each of the catedidrsing trees. It not only
simplifies the search but also provides a simple means ofrobgathe best code for a
given tree. Once a tree is chosen, the optimal code simpigresthe least costly symbol
a1 to the most probable leaf, the next least costly synaladb the second most probable
leaf, and so on. We can thus omit the labelirigvhen referring to a cod€l’, V'). The
lemma will also prove relevant in understanding the al¢pong discussed in Section 4.2,
as explained below.

Thus far, we have outlined a general framework férk)-codes that are based on
variable-length source codes for a memoryless channel.d& ospecified by a parsing
tree in combination with the most efficient assignment ofst@ined phrases to the words
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of the tree. In Section 4.2, we interpreted bit stuffing asriqdar mapping between the
k — d+ 1 strings in
{1,01,0%1,--- 0% 9711, 0~} (4.4.5)

and thet—d+1 constrained phrasesin, ;. Observing that the strings in (4.4.5) constitute
the leaves of a complete tree, we can view bit stuffing, bipfiig and symbol sliding as
special cases of source codes under the general framewaréx&mple, wherh —d = 3
we consider all possible parsing trees of sizeshown in Figure 4.3.2. The leftmost
tree corresponds to the word dét 01, 0%1,0%} and is used to generate the input words
to the three algorithms. Operating orpdiased stream, it gives rise to the distribution
{1—p,p(1—p),p*(1 —p),p*} on the input words. The sole difference between the algo-
rithms is their specified assignments of the constraineagaisf0¢1, 04+11, 0921, 0%*+31}
to the input words. This, in fact, determines the constiiplerase probabilities. Fig-
ure 4.4.1 demonstrates the four assignments that bit sjuffiih flipping, SS(3), and
SS(4) apply, as different labelings of the same tree. Each assghamounts to a dif-
ferent constrained-phrase probability vector, which appenderneath each tree. For a
general value ok — d, the tree representation of (4.4.5) has the form depictdeign
ure 4.4.2. From now on, we shall refer to (4.4.5) ashihestuffing treeand denote it by
Tps.

Consider now an optimal assignment for the bit-stuffing,teeeindicated by Lemma
4.4.1. Itis attained by labeling the leaves in order of naeréasing probability, where
the leaf probabilities are

{1 _p7p(1 _p>7p2<1 _p)7 e 7p(k_d_1)<1 —p),p(k_d)} (446)

However, we have seen in Section 4.2 that the ordering vaiitbsp, and consequently,
so does the optimal labeling. A search for such an optimagaseent is implicitly per-
formed by the symbol sliding algorithm. The sliding;éf~% up to any indexj > 0 (see
Figure 4.2.5) attempts to rearrange the induced probiasiiiht decreasing order and thus
apply the labeling of Lemma 4.4.1. To obtain an ordered ig#at.6), it is sufficient to
slidep*~—9 up to an index* such thap and;j* satisfy

(k=d=3") (1 — p) < p*=D) < plk=d=3"=U(1 —p) fO<j*<k—d—1
{p (1-p)<p p (1-p) <j* < (4.4.7)

1—p<pk-a, if 7*=Fk—d.
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va(P): PT,v(p): PT,v(p)= PT,v(p)=

(1-p, p(1-p), p*(1-p), p*) (1-p, p(1-p), %, P2(1-p)) (1-p, P2, p(1-p), p2(1-p)) (P2, 1-p, p(1-p), pX(1-p))

BS BF SS(3) SS(4)

Figure 4.4.1 Four labelings of the bit-stuffing tree andtieiluced constrained-phrase
probabilities, which correspond to (from left to right) Isiiuffing, bit flipping, symbol
sliding with index3 and symbol sliding with index.

When optimizing forj, the algorithm slideg*~% up to its proper position in the ordered
set, as implied by Proposition 4.2.2. In summary, bit stgfand bit flipping apply fixed
assignments irrespectively of the bias. In contrast, therskon to symbol sliding results
in optimized assignment per given bias, and can thus patnéichieve improved rates
over the former two algorithms.

Having optimized both the assignment and the bias for thethiting tree, we wish
to examine the achievable rates associated with othemggtreies. For a given bias, each
parsing tree of size—d+1 may be considered in conjunction with its optimal assignimen
We now remind the reader that the symbol sliding algorithns wentivated by the idea
that a judicious shuffling of the probabilities in (4.4.6utresult in an improved match
to the maxentropic vectak,, [13]. Nevertheless, can other trees induce probabilities
that provide an even better match, better in the sense of BesrdesstanceD (7', A, ),
as defined in (4.3.4)? In what follows, we deal with two protethat were raised in
the general discussion in Section 4.3, as they applytb)-codes. In particular, we are
initially interested in finding the tree and bias that jojthaximize the overall rate of a
scheme which includes a DT. We then address the somewhaesiptpblem of finding
the optimal tree when the biass given. Although the first problem is more interesting
in the context of bit stuffing, an efficient solution to the @ed problem may simplify the
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Figure 4.4.2 The general form of the bit-stuffing tree.

solution and analysis of the first.

4.4.2 Jointly Optimal Bias and Parsing Tree Code

We begin by describing our setup for the joint optimizatidrihe tree and the bias.
We evaluated the rate of each trﬁé"” (p) by explicitly expressind.r(p) as a function of
pand L3 (p) as a piecewise function @f The latter function corresponds to the best as-
signment and hence varies with the changes in probabilidgrorg. MultiplyingR?F’k(p)
by h(p), we obtained the overall rate per bias. Although one canimbtalosed-form
expression for the average rate associated with each tdegaah bias, the complexity of
the rate expressions makes analysis intractable. Forghabn, numerical optimization
was carried out, considering all possible parsing treeszefis— d + 1 and all biase®
such that) < p < 1. In addition, the fast-growing number of candidate treesioed the
search to small values &f — d. For each such value, a broad range &fk) pairs was
considered.

Table 4.4.1 shows optimal trees together with their cowadmg optimal average
rates for numerou&d, k) constraints, wheré — d = 3. We refer to the trees by their
numeric labels, as they appear in Figure 4.3.2, with the extgption being the reference
to the bit-stuffing tree. For this tree, we provide an acrofynthe most efficient of the bit
stuffing (BS), bit flipping (BF), and symbol sliding (SS) atgbms. This merely indicates
whether the optimal sliding index at the optimal bias equals, or is greater than.
Also shown are the optimal bias (whepe= Pr(0)), the capacity of each constraint,
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and the efficiency of the optimal code. For comparison pupothe optimized average
rate and efficiency of the symbol sliding algorithm are giesnwell. We note that for
the purpose of brevity, the table provides details of onby ltlest tree for a range dfs,
although optimization was carried out for &ll, d + 3) pairs such that < 4 < 30.

It is also worth noting that it suffices to restrict optimimet to a subset of all parsing
trees. This can be done due to symmetries between the plibpabts that certain trees
induce, and also because of the symmetry of the binary gnfumetion arouncg = 0.5.
Specifically, if there exist trees and S such thatPr(w;, p) bw,er = {Pr(ui, 1 —p) bues
for all p € (0,1), then we havd " (p) = I5%(1 — p) for all p € (0,1). We can thus
disregard one of these trees when optimizing over the iat¢fv1). We also omit trees
which represent different word sets but induce exactly #aes leaf-distribution as a
function of p. Such trees exhibit the same performance. In the case viheré = 3,
the mentioned symmetries allow one to limit the search totlinee leftmost trees in
Figure 4.3.2.

Similar details for numerougl, d+4) and(d, d+5) constraints appear in Tables 4.4.2
and 4.4.3, respectively. After eliminating redundantdreee were left to considértrees
for k —d = 4 and19 trees fork — d = 5. Figure 4.4.3 and Figure 4.4.4 depict the optimal
trees that are listed in Tables 4.4.2 and 4.4.3, respegtilrethe case wherg — d = 6,
we did not construct all possible trees but accounted only7drees. One of these trees
is the bit-stuffing tree of siz&, while the others were generated by extending each of the
leaves of some of the trees of sizeAmong the extended trees are trees nunsbérand
5 in Figure 4.4.4, which are optimal for mar¥, d + 5) constraints. In this chapter, we
did not include detailed results of the optimizationfor d = 6. We shall, however, refer
briefly to these results in the following discussion.

It can be seen from Tables 4.4.1 - 4.4.3 that for many comég,ahere exists a code
construction which outperforms symbol sliding. Similataames were also observed in
thek — d = 6 case. This means that certain trees give rise to probadistyibutions
which provide a better match to the maxentropic vectgy. than the bit-stuffing tree’s
induced distribution. For example, whén- d = 3 and5 < d < 30, the distribution
P3(p) = {(1 — p)%, p(1 — p),p(1 — p),p*} leads to improved performance over the bit-
stuffing distributionPga ™ (p) = {1 — p, p(1 — p), p*(1 — p), p*}. This is surprising since
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Table 4.4.1 Numerical results for optimal performance abay-tree codes for various
(d,d + 3) constraints.

Best Best Best Symbol| Symbol
Best| Tree Tree Tree Sliding | Sliding
Constraint | Tree| Avg. |Optimal | Avg. Rate | Avg. | Avg. Rate | Capacity
Rate Bias | Capacity | Rate | Capacity

0,3) 2 10.94500 0.716 | 99.81% |0.94089 99.38% | 0.94678
(1,4) SS |0.61577 0.746 | 99.73% |0.61577 99.73% | 0.61745
(2,5) SS | 0.4649 0.724 100% |0.46496 100% 0.46496
(3,6) SS |0.37421 0.651 | 99.90% |0.37421] 99.90% | 0.37459
4,7) SS|0.31361 0.654 | 99.80% |0.31361 99.80% | 0.31423

(5,8) 3 |0.27046 0.570 | 99.84% [0.26991 99.64% | 0.27088
(6,9) 3 |0.23788 0.562 | 99.88% [0.23691 99.47% | 0.23817
(7,10) 3 |0.21237 0.555 | 99.90% [0.21110 99.30% | 0.21258
(8,11) 3 |0.19184 0.550 | 99.92% [0.19037 99.15% | 0.19199
(9,12) 3 |0.17495 0.545 | 99.93% [0.17334 99.02% | 0.17507
(10,13) 3 10.16081 0.542 | 99.94% |0.15911 98.89% | 0.16090
10<d<20| 3
(20,23) 3 10.08903 0.523 | 99.98% [0.08738 98.14% | 0.08904
20<d< 30| 3
(30,33) 3 |0.06158 0.516 | 99.99% |0.06023 97.80% | 0.06159

the structure of the bit-stuffing distribution resembles tinite geometric series that the
maxentropic phrase probabilities form. To further explaihserve that the bit-stuffing
probabilities, except fop*~9, have the formp’(1 — p) for k — d consecutive’s. Thus,
they nearly form a geometric series, whereas it is cleartbi@aiaxentropic probabilities
do form such a series. On the other hand, not only dgé&s) have a different structure, it
actually contains two identical probabilities. This prageecurs for trees numb@&rand

5 of Tables 4.4.2 and 4.4.3, respectively. When d = 6, the property persists in the
trees that perform the best for alk< d < 30.

Another interesting effect is a convergence towards a 8pdze which obtains the
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Table 4.4.2 Numerical results for optimal performance abay-tree codes for various
(d,d + 4) constraints.

Best Best Best Symbol| Symbol
Best| Tree Tree Tree Sliding | Sliding
Constraint | Tree| Avg. |Optimal | Avg. Rate | Avg. | Avg. Rate | Capacity
Rate Bias | Capacity | Rate | Capacity
(0,4) BS |0.97101 0.468 | 99.57% |0.97101 99.57% | 0.97523
(1,5) BF [0.64901 0.574 | 99.71% |0.64901 99.71% | 0.65090
(2,6) 2 10.49722 0.588 | 99.86% |0.49706 99.83% | 0.49791
(3,7) SS |0.40569 0.755 100% |0.40569 100% | 0.40569
(4,8) 2 10.34300 0.558 | 99.93% |0.34294 99.92% | 0.34323
(5,9) 2 10.29725 0.549 | 99.80% |0.29717 99.77% | 0.29786
(6,10) 3 10.26286 0.550 | 99.84% |0.26228 99.61% | 0.26330
(7,11) 3 10.23576 0.554 | 99.88% [0.23472 99.44% | 0.23603
(8,12) 3 10.21376 0.584 | 99.91% [0.21240 99.27% | 0.21396
(9,13) 3 [0.19553 0.584 | 99.92% |0.19396 99.11% | 0.19570
(10,14) 3 10.18017 0.584 | 99.91% |0.17847 98.96% | 0.18034
10<d<20| 3
(20,23) 3 [0.10090 0.584 | 99.64% [0.09922 97.98% | 0.10126
20<d< 30| 3
(30,33) 3 [0.07007 0.584 | 99.43% [0.06871 97.51% | 0.07047

best rate, starting from a certain For example, tree numb8rseems to asymptotically
yield the best code when— d = 3. We encountered this effect for all examined values of
k—d. Although we have not proved that this indeed holds#starger thar80, from now

on, we shall call these trees theymptotically optimal treesWe outline the difference
between these trees and the bit-stuffing tree using theafwipdefinitions. We say that

a binary tree is &kew treef it is obtained by either consistently extending its rigpatst
leaf or by consistently extending its leftmost leaf. In aast, abalanced treeof size K

is a binary tree where each subtree of the root is of the saighthie K = 2” for some

D, or where the two subtrees differ in height by at mbstind are balanced as well, if
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Table 4.4.3 Numerical results for optimal performance obpa-tree codes for various
(d,d + 5) constraints.

Best Best Best Symbol| Symbol
Best| Tree Tree Tree Sliding | Sliding
Constraint | Tree| Avg. |Optimal | Avg. Rate | Avg. | Avg. Rate | Capacity
Rate Bias | Capacity | Rate | Capacity

(0,5) BS |0.98545 0.48 99.73% |0.98545 99.73% | 0.98811
(1,6) 2 10.6680 0.733 | 99.85% |0.66730 99.74% | 0.66903
2,7) 3 10.5169 0.417 | 99.92% |0.51643 99.82% | 0.51737
(3,8) SS | 0.42457 0.785 | 99.88% |0.42457 99.88% | 0.42507
(4,9) SS|0.36199 0.778 100% |0.36199 100% 0.36199
(5,10) SS|0.31560 0.773 | 99.93% |0.31560 99.93% | 0.31580
(6,11) 4 10.27996 0.649 | 99.85% |0.27979 99.79% | 0.28037
(7,12) 5 10.25203 0.554 | 99.91% |0.25131 99.63% | 0.25226
(8,13) 5 10.22922 0.555 | 99.94% |0.22815 99.47% | 0.22937

5

5

8 <d< 30
(30,33)

0.10989 0.561 | 99.43% |0.10832 98.01% | 0.11052
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Figure 4.4.3 Tree representations of the three codes whécbpimal for variougd, d +
4) constraints in Table 4.4.2. The leftmost tree is the biffisig tree.

K # 2P, Clearly, the bit-stuffing tree is a skew tree, while the agigtically optimal
trees are all balanced.

A few questions arise from the preceding discussion. Do siyenatotically optimal
trees which we found maintain their optimality @approaches infinity? If so, is there
an asymptotically optimal tree for any givén— d? Furthermore, can we characterize
these trees, for example, by their skewness? Lastly, howonarefficiently find these
trees? These questions are difficult to address without d gmight into the joint opti-
mization problem. In the following subsection we try to pues better understanding of
the problem by studying another related problem.

4.4.3 Optimal Parsing Tree Codes for a Given Bias

The complexity of the joint optimization problem has led nsdecompose it into
simpler problems. We next tackle the problem of finding thenogl tree when the bias
is given; that is, we consider a system which does not includ¥rl. With a solution
at hand, we can approach the original problem by a two-stagenzation. First, one
obtains the optimal tree per bias and afterwards, a DT ischtloli¢he system and the
overall rate is optimized. However, as pointed out in Secti8, the problem of finding
optimal trees for a fixed arbitrary bias is still hard and hasbeen addressed in prior
literature, neither for a general channel nor for the spédid:)-channel. The only case
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Figure 4.4.4 Tree representations of the five codes whicbgimal for variougd, d+5)
constraints in Table 4.4.3. The leftmost tree is the bitfistg tree.

that was solved algorithmically is when= 0.5 [12]. Therefore, for general values,
we resorted to an exhaustive search over all possible ganses of size: — d + 1.
The search was performed for the same values ofd and in the same range o, k)
constraints as those considered in the preceding subsedtiolike before, we do not
eliminate symmetric trees since we examine the rﬁgg%(p) for any givenp.

Now, suppose we fix — d, and we inspect the various rates as functiong, efhile
gradually increasing, starting fromd = 0. When examining the optimél, k)-code per
bias, we noticed that a fixed pattern emerges once a cdnailie is crossed. Specifically,
past this point (and up td = 30), it appears that the optimal tree per bias is fixed,
and that the range of biase$ € p < 1) is divided into continuous subintervals, each
corresponding to a certain optimal tree. Figure 4.4.5tlatss this effect with an example
of the rate functions of severdl, 9)-codes. The five curves correspond to the five parsing
trees of sizek — d + 1 = 4, shown in Figure 4.3.2. We found that tHehresholds for
k—d = 3,4 and5 are3, 6 and6, respectively. Yet, our most interesting finding is that the
fixed optimal tree for each considered bias is, in fact, thesTall tree for that bias. We
can intuitively explain it as follows. A code maps the inpunds into phrases of various
lengths ranging frond + 1 to £ + 1. Whend is considerably larger than the fixéd- d,
the variation in phrase lengths is negligible, and they ppr@imately equal. That said,
it only seems reasonable that the optimal VFL coding scheithpnove to be an efficient
scheme in those cases as well. Still, there seems to be mibresto observations than the
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Figure 4.4.5 The achievable rates of fi¢e9)-codes as functions of

given interpretation, as the observéthresholds are comparable to tfie— d)’s. Itis an
interesting question whether the revealed propertiesehdgply to arbitrarily large’s
and(k — d)’s. In the rest of this subsection we settle this question fWkler discuss its
implications on the solutions to the two optimization pexhbk that are discussed in this
chapter.

At this point, it is helpful to make a number of undemanding@tations in order
to elucidate two issues: the non-uniqueness of the Tunigtalland the sub-optimality of
non-Tunstall trees. First, consider a situation where atr&am iteration of the algorithm,
there existj > 1 leaves with the same maximal probability. Then, in each efribxt;
iterations, the algorithm will choose arbitrarily one oéfie leaves since they are the most
probable. After; iterations, one ends up with the same tree, regardless a@rbiegary
ordering. Now, suppose we have reached the desired treargizeave stopped before the
j'th iteration. In this case, some of the different orderimgl extend different subsets of
the j leaves, leading to different Tunstall trees. Nonetheliéssin be easily shown that
these trees result in the same average input length and gathe induced leaf probabil-
ities. Therefore, in our context, th{€, k)-codes that correspond to such trees achieve the
same rate, which allows us to treat them as indistinguighadl refer to any of them as
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the Tunstall code. Finally, if the algorithm does not endeufeaves with equal maximal
probability, then the Tunstall tree is unique.

When considering VFL codes other than Tunstall codes, inairtant to stress that
such codes are suboptimal with respect to maximiZiagP). In other words, if there
exist multiple optimal parsing trees, then they are exatityindistinguishable Tunstall
trees we described above, and no others. In this sense, wsagdhat the Tunstall tree
is uniquely optimal. We formally state this observation enhima 4.4.4, as we shall later
make use of it. Before proving the lemma it is useful to introglthe following definition
and simple characterization of a Tunstall tree, given if).[Eér completeness we provide
a short proof of the proposed characterization.

Definition 4.4.2. A complete)M -ary tree verifies therdering propertyif one can list its
nodes in order of non-increasing probability so that thaietd list can be divided into
two parts, the upper containing all internal nodes in theemtrorder of extension, and

the lower containing all leaves.

Proposition 4.4.3. An M-ary parsing tree is a Tunstall tree if and only if it verifidset
ordering property.

Proof. Suppose a Tunstall tree contains an internal nodad a leaf’ such thatP(«) <
P(3). Then, at one of the preceding extensions, the algorithrmaldhtave chosen the
leaf 3 instead ofa, which contradicts’ being a leaf whilen being already extended.
Conversely, if a tree cannot be obtained by the algorithen ttne can always construct
the tree by a series of successive leaf extensions. Howatvarcertain extension, the
chosen leaf is not a leaf of greatest probability. Immediydtdlowing this extension, we
have a leaf3* whose probability is greater than the probability of anriné node. This
may change only if one of the subsequent steps extends thg*em which case, the
ordered list of internal nodes does not appear in the cooreletr of extension. O

Note that for our purposes, we make a distinction only betweees that can be
generated by the Tunstall algorithm and trees that canmobtHer words, we are not
concerned with different orderings of extensions during tbnstruction of two given
trees, as long as the final forms of the trees are identicath@breason, the criterion for
a tree thatan beobtained by the algorithm reduces to the probability of amgrinal node
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being greater than or equal to the probability of any leaf.n&ft exploit this criterion to
prove that any optimal VFL code corresponds to a Tunstadl tre

Lemma 4.4.4.Let P be a probability distribution of a memoryless source, dhthe a
tree that maximizes(P). Then,T" can be obtained by the Tunstall algorithm.

Proof. Assume that a tre# is optimal but can not be produced by the algorithm. From
Proposition 4.4.3 and the preceding discussion we knowitltaies not verify the order-
ing property, thus there exist an internal nedand a leaf’ in 7" such thatP(«) < P([3).

We now construct a new parsing tr€efrom 7" by pruning the subtre€** that descends
from nodex (i.e., all children and all other descendantsxdfarther down in7") and re-
producing the subtree under the IgafNow, it is well known that for a complete tree, the
summation of probabilities of all internal nodes includthg root is equal to the average
input length. More formally, lettind represent the set of internal nodesioéxcluding
the root, one can verify that

Ly(P) =1+ Pl(a). (4.4.8)

acl
Using (4.4.8) to comparé;(P) to Ly/(P), it can be seen that the replacemenf6f®
from « to 3 results in an increased average input length, thatis,P) > Lr(P). This
contradicts the optimality df’, and hence proves the lemma. 0J

Let us now return to optimal variable-length codes for (ig:)-channel. The afore-
mentioned observations suggest that for certdirt) pairs, the optimal variable-length
(d, k)-code is a Tunstall code for any given Our findings further indicate a threshold
behavior of the applicablgl, k) pairs, namely, that givem = k — d, there exists some
d,,, such that alld, d + m) constraints withl > d,,, have this property. The next lemma

asserts these conjectured properties.

Lemma 4.4.5.Letm > 0 be an integer and’r,,,(p) be the Tunstall tree of size + 1
that corresponds to a-biased binary memoryless source. Then, there exists agdnt
d,,, such that for anyd, d + m) constraint withd > d,,, the following holds:

Ry 0y (0) = RE™ " (p) ¥ 0<p<1 (4.4.9)

for any parsing tred” of sizem + 1.
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Proof. Suppose is fixed and lef” be a tree description of @, d + m)-code. As implied
by Lemma 4.4.1, we need only consider codes which apply dmapassignment’.

Observe first that the expected binary output length of tltkea@an be expressed as
the following sum of two terms:

m+1
L (p) = P(v)-(d+i)=d+ > P(v)-i=d+Ly"(p),
v, €V =1

where the second terix**(p) depends on the code, on the bias, andros k — d, but
is independent of. We now rewrite the average information rate of the code as

Lz (p)
REMM(p) = — (4.4.10)
TG

and we note thatr(p) is independent of as well.

Next, consider théd, d + m)-code that corresponds to the Tunstall tftég,,(p). This
code attains the maximum rate for any given bias if and onk#i#.9) holds for any
parsing tred’ of sizem + 1. Substituting (4.4.10) into (4.4.9) and rearranging tenwves
obtain the equivalent condition

1 1 LSUb Lsub
d x < . ) > T P)  L#(p) YOo<p<l (4.4.11)
Lr(p)  Lop, () Ly ()  Lr(p)

for any of the considered trees. As bath(p) and L;*(p) are independent of, the
right-hand side of (4.4.11) as well as the expression inmibesis on the left-hand side
are independent of. Since a Tunstall tree maximizes the average input leiigttp)
over all parsing trees, we have

1 1
Lr(p)  Lopy,m(p)

>0 VOo<p<l. (4.4.12)

Furthermore, it follows from Lemma 4.4.4 that inequality44.2) is strict whenever is

not a Tunstall tree. Hence, for a large enouglhe left-hand side of inequality (4.4.11)
will be greater than its right-hand side for @lk p < 1. In casel’ is a Tunstall tree, then

it induces the same leaf probabilities Bs,,(p), and thus achieves the same rate. We
now complete the proof by setting, to the smallest for which the condition in (4.4.11)
holds for all parsing trees. O
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Figure 4.4.6 Tunstall regions with their correspondings$réor X' = 6. After [17].

In light of Lemma 4.4.5, we proceed to examine additionalrabizristics of Tun-
stall trees. Here we present results by Fabris, Sgarro, ank# [17], pertaining to the
relationship between the bias of the source and the steicfuthe Tunstall tree. They
define aTunstall regionto be the set of all source probability distributions thag apti-
mally encoded by the same Tunstall code. An analysis of tharicase results in a full
characterization of these regions and in a simple procedursomputing them. Repre-
senting the source distribution by its biagt is proved that the Tunstall regions have the
form of continuous subintervals of the unit interyél 1). As noted earlier, there exist
biases for which the Tunstall tree is not unique, thus imm@ythat the subintervals are
not necessarily disjoint. We have seen, however, that tfenmpeances of the multiple
Tunstall codes are the same, hence one can choose a singisergjative tree per bias.
To resolve this ambiguity, Fabret al. propose to modify the Tunstall algorithm, so as to
avoid situations where multiple leaves are simultaneoundidates for extension. When
several leaves have the same probability, the algorithrodgxaphically orders them and
chooses the first one. Otherwise, the criterion for choosiedeaf of extension remains
unchanged. As a consequence, eadielongs only to one Tunstall region, and so the
regions form a partition of0, 1) into distinct subintervals. Figure 4.4.6 shows an exam-
ple from [17] demonstrating the segmentation of the intle(0&, 1) into three Tunstall
regions in the case when the tree sizé.isThe transitions between regions occur at the
probabilitiesp, andp, that solve the equationg = 1 — p andp* = 1 — p, respectively.
One can readily observe that the segmentation of the intédv@.5) corresponds to the
symmetric trees and is therefore omitted.

The paper provides a simple method to compute the regiondawias and at the same
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time, to construct all trees by executing the algorithm ofoecehe first region and then
adaptively constructing all other trees with no furthera@xens. For a given tree siz€,
the number of Tunstall regions in the half-unit inter¥&l R, (K)) is evaluated with the
following upper and lower bounds:

K — [log(K)] < N(Rrun(K)) < (6/7%) - ([log(K)] — 1) - 21s@1=0 (4.4.13)

Note that the lower bound is reported to be tight, at leasbup t= 16, as opposed to the
loose upper bound. Table 4.4.4 lists the exact number oftalimegions for tree sizes
ranging from4 to 10. An interesting pattern which arises from the above charezttion
involves the structure of the two Tunstall trees at the exé® of the half-unit interval,
that is, the leftmost and the rightmost trees. These areyalttee balanced tree, which is
optimal at least fop = 0.5, and the skew tree (the bit-stuffing tree), which is optimal i
the neighborhood gf = 1.

Table 4.4.4 Number of Tunstall regions for small size trees.

Tunstall Number
Tree Size | of Regions

2

(Co 2N ool BN I @D I N6 I I S
OO~ W|N

The above-mentioned properties of Tunstall codes are edlyeappealing in the con-
text of the complex problem with which we dealt in the formabsection. Recall that
the problem entails the joint optimization of the tree anel Ibhas. For everyd, d + m)
pair whered > d,,, the following two-stage approach greatly simplifies théiroza-
tion. At a first stage, one can carry out the algorithm descriim [17] to compute the
Tunstall regions and corresponding trees. Subsequen#ycan numerically evaluate the
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rate associated with the proper tree at each bias and prozceptimize theoverall rate.
This way, optimization is restricted to a limited number ain§tall trees, which can be
easily constructed. As implied by the upper bound in (4.%4.@8 number of candidate
trees will not exceed the order 0f — d) log(k — d) — a significantly smaller number than
the number of all parsing trees. In fact, the upper bound it doose and so the actual
number seems to be much smaller as well as close to the lowsdbd_-emma 4.4.5,
in conjunction with the results of [17], also provides somsight into the asymptotic
convergence pattern we observed in Tables 4.4.1 - 4.4.3lehin@a suggests that from a
certaind onwards, only a few fixed Tunstall trees, among which is thetuiffing tree, are
competing for the maximum. Moreover, one can verify thataegmptotically optimal
trees in Tables 4.4.1 - 4.4.3 (as well as in the d = 6 case) are always the balanced
Tunstall trees. Although we can not infer that this will ajde the case, we can narrow
down the “asymptotic candidates” to the relatively smailaferunstall trees.

As a final point, an attractive property of the k)-codes studied in this subsection is
that they provide a simple method for joint soufee4) (channel) coding. An alternative
method for combined source aid, k)-coding ofp-biased sequences was proposed by
Kerpez [4]. Itis based on arithmetic coding techniques,\aasl shown to converge to the
combined source-channel capacity [8] as the length of {atisiring approaches infinity.
An example of a practical implementation of such a schem@jlamg a concatenation of
two arithmetic encoder-decoder pairs, appears in [18]h&lgh the codes we study do
not always seem to converge to the combined source-chaapecity, they have the
advantage of limited complexity since the tree sizé is d + 1, independently of the
input size. Itis also interesting to compare such a joinirmpdcheme to a scheme that
separates the source from the constrained coding. For dé&ampme can use a DT to
remove the redundancy and subsequently apply an optimsihgatree(d, k)-code. The
optimal code is found by the Lempel, Even, Cohn algorithm|.[12he separation of
encoders clearly results in additional implementation glexity due to the addition of
a DT. On the other hand, it has the advantage of being ametwmbf@imization for any
(d, k) pair. Let us now consider the performances of the two appexacFor a given
biasp, denote the rate that corresponds to the optimal tre@1y). Then, the maximum
achievable rate of the separating scheme eqH%Is R*(0.5). The joint scheme will
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outperform the separating scheméiif(p) > - - R*(0.5), or equivalently, if

h(p)
hp) - B (p) > h(%) - R*(%). (4.4.14)

One can see that both sides of (4.4.14) represent the optinzerall rates that are
achieved for an arbitrary and forp = 0.5 by the optimal constructions we considered in
Section 4.4.2. Hence, differeps may lead to different relations.

4.5 Concluding Remarks and Open Problems

We conclude with some interesting open problems and withaditgtive discussion
of the various constructions presented here.

We studied severdll, k)-codes of a special kind. All codes use a binary DT to bias
the data before the actual constrained encoding takes. plEwe various constructions
gradually build on each other, with the fundamental onedpéie bit stuffing algorithm.
We have seen that the addition of controlled bit flipping heslin improved rates over
bit stuffing. A recent generalization to the symbol slidingaithm demonstrated fur-
ther improved performance. In this chapter, we extendedosysliding into a general
framework for constructingd, k)-codes from variable-length source codes. We showed
that the general framework gives rise to new code constmgtivhich achieve improved
performance over symbol sliding. In essence, we can saymba¢ generalized algo-
rithms tend to perform better. However, when searching fingal codes, each level of
extension requires the optimization of an additional patam This in turn makes analy-
sis more complex and sometimes intractable. Moreovergdtiththest level of extension,
even numerical optimization is impractical.

We proceeded to investigate optimal variable-length:)-codes under the general
framework. Although limited to smakl — d values, our numerical optimization results
indicate some possible trends. First, we found that symabhg is suboptimal in many
cases. Rather surprisingly, the optimum in those casegsmwnds to induced distri-
butions which, unlike the bit stuffing distribution, do n&semble the structure of the
maxentropic one. Second, @sncreases (anél — d is fixed), the optimal code tree con-
verges to a certain specific tree, depending on the valée-of. One question for future
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research is whether these trees are indeed asymptotigdiipal. If they are, then it is
interesting to find out if convergence occurs for @ny d and from what/ value (as a
function of & — d). Obviously, efficiently finding or constructing these sas a chal-
lenging problem by itself. In this regard, it may be helpfubke able to characterize their
exact form. Our results suggest that their skewness may besalgbe characteristic.

We also considered the problem of finding optimal variablegth codes when the
biasp is fixed. Our main result is that for a fixed = k& — d, there existsl,, such that
for all d > d,, and for allp, the optimal(d, k)-code corresponds to the Tunstall tree for
p. However, we did not specify what,, is or how to compute it. A natural direction
for future research is to address this question. Furtheznu@vising a general algorithm
that generates the optimal tree given an arbitrary bias ardkitrary(d, k) pair remains
an open problem. This problem is also of interest in a widetext of the more general
joint source-channel coding problem we discussed in Sedti®. It forms a special case,
where the transmission costs are determined bydk, but the bias is arbitrary. In this
regard, it is worth mentioning a duality, noted by Abrahabetyveen the general problem
of Section 4.3 and another long-standing problem known ed#rp problem (see, for
example, [5, Sec. lll.1-2] and a reference therein). A reeelmance on the dual problem
is the work of Golin and Rote [11], which effectively solvéd$dr a broad class of cases.
Their work may provide insight for the solution of our proie

Finally, we wish to emphasize a core difference between bibttuffing and bit flip-
ping and their two levels of extensions. We have seen thabeysiiding as well as the
general framework rely substantially on the memorylessicbbrepresentation @f/, k)-
sequences and, furthermore, on the independence of thentnapie constrained phrases.
However, these attributes are uniquédok) constraints and in general do not extend to
other constraints of interest. Specifically, they do nothapp two-dimensional (2-D)
constraints, which are of primary interest in current resean constrained coding. Con-
sequently, an extension of such constructions to otherti@nts is not straightforward.
The bit stuffing and bit flipping techniques, on the other hawd based on entirely dif-
ferent principles. They operate in a streaming manner (herfly”) by locally satisfying
the constraint. As such, they do not operate on a “phrasé’lamd are not limited to
(d, k) constraints. In fact, bit stuffing has already been appbedatious 2-D constraints
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and was shown to achieve high rates [19]. In cases where iamasable to analysis, it
was used to derive lower bounds on the unknown capacitieswefral 2-D constraints.
Bit-stuffing schemes for 2-D constraints are the topic ofrteet chapter.
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3

Two-Dimensional Bit-Stuffing Schemes
with Multiple Distribution

Transformers

5.1 Introduction

Recent advances in high-capacity optical storage techresichave motivated the
study of two-dimensional constraints. These technologgesa two-dimensional (2-D)
model of the recorded data, as opposed to the traditionalomensional (1-D) track
model [1]. This approach gives rise to new types of errorguasi, constraints and encod-
ing algorithms. Two-dimensional constraints can be defionvat different 2-D lattices,
depending on the layout of the data on the recording mediarthi$ work, we consider
the class of 2-D run-length-limited (RLL), co) constraints as well as the ‘no isolated
bits’ (n.i.b.) constraint, both defined on the square latti& 2-D (d, co) constraint con-
sists of all binary arrays in which there are at leageros between any two successive
ones in any row and in any column. The 2-D n.i.b. constraiguires that every bit equals
to at least one of its four adjacent bits (i.e. the bit abadve it below and the two bits to

90
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its sides). In other words, it prohibits the occurrence efphatterns

0 1
0[110 and 1101
0 1

Let N(m,n) be the number of distinct binary arrays of sizex n that satisfy a given
2-D constraint. Theapacityof the 2-D constraint is defined as

1
C= lim —]log, N(m,n).

m,n—o0 MM

Unlike the 1-D case, there are no known methods for comptit@gapacity of many 2-D
constraints of interest. Instead, several techniquesdavidg upper and lower bounds
on the capacity were suggested. One particular lower boagrtdchnique is based on an
analysis of a bit-stuffing encoding algorithm [2]. The aifan converts the input se-
guence into another sequence having different statigicgderties. It then encodes the
latter sequence into a constrained array by inserting eXui€sin a manner that guaran-
tees that the constraint is satisfied.

Siegel and Wolf [2] initially introduced a bit-stuffing ersber for 2-D (d, o) con-
straints, for alld > 1. They computed a lower bound on the average rate of such a
scheme and, a fortiori, on the capacity. Roth, Siegel, antf ®pthen proposed and
analyzed a more general bit-stuffing scheme for the speasd evherel = 1. They
showed that this scheme achieves improved performancdtmeriginal scheme. More
recently, Halevyet al.[4] presented a bit-stuffing encoder for the n.i.b. constrahnal-
ysis of the encoder resulted in lower bounds on its averaige itdalevyet al. further
obtained improved lower bounds on the rates of (ifiex)-encoders presented in [2],
for d > 2. Additionally, a modified bit-stuffing scheme was proposed analyzed by
Forchhammer [5]. Application of this approach to {l2ecc) constraint yielded a further
improved lower bound on its capacity.

In this chapter, we introduce two new bit-stuffing constiacs. In the first construc-
tion, we extend the idea that underlies the impro{edc)-construction in [3] to(d, co)
constraints, wherd > 2. The second construction is a bit-stuffing scheme for thé.n.i
constraint that is based on a capacity-achieving bit-sigi§cheme for a certain 1-D RLL
constraint. Section 5.2 focuses @f co) constraints and Section 5.3 deals with the n.i.b.
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Figure 5.2.1 Rectangular arrd,, ,,.

constraint. In both sections, we begin by reviewing presibit-stuffing schemes and
proceed to describe our proposed scheme. We conclude eai@nseith simulation re-
sults demonstrating the performance of these schemesctin®§&.4, we summarize our
findings and suggest directions for future research.

5.2 Bit-Stuffing Schemes for(d, co) Constraints

In this section we describe bit-stuffing schemes that enedoiérary data sequences
into 2-D (d, co)-constrained arrays. We start by introducing some notatiord conven-
tions, which will be used throughout the chapter.

We encode the input sequences into rectangular arrays @irtine

Bpn=1{0G,7)€Z® : 0<i<m, 0<j<n},

whereB,, ,, is shown in Figure 5.2.1. The random constrained array shgénerated by
the bit-stuffing encoder is denoted By, whereX; ; stands for the random bit at location
(i,7) € By.n. To properly define the encoding process, we assume zeliesatrtside
of the quadrant, i.e., for all, j) such that < 0 orj < 0.

The bit-stuffing construction that was originally propodsd Siegel and Wolf [2]
works as follows. The encoder consists odbiaary distribution transformefollowed
by abit stuffer The binary DT is the same element that was used by the onerdional
coding schemes in the previous chapters. It bijectivelyveds an unbiased input se-
guence into a-biasedsequence that is subsequently fed into the bit stuffer. Kewn
this chapter, we change the convention used in previougetsagnd let the bigsrepre-
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sent the probability that a bit isla instead of the probability that it ista This is done for
convenience of presentation. The bit stuffer sc&ps, from its upper left corner to its
lower right corner, by going down successive diagonalspjias the following routine
on each entry:

¢ If the current entry already contain®athen skip it and go to the next entry.

¢ If the current entry is empty, then assign the nekiased bit into it. If the assigned
bit is a1, then check which of thé locations to the right of it and which of thé
locations below it is empty. For each such empty locatiosgih(orstuff) a 0.

The 0’s that we may encounter in some of the entries are alwayfedtQk that were
inserted to the right of or below a previogdiasedl. Hence, it is unnecessary to repeat
stuffing at these entries. As a result, the numbérothat are stuffed following a biased
1 is sometimes strictly less thaxa.

At the decoder, we recover thebiased sequence by applying a similar logic. We
successively read thebiased bits down diagonals, while discarding the stuifedo the
right of eachl and below it. The inverse DT then recovers the unbiased ifnpat the
p-biased sequence. Now, note that biased sequences cogtienier1’s will generally
result in fewer stuffed bits, yielding a higher average iatéhe bit stuffing phase. On
the other hand, as we decrease the probability of the rate of the transformeér(p)
decreases (When< %). Similarly to the original 1-D bit-stuffing scheme, the oakrate
is the product of these two rates, hence we need to optiptia@achieve the best rate.

The above technique was later extended by Roth, Siegel, atfid3)/ for the special
case wherel = 1. They proposed to use two DT’s in order to generate two distin
biased streams at the input to the bit stuffer. When asgigaibiased bit into location
(i,7), the value ofX;_; ;;; determines the biased stream from which to take the bit.
Specifically, gp,-biased bit is assigned whety_, ;.1 = k, for k € {0,1}, as illustrated
in Figure 5.2.2. At the decoder, the same reasoning is aptgieecover the two biased
sequences. An analysis of the scheme showed that it achhmepes/ed performance over
the single-transformer scheme [3]. In addition, the optibnasesp; andp; were found
to satisfyp; < p; < 0.5 (recall thatp; = Pr(1)). To interpret this result, suppose that
the current biased bit equals If X;_; ;11 = 0 then the assigned bit incurs the stuffing
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01100...

00010... |0 1lo

0f0
01001 ... 11010... 011

Figure 5.2.2 A bit-stuffing scheme with two biased bit stredan a 2-D(1, co) constraint.

of two 0’s. On the other hand, whel,_, ;+, = 1, position(i, j + 1) is already occupied
by a stuffed0. Thus, only a singlé is stuffed in this case. Now, recall that biasing
the data serves the purpose of reducing the average perattystuffing. Hence, it is
reasonable to use a smaller bias for a pattern which incuigh&hpenalty, as was found
in this case. Motivated by the improved performance of tbieesne and by the suggested
interpretation, we now generalize it far> 2.

5.2.1 Multiple-Transformer Schemes ford > 2

Consider the case whete= 2, and assume that the bit stuffer has just assigned a
biased! into location(s, j). Figure 5.2.3 depicts examples of possible patterns that gi
rise to stuffing ofl, 2,3 and4 0’s, where the stuffed bits appear in bold. It can be seen
that the number of stuffed bits depends on the occurrendésoh certain previously-
filled neighboring locations. In this example, there are fuch locations, all highlighted
in Figure 5.2.3. Different combinations 6fs and 1’s in these locations result ih to
4 stuffed bits. In the general case, it can be shown that thebeumf stuffed bits is
determined by the patterns arising in a certain subsef gfreviously-filled locations.
These locations are characterized by the set

L@, j) = {(s,t)€Z2 i—d§3<iandj<t§j+dands+t§¢+j}
U{(s,t)eZz D i< s <itd—1

and j—d <t < j—1 and s+t < z'+j—1} .
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Figure 5.2.4 depicts this set fdr= 3, where its entries are marked by thick dots. By
accounting for the different patterns, we can show that theld any number between
1 to 2d stuffed bits. The only location that is guaranteed to be gmgutd therefore
always stuffed with &, is location(i + d, j). Following the same reasoning as in the
(1,00) case, we would like to minimize the expected number of stuffitss by using
smaller biases when encountering patterns that lead to stafied bits. Hence, we
would generat@d distinct biased streams with biasesp-, . . . p24, €ach one to be used
when the corresponding patterns arise. We then need toiaptfor the2d biases.

The performance of the scheme was studieddfer 2 andd = 3 by simulations.
The biased streams were encoded into a rectangular arraygeod® x 400 and the
rate was averaged over a number of iterations. To optimieedte, we performed a
brute force search over all possible combinations of 2adiases (without restricting
them to satisfy0.5 > p; > ps > ... > pyy). Due to computational limitations, a coarse
search was initially conducted. A more refined search onrawar range of probabilities
followed it. The finer search resolution consisted of inoeeis of size).01 for each bias.
The number of iterations was)0 for d = 2 and 25 for d = 3. For comparison, we
simulated the single-transformer scheme. In this casem@ation used a brute force
search with a resolution @f.005. Table 5.2.1 shows the empirical rate estimates of the
single-transformer angd-transformers schemes fdr= 2, 3. Also shown are analytical
bounds on the single-transformer scheme that were derMdd.iVWWe would like to point
out that for bothl = 2, 3, the optimal biases indeed satisfied the expected relaiiens
0.5 > pi > ps > ... > p;,. In addition, we note that the improved analytical bound
on the capacity of thé2, oo) constraint reported by Forchhammer [5] equals 0.44149. It
can be seen from the table that the extension to multiplesfoamers results in minor
improvements forl = 2, 3. Unfortunately, computational limitations prevented i
optimizing the scheme for larger valuesdyfvhere it may in fact prove to be more useful.
Analysis of this approach may also produce improved boundsapacity, as the current
single-transformer analytical bounds are not tight.



96

oO|lOo|Fr,r|O|O
o
oO|lOo|Fr,r|O|O

(@) (b)

o

O Oo|lr|O|O
o
o
o

O Oo|lFr|O|O
o
o

© (d)

Figure 5.2.3 Bit stuffing for thé2, o) constraint. Examples of four patterns that give rise

to different numbers of stuffed bit when assigning a biaksed
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Figure 5.2.4 The sdt(i, j) whend = 3. The set consists of all entries which affect the

number of stuffed bits when assigning a biased

5.3 Bit-Stuffing Schemes for the ‘No Isolated Bits’ Con-
straint

A bit-stuffing encoder for the ‘no isolated bits’ (n.i.b.) rgiraint was proposed by
Halevyet al.[4]. The bit stuffer utilizes two distinct inputs - an unbéakstream, denoted
by {U,.};2,, and aZ-biased stream, denoted ¥y, }>2,. Progressing down successive
diagonals, the bit stuffer applies the following rules téedmine the value of each entry
Xi,j:

o |f (Xz'—l,j—l = Xi_g’j = Xj-1,j+1 # Xi—l,j)u then SetXi,j to equalXi_Lj.

o |f (Xi’j_g = Xi—l,j—l # Xi,j—l) and either(Xi_l,j_l # Xi_g’j) or (Xi—l,j—l =
Xi-1,;), then read the next biased Wif,. If (B,, = 1), then setX; ; to equalX; ;_;.

Else, setX; ; to equal the complement of; ;_;.
e Otherwise, sek; ; to equal the next unbiased [if,.

The above procedure checks if the bit at location 1, j) is currently isolated by the bits
to its sides and by the bit above it. If so, then a stuffing ofdentical value at location
(1,7) prevents a possible violation of the constraint. If thisas the case, then a specific
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Table 5.2.1 Empirical estimates and analytical bounds emdte of bit-stuffing encoders

for (d, o) constraints.

Multiple- Single- | Analytical
d | TransformersTransformer Bounds
Avg. Rate | Avg. Rate | From [4]
2| 0.4447 0.4420 0.4267
3| 0.3674 0.3647 0.3402

pattern is searched for. In this pattern, the bit to the ledt (X, ;_;) is isolated by its
neighbors to the left and above, while the bit above (., ;) is not isolated by its
neighbors to the left and above. When this pattern occurdiageX; ; towards the value
of X, ;_;. For all other patterns;, ; will assume equally likely values. One can verify
that this process is invertible, hence we can recover thestreams at the decoder.

5.3.1 Schemes Based on One-Dimensional Maxentropic Prohbiites

In this subsection, we construct a bit-stuffing scheme femnthb. constraint by draw-
ing a connection to a capacity-achieving scheme for thedamensional0, 3) constraint.
The latter scheme is based on a multiple-transformer bitisg method, which was
recently proposed by Wolf [6]. A detailed description ofsttmethod appears in Sec-
tion 3.2.2 of Chapter 3. Here, we briefly review it before wegant our construction.

The idea behind the 1-D scheme is to emulate a walk on the gvéphmaxentropic
probabilities, by using different biases at differentassatDenote the maxentropic proba-
bility when moving from state to statei + 1 by p;. We first generate a;-biased stream
for each statej, which has a pair of emanating edges. Since the number ofgats
is k — d, we need to generate that many biased streams. Having faddtgsed streams,
the bit stuffer takes @;-biased bit when in state Keeping track of the constraint graph,
the random value that each biased bit assumes determinesxh&tate. The single edges
leaving all otherd + 1 states correspond to stuffed bits. Clearly, this methodiyces
maxentropidd, k)-sequences.
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Figure 5.3.1 Maxentropic edge probabilities for the 16D3) constraint.

In the context of our work, we are interested in such a capaahieving construction
for the (0, 3) constraint. Figure 5.3.1 shows the constraint graph wighrttaxentropic
edge probabilities. Looking at the scheme, we observe teathree biases (i.e., the
probabilities of al) increase with increasing state labels. This can be ind&gdrby
observing that stuffing occurs only when reaching staténerefore, at all other states, we
would rather have & and move to staté than have & and move to the right. Moreover,
as we progress farther right, we are more likely to incur #estidbit penalty. Thus, the
closer we get to statg the more we wish to avoid it, which is reflected in an incregsi
bias towards 4. It is important to note that bit stuffing with a single biasgteam, i.e.,
with the same bias on all edges, does not achieve capacityH&hce, the adjustment
of the bias to the “foresight” or likelihood of future studfebits resulted in improved
performance. Unfortunately, this technique is limited émstraints which have a finite-
state graph description. It is not directly applicable t@ 2AD n.i.b. constraint, as we are
unaware of such a description in this case. However, we capt élois approach to design
a high-rate encoder.

We now describe the bit stuffer for the n.i.b. constraint drav an analogy to the
(0, 3) construction. First, we maintain the stuffing strategy eféhcoder that is described
in Section 5.3. This means that stuffing occurs at locatiof) only if the bitat(i — 1, )
is already isolated by it8 other nearest neighbors. If this is not the case, then adiase
bit is assigned to locatioft, j). A key observation is that the assignment of the current
biased bit can help avoid possible isolation of severaldrtshence result in fewer stuffed
bits. To illustrate this idea, recall that the n.i.b. coastt prohibits the occurrence of two
patterns, as shown in Section 5.1. These patterns inédts, arranged in the following
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configuration:

a

ble|d .

(&

For each such subset of bits, the central bit, ¢, should n&ddated. Now, observe that
each bit we write takes any of the positions ‘a’ to ‘e’ with pest to prohibited patterns
on different subsets of bits. Thus, it might affect the ocence of these patterns at the
corresponding subsets.

Recall that the bit stuffer first checks if we are about toaielthe constraint. It then
views location(i, j) as assuming position ‘e’ in the configuration. At this pothg bits
at positions ‘a’, ‘b’, ‘c’ and ‘d’ determine whether or notgting occurs. We denote the
event that leads to stuffing k; ;, i.e.,

Sig = AXic1; # Xicoy NM{Xio1; # Xic1j-1 N0 {Xio1; # X141}

Figure 5.3.2(a) depicts one of the patterns that lead tdirsgufwhere the configuration
entries are highlighted. In case stuffing is not requiredyige (i, j) as occupying posi-
tion ‘d’ in reference to location§, j—1), (i,7—2), (i—1,j—1),and(i+1, j—1). These
entries are highlighted in Figure 5.3.2(b). In this case kwew the values at positions
‘a’, ‘b’ and ‘c’. Thus, we may encounter the following relatis: ¢ # b andc # a. Let

Fij={Xij1 # Xijo} M {Xij1 # Xic1j1}

describe these relations. Then consider the case destijttbé eventd, ; = S, ; N F; ;.
Figure 5.3.2(b) shows a pattern that belongs to event Note that this is just one
possible pattern, whereas some other patterns will fadl ihis category as well. In this
case, the value assumed.Ky; mightlead directly to stuffing di+1, j—1) (i.e., position
‘e’). We regard event, ; as being “very close” to a future stuffing event. Still, we can
bias X; ; towards the value at position ‘c’, to try to avoid this futsteffing event. Thus,
we setd = c or d # c according to the value of g -biased bit, for some; .

Next, we consider the case where= b or ¢ = « (i.e., eventF;; N S;;), which
guarantees that stuffing will not occur @t+ 1,7 — 1). We now view(i, j) as if it
occupies position ‘c’, with respect to the highlighted @&grshown in Figure 5.3.2(c).
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Figure 5.3.2 Bit stuffing for the n.i.b. constraint. Exangté four patterns which corre-
spond to stuffing and to events ;, B, ; andC, ;.

Here we distinguish between two possible pattetns: b anda # b, where ‘a’= X,_, ;
and ‘b’ = X, ;_,. The first pattern, denoted by

Gij = {Xij-1 = Xi—1;5}
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allows for possible stuffing at ‘e= X, ;, depending on the future values at ‘c’ and
‘d’, whereas the latter eliminates the possibility of sugbrd. Thus, if we encounter the
first pattern, we would like to biaX’; ; towards the value at positions ‘a’ and ‘b’ (see
Figure 5.3.2(c) for an example). L& ; denote the event that corresponds to this case,

i.e.,

Bij=8;; N Fy;NGiy.

We now compare event$, ; and B; ; according to a criterion of “severity” or “prox-
imity to a future stuffing event”. We note that wheh ; occurs, then the value of the
current bit determines the occurrence of a stuffing eventveéver, whenB, ; occurs, the
current bit can only increase the likelihood of such an evierthis case, stuffing depends
on an additional future bit. Hence, we say that; is “farther away” thar4; ;. Following
the reasoning behind the 1-D maxentropic probabilities,dloser we get to stuffing a
bit, the more we try to avoid it. Consequently, whByy; occurs, we would use a bias,
such thap, < p;. Finally, we consider the second pattetn£ b), in which case we view
(1,7) as ‘b’ (see Figure 5.3.2(d)). Clearly, biasing the curréntdwards the complement
of X;_1 ;41 (‘@’) would help prevent stuffing &t + 1, j + 1) (‘e’). This case corresponds
to the event

Cii=Si;NE ;NG

We rank it as the “farthest” among the three cases, as hete Bd®d to be assigned before
stuffing is determined. We therefore use an even smallephjasich thaps < p, < p;.

Having classified the possible patterns into three categopwe now search for the
three biases. One approach would be to optimize the rate byta force search over
all allowable triplets. However, we suggest to choose tlasds based on a similarity
to the 1-D (0, 3) construction. According to this perspective, a patterncivhrequires
stuffing is analogous to reaching state Event A, ; corresponds to statg as this is
the closest to stuffing. Hence, we ggtto equal the maxentropic bias at this state, i.e.,
p1 = 1—pe = 0.6583. Similarly, B; ; corresponds to stateand sgps = 1 — 1 = 0.5593.
Event(; ; corresponds to statg leading top; = 1 — 149 = 0.5188.

We simulated the proposed scheme usiigx 600 array and averaged the rate over
250 iterations. The average rate was approximatei2218. For comparison, Halevy
et al. reported an empirical estimate of approximatelyl7 and an analytical bound of
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0.91276 on the rate of their scheme [4]. To estimate the capacity, @pplied the method
proposed by Weeks and Blahut [8]. This resulted in an es@irothe first ten decimal
places, namely.9238294367. In addition, we performed a brute force optimization of
our scheme over all possible biases. A search with incresx#nt001 yielded an average
rate of approximately.9223, where the optimal biases ape = 0.654, p, = 0.552 and
ps = 0.52. These optimal results are fairly close to the maxentr¢pig) probabilities.

Finally, we note that this idea can be extended to an encastihgme for the n.i.b.
constraint defined on the hexagonal lattice. This congthaigs been considered for use in
future optical disks [1]. In this case, we use maxentropabpbilities from a 1-00, 5)
constraint. Simulations suggest that the achieved raterisatose to the optimized rate
and that the optimal probabilities are close to the maxeitrones as well. The average
rate is approximately.9768. However, when applying the method of [8], we could not
generate long enough sequences of bounds to get an estihthteaapacity. Still, we
could bound it betweef.9583 and(.9893.

The high rates achieved by our scheme suggest that the dmmbetween the 1-D
and the 2-D constraints may not be coincidental. Analysigccpossibly provide further
insightinto this connection, as well as improved boundserchpacity of the constraints.

5.4 Conclusion and Future Directions

We proposed two new bit-stuffing schemes, one for the clasd-bBfrun-length-
limited (d, co) constraints and one for the 2-D ‘no isolated bits’ constrédoth schemes
are based on interleaving biased bits with multiple différkiases into a 2-D array,
while stuffing extra bits when necessary. We examined thiepeance of the suggested
schemes through simulations. Results suggest that thensctoe (d, oo) constraints did
not yield significant gains over previous bit-stuffing sclesmfor small values af. Since
an optimization of this scheme for largés is currently impractical, we cannot draw any
conclusions in these cases. Therefore, it may still be wdrile to test the scheme’s per-
formance ford’s larger than 3 once it is computationally feasible. In &ddi, analysis of
this scheme is an interesting and challenging directiofiutmre work. As we mentioned
earlier, such analysis has the potential of producing imgudoounds on the unknown
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2-D capacity, as the current analytical bounds are not.tight

As opposed to the first scheme, the scheme for the n.i.b.reamsachieved improved
empirical rates over a previously suggested scheme. Thmiapt rate and the rate
obtained when assigning the maxentropic probabilitiesevatiown to be very close to
each other as well as close to the estimated capacity. Henedyzing the suggested
scheme may yield improved lower bounds on the capacity. Afyais in this case seems
to be difficult, it may be easier to consider a slightly sinmpiariant of this scheme, where
only one bias is used. In other words, one should use the sanigi@h rules as before
when assigning the biased bits, butget p, = p;. Simulations of this scheme achieved
an average rate of approximately 0.916, which is very cloghé empirical rate of the
scheme in [4] (which is approximately 0.917). Since the il lower bounds on the
latter scheme are not tight, analysis of the former scheme stihimprove on these
bounds.
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Noise-Predictive Turbo Equalization for
Partial-Response Channels

6.1 Introduction

Today'’s digital magnetic recording devices employ a nqisegictive maximum-likeli-
hood (NPML) detection scheme in the readback process [[L]Tf#s scheme was intro-
duced to alleviate the effects of noise enhancement andatmln, present in conventional
partial-response maximume-likelihood (PRML) systems. idea is to first equalize the
recording channel to a conventional low-degree partigpoase (PR) transfer polyno-
mial, f(D) = 1+ fiD' + + fu DM, whereD is a delay operator and the coeffi-
cients{f;}M, are integers. As this colors the noise, the equalizer isatenated with
a noise whitening filter, whose transfer polynomiapi®) = 1+ pD + ... + p;D”.
Consequently, the channel is shaped to a generalized lpag@onse (GPR) polyno-
mial of the formg(D) = f(D)p(D). The filtered samples are then decoded by a se-
quence detector that takes bgthD) andp(D) into account. Current high-density disk
drives use degree-4 polynomials which closely match therd#eg channel, such as
9(D) = (1= D)(1 +p1D + p2D* + p3D°) andg(D) = (1 — D*)(1 + p1D + p,D?) [3].
The associated NPML detector is simply a 16-state Vitertecter, matched to the GPR
channel model. This combination significantly mitigateséiffects of noise enhancement
at the cost of increased-complexity detection.
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Generalized PR (GPR) Channel

{ | Magneti : 5
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Figure 6.1.1 Block diagram of a partial-response syster antNPML detection scheme.

Iterative decoding and detection schemes have been foultdnmatically improve the
performance of many communication systems. As such, tleeguarently regarded as po-
tential candidates for integration into future-genematiecording systems. In particular,
the framework ofturbo equalizationis the state-of-the-art method of iterative decoding
and detection for intersymbol interference (ISI) chann&lithin this framework, low-
density parity-check (LDPC) error-correction codes arspcial interest [4], [5]. They
exhibit excellent performance in diverse applications appear to have the potential to
approach the maximum possible rate of transmission ovemtmgnetic recording chan-
nel. Numerous authors considered the application of variotbo equalization schemes
to partial-response channels [6], [7], [8]. However, theseks treated the noise in the
system as white noise - an assumption which does not actyunabelel a realistic record-
ing system.

In [9], Mittelholzer, Dholakia and Eleftheriou modified astlard turbo equalization
system forconventionalPR channels so as to account for the spectral shaping of the
noise. Their scheme fits naturally within the NPML framewaricorporating the GPR
targetg(D) = (1 — D?)(1+ p; D + po D?) into a standard turbo equalization architecture,
as shown in Figure 6.1.2. The idea follows directly from tHeNAL. approach, that is, one
first whitens the noise at the output of the PR equalizerticrga new GPR channel with
enhanced ISI but approximately-white noise. Standaratiter detection and decoding
methods, which were designed for channels with white naisethen applied to the new
ISI channel. The performance of the modified system was foaibé substantially better
than that of the baseline turbo equalization system. As WRIML systems, the penalty
is in the form of increased detection complexity.
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Turbo Equalizer

GPR
Channel
Detector

__________________________________________

Whitened Noise

Figure 6.1.2 Block diagram of a generalized partial-respaiGPR) system with a stan-
dard turbo equalization detection and decoding scheme. chhanel detector in this
scheme is matched to the GPR channel.

In this chapter, we propose a new approach to noise predictia turbo equaliza-
tion system. Whereas the NPML-based method embeds nodietwa into the channel
equalization and detection, the proposed system adjoiepaate noise prediction com-
ponent to a turbo equalization system émmventionalPR channels. This configuration
offers reduced detection complexity and gives rise to nem$oof noise prediction.

6.2 System Model

The block diagram in Figure 6.2.1 illustrates a standartddwgqualization scheme
for magnetic recording systems. A stream of message{bits is divided into L-bit
blocks, where each block is encoded by a low-density pahgek (LDPC) encoder into
a binary codeword of lengtiv (b,09,---by). The bit stream is then mapped into a
bipolar symbol streardz;}, x; € {+1,—1}, which is written on the disk. We model
the recording channel by a Lorentzian channel model witltaeddvhite Gaussian noise
(AWGN) due to system electronics. During the read process,gadback signal is passed
through an analog low-pass filter, followed by a sampler. ®#ercing equalizer shapes
the overall transfer function to a target PR polynonfiaD) = 1 + fiD' + + fy, D,
This leads to noise enhancement and spectral coloratiaamouitput of the equalizer can
be expressed as

M
Ty =T+ Z JmTiom + g, (6.2.1)
m=1
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_______________________________________

Figure 6.2.1 Block diagram of a partial-response systerh aviiurbo-equalization detec-
tion and decoding scheme.

wheren; is sampled colored noise. The equalizer outputs are themddecby a turbo
equalization scheme, which includes a PR channel deteatbaa LDPC decoder.

6.3 Turbo Equalization for ISI channels

Turbo equalization (TE) is a technique for suppressing iSitératively exchanging
probabilistic orsoftinformation between a channel detector and an error-doorecode
(ECC) decoder. The idea was introduced by Douillerél. shortly after the advent of
turbo codes and their iterative decoding technique [18gxtended the turbo-decoding
principles from the decoding of coded transmission over anorgless channel to the
joint equalization (detection) and decoding of coded tmaission over channels with
memory. Since then, this concept has evolved into a geneztbiad, which has been
studied and applied to diverse applications, including me#ig recording systems [7],
[8], [, [10], [11].

The main attribute of the constituent channel detector &&@ Eecoder is their abil-
ity to operate on bitwise soft information as their inputwasl as producing bitwise soft
information at their output. Such components are callettispiut soft-output (SISO)
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modules, employing SISO algorithms. The SISO characteristwhat facilitates the
iterative process of exchanging the soft information betwthe modules. When ade-
guately performed, the process results in substantiabpeeince gains over traditional
non-iterative detection and decoding schemes. The saftnrdtion that flows within the
turbo equalization system (henceforth thebo equalizey pertains to various probability
estimates. The turbo equalizer’s final outputs corresporestimates of the probabili-
ties that each of the transmitted bits takes on a valué @f1. Compared to the hard
bit-decisions (i.e.) or 1) delivered by traditional decoding/detection algorithrigese
estimates convey additional information of how reliableitfassociated hard-decisions
are. Moreover, by accounting for reliability informatiddlSO algorithms can make use
of the more reliable estimates in order to provide improxaaxbility estimates of bits
whose initial estimates were not as reliable. The soft mition pertaining to a bit is
usually expressed in terms of the ratio of two probabilitimeates, each corresponding
to one of the two possible hard-decisions. It is also commamdrk with the logarithm
of these ratios, as it simplifies the required computations.

We distinguish between three types of soft information egiistem: prior, posterior,
and extrinsic. The input to a SISO algorithm servepmsr information with respect to
that algorithm, and corresponds to bitwise probabilityneates that are available before
the algorithm’s processing takes place. The algorithm fhr@tesses the prior infor-
mation in conjunction with any additional knowledge it hastbe coded bits, such as
their respective noisy observations and/or certain k@latbetween them. The processing
results in two probabilistic quantities, the first being thect (or approximate) condi-
tional probability of a bit's value, given the informatiamt is accessible to the algorithm.
This is called thea posterioriprobability (APP), as it forms an updated mosteriorin-
formation on each bit. The second quantity is éxrinsicinformation, which can be
straightforwardly computed for each bit from its prior armsterior information, as will
be explained later. The latter form of output is used whenSO8hodule is incorporated
within an iterative scheme that involves other SISO modulegarticular, it is the ex-
trinsic output which is passed by a SISO module to the othafuies. One can think of
it as capturing new information, which the module has olgaihy utilizing knowledge
that is availablenlyto it.



111

A generic turbo equalization scheme works as follows [1P3] [ The detector begins
by producing extrinsic information based on noisy outpumgkes from the channel, the
channel model, and any prior information on the bits. Tylbycdhe transmitted bits
are assumed to be equally likely, in which case no prior mfaion is available for the
detector. Next, the detector’s bitwise extrinsic inforioais provided to the ECC decoder
which, in turn, treats it as prior information when genergtits own extrinsic output.
The ECC decoder’s extrinsic output, reflecting the code ttaimgs, is then fed back to
the detector for use as prior information. This completes detection and decoding
iteration, and the process repeats for several iteratiotisaistopping criterion is met.
The final output of the iterative process is the posteriavrimfation produced by the ECC
decoder at the last iteration. It consists of estimates@éatposterioriprobability ratios
(APPR) of the coded bits, given the channel output samgtescthiannel model, and the
code constraints. Final hard-decisions are then made ysaigpthe most likely value for
each bit, or alternatively, by zero-slicing the logarithfrttte APPR’s. At this point, we
note that some instances of turbo equalization requiretieel@aving of the encoded data
before it is sent through the channel. At the turbo equalimetching interleaving and de-
interleaving take place when information is passed betweeihwo constituent modules.
Interleaving serves the purpose of weakening the statlddependencies among nearby
bits. In this way, it contributes to more accurate estinrabyg the employed algorithms.
In the case of LDPC codes, interleaving is inherently buitbithe code structure and
need not be performed explicitly. Since our work focuses BIwPC codes, we chose to
omit interleaving from the above description.

Various SISO algorithms and error-correcting schemes tawithin the framework
we have described. A typical choice for a channel detecttirasnaximuma posteriori
probability (MAP) detector, which is based on the Bahl-Gadelinek-Raviv (BCJR) al-
gorithm [14]. Other common choices include approximatimrtte BCJIR algorithm [15],
and the soft-output Viterbi algorithm (SOVA) [16]. Anothigipe of detector, which was
shown to perform well for several partial-response chariglbased on the application
of the sum-product algorithm [17] to a particular graphidatcription of the ISI chan-
nel [8], [10]. Commonly used error-correction schemes othan LDPC codes include
parallel concatenated convolutional codes (more famagfturbo codes”) and a single
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convolutional code [18]. Similar to channels with memomneolutional codes can be
decoded by the BCJR algorithm, by its approximations, ohleySOVA algorithm. In the
case of turbo codes, two such decoding elements operatarcentty, while exchanging
soft information according to the “turbo principle” desmd above. LDPC codes are usu-
ally decoded by the message-passing algorithm, also knewtmeasum-product or belief
propagation algorithm [17], but may also be decoded by apprations to it [9].

In this work we focus on schemes that employ a MAP detectah®partial-response
channel and a message-passing decoder for an LDPC code.Haxhsections we review
MAP detection, LDPC codes, and the message-passing &gofdar decoding LDPC
codes. A detailed description and rigorous derivation efBICJR and message-passing
algorithms can be found, for example, in [12].

6.3.1 Maximum A Posteriori Probability (MAP) Detection for ISI

Channels

As evident from its name, a maximuanposterioriprobability detector finds the hard
bit-decisions which maximize thee posterioriprobability (APP) of each transmitted bit,
given the sequence of channel outputs and given prior biigiiities. It is well known
that such a detector achieves the minimum bit-error ratasatiais optimal in that sense.
The MAP detector is based on the BCJR algorithm, operatintherirellis description
of the ISI channel. Assuming that the noise is white Gaussiimknown variance, the
BCJR algorithm computes the APP ratio (APPR) of each trattedbit

Pl’(blz 1‘7‘1,7’2,"' ,’T’N) . Pr(xi:+1|7’1,7’2,-~- ,’T’N)

Q(bi|rlar27 T 7TN) =

Pr(b; = O|ry, 79, -+ ,7n)  Pr(zi = —1jri,rg, -+ ,ry)’
(6.3.1)
where(ry, o, - - -, ry) is the received sequence of channel outputs. The deteetostts

the bit estimate, to the value with the maximum APP, i.e.,

6i = P bl = b s s o e , .
arg bre%a?l(} r( |1, 7o rN)

Before we continue to describe the BCJR algorithm, we naae ithwvas originally
introduced in the broader context of estimating the traomsstof a hidden Markov model.
Hence, it is applicable to several other decoding and detegroblems, such as the
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decoding of convolutional codes [14] and the detection okt@ined sequences [12]. In
what follows, we review only the special case of detectian$ channels, highlighting
the key concepts of the algorithm and the points of relevamosir work.

Consider the following model, describing the samgdleg obtained at the output of a
noisy ISI channel

M
i = hnTiom + i (6.3.2)
m=0

Here,{z;} is the bipolar input to the channel; is a white Gaussian noise sample with
varianceo?, and theh,,,’s represent the real-valued channel impulse responsealgbe
rithm is best described using the trellis diagram desaiptif the corresponding noiseless
channel model

M
pi =Y hTizm. (6.3.3)
m=0

The trellis hag" states of the forniz; s, - - -, x;_2, ;1 ), which maintain the memory
of the channel. Le# be the set of channel states, and denotg, tlye state of the channel
at time indexi. From each state; ; = (x;_, -+, %2, 2;,_1), it is possible to reach
only two states at the next time indéxdepending on the value af. Each such valid
state transition corresponds to an edge or a branch in this,tennectings;_; to s;.
We label each branch with a pdit(s;_1, s;), p(si—1, si)), Wherez; = z(s;_1,s;) and
pi = p(si_1,s;) are the input and the noiseless channel output that comesmothis
transition, respectively. Finally, we use the notatitﬁ)no represent the subsequence of
consecutive channel output samples .1, - - -, 75—1, k).

An efficient computation of the APP’s in (6.3.1) relies on atjgallar decomposition
of the joint probability

Pr(sii1=58",8 = 8,171,729, ,TN), (6.3.4)

where s’ and s can be any two channel states. This probability relates tarticplar
transition (branch) at time index It can be shown that the channel’s finite memory
together with the white noise assumption lead to the folhgfactorization:

Pr(si—la SiyT1,T2, 7TN) = Pr(si—lv Si, rli_lv Ty rz]'\—q—l)
= Pr(s;_1, rlfl) - Pr(s;, rilsiz1) - Pr(rﬁiﬂsi)

= i 1(si21) - vi(sio1,80) - Bi(si),
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where
@i—1(si—1) = Pr(s;_ 171'21 1)
Bi(si) = Pr(rf]s)
Vi(Si-1, 8i) = Pr(s;, rilsi—1).
The termsw;_1(s,_1) andj;(s;) are calledorward state metricandbackward state

metrics respectively. The core of the BCJR algorithm is a recurswmputation of
these metrics for each statec S and for each time indek according to the following

recursions:
ai(s) = Z ai-1(s)vi(s', 5) (6.3.5)
Vs'eS
and
= D Bin(s)n(s, o). (6.3.6)
Vs'eS

The forward recursion in (6.3.5) is typically initializedtv o (0) = 1, anday(s) = 0 for
all s # 0, where0 stands for the all-zero channel state. Similarly, the backwecursion
in (6.3.6) is initialized with3y (0) = 1, andfx(s) = 0 for all s # 0. These initial values
require the last\/ bits of each block to be set to zero, which incurs a slight lass.
Nonetheless, other initial values are possible as wellyigeal that they indeed reflect
the distribution of the states at timés= 0 andi = N. Both recursions make use of
branch metricsy;(s;_1, s;), which correspond to the likelihood of the transitions bestw
the states. These are computed before the algorithm cauri¢ise forward and backward
recursions.

The branch metrig;(s;_1, s;) can be written as follows

Yi(Si—1,8;) = Pr(s;, ri|si—1) = Pr(si|si—1) - Pr(ri|si—1, $;)-
It equals zero for each pair of statéss which are not connected by an edge. For each
pair of connected states, i.e., for each state transitien s, the branch metric takes the
form
Yi(s',s) = PPz, = (s, 5)) - Pr(ri|siey = 5,5 = s), (6.3.7)
wherePP""(z,) is the prior bit probability that is fed to the detector. Unthee assumption

of additive Gaussian noise, the second probability in {.3.given by
1

2ro

6_(Ti_p(8l78))2/2027 (638)

Fis',8) = Pr(rils’, s) = Pr(rilpi = p(s, 5)) =
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wherep(s’, s) is the corresponding noiseless channel output, given B136. We call
7i(s', s) the branch likelihood as it utilizes the channel outputs to estimate how likely a
branch was traversed. It follows from (6.3.7) that the bhametric explicitly accounts
for both the channel outputs and the prior bit informatiomiticate the probability of a
transition. On the other hand, the recursive computatioheforward and backward state
metrics incorporates the branch metrics, thus implicidgaunting for prior information
and for the channel outputs. In the context of turbo equidirait is important to note
that the update of prior probabilities between iteratioeguires the rerunning of these
recursions. However, the branch likelihoods do not chamgereeed be computed only
once, during the first iteration.

Finally, we combine the different metrics to produce the RRRlues as follows. We
first compute the joint probabilitir(z; = =, rY) by summing the transition probabilities
Pr(s;_1, s;,rY) over all the branches that assume an input;of z, i.e.,

Pr(z; =z, 1)) = Z Pr(si.y =&, s = s,12). (6.3.9)

Vs'—s : z(s!,s)=x
Dividing (6.3.9) byPr(r), we obtain the bit's APPr(z; = z|r), and the APP ratio

Pr(xi - +1‘I'{V) . ZVS’—>S s x(s,s)=+1 ai_l(s’)%(s’, S)ﬁl(s)
Pr(.’fi = _1‘1'{\7) EVs’—»s : x(s’,s):—l ai_1(8/>’y¢(3/, S)/BZ(S) .

At a last step, a bit-decision is made by compari}@;|r)) to 1, thus choosing the value

QbilrY) = (6.3.10)

whose corresponding APP is larger.

As mentioned earlier, when incorporating a SISO detecta iarbo equalizer, one
is interested in the extrinsic portion of the detector'spait We obtain the extrinsic
information by factoring the tern??"(z;) out of both sums in (6.3.10), thus writing the
APPR as

Pprior(xi — +1) . sz'—>s 2 (s 5)=+1 Oéz'—1(s’)fy¢(8’, s)ﬂz(s)
Pprior(xi - _1) . sz’—w  a(s,8)=—1 ai_l(sf)%(s', S)ﬁz(s)

The APPR is now split into two quantities, the prior inforivatand the extrinsic infor-

Q(bilry) =

mation, as follows

B Pprior<xi :+1)
- Pprior(xi — _1)

Qbir?) QU ),
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where

. ZVS’—>S s a(s!,s)=+1 ai—l(’s/)’%(slv S)ﬁi(s)

Qextrinsi(:(bz_ |I‘N) - . .
' ZVS’—»S s x(s,8)=—1 ai—l(‘gl)fyi(slv 8)/61(‘9)

(6.3.11)

6.3.2 Low-Density Parity Check (LDPC) Codes

Binary low-density parity-check (LDPC) codes are lineardi error-correcting codes
defined by binary parity-check matrices in which the proporof 1's is very low. Such
parity-check matrices are said to gearseor to have dow densityof 1's. LDPC codes
were introduced more than 40 years ago by Gallager in his.Rhd3is, together with
an associated iterative SISO decoding algorithm [4]. Hexethese codes were essen-
tially forgotten until the mid-90’s, when the advent of @éwve decoding techniques has
led researchers to rediscover them [5]. It has been shovthdg@erformance of LDPC
codes can get very close to theoretical limits on a memasytbannel with AWGN, al-
though this requires the block length to be quite large. Ntaya, due to their acceptable
decoding complexity and their remarkable performancey Hre of great practical and
theoretical interest to researchers.

A binary linear block code can be defined by a binary paritgeéhmatrix/, where
the code consists of all binary codewolds= (b, b, - - - , by) that satisfy a set of linear
equations (in modulo 2 arithmetic) given Bb” = 07. An example of a parity-check
matrix and its associated linear equation system appedfgure 6.3.1. We denote by
M the number of rows i/, where each row corresponds tparity-check equatiothat
all codewords must satisfy. Hereafter, we assume th& full rank, in which case the
number of input message-bitsis= N — M and the rate of the code % In caseH
is not full rank, i.e., it contains some linearly dependents, one can remove the extra
dependent rows to obtain a matriX’, containing the remaining independent rows. In
this case,M equals the number of rows iH’, and the code rate is higher than in the
full-rank case. Gallager considered parity-check magrigbere there is a fixed number
of 1’s per column and a fixed number ©6 per row. Codes defined by such matrices are
now calledregular LDPC codes. In recent years, it has been found that matrighs w
varying numbers of along rows and columns can yield codes which outperformlaggu
codes. These are knowniasgular LDPC codes.
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The definition of LDPC codes through their parity-check neas is closely related
to their associated decoding algorithm, knowmesssage-passing decodirfguch defi-
nition does not specify, however, any particular encodirgghod. An obvious approach
to mappingL-bit input blocks intoN-bit codewords is to obtain a systematic generator
matrix for the code [19]. We obtain it by first reducitify to the form of H* = [P|[;]
via Gaussian elimination, wherg is an identity matrix of dimensions x L andP is of
dimensiond. x M. The systematic generator matrix then takes the f@rm [IL|PT}.
Encoding is done by multiplying the input bloekby G, i.e.,b = aG, where the first.
bits of b are the information bits im. However, as opposed to the sparse parity-check
matrix H, the matrixP is generally not sparse and hence the encoding completgls
(proportional toN?). This poses a practical problem, especially in view of thet that
in general, LDPC codes are very powerful only when the blecigth is quite large. In
practice, however, one can use various methods that provetly reduced encoding
complexity. Some of these methods take advantage of theespess of{, whereas oth-
ers propose modifications of LDPC codes or structured LDRigsthat allow for simple
encoding.

Before we continue to describe the iterative decoding of ChOiedes, it is helpful
to introduce a graphical description of these codes, knavaTanner graph We will
later use this graph to explain the principles of messagstpg decoding. A Tanner
graph of an LDPC code is a bipartite graph, containing twartitive sets of nodes, with
edges only connecting nodes from different sets. One sdtic@nV variable nodes
each corresponding to a bit in the codeword, while the oteecentains\/ parity-check
nodes each corresponding to one parity-check equation impogetth® bits. Anedge
connects variable nodewith parity-check nodeg if the bit associated with variable node
1 participates in the parity-check equation that ngaepresents. Figure 6.3.1 illustrates
the Tanner graph representation of the code that is defindldeyatrix 7 shown in the
figure. The squares denote the parity-check nodes (or siohglgk nodgsand the circles
denote the variable nodes (oit node$. Switching between the two code representations
is straightforward - each variable node is associated withlamn in / and each parity-
check node is associated with a rowHh The edges correspond to this in H.

The Tanner graph provides a complete characterizatioreafdde’s structure. Its key
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by o)
101101 1 0]]|b, 0
0101100 0]]bs 0
001001 0 1||%=]|°
bs| — |0
1000100 1||b, 0
0101011 0)]|b 0
N , b 0]
.
H

Figure 6.3.1 A parity-check matrix representation of an KD&de and its associated
Tanner graph.

property is the description of the complex overall depecdeEnbetween the bits through
a system of simple relations between small subsets of tlse Bbihese simple relations
correspond to parity-check constraints that are imposesutsets of the bits, and are
referred to asocal constraints. Their simplicity allows for simple local delog, which
amounts to evaluating the probabilities of each of the gigdting bits, based on these
relations. The interrelations between the various locpkdéencies form the overall code
structure. It is through these interrelations that the llstactures communicate their
evaluations and obtain new information from each other. @&whange of information
takes place along the edges of the graph in the form of sergages. The simple local
decoding then repeats while accounting for the new infolonayielding updated results
which reflect the relationships between “distant” bits.

The described approach to the decoding of a complex steudtustrates the prin-
ciples of the message-passing algorithm. In fact, Tannaplgr and message-passing
decoding of LDPC codes are instances of the much wider cesmoéfactor graphsand
the sum-productalgorithm [17]. Factor graphs provide a means of expressow a
global function factors into local functions, and are soligafor modeling the dependen-
cies among different elements in various communicatiotesys. The sum-product algo-
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rithm is a computationally efficient algorithm for evaluagithe global function through
local computations and an exchange of information alongetiges of the factor graph.
The global function is typically the posterior probabildtistribution of certain variables,
given the system’s structure as modeled by the graph. It ishwile noting that the
BCJR algorithm is another special case of the sum-prodgatriéhm, where messages

are serially passed along a graphical description of ani&hgel.

6.3.3 Message-Passing Decoding of LDPC Codes

In the message-passing algorithm, messages are passgdreatges of the Tanner
graph from bit nodes to check nodes and vice versa. The catipubf messages is car-
ried out at the bit nodes and check nodes, and a messagepmndssto two probability
estimates that are associated with bit valoesd1. It is also convenient to work with
the ratio of the two estimates, as in the BCJR algorithm. Bxjwesenting the algorithm,
we introduce the following notations. Lét denote the'th bit node andf; denote the
j'th check node, and suppose an edgeconnects), and f;. A message from bit node
b; to check nodef; is composed of two valuesi, .z, (0) and s, (1). In the oppo-
site direction, check nodg; sends bit nodé; a message with two values;, .;,(0) and
1y, (1). Finally, we denote by the set of check nodes that are connectedi toy
an edge, i.e., the set of all parity-check equations in whjah involved. Similarly,B;
stands for the set of bit nodes connectedtby an edge, or for all bits that participate in
the j'th parity-check equation.

The input to the algorithm consists of initial estimatesadle bit's probability. These
estimates comprise the prior bit probabilitiB&™"(b;), i = 1,2,---, N, with respect to
the algorithm. They are available either from some priocpssing of the channel outputs
and/or from other SISO modules operating in conjunctiomhie LDPC decoder (as in
turbo equalization). A single iteration entails the caltidn and sending of messages
from the bit nodes to the check nodes and from the check nodéetbit nodes. The
fundamental local decoding principle is as follows: th&goingmessage from a node
along an edge is a function of ticomingmessages along altheredges connected to
that node. Specifically, a message from a bit nde a check nodg¢; is the following
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Pprior( bl) b.

(a) (b)

Figure 6.3.2 Message-passing local decoding rule: theomggnessage from a node
along an edge is a function of the incoming messages alomghedl edges connected to
that node.

product

poigy (0) = Kij - PP (b = b) - [ sgyni(D), be{0,1}, (6.3.12)
Fr€FN{f5}

where k;; is a normalization constant ensuring that_.;, (0) + s, (1) = 1. The
1 fj,_,bz.(b)’s are messages that were previously passeéd atong all edges connected to
it except fore;;, as illustrated in Figure 6.3.2(a). Note that in the figure, wodel the
prior information as an incoming message from an outer sofiogving along an extra
edge. The message, .y, (b) represents the probability that = b given information
from adjacent check nodes except foritself, and given prior information on the bits.
An implicit assumption in its evaluation is that all incorgimessages convey statistically
independent probabilities, hence the product in (6.3.12).

The local knowledge that a check node possesses is thatlthes v its connected bit
nodes sum t0. The message frorfy to b; 115, s, (b) reflects this information by capturing
the likelihood that the’th equation holds given that = b, and given probability distribu-
tions of the other bits involved. Figure 6.3.2(b) demortssdhe participating incoming
and outgoing messages. At first, it seems that the computatithe likelihood requires
an exhaustive consideration of all bit-configurations #rat consistent with a zero-sum.
Fortunately, this seemingly complex calculation has a fra@ solution, proved by Gal-
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lager [4]. It turns out that the probability thaindependenbits sum ta) equals
I
1 1
§+§Z_1;[1(1—2pi),
where{pi, ps, -+ ,p;} are their respective probabilities of assumingy. aAccordingly,
the probability that the bits sum toequals

LT,

2 2 Py
Since the incoming messages from adjacent bit nodes are fartim of their probabilities,
the likelihood of thej’th equation being satisfied, given that= b, is

1

b€ B;\{bi} (6.3.13)

ff—n (1) = % 1— I (1= 2m,—p (1))
by €B;\{bi}
Note that again, the decoding rule relies on the assumptimependence of the incom-
ing probabilities.

The message-passing algorithm entails repeated catmsatif messages by Equa-
tions (6.3.12) and (6.3.13) and their exchange accordigctertain given schedule. This
process stops once a certain condition is met, such as whexianom number of itera-
tions is reached. The algorithm outputs two types of prdistigi quantities - an estimate
of each bit'sextrinsicprobability with respect to the code, and an estimate of &#th
a posterioriprobability with respect to the code. The extrinsic probgbdescribes the
new information that was obtained from the knowledge of theéecstructure, i.e., from
the parity-check relations imposed on the bits. It is thedpob ofall incoming messages

P = b | Hb" = 0") = ki - [ pp—.(0), be{0,1},  (6.3.14)
fi€F;
wherek; normalizes the product such thapnsic(() 4 petinsic(1) = (0, The APP relates
to the bit probability conditioned on the knowledge of thelestructure. It accounts for
both the prior information and the extrinsic informationfakows
prosterety, — b | Hb" = 07) = k] - PP (b = b) - [ sp—, (b b e {0,1},

fi€F;

(6.3.15)
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wherek, is another normalizing constant. As noted earlier, one tsmtake the quotient
of the two probabilities of each type to form the followingmmxsic output
Qeinsie(p, | HpT = 0T) = H Mﬁbi(l),
fcr, 1a—b:(0)
and APPR output
Q(b; | Hb" = 07) = iz:z:gzz Z 8 ~Qextrinsic<bi | Hb” = 07).

The algorithm prescribes the rules for message calculdtinieaves flexibility for
different schedules of message passing. Basically, tiseaechoice among a range of
schedules, from a fully parallel schedule to a serial scleedn a fully parallel schedule,
all nodes (both checks and bits) compute their messagesigently, and exchange them
afterwards. A serial schedule means that the nodes compdtpass their outputs one
after the other, according to a certain order. A commonlylissedule is to divide each
iteration into two halves. In the first half, all bit nodes qmute and send their messages
to the check nodes. In the second half, all check nodes makedstimates and send
them to the bit nodes. We adopt the latter schedule in therigésa of the algorithm
that we give below. Finally, we note that the choice of scheduay affect the decoding
performance as well as implementation complexity.

Another factor which may affect the performance of a codeegiresence of cycles in
its Tanner graph, where cycles are paths which start andtehe aame node. It is well
known that when the graph has no cycles, message-passingetdrihe exact bitwise
APP’s given the code structure. However, the existence desycan be seen to violate
the independence assumption on which Equations (6.3.83-16) rely. In such cases,
the algorithm outputs only an estimate or an approximatiothe APP, which might
be poor, thereby degrading performance. Still, there islarampirical evidence that
message-passing decoding yields good estimates for males awhose corresponding
graphs contain cycles. It is widely presumed, however,\that short cycles, especially
those of lengtht, can severly degrade message-passing performance, and #has be
avoided. A comprehensive analytical treatment of the &ffe€ cycles on the decoding
performance has not been developed to date.

We end this section with a summary of the message-passiogtaly for decoding
of LDPC codes. We note that the description to follow is just ©of a number of possi-
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ble applications of message-passing principles to thislpm. As we mentioned before,
there is room for various schedules and stopping rules. Ykeduace the following short-
hand notation. Lep, denote the prior probability that thi&h bit equalsl, and letg;(0)
andg;(1) denote the estimates of the bitisposterioriprobabilities at the output of the
algorithm. The corresponding extrinsic probabilities t&0) and¢$(1). We denote
the bit-to-check and check-to-bit messagesgbp) andr;;(b), respectively. For each bit
nodeb;, the setC; = {j : h;; = 1} consists of the indices of its adjacent check nodes.
Similarly, for each check nodg, the setk; = {i : h;; = 1} represents the indices of its

adjacent bit nodes.

Message-Passing Algorithm for Decoding LDPC Codes

e Step O.Initialize. For all edges;; on the graph set

1
r(0) = ;1) = 3
Foralli = 1,---, N, setp; to the prior bit probabilities that are input to the algo-

rithm.

e Step 1.Compute messages from bit nodes to check nodes. For all ejgasthe
graph calculate
J'eCi\{7}

gii(1) =kij-pi- [] rD),

J7'€Ci\{5}

(6.3.16)

wherek;; is chosen such that; (0) + ¢;;(1) = 1.

e Step 2.Compute messages from check nodes to bit nodes. For all eggesthe

graph calculate

1 1
ri0) =5+ 3 IT @ —2g,00)
#eR;\{i} (6.3.17)
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e Step 3.Compute tentativposterioroutputs. For alf calculate

a(0) = K- (1=p) - [] r30)

(6.3.18)
(1) =k -pi- [ risV),
JEC;
wherek] ensures thay; (0) + ¢;(1) = 1.
The correspondingxtrinsicoutputs are computed as
g7(0) = ki [ r54(0)
t e (6.3.19)
g(1) = ki - [ ria(0),
JEC;

wherek; ensures thaf®™'(0) + ¢&(1) = 1.

e Step 4. Check stopping criterion. For all make a tentative bit decision from
posterioroutput by

b = { L q(1) > (0) (6.3.20)

0, otherwise.

If Hb” = 07 or if we have reached a maximum number of iterations, then stop.
Else, go to step 1.

6.4 Noise Predictive Turbo Equalization

6.4.1 Background: Noise Prediction

In noise prediction, one uses a set of known noise vajues, : £ € K} to predict
an unknown noise term;. Given a set of indice&” we are interested in a linear predictor
p*(D) = Z crDF
keK
that minimizes the mean-squared prediction error, defised a

Elek] = El(ni — ] = E[(n; = Y canivi)?].
ke
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Here,7; stands for the predicted value of. The optimal predictor coefficients:f 1,
together with the minimal mean-squared error (MMSE), camnldér@ved from the noise
autocorrelation [20]. In magnetic recording systems, whée noise is colored by a
tapped delay line equalizer, the noise autocorrelationaseiy a function of the equal-
izer's coefficients. Given the computed autocorrelatidng derivation of the optimal
predictor coefficients amounts to the solution of a systeiimefr equations, known as
the Yule-Walker equationsin order to simplify the presentation, we shall use the fol-
lowing terminology throughout the section. Given a &gtthe predictop’ (D) always
represents theptimalMMSE predictor for that set. The error powergf (D) refers to
theminimalmean-squared errd?|(e}, )?].

The following property is of considerable importance in tomtext of this work. If
the noisen; is correlated, then the MMSE is smaller than the noise paveey,

E[(¢5)*) = El(ni = ) _ cinisr)’] < Eln).

keK

As we will explain later, we attempt to predict the actualored noise sample; and
then replace it with the resulting prediction ereqr. Thus, aside from a partial whitening
effect on colored noise, it can be seen that the applicatiamose prediction has the
benefit of reducing noise power. Both effects can contribotenproved detection and
decoding.

6.4.2 A Noise Predictive Turbo Equalization Scheme

Figure 6.4.1 depicts a noise-predictive turbo equalira(®PTE) system. Each it-
eration starts with a standard turbo equalizer iterationsisting of a single BCJR pass
followed by 7' LDPC decoding iterations. The APPR’s produced by the {8}, are
used to determine a subset of the colored noise terms thaeaatiably estimated. Given
a predefined threshol® > 1, the system performs the following actions for each bit.

1.IfQ; > Ror@Q; <
respectively.

%, then declarer; reliable and setz; = 1 orz; = —1,

2. If the M+1 consecutive bitér;, z;_1,, x;_ } are declared reliable, then compute a
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FACIY

"[ Noise Prediction ]

Figure 6.4.1 Noise-predictive turbo equalization systémchdiagram.

reliable colored noise estimatg;, by

M
ng =1 — Ty — Z JmTiem- (6-4-1)
m=1
Otherwise, mark; asnon-estimated

Next, for each noise term, a variable length predictor offtmen

-1 m
pP(D) =Y kD" +> cfDF  1,m>0,
k=—1 k=1

is found, and the resulting predicted value and predicticor @ower are then determined,
as follows.

3. For each bit, search for neighboring reliable colored@a@stimates on both past
and future samples. Stop at the first non-estimated noiseiteeach direction. Let
1 —v; andi + z; denote the indices of the outermost past and future estihmatise
terms, respectively.

4. For a predefined integer > 0, representing the maximum number of prediction
taps, consider all possible sets of the form

Kim={k € Z\ {0} : ~1 <k <m},
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wherel, m are nonnegative integers such thatm < J.

o If vtz < J then Sel(li, ml) = (Ui7 Zi).

e If v; + z; > J then find a pair(;, m;) that minimizes the error power of
pSum (D), over all setsk; ,,, with | < v;, m < z; andl +m = J.

SetK' = K; ..
If (I;, m;) # (0,0) then set

-1

n; = Z Cfiﬁﬂ_}f + ZC?LﬁH_k and 0';2 = E[(e}(()z] (642)
k=—1; k=1

Otherwise, set; = 0 ando}? = o2

Note that predictors of different noise terms may use dffiesets of neighboring reliable
estimates combined with the appropriate predictor coefiisi. It is also possible that
both /; andm,; equal0. In this case, no prediction will occur in the current itevat
Moreover, the predictor of any given noise term may changenaed to be recalculated
between TE iterations. It is also worth pointing out that ¢befficients and error power
that correspond to each of the séfs,, are computed in advance using the known noise
autocorrelation.

Finally, new sample values are produced for each bit. UpdBteJR branch like-
lihoods that correspond to these values are derived asMgllto be used in the next
iteration.

5. Letr! = r; — n;. For each trellis branch calculate

1
%’k(slv s) =
2ot

(2

e~ (i =p(s'9))? /2072 (6.4.3)

Note that new likelihoods are calculated only when a préeshicbccurs. In case it does
not, one merely needs to set the likelihoods to their initéilies (i.e., where; ando; were
used in (6.4.3) and net andos;). In the next iteration, the BCJR will utilize the updated
likelihoods along with updated prior probabilities obtafrom the LDPC decoder.

It is through Equation (6.4.3) that the modified samples aeid tissociated variances
are accounted for in the next round of detection. To jus#iyl(3), we first express the
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new sample as

-1

M m;
ri = Z JmTiem + <n2 — ( Z Cfiﬁwk + Z C;flflwk)) . (6.4.4)
m=0

k=—1; k=1
We make the assumption that correct noise estimates aradéidih view of the threshold-
based selection of reliable bit estimates. Furthermor€Eaterations progress, we expect

that soft outputs of increasing reliability will be gener@t Under this assumption, (6.4.4)
reduces to

M
ri = Z JmTim + €. (6.4.5)

m=0
Observing that}, is a zero-mean Gaussian random variable of variafite- E[(e}. )?],
we obtain Equation (6.4.3), with the PR channel branch lapgls) = Z%:o JfnTi—m-

We can now summarize the entire NPTE procedure with theviahig outline of the
algorithm.

e Step 0. Initialize. Compute an initial set of branch likelihoodsded on channel
outputs and variance.

e Step 1.Iterate once on TE. Check stopping criterion.

e Step 2.Determine reliable bits. Make tentative colored noisenestes from avail-
able reliable bit decisions.

e Step 3.Predict noise by using up to J tentative estimates.

e Step 4.Obtainupdated sampléesased on the prediction of Step 3. Replace BCJR
likelihoods with updated likelihoods that correspond tesh samples. Go to Step
1.

6.5 Simulation Results

Simulations were performed for a Lorentzian channel with@MW/at recording densi-
ties of 2.60 and 2.85. The channel was equalized to two éiftdPR targets using a finite-
length approximation to an ideal lowpass filter and a 21-&p-forcing equalizer. The



129

77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

Iogm(Bit error rate)
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Figure 6.5.1 Performance of turbo equalization schemescatrding density?W50/7,
= 2.60.

equalization targets were the PR4 D) = 1— D?)and EPR4 (D) = (1—D)(1+ D)?)
channels, giving rise to 4-state and 8-state trellisepaas/ely. The LDPC code has rate
8/9 and a block length of 4896. Each turbo equalizer itemationsists of running the
BCJR algorithm once and subsequently performing a singlesage-passing decoding
iteration, i.e., T=1. A single turbo equalizer iteratioriofowed by the above-mentioned
noise prediction procedure, both together comprising glsidetection/decoding itera-
tion. The maximum number of detection/decoding iteratiaas 24. Simulations of
the NPTE scheme with various threshold values between R&¢Rab0 indicated that a
threshold of R=9 obtains good overall performance, hence WRas used for all simula-
tions. The maximum number of prediction taps was set to JH&s means that one can
predict a noise sample by using either up to 2 past (to therde#rest neighbors, or up to
2 future (to the right) nearest neighbors, or up to 1 neiglinogach side. The signal-to-
noise-ratio (SNR) is defined as the ratio of the mean-squagnalsvalue and the variance
of the noise, both measured at the input to the equalizer.

Figure 6.5.1 shows performance curves for a recording tleos2.60. We simulated
a standard turbo equalizer for a PR4 channel (PR4-TE) asasdlie suggested NPTE
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Figure 6.5.2 Performance of turbo equalization schemescatrding density?WW50/7,
= 2.85.

scheme for the same channel (PR4-NPTE). We also considstaddard turbo equalizer
matched to an EPR4 channel (EPR4-TE) as an alternative sché&he reason is that
at high densities, an EPR4 channel provides a better fit teethlechannel characteristics
than a PR4 channel, but in turn, is more complex (i.e., hagaidanemory). The statistics
were gathered using simulation runs of 3,000 codewordsmoagmately10” transmitted
bits. It can be seen that NPTE with R=9 and J=2 on a PR4 chantidorms standard
TE on an EPR4 channel by about 1.5 dB. Similar gains were tegar [9] for a standard
TE on the 16-state trellis targetD) = (1 — D*)(1 + p, D + p,D?). A similar effect,
but of a slightly smaller magnitude, holds for a density &3.as one can observe from
Figure 6.5.2. Note that the same TE and NPTE parameters \serkat this density as
well.

As noted earlier, we also tested the sensitivity of the NPyjdEesn performance to the
reliability threshold R. The performance curves shown guiré 6.5.3 pertain to selected
threshold values ranging from R=1 to R=50. All other systeamameters remain fixed
at the values reported above. The curves demonstrate thieE W€rformance improves
with increasing value of R up to approximatély< R < 12. Then, performance starts
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Figure 6.5.3 Sensitivity of the NPTE system to the religpithreshold R at recording
densityPW50/T, = 2.60.

degrading when further increasing R. A possible reasonaisahoo small R may result
in feedback of many incorrect estimates leading to misptiutis, whereas a too large R
may yield too few reliable estimates and thus limited anceigient predictions.

6.6 Conclusion and Discussion

The emergence of iterative decoding principles has opdmeddor to new methods
for handling colored noise. In this chapter, we proposedva method for incorporat-
ing noise prediction into a standard turbo equalizer. Itasdad on iteratively whiten-
ing the noise in a selective manner, while utilizing the soformation produced by a
standard turbo equalizer. When applied to a PR4 channebrtdpmosed scheme substan-
tially improves upon conventional turbo equalizers fortbBR4 and EPR4 channels. It
achieves performance comparable to previously suggestéiabonts that are based upon
turbo equalization of generalized PR channels, while reduthe overall system com-

plexity.
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In order to comprehend the differences between presemaémiies and the proposed
new method, recall that the former integrate noise prazhidtto the channel structure and
detection. The present conventional approach is rooteldercharacteristics of existing
detection and decoding techniques. Specifically, noisdigien is irrelevant to the tra-
ditional ECC decoder (e.qg., for decoding of Reed-Solomatesd19]), which operates
on hard-decisions. In contrast, an iterative SISO ECC darcoah both benefit from and
contribute to noise processing. Consider, for exampletrémsmission of LDPC encoded
data over a memoryless channel with additive colored ndse could design a noise-
predictive LDPC decoder, based on the ideas presented Hegieis to say, it is possible
to slightly adapt the noise prediction procedure descrihesection 6.4.2 to operate on
the soft inputs and outputs of the LDPC decoder.

In the case of ISI channels, prediction is a stand-alone hedthat exchanges soft
information with the turbo equalizer. One benefit of our agwh is the use of a simpler
channel model with fewer states than corresponding geredaPR channel models. In
addition, iterative systems provide soft or reliabilitfarmation for the entire block on
a bit-basis. This facilitates an adequately reliable esiiom in Step 2 of the NPTE pro-
cedure, as well as a judicious and noncausal predictionap St Reliable estimation
combined with a careful choice of tentative prediction thpfps reduce misprediction.
Consequently, it results in increasingly refined noisy dasyand thereby in improved
turbo equalization performance. The causal predictioariltised in NPML systems and
in [9] arise from the serial nature of maximum-likelihood&fbi detectors [1]. Specif-
ically, at each time instance (i.e., for each bit), only if@tion on prior bits has been
processed and can be fed back in the form of tentative notseatss. Nevertheless,
noncausaprediction filters may enhance noise reduction comparedusalprediction
filters with thesamenumber of taps. Indeed, for the noise models considereddrete
when J=2, prediction through one adjacent past sample amcddjacent future sample
incurs a smaller error power than that associated with theedqus nearest or the 2 next
nearest neighbors. This effect might not hold for arbitrawise models, but can be shown
to hold in our case (i.e., when equalizing from densitie®206d 2.85 to a PR4 channel).

The proposed prediction module is self-contained, and a3, sts integration is not
limited to the systems described earlier. In general, it @padded to a variety of SISO
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systems, as long as the noise model is known or has been ttimBor example, it
can be used for joint equalization and decoding of two-disiaral (2-D) I1SI channels,
arising in novel page-oriented storage technologies €sge,[21]). Noise prediction for
a two-dimensional correlation model was proposed in [22jeke a 2-D ISI channel was
equalized to a memoryless channel, using a zero-forcinglegun The power of the
arising colored noise was reduced through 2-D noise piiedictThe noise whitening
process was incorporated into a 2-D multilevel coding withitratage decoding scheme,
where multiple LDPC codewords are interleaved into an ariiay similar manner, one
can use a zero-forcing equalizer in conjunction with a @rngbPC code that encodes
the whole array. Then, the NPTE algorithm can be adapted ttewlkhe 2-D colored
noise between message-passing iterations. Obviousyy,approach is not limited to
zero-forcing equalization. For example, it can work jomilith 2-D detection schemes
such as the iterative multi-strip (IMS) detector, propose(@3].

We conclude this chapter by mentioning a recently publisieéated work by Kay-
nak, Duman, and Kurtas [24] on noise predictive belief pggp@n (NPBP) detection.
The authors suggest an alternate way of harnessing thetadesof state-of-the-art de-
tection techniques to combat the effects of colored noiseyTincorporate causal noise
prediction filters into the SISO partial-response chane&ctor that was proposed in [8]
(see also [10] for further results). This detector applesmessage-passing algorithm to
a certain graphical description of the PR channel. Its praaheantage is in its parallel
message-passing schedule, facilitating a fully paratigdlementation of the algorithm,
in contrast to the serial schedule used by the BCJR algoriffime proposed NPBP de-
tector obtains tentative bit decisions and noise estimatasimilar manner to the NPTE
algorithm. However, its whitening process is not selectind utilizes fixed and causal
predictors. All noise samples are predicted systemayia@dardless of the reliability of
the relevant estimates. Although a certain thresholdbgsehnique is applied in order
to alleviate feedback of erroneous bit decisions, it dodsbeaefit from the reliability
information provided by the SISO detector. An importantlguaf NPBP is that its in-
tegration of noise prediction retains the detector’s pelrarchitecture. This allows for
fast detection as well as for fast parallel implementatibNBBP turbo equalization with
LDPC codes. It would be interesting to compare the perfocaamf NPTE and NPBP,
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and also to consider the integration of NPTE principles theoparallel detector in [8].
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