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Constrained Coding and Signal Processing for Data Storage Systems

by

Sharon Aviran
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University of California San Diego, 2006

Professor Jack K. Wolf, Chair

Professor Paul H. Siegel, Co-Chair

Constrained codes for digital storage systems are studied.A method for improving signal

detection in digital magnetic recording systems is also investigated.

The bit stuffing algorithm is a technique for coding constrained sequences by the

insertion of bits into an arbitrary data sequence. This approach was previously introduced

and applied to the family of(d, k) constraints. Results show that the maximum average

rate of the bit stuffing code achieves the Shannon capacity whenk = d + 1 or k = ∞,

and fails to achieve capacity for all other(d, k) pairs. A modification to the bit stuffing

algorithm is proposed that is based on the addition of controlled bit flipping. It is shown

that the modified scheme achieves improved average rates over bit stuffing for most(d, k)

constraints. All(d, k) constraints for which this scheme produces codes with an average

rate equal to the Shannon capacity are determined.

A general framework for the construction of(d, k)-constrained codes from variable-

length source codes is presented. Optimal variable-lengthcodes under the general frame-

work are investigated. The construction of constrained codes from variable-length source

codes for encoding unconstrained sequences of independentbut biased (as opposed to

equiprobable) bits is also considered. It is shown that one can use the Tunstall source

coding algorithm to generate optimal codes for a partial class of(d, k) constraints.

Bit-stuffing schemes which encode arbitrary inputs into two-dimensional (2-D) con-

xiv



strained arrays are presented. The class of 2-D(d,∞) constraints as well as the ‘no

isolated bits’ constraint are considered. The proposed schemes are based on interleaving

biased bits with multiple biases into a 2-D array, while stuffing extra bits when necessary.

The performance of the suggested schemes is studied throughsimulations.

A method for joint detection and decoding of coded transmission over magnetic record-

ing channels is considered. The standard framework of turboequalization is modified to

account for the colored noise present in high-density magnetic recording systems. The

modified scheme incorporates a noise prediction algorithm,which iteratively and selec-

tively whitens the noise, while utilizing the information produced by the turbo equaliza-

tion scheme. Simulation results demonstrate the performance improvements obtained by

the proposed scheme.
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1

Introduction

1.1 A Communications Channel View

The notion of a communications channel is commonly associated with a medium

through which two objects at separate physical locations can exchange information. A

communications system enables the flow of information through the medium by trans-

mitting at one end and receiving at the other. A typical example is a television broadcast

via cable or air. A less recognized notion is that the storageof information and its sub-

sequent retrieval also constitute a form of a communications system. We can juxtapose a

communications system which transmits information in space, with a data storage system,

which transmits information in time.

Consider digital storage systems, also calleddigital recorders, where data is stored

and retrieved in the form of binary information or bits. Eachstored bit occupies a section

of the entire storage medium, and corresponds to a single useof the communications

channel, or equivalently, to one transmission. Bit values are stored as one of two possible

physical states of the medium. For example, magnetic hard disk drives use a thin layer of

magnetic material which can be magnetized entirely in either of two directions. In optical

storage devices, such as the Compact Disc (CD), bit values are specified by the presence

or absence of minuscule pits on the disc’s surface.

The focus of this dissertation is on coding and signal processing techniques that im-

prove the reliability and efficiency of communications systems. Their application to data

storage systems can contribute to higher storage capacities and to improved immunity to

1



2

errors.

1.2 Reliable Digital Communications

In general, the aim of communications systems is to overcomethe various imper-

fections of communications channels. In any real communications system, the received

signal is not a perfect replica of the transmitted signal, but rather a degraded ornoisyver-

sion of it. Noise can arise from imperfections in the transmission and reception devices, as

well as from disruptive channel conditions, like scratcheson the disc. In digital systems,

the noise results in erroneous bit values and in corrupted data. Since most systems can tol-

erate only a very low incidence of incorrect information, anaccurate retrieval of the sent

information in the presence of noise is vital. The fields of digital communications and in-

formation theory are dedicated to developing efficient and easily-implementable methods

as well as theoretical tools for achievingreliable transmission through noisy channels.

The foundation for these fields was laid out by Claude Shannonin 1948. In his sem-

inal work, he introduced a mathematical framework which described and quantified the

transmission of digital information over generic noisy channels [1]. Using these new con-

cepts, he established that digital systems should be able tocommunicate reliably over a

noisy channel, under a certain limitation. The limitation is given in terms of a maximum

rate or speed at which the information can be transmitted through the channel. This fun-

damental result, known as thenoisy channel theorem, has triggered a paradigm shift from

analog communications to digital communications.

In the proof of the theorem, Shannon argued that reliable digital communication is

obtained by means ofchannel coding. In general, channel coding relates to converting

the sender’s messages into other messages which are the onessent through the channel.

The transmitted messages include redundant information which can be exploited at the

receiving end in order to reconstruct the sent messages fromthe channel outputs. Finally,

the sender’s original messages are recovered from the reconstructed data. We demonstrate

the idea of channel coding with the following well-known example.

Suppose we represent the message to be sent as a sequence of bits. We send these

bits over any type of a noisy channel, for example, by burningthem on a CD. As a result
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of noise, there is a certain likelihood that some of the bits will be read out erroneously,

i.e., they will be flipped (from 0 to 1 and vice versa). The probability of such an event

serves as a measure of the transmission (or recording) reliability through this channel.

Consider now the following coding strategy: an encoder generates five copies of each bit,

to be burned on the CD, instead of the original single bit. As before, the retrieval process

introduces some errors. The retrieved bits are fed to a decoder, which knows of the five-

copies encoding strategy and hence reviews all five bits. Since not all five copies may

agree on the same value, the decoder can make an “educated guess” and choose the bit

value that is most probable given the five copies. An example of such a guess is by taking

a majority vote, which yields the most probable value under certain assumptions. Such a

scheme can be seen to reduce the probability of input-bit errors or to improve reliability.

The described coding scheme replaces each bit with a corresponding five-bit block

which contains redundant information, i.e., all bits are the same. The amount of added

redundancy is usually measured in terms of the resultingtransmission rate, defined as

the average number of information bits that are conveyed in one channel use. The rate

of transmission in the example above is1
5
. The rate reflects the efficiency in which the

scheme utilizes the channel. Now, if we would like to furtherreduce the error probability,

we could use the same scheme with longer blocks or more repetitions. However, this

comes at the cost of lower transmission rates or decreased efficiency.

From this example, it may seem that this tradeoff is inevitable and that obtaining a

vanishingly small error probability requires infinite redundancy. The essence of Shan-

non’s result is that this is not true. More precisely, one cantransmit information through

the channel with an arbitrarily small error probability at any rate less than thechannel

capacity. The capacity is a unique property of the channel and may be calculated or at

least estimated for certain channels.

Although Shannon provided the guiding concept of channel coding, he left the prob-

lem of finding practical coding methods unresolved. In the next five decades, considerable

research was dedicated to finding practical coding techniques whose rates approach the

channel capacity and whose complexity is acceptable. Additional research was devoted

to finding the capacity of various channels of interest. The challenge in code design is

to provide a prescribed error probability with minimal impact on efficiency. It is also
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essential that the scheme will be simple to implement. Various clever and practical cod-

ing schemes are available today which obtain both higher rates and better performance

than in the example above. Furthermore, some of these schemes can get very close to

the capacity of several simple channels. All of these schemes are more complex than the

illustrated scheme in terms of the code structure and especially in their decoding strategy.

However, they retain the same basic principle of mapping theoriginal messages to longer

messages which contain redundant information in the form ofcertain relations among the

transmitted bits. In what follows, we describe how channel coding is accomplished in

digital recorders.

1.3 Channel Coding and Signal Processing for Storage

Figure 1.3.1 shows a simplified model of a recording system, with an emphasis on its

channel coding and signal processing components. Recording systems typically employ a

concatenation of two distinct coding schemes: anerror-correction coding(ECC) scheme

and amodulation codingscheme. Each coding scheme realizes acode, which is a set of

rules for assigning certain output sequences to each of the possible input sequences. An

encoder converts the inputs to their assigned outputs, and amatching decoder attempts to

recover the inputs from the retrieved outputs. Therateof a code is defined as the ratio of

the average input length and the average output length. It measures the average number of

user bits that are conveyed in each stored bit. The two codingprocedures are inherently

different in their approach to obtaining improved recording reliability, as we explain next.

As shown in Figure 1.3.1, user information first undergoes encoding by an ECC en-

coder, which adds extra bits to the input message bits [2]. This transformation is intended

to protect the recorded data against multiple random errorsthat may occur during its re-

trieval. The encoder systematically generates the extra bits as a function of the input bits

by imposing certain mathematical relations on the output bits. The resulting structure of

the output allows the decoder to correct and/or detect certain bit errors. The five-copies

encoding-decoding strategy we mentioned earlier is an example of the simplest error-

correcting code. In Chapter 6, we describe in detail the encoding and decoding of a fam-

ily of error-correcting codes, called low-density parity check (LDPC) codes [3]. LDPC
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Figure 1.3.1 A simplified model of channel coding and signal processing components

in digital recording systems. Channel coding is composed oftwo concatenated coding

schemes employing an error-correcting code and a modulation code.

codes are currently regarded as potential candidates for integration into future-generation

recording systems.

The next encoding step involves amodulationcode. Here, a modulation encoder

converts arbitrary input sequences into sequences that satisfy certain predefined restric-

tions [4]. The output sequences are calledconstrained sequences. Hence the namecon-

strained code, which is a more familiar term for a modulation code in the context of

digital recording. The constrained sequences are then stored on the medium instead of

the original input. This approach is motivated by the observation that particular recorded

sequences are more prone to errors during retrieval than others. Therefore, their exclu-

sion from the collection of admissible channel inputs can improve the overall reliability

of the system. The role of constrained codes is to avoid certain retrieval failures that are

typical of the system. This stands in contrast with error-correcting codes, which attempt

to correct those errors that already occurred. Constrainedcoding for storage systems con-

stitutes the main topic of this dissertation. Chapter 2 provides a comprehensive overview

of this topic. Chapters 3, 4, and 5 deal with the design and analysis of constrained codes.

The system model in Figure 1.3.1 illustrates another component - a channel detec-

tor. Before we explain its functionality, we assume that therecording channel component

incorporates the following operations: converting the binary data to an analog signal,

recording the analog signal on the medium, and retrieving it. In this model, channel
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detection corresponds to processing the retrieved analog signal in order to accurately de-

termine the binary values of the stored bits. A channel detector can incorporate a variety

of signal processing techniques with different functionalities [5]. This includes filtering,

sampling, resolving the interference between signals fromadjacent stored bits in the pres-

ence of noise, and manipulating the noise portion of the signals. Some systems, like op-

tical disc recorders, employ relatively simple detectors,while others, like magnetic hard

disk drives, employ more sophisticated devices. Chapter 2 elaborates on the detection

techniques used in current disk drives. Chapter 6 studies the adaptation of new detection

techniques to improve the reliability of current disk drivetechnology.

1.4 Coding for Noiseless Channels

In his work, Shannon introduced two powerful concepts whichare important in the

design and analysis of constrained codes. We briefly review these concepts here, and

we refer to them later in Chapters 3-5. Since we deal with digital systems, we limit our

discussion to discrete channels, that is, to channels that admit a finite number of symbols

as their input.

The first concept is theinput-constrained noiseless channel, which forms a special

case of thenoisy channeldiscussed earlier. A channel is input-constrained if its admissible

inputs do not include all possible sequences of symbols. In other words, some restrictions

are imposed on the sequences that can be transmitted, such asthe order of symbols in

the sequence. In a noiseless channel, the received messagesare an exact replica of the

sent messages, so no errors can occur. The maximum possible transmission rate over this

channel is theShannon capacityof the channel. It is easy to see that constrained codes

in digital recorders serve as a transformation of arbitrarybinary messages into binary

messages that can be sent over an input-constrained noiseless channel.

A second concept is theentropy, which measures the information content of messages

generated by an information source. The simplest information source generates symbols

that are statistically independent and are drawn accordingto one specified probability

distribution. The basic idea is to establish a link between the predictability of probabilistic

events and the amount of information they contain. It is reasonable that the occurrence of
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an unlikely event brings more new information than the occurrence of a very likely event.

Following this reasoning, Shannon proposed to measure the average information content

of each generated symbol by

H(p1, · · · , pM) = −
M
∑

i=1

pi log2 pi,

wherep1, · · · , pM are the probabilities to observe each of theM different symbols. Here,

log2 pi quantifies the amount of information contained in the occurrence of an event whose

probability ispi. The base of the logarithm is 2 since it is convenient to represent the

amount of information with binary units such as bits. Shannon extended the definition of

entropy to more complex information sources which can stillbe characterized by a fixed

probabilistic behavior.

The relevance of entropy to constrained coding is twofold. First, the conversion of

unconstrained sequences to constrained sequences involves a change in the entropy per

symbol. In digital recorders, we represent the informationas sequences of binary symbols

(0 and 1). This means that the entropy per user bit is different than the entropy per stored

“constrained” bit. The higher the entropy of a stored bit, the more information it conveys.

Therefore, we are interested in designing codes that generate constrained sequences with

the highest possible entropy per bit. Second, the maximum possible rate of a constrained

code is determined byC
H

, whereC is the Shannon capacity of the constrained channel

andH is the entropy peruserbit. If we model the user data as sequences of independent

and equiprobable bits, thenH = 1 andC is the maximum code rate.

1.5 Dissertation Overview

This dissertation considers two major themes: constrainedcoding and signal process-

ing, as they apply to recording systems. Chapter 2 provides background on these topics,

Chapters 3 - 5 are concerned with design and analysis of constrained codes, and Chapter 6

is concerned with the integration of signal processing methods into new iterative decoding

and detection techniques.

The first part of Chapter 2 describes various aspects of constrained coding for storage

systems. The rest of the chapter is devoted to a detailed description of the magnetic
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recording channel and the detection process in computer hard disk drives.

Chapters 3 and 4 consider constrained coding methods for a commonly used family

of constrained channels, calledrun-length-limited (RLL)(d, k) constraints. These chan-

nels impose limitations on the lengths of runs of consecutive like symbols. The coding

schemes we study in these two chapters were motivated by a previously suggested coding

scheme, called thebit stuffing algorithm. The bit stuffing algorithm generates constrained

sequences by inserting extra bits into an arbitrary input stream in a manner that guarantees

that the resulting output meets the limitations [6].

In Chapter 3, we propose to modify the bit stuffing algorithm by adding a controlled

flipping of unconstrained bits. This modification maintainsthe simplicity and underlying

principles of the bit stuffing technique, and is called thebit flipping algorithm. We analyze

the bit stuffing and bit flipping algorithms to show that bit flipping achieves improved

average rates over bit stuffing for most(d, k) constraints. We further determine all(d, k)

constraints for which the bit flipping algorithm produces codes with an average rate equal

to the Shannon capacity.

In Chapter 4, we study codes for(d, k) constraints from asource codingperspective.

In general, source coding, also known asdata compression, refers to encoding data into

a shorter representation in a recoverable manner. The work presented in this chapter

was inspired by a recent extension of the bit stuffing and bit flipping algorithms, called

the symbol sliding algorithm [7]. We first extend the three algorithms into a general

framework for the construction of constrained codes from variable-length source codes.

We show that it gives rise to new codes which achieve improvedperformance over the

aforementioned algorithms. We then search for optimal codes under this framework,

optimal in the sense of their achievable rates. However, finding such codes appears to

be a difficult problem. In an attempt to solve it, we are led to consider the encoding

of unconstrained sequences of independent but biased (as opposed to equiprobable) bits.

Here, our main result is that one can use the Tunstall source coding algorithm [8] to

generate optimal codes for a partial class of(d, k) constraints.

In Chapter 5, we design constrained codes for use in next-generation storage tech-

nologies. These technologies give rise to communications channels of a two-dimensional

nature, which can be viewed as an extension of the traditional one-dimensional channel.
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New coding and detection techniques are required, as many ofthe existing techniques are

not readily applicable to these channels. We present codingschemes that are based on an

adaptation of the bit-stuffing algorithm to the encoding of two-dimensional constrained

arrays. The proposed schemes can be viewed as an extension ofseveral previously sug-

gested bit stuffing schemes for two-dimensional constrained arrays [9], [10]. We compare

the performance of the various schemes through simulations.

Chapter 6 focuses on channel detection in hard disk drives. We propose a method

to harness the advantages of novel detection and decoding techniques for dealing with

problems that are specific to current disk drive technologies. Specifically, we consider

an iterative decoding and detection framework known asturbo equalization, which is the

state-of-the-art method for channels such as the magnetic recording channel [11]. How-

ever, turbo equalization is designed for channels with white noise, a condition which does

not apply in magnetic recording systems. In this chapter, wepresent a modified turbo

equalization scheme that accounts for the special characteristics of the noise in magnetic

recording systems. It incorporates anoise predictionalgorithm, which iteratively whitens

the noise in a selective manner, while utilizing the information produced by the turbo

equalization scheme. Simulation results demonstrate the performance improvements ob-

tained by the proposed scheme.
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Background on Digital Recording

Systems

This chapter provides the background for topics discussed in subsequent chapters. In

the following sections, we elaborate on two components of the simplified model of a data

storage system, namely, modulation coding and channel detection. Section 2.1 reviews

constrained codes and their role in optical and magnetic storage. It is mostly based on

material in [1], [2], and [3]. Section 2.2 provides a brief overview of magnetic recording

technology for computer hard disk drives. In this section, we concentrate on channel

detection techniques. A more detailed description of the reading process in disk drives

appears in [3] and [4]. For a recent survey of the state-of-the-art in disk drive technology,

we refer the reader to [5] and [6].

2.1 Constrained Coding for Storage

Constrained codes, also known as modulation codes, serve toavoid the recording of

those sequences whose retrieval is likely to cause an erroneous read by the system. There

are several sources for such retrieval failures, includingvarious deficiencies in the reading

technology, such as the timing recovery and detection mechanisms. Impairments of the

physical recording channel itself may also severely distort some sequences while only

slightly affecting others. Therefore, the characterization of problematic sequences and

the definition of effective restrictions to eliminate them is part of the process of system

11
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design. The chosen restrictions are usually prescribed in terms of special properties that

an acceptable sequence must have, and are system-dependent.

We motivate and illustrate the use of constrained codes through an example. Con-

sider a magnetic recording device, where the recording process magnetizes portions of

a magnetic medium in one of two possible polarities. The bitsare consecutively written

onto fixed-size spaces, called bit cells, along a strip. Figure 2.1.1 shows a magnetiza-

tion pattern that arises from the recording of a certain binary sequence. When reading

the data, the device can only sense transitions in the direction of magnetization, i.e., it

detects the boundary between contiguous bit cells of opposite polarities. The system

electronics respond to such a transition with voltage changes, as depicted by the ana-

log voltage waveform in Figure 2.1.1. It can be seen from the waveform that the effect

of a transition on the measured voltage is not spatially limited. However, it decreases

significantly with increasing distance from the transitionpoint. This means that nearby

transitions might significantly contribute to the overall response of the system at a current

transition, whereas sufficiently distant transitions willhave a more negligible effect. This

phenomenon is often observed in communication systems and is commonly referred to as

intersymbol interference(ISI). If transitions are too close, the system may no longerbe

able to accurately sense them or distinguish between them.

We would like to store binary information on the described system, while obeying

the following writing convention. Each 1 in the input streamdictates a reversal in the

direction of magnetization and each 0 stipulates a non-reversal in direction. Figure 2.1.1

shows an input stream that follows this convention and corresponds to the magnetization

pattern in the figure. Suppose that our system can detect transitions reliably only if they

are at leastD microns apart. In the absence of coding, we should account for all possible

input patterns, hence we allocateD microns for each bit cell. In this scenario, each

recorded bit represents one user information bit. Considernow a coding scheme that can

convert arbitrary data into special bit streams with no adjacent 1’s, i.e., where there is at

least one 0 between any two 1’s. Applying the scheme on user input, we guarantee that

recorded patterns will contain transitions which are at least two bit cells apart. We can

take advantage of the new constellation by decreasing the bit cell size to 1
2
D microns,

thus increasing therecording densityto 2
D

bits per micron.
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Figure 2.1.1 A simplified model of data retrieval in digital magnetic recording systems.

We are now able to record more bits on a strip of a given length,but we should

also consider the overhead incurred by coding. Suppose we use the scheme described

in Table 2.1.1, where the encoder simply replaces blocks of three bits at a time with

five-bit blocks, as specified by the table. After correction of transmission errors by the

ECC scheme, the decoder converts the blocks back using the same table. One can readily

observe that the encoded stream indeed contains no adjacent1’s. The code rate is3
5
, i.e.,

each recorded bit represents3
5

of a user bit. Since two recorded bits occupyD microns,

we now write6
5

user bits-perD microns, as opposed to one user bit perD microns without

coding. In the example above, we used a constrained code to gain a higher storage volume

for a given reliability requirement. Alternatively, we could retain the same bit-cell size

and use the code to obtain greater physical separation between transitions. In this case,

we gain better system performance due to improved detectionat the cost of loss in the

effective storage capacity. Clearly, there is a tradeoff between these two benefits, therefore
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Table 2.1.1 A constrained code for a run-length-limited(1,∞) constraint, where there

must be at least one 0 between any two 1’s.

Input Block Output Block

000 00000

001 10000

010 01000

011 00100

100 00010

101 10100

110 10010

111 01010

using coding in conjunction with a smaller bit size may offersome compromise between

them.

The example above is a simplification of a real problem that the designers of magnetic

recording systems faced until the late 80’s. At this time, systems were using a peak

detection method, which searches for individual peaks in the output voltage as a means of

detecting the recorded bits. A related but slightly different problem still exists in current

optical disc recorders. This problem gave rise to a general class of restrictions, known as

run-length-limited(RLL) (d, k) constraints, or simply(d, k) constraints. Here, the term

constraintrefers to the set of restrictions that are imposed on the sequences.

The bulk of this dissertation deals with constrained codes for (d, k) constraints and

with recent extensions of(d, k) constraints to two-dimensional lattices. A(d, k) con-

straint requires that successive 1’s are separated by at least d 0’s and prohibits runs of

more thank consecutive zeros, wherek > d. The parameterk can be set to infinity, in

which case only thed restriction applies. It is easy to see that the restriction described

in the example (i.e., no adjacent 1’s) is in fact a(1,∞) constraint. Thed restriction ad-

dresses the above-mentioned problem by ensuring a certain minimum distance between

transitions. Thek restriction is essential for extracting timing information in order to

maintain read-clock accuracy. This can be further explained as follows. The reading pro-
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cess constantly adjusts the phase and frequency of a read-clock such that the clock keeps

track of the estimated locations of the bit cell boundaries.This is useful for accurate de-

tection as well as for avoiding spurious or missing bits. When the device responds to a

reversal in magnetization, the timing recovery mechanism uses the resulting analog signal

to derive positioning information. Since only transitionsproduce nonzero output signal,

it is desirable to ensure that transitions are frequent enough for adequate clock synchro-

nization. We meet this goal by limiting the number of consecutive 0’s in the recorded

data.

The family of (d, k) constraints has been found to be useful both in magnetic and

optical recording applications. It therefore received much attention and is well under-

stood. Various codes for(d, k) constraints have become part of virtually all magnetic

and optical recording systems over the last four decades. These codes were initially

adopted by the magnetic recording industry and were integrated into various disk and

tape-based products. They have greatly contributed to the tremendous growth in stor-

age densities that this industry has achieved. Nowadays,(d, k) constraints are mostly

found in consumer-electronics products that are based on optical storage technology. For

example, the CD and the DVD employ constrained codes for a(2, 10) constraint. In mag-

netic recording, however, these constraints have become somewhat obsolete following the

abandonment of the peak detection method in the early 90’s. Anew technology, called

partial-response maximum-likelihood (PRML) detection, was adopted. PRML detection

has circumvented the problem of detecting close transitions, and hence(d, k) constraints

were no longer suitable for it. Present-day disk drives for computers are using PRML

technology together with another type of run-length-limited constraint called a(0, G/I)

constraint. Nevertheless,(d, k) constraints are used in less prominent magnetic storage

products such as magnetic tapes, floppy disks, and the new DVR.

A variety of other constraints have been found useful in digital recording. The re-

striction toDC-freesequences is notably the most common of these constraints. DC-free

sequences have a spectral null at zero frequency, i.e., theyhave no zero-frequency con-

tent. The enforcement of a spectral null also results in the suppression of low-frequency

components near the zero frequency. This is advantageous insystems which intentionally

cut-off low frequencies in order to avoid the adverse effects they have on certain mech-
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anisms. Since the cut-off will additionally affect sequences containing low-frequency

components, it is desirable to avoid them. The actual construction of DC-free sequences

relies on one of their characteristics in time rather than inthe frequency domain. In

essence, one needs to keep track of the sequence and constantly ensure that the total num-

ber of observed 0’s does not deviate much from the total number of observed 1’s. Since

this criterion does not conflict with RLL limitations, many systems, such as optical disc

recorders, impose a combination of DC-free and RLL constraints.

Another popular constraint is the run-length-limited(0, G/I) constraint, which we

mentioned earlier in the context of computer hard disk drives. It limits the length of runs

of consecutive 0’s between 1’s, whereG specifies the overall permissible maximum, and

I specifies the maximum in each of the even and odd interleaves.The constraint ad-

dresses two problems arising in PRML technology. First, thetiming recovery techniques

employed are based on the sampled signal and do not operate properly in the presence of

long runs of 0’s. TheG restriction solves this problem and is identical to thek constraint

used by old disk drives. TheI constraint is used to limit the memory and delay involved

in the PRML detection process.

The introduction of PRML technology has also given rise to other proposed con-

straints that aim at improving its detector performance. This approach is based on the

fact that the detector cannot distinguish very well betweencertain pairs of recorded se-

quences and commonly replaces one with the other. Since thisis the cause of the most

common detection errors, a suitable constraint can obtain improved detection by elim-

inating either one or both sequences of each pair. Constraints in this category include

matched-spectral-null (MSN) constraints, defined in the frequency domain, and the RLL-

type maximum-transition-run (MTR) constraints. In practice, hard disk drives use another

approach to improve detection performance, called post-processing. We will refer to this

technique in the next section.

The practical need for constrained codes has stimulated extensive research, mostly

aimed at devising high-rate yet simple codes. The code rate is evaluated with respect to

theShannon capacityof the constraint, defined as

cap(C) = lim
n→∞

log2 NC(n)

n
,

whereNC(n) is the number of sequences of lengthn that meet the constraintC [7]. The
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capacity represents the amount of information that can be carried by the constrained se-

quences. It therefore plays an important role in code design. The common assumption in

constrained-code design is that the unconstrained user-data is a stream of independent and

equiprobable bits. Under this assumption, the Shannon capacity forms an upper bound

on the rate achievable by any coding scheme that encodes the user-data into constrained

data. The capacity of the various constraints discussed above can be calculated using a

general method that Shannon prescribed. The method appliesfor any constraint that can

be described by a finite labeled directed graph, as long as thelabels of the outgoing edges

at each state are distinct.

When considering constrained coding schemes, it is also important to bear in mind that

in current storage systems, the decoder operates on the binary bit estimates generated by

the channel detector. Since erroneous detector estimates are inevitable, we might observe

scenarios where the decoding of a sequence with few errors results in significantly more

errors at the recovered input. In this case, the ECC scheme may not suffice to protect

against such a volume of errors. For this reason, avoiding this problem, called error

propagation, is another major concern in code design. A comprehensive survey of the

many available coding schemes exceeds the scope of this dissertation and can be found,

for example, in [1]. In what follows, we briefly mention some widely-used approaches to

constrained-code design, as well as key characteristics ofconstrained codes.

Block codesare probably the most prominent and broad class of constrained-code

constructions. A block coding scheme repeatedly maps arbitrary input blocks of lengthm,

calledsource words, into selected output blocks of lengthn, calledcodewords. Encoding

involves the partitioning of the input stream and the replacement of input blocks with

output blocks. Decoding is done in a similar fashion. There are various possible mappings

and different ways in which the encoder and decoder realize them. The code we described

earlier (see Table 2.1.1) is an example of the simplest blockcode in terms of encoding

and decoding. Since the output blocks in Table 2.1.1 can be freely concatenated without

violating the constraint, the encoder can instantaneouslyreplace each source word without

accounting for previous or future codewords. The same principle applies at the decoder.

More sophisticated block coding schemes involve encoders and/or decoders that must

consider other neighboring blocks in order to determine their current output. In particu-
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lar, block codes withstate-dependentencoders andsliding-blockdecoders are of major

importance in digital recording. A state-dependent encoder introduces memory to the

encoding process by keeping track of part of its prior output. Each state of the encoder

corresponds to a set of possible past outputs. The next output is then a function of both

the current input and the current state, and is usually specified by a lookup table that is as-

sociated with each state. A sliding-block decoder can determine the currentm-bit source

word by looking at the currentn-bit codeword as well as at several past and/or future

neighboringn-bit codewords.

The importance of these codes is derived from two sources. First, they obtain high

rates while using relatively small lookup tables and ensuring limited error-propagation.

Second, there is a systematic design procedure for such codes, known as thestate-splitting

algorithm. The algorithm, introduced by Adler, Coppersmith and Hassner in 1983, has

made notable progress in block code design. It was the first algorithm that provided a

general method for constructing block codes of any given feasible rate with the above-

noted properties. Furthermore, it is applicable to a broad class of practical constraints.

It is worth noting that the above-mentioned codes fall shortwhen large block lengths are

desired, as the search in large lookup tables becomes infeasible. Block codes that are

based on enumerative coding avoid this problem, but on the other hand, are susceptible to

error propagation.

Block codes are prominent in digital recorders mainly due tovarious system consid-

erations that dictate usage of fixed-length blocks. Nonetheless, non-block codes were

studied as well. Avariable-length(VL) code permits input source words and/or output

codewords of variable size. If the ratio of lengths of a source word and its corresponding

codeword is fixed, we say that the code has afixed rate. With fixed-rate VL codes, it is

still possible to compute the output length that corresponds to a large input block, regard-

less of the input content. This property is important in realsystems and makes these codes

a possible alternative to block codes. Numerous fixed-rate VL codes which are based on

small lookup tables have been proposed.

We are left to consider the class ofvariable-ratecodes, where the length of the output

can vary depending on the actual content of the input and not only on its size. These codes

were less thoroughly investigated compared with the formerclasses due to the reasons
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mentioned earlier. However, they can offer very simple coding schemes with very high

rates. Chapters 3 and 4 study a number of variable-rate coding schemes that are based on

a previously-suggested variable-rate coding technique called bit stuffing. The bit stuffing

technique obtains near-capacity rates using very simple encoding-decoding principles. It

is also applicable to a wide range of constraints. Recently,attempts have been made to

adapt the bit stuffing approach to the practical needs of industry. In particular, fixed-rate

codes that are based on the simple principles of bit stuffing were proposed for(0, k) and

(0, G/I) constraints [8], [9].

We conclude by mentioning recent progress in storage technology which presents new

challenges for constrained coding. Newly emerging techniques, such as holographic data

storage [10] and multi-track optical recording [11], give rise to two-dimensi-onal (2-D)

models of the stored data. These technologies store the binary information either along

contiguous tracks or as pages that are projected onto a holographic medium. For example,

Figure 2.1.2 shows a simplified model of a holographic storage system. The data are first

organized in the form of a page, using a pixelated device called a spatial light modulator.

The information page is then carried by an object beam that goes through the device. The

object beam intersects another beam (a reference beam) within a photo-sensitive storage

material, and the resulting optical interference pattern changes certain properties of the

material. Reading is performed by illuminating the material with the reference beam.

This reconstructs the object beam, which is then sensed by anarray of detectors.

From a communications standpoint, these systems can be viewed as a 2-D channel that

introduces noise and ISI. Similarly to the one-dimensional(1-D) case, imposing a con-

straint on a two-dimensional data array can be an effective tool for improving detection

performance. Two-dimensional constraints that eliminatecertain problematic patterns

were proposed in [10], [11]. This reasoning motivates the new field of 2-D constrained

coding, which turns out to pose a collection of intriguing and difficult problems. In par-

ticular, many conventional 1-D constrained coding techniques are not readily applicable

to 2-D. This is primarily due to lack of a finite-state graph description of many 2-D con-

straints of interest. Moreover, the fundamental limit on the achievable code rates, i.e., the

Shannon capacity, is currently unknown for many constraints and is deemed to be more

difficult to compute than its 1-D counterpart.
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Figure 2.1.2 The basic components of a holographic data storage system. Taken from

[10].

Two-dimensional constraints are the topic of Chapter 5. In this chapter, we consider

coding schemes that are based on a generalization of the 1-D bit stuffing technique. As we

will show, the bit stuffing approach can be easily extended toa variety of 2-D constraints,

and is independent of a graph-based representation. The extension to 2-D maintains the

simplicity of the original technique and often achieves high rates. Furthermore, in cases

where it is amenable to analysis, it serves as a tool for deriving analytical bounds on the

unknown capacity of the constraint.

2.2 Magnetic Recording in Hard Disk Drives

Hard disk drives store data along concentric circular tracks on the surface of a disk

coated with a magnetic medium. During the writing process, the disk rotates while a de-

vice called a write head induces a magnetic field on the medium. The applied magnetic

field is strong enough such that the medium remains magnetized after the head has pro-

gressed along the track. Inlongitudinal magnetic recording, the write head can magnetize

the medium either along the direction of the disk motion or against it, as shown in Fig-

ure 2.1.1. Each cell along the track is magnetized entirely in one of two directions, hence

it can represent the value of a bit. The induced magnetic fieldis generated by an elec-

trical current flowing into the write head, where the direction of the current determines

the magnetization direction. Hence, the binary bits translate into a corresponding current,
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which can change its direction only at the bit cell boundaries. Reading is performed by a

different device called a read head. It is constructed of a material that reacts to changes

in the direction of magnetization by changing its electrical resistance. These changes are

translated by the reading circuitry into registered voltage changes.

2.2.1 Channel Model

The measured voltage is the analog signal that is generated by the read head and

processed by the system. The response of the read head to an isolated transition in the

direction of magnetization is usually approximated by the following function:

h(t) =
A

1 +
(

2t
PW50

)2 ,

wheret represents time,A is the peak amplitude, and PW50 is the width of the function

at 50% of its peak amplitude. A transition will produce either the pulseh(t) or the pulse

−h(t), depending on its type (i.e.,−→ | ←− or←− | −→). The functionh(t) is well-

known as theLorentzian pulseand is illustrated in Figure 2.2.1 forA = 1 andPW50 = 1.

One can observe the extent of ISI for a given recording density from the pulse shape.

Specifically, letTb denote the time required for the read head to move over a bit cell, i.e.,

thebit duration. The linear recording densityis defined asD = PW50/Tb, measuring

how many bits are packed into the center of the pulse (see Figure 2.2.1 for an example

whenD = 2). It can be seen that for a givenPW50, decreasing the bit size does not

change the generated pulses. However, the transitions get closer together and therefore

there is stronger interference between them.

The model of the overall response of the system to the entire recorded pattern is based

on the assumption that the recording channel is linear. Additionally, it is convenient to

model the recorded information as a stream of bipolar symbols {xi}, xi ∈ {−1, +1},
which are modulated to form a rectangular current waveform with amplitude+1 or−1.

The waveform amplitude corresponds to the direction of the current that flows into the

write head. The binary user input{ai} is mapped into bipolar symbols before the actual

writing takes place. Using these conventions and assumptions, it can be shown that the
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Figure 2.2.1 Lorentzian head response to an isolated transition for A = 1 andPW50 = 1.

For a recording densityD = PW50/Tb = 2, the bit durationTb is equal to1
2
.

read-back signal takes the form

y(t) =
∑

i

xig(t− iTb) + n(t), (2.2.1)

wheren(t) describes the noise due to the readout electronics and

g(t) =
1

2
(h(t)− h(t− Tb)) . (2.2.2)

Here,g(t) represents the response of the channel to a single isolated bit, such as a single 1

preceded and followed by an infinite number of 0’s. The formulation in (2.2.1) expresses

the ISI between adjacent bits rather than between transitions. The noisen(t) is typically

modeled as white and Gaussian. It is important to note that atthe high recording densities

of state-of-the-art disk drives, material granularity is becoming a significant source of

noise. This noise, calledmedia noise, is not white and depends on the recorded patterns.

Although more accurate models that accommodate media noiseexist, we shall work with

the simpler white Gaussian model, which still provides a good approximation of present

systems.
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2.2.2 Partial-Response Maximum-Likelihood Detection

We have seen that the read and write processes introduce intersymbol interference and

noise. The task of the receiver is then to estimate or detect the actual recorded bit values

from the read-back signal, which takes the form of (2.2.1). The old approach to channel

detection in disk drives is calledpeak detection. In essence, it scans the analog signal and

identifies large-enough peaks, which correspond to transitions. It then reconstructs the

recorded sequence from the peak locations. However, this method is limited in its ability

to resolve ISI. At certain recording densities, the arisingISI results in missed and shifted

peaks, leading to poor detection.

Further increases in recording densities were facilitatedby the introduction of the

partial-response maximum-likelihood (PRML) approach to detection. As opposed to peak

detection, PRML accounts for the existing ISI and hence detects sequences of many bits

together, rather than each bit separately. At the basis of this approach is a well-known

method for optimal sequence detection of signals in ISI channels with additive white

Gaussian noise [12]. According to this method, the analog signal is first filtered and

then sampled, such that each sample corresponds to one bit. Subsequently, a sequence

of samples is fed to amaximum-likelihood(ML) sequence detector, based on the Viterbi

algorithm [13]. The detector’s estimate is the sequence which maximizes the likelihood

of receiving the observed samples over all possible sequences. The estimate is derived

from a known interference model of the channel, i.e., from the channel response.

Unfortunately, the complexity of the Viterbi algorithm grows drastically with the dura-

tion of the channel response, which renders this approach impractical for the Lorentzian

channel. The PRML approach circumvents this problem by taking the following two

steps:

• Equalizing the read-back signal to a target signal that has limited ISI or shorter

response.

• Performing maximum-likelihood detection that is matched to the target channel

response.

The basic idea is to allow for limited interference from nearby bits but also to take this

interference into account during detection. This is often referred to as controlled ISI.
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Figure 2.2.2 A tapped delay line finite impulse response (FIR) filter used for equalization.

Equalization takes place after filtering and sampling. It shapes the samples of the

original channel response into another set of samples of a much shorter duration. For

example, consider the target response whose samples are represented by the polynomial

1−D2, whereD is a delay operator. This means that after shaping, the noiseless sample

values can be expressed assi = xi − xi−2, where{xi} is the bipolar input to the channel.

Therefore, the shaping has eliminated the interference caused by all bits except for the

next-to-nearest neighboring bit. Present systems implement the shaping by using a finite

impulse response (FIR) linear filter, as modeled by the tapped delay line in Figure 2.2.2.

As noted earlier, the Viterbi detector derives its estimates using the known channel struc-

ture. Since the Lorentzian channel has been transformed to the target channel, the detector

operates according to the new target channel model.

Reducing ISI by means of equalization comes at a cost, namely, enhancement of the

electronics noise and the introduction of correlation intoits samples. This is referred

to asnoise enhancement and coloration. Such effects are undesirable as they degrade

the performance of the Viterbi detector, which is optimal for white noise but not for

correlated noise. In general, we can say that the severity ofthese effects is a function of

the differences between the original and the target shapes.More precisely, it depends on

the differences between their spectral characteristics. For this reason, it is important to

choose a target which provides a good approximation to the real channel response. On the

other hand, one should keep in mind that a practical target must also be sufficiently short.

Since increased recording densities introduce more ISI, the chosen target also depends on

the density. Usually, longer targets provide a better fit when densities increase.
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PRML systems use several targets from a general class calledpartial-response(PR).

This class includes targets of the general polynomial form(1−D)(1+D)N , N ≥ 1. The

primary reason for this choice is that PR targets provide a good match to the actual chan-

nel response. Furthermore, the use of small integer coefficients reduces the complexity of

the Viterbi detector. The most frequently used targets are called PR4 and EPR4, and cor-

respond to the polynomials(1−D)(1+D) = 1−D2 and(1−D)(1+D)2, respectively.

Their short duration facilitates acceptable detection complexity. However, the steady in-

crease in recording densities has created a need for more suitable higher-order targets.

Today, disk drives employ targets with longer duration and non-integer coefficients, as

will be discussed in the next subsection and in Chapter 6.

2.2.3 System Overview

In this subsection, we briefly review the signal processing and coding modules that

constitute a PRML system. Before we start, it is important tonote that PRML systems

have evolved since their introduction in 1992 [3], mainly through the addition of several

signal processing techniques [5], [6]. Here, we will refer to the original PRML architec-

ture, and only briefly mention the more recent additions. In Chapter 6, we will elaborate

more on one of these techniques, called NPML.

Figure 2.2.3 shows a block diagram of a PRML system. The data is processed in

blocks of 512 bytes, called sectors. It is first fed to an ECC encoder, which adds extra

bytes to the data in order to correct possible random errors that occur due to noise and

due to failures of other components in the system. The code used is Reed-Solomon,

which is also common in a wide range of other communication systems [11]. The code is

designed such that it is capable of correcting up to a specified number of erroneous bytes.

Additionally, Reed-Solomon codes can cope well with burstsof errors. This renders them

especially suitable for disk drives, where error-propagation caused by the modulation

decoder as well as defects on the medium might result in errorbursts. To further combat

error bursts, the sector data is partitioned into several blocks, where each block is encoded

separately. The output blocks are then interleaved before being passed to the modulation

encoder.

The modulation encoder imposes a(0, G/I) constraint on the data. At the output of
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Figure 2.2.3 Block diagram of a partial-response maximum-likelihood (PRML) system.

the encoder, an additional operation calledprecodingis required. The reason for precod-

ing can be explained as follows. Recall that in constrained coding, we use a convention

where a 1 indicates a transition and a 0 indicates no transition. However, the write head

is controlled by a current which flows in one of two directions, according to input values

of 0 and 1. Consequently, the 1’s and 0’s are interpreted as different directions of mag-

netization and not as transitions/no-transitions. The transformation between these two

conventions is performed by the precoder. The inverse transformation takes place prior to

modulation decoding. We consider precoding as part of the modulation component and

do not explicitly specify it in Figure 2.2.3.

During a read operation, the read head generates a continuous signal that is filtered

by a low-pass filter and sampled at the symbol rate (1/Tb). An FIR equalizer shapes the

noisy samples of the read-back signal into samples consisting of a sampled PR signal and

additive total distortion component, consisting mainly ofcorrelated Gaussian noise. The

outputs of the equalizer are fed to the Viterbi detector, which outputs bit estimates, or

bit decisions, for the entire sector data. These decisions undergo modulation decoding,

which provides estimates of the input to the modulation encoder. These estimates are
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de-interleaved and processed by the RS decoder, which attempts to correct any existing

bit errors and to reproduce the user input.

In the last decade, two additional techniques have improvedthe performance of PRML

systems. One technique combats the effects of noise enhancement and coloration. It

simply whitens the noise component before the noisy samplesare fed into the Viterbi

detector. This involves the addition of an FIR filter at the output of the PR shaping

equalizer. The filter manipulates the correlated noise component as well as the signal

component. It results in noise that is approximately white,but also in a more complex

signal or channel response. The resulting channel model haslonger duration and non-

integer coefficients. Consequently, the Viterbi detector is modified to accommodate the

new channel response, at the cost of increased complexity. The new architecture is called

noise-predictive maximum-likelihood (NPML) detection and is the topic of Chapter 6. In

that chapter, we adapt the ideas that serve as the basis of this method to new and promising

next-generation signal processing and coding techniques.

A second addition to PRML architecture is apost-processingunit. It aims to improve

the performance of the Viterbi detector by detecting and correcting some of the errors

made by the Viterbi detector, before its estimates are sent to the modulation decoder. The

post-processor utilizes both the estimates of the detectorand the noisy outputs of the PR

equalizer. Based on these inputs and on the channel model, the unit infers whether one

of several most likely detection errors has occurred. The addition of a small number of

extra bits to the outputs of the modulation encoder aids the post-processor in evaluating

the actual error events that have occurred.
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3

The Bit Flipping Algorithm for

Run-Length-Limited Constrained

Coding

3.1 Introduction

Digital recording systems commonly use a constrained modulation code to improve

detection reliability. Such a code applies an invertible mapping from arbitrary user-data

sequences into a set of binary sequences that have special properties. The set of permissi-

ble target sequences is defined in terms of aconstraint. One constraint, which has found

widespread use in magnetic and optical recording applications, is therun-length-limited

(d, k) constraint [1], [2]. A binary sequence is a(d, k)-sequenceif it has the follow-

ing two properties: successive ones are separated by at least d zeros and the number of

consecutive zeros does not exceedk. Thed restriction serves to alleviate intersymbol in-

terference and thek restriction assists in timing recovery. Relevant(d, k) pairs range over

all integersd, k, such that0 ≤ d < k ≤ ∞. One can use a labeled directed graph to gen-

erate all possible(d, k)-sequences by reading off the labels along paths in the graph. This

graph is referred to as a(d, k) constraint graph. A graph that produces these sequences

for k <∞ is shown in Figure 3.1.1.

Let Nd,k(n) be the number of distinct(d, k)-sequences of lengthn. The Shannon

29
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Figure 3.1.1 Constraint graph for the(d, k) constraint withd > 0 andk finite.

capacityof a (d, k) constraint is defined as

C(d, k) = lim
n→∞

log2 Nd,k(n)

n
.

The capacity can be computed by applying a more general result derived by Shannon [3].

It was shown (see e.g. [1]) that

C(d, k) = log2 λd,k,

whereλd,k is the largest real eigenvalue of the adjacency matrix of theconstraint graph.

Therefore,λd,k is the largest real root of the characteristic polynomial ofthe matrix

Pd,k(z), which takes the form

Pd,k(z) =

{

zk+1 −∑k−d
j=0 zj , k is finite

zd+1 − zd − 1, k =∞.

It was further shown that for all values ofd andk the capacity exists and thatλd,k ∈ (1, 2)

for all (d, k) pairs such that(d, k) 6= (0,∞).

The idea of constrained coding by insertion of extra bits into an uncoded data stream

was introduced by Lee [4]. Bender and Wolf [5] proposed a modification to Lee’s algo-

rithm which is intended for encoding(d, k)-sequences. Their technique is known as the

bit stuffing algorithm. The bit stuffing algorithm first converts the input sequenceinto a

sequence having different statistical properties. It theninserts additional bits in a manner

that guarantees that the resulting sequences satisfy the(d, k) constraint. Both operations

are invertible so that the input sequence can be reproduced.

Bit stuffing has been used in various applications, such as inthe X.25 protocol, where

it has been used to ensure that the bit pattern of the frame delimiter flag will not appear
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in the data sequence [9]. The emphasis of this work is on finding the most efficient bit

stuffing algorithm in terms of the asymptotical rate that canbe achieved.

It is well known that the maximum possible rate of a constrained code equals the

capacity of the constraint [3]. The most efficient code is thus a code whose rate equals

the capacity. We say that such a codeachieves capacityor is capacity-achieving. Bender

and Wolf [5] showed that the bit stuffing algorithm achieves capacity for all(d, d+1) and

(d,∞) constraints and fails to achieve capacity for all other cases. This leaves room for

improvement wheneverd + 2 ≤ k <∞.

In this chapter, we modify the bit stuffing algorithm by flipping certain bits from the

converted input sequence while the logic of insertion of extra bits remains unchanged. We

name the proposed modification thebit flipping algorithm. We analyze the performance

of both algorithms to obtain the following main results of this chapter (see Section 3.2.4

for the precise statement of Theorem 3.2.6):

Theorem 3.2.6:Let d ≥ 1 andd + 2 ≤ k <∞. Then the bit flipping algorithm achieves

a greater maximum average rate than the bit stuffing algorithm.

Theorem 3.3.1:Let d ≥ 0 andd + 2 ≤ k <∞. Then the bit flipping algorithm achieves

(d, k) capacity if and only ifd = 2 andk = 4.

In Section 3.2, we give an example that motivated the idea of flipping. In this section,

we study in detail both the bit stuffing and the bit flipping algorithms. We devote the

rest of Section 3.2 to establishing a sequence of lemmas needed to prove the performance

improvement (Theorem 3.2.6). In Section 3.3, we characterize all (d, k) constraints for

which the bit flipping algorithm achieves capacity (Theorem3.3.1).

3.2 Improving the Performance of Bit Stuffing by Bit Flip-

ping

In this section, we introduce the bit stuffing algorithm and propose a modification to

it - the bit flipping algorithm. We derive explicit expressions for the asymptotic average

rates of both algorithms. We use these expressions to show that the proposed algorithm

yields a higher average rate than the bit stuffing algorithm for all d ≥ 1 andd + 2 ≤ k <

∞.
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3.2.1 The Bit Stuffing Algorithm

We begin by describing the bit stuffing encoder, which encodes arbitrary data se-

quences into(d, k)-constrained sequences. The encoder consists of the following two

components:

• A binary distribution transformer,

• A constrained encoder.

Assume that the input is a sequence of independent and identically distributed unbi-

ased (i.e., Bernoulli with probability1
2
) random bits. Thebinary distribution transformer

(DT) converts the unbiased sequence into a sequence of independent bits, whose proba-

bility of a 0 is somep ∈ [0, 1] (i.e., Bernoulli with probabilityp). We say that the output

sequence isp-biasedand refer to it as thebiased sequence. We also refer top as thebias.

This conversion can be implemented in a one-to-one manner. Hence we can apply the re-

verse transformation to recover the unbiased data. The asymptotic expected rate of such

a scheme ish(p), whereh(p) = −p log2(p) − (1 − p) log2(1 − p) is the binary entropy

function. A possible method of conversion would be to use theElias code [6, pp. 61-62].

However, this approach was designed for infinite input sequences. One modification to

this idea that applies to finite sequences and can be implemented using a finite precision

arithmetic appears in [7]. A brief overview of other applicable methods appears in the

introduction of Chapter 4 in the context of general (i.e., non-binary) DT’s.

Theconstrained encoder, also referred to as thebit stuffer, inserts extra bits into the

biased sequence in order to avoid possible violations of the(d, k) constraint. It writes the

biased sequence while keeping track of the number of consecutive zeros in the sequence,

called therun length. Once the run length equalsk, the bit stuffer inserts a1 followed

by d 0’s. This guarantees that both thed and k restrictions are satisfied. Whenever

encountering a biased1, the bit stuffer insertsd 0’s so as to satisfy thed limitation. The

inserted bits are also calledstuffed bits. The graph in Figure 3.2.1(a) describes the bit

stuffer, where the edge labels are the output symbols. The stuffed bits are highlighted.

Note that ford > 0 and finitek the bit stuffer is in fact a realization of the graph in

Figure 3.2.1(b), which is similar to the constraint graph inFigure 3.1.1 except for the

edge labels. Here the edge labels represent the probabilities that the next bit will assume
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Figure 3.2.1 Graph description of a bit stuffing encoder for the(d, k) constraint withd > 0

andk finite.

the value0 or 1. If the bit assumes a value of0, then we move to the next state to the

right. If it is a 1, then we return to state0. We will find this graph representation of the

bit stuffer useful in Sections 3.2.2 and 3.2.3.

The decoder is comprised of the corresponding two components, arranged in a reverse

order. The constrained decoder reads the encoded constrained sequence and keeps track

of the run length. Whenever reaching a run length ofk, it deletes thed + 1 stuffed bits

that follow it. If it encounters a1, then it removes the nextd stuffed0’s. This results in the

encodedp-biased sequence, which is then fed into the inverse distribution transformer, so

as to obtain the original unbiased data.

The proposed scheme produces a variable rate code. Its expected rate is the product of

the expected rates of the two components, the first beingh(p) when the code length goes

to infinity. Note that we could directly apply just the bit stuffer component to the unbiased

input data to obtain a(d, k) constrained sequence. However, adding the DT in fact results

in an improved overall average rate. This sheds some light onthe role of the transformer,
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namely to better fit the data to the constraint. To further explain, observe that each1 in

the biased sequence results ind stuffed0’s. On the other hand,k − d consecutive biased

0’s will result in the stuffing of a single1 followed byd 0’s. Thus, ask − d increases we

would expect that fewer1’s in the input sequence will result in fewer stuffed bits. Such

sequences will yield a higher rate in the bit stuffing encoding process. The distribution

transformed sequences have this desired property on average. On the other hand, as we

increase the probability of a0, the rate of the first componenth(p) decreases. Thus, we

need to optimizep in order to maximize the average overall rate. Optimizationis done

numerically due to the complexity of the rate expression. Weshall show in Section 3.2.4

that, as expected, having more0’s than1’s indeed yields a better overall rate for most

cases whered > 0, though this is not always true.

Bender and Wolf [5], [8] analyzed the performance of the bit stuffing algorithm by

deriving an expression for its average asymptotic rate. We limit our discussion to a finite

k and follow the methods of their derivation. We will later show that an infinitek is not of

interest to our work due to the fact that bit stuffing achievescapacity in this case. We start

by modeling the constrained(d, k)-sequences by a one-state constraint graph, depicted

in Figure 3.2.2(a). The edges in our graph represent the allowable runs of consecutive

0’s followed by a1. In order to get a description of the corresponding biased input data

sequences we remove the stuffed0’s and1’s and obtain the graph in Figure 3.2.2(b).

We can now calculate the average rate of the constrained encoder component. Having

assumed that the biased sequence is i.i.d. Ber(p), the average input length is

Lin =
k−d−1
∑

j=0

(j + 1)pj(1− p) + (k − d)pk−d =
1− pk−d

1− p

for all p such that0 ≤ p < 1, and the average output length is

Lout = Lin + d + pk−d.

Therefore, the asymptotic average information rate of the algorithm is

I(p, d, k) =
Lin

Lout
× h(p) =

(1− pk−d)h(p)

1− pk−d+1 + d(1− p)

for all p such that0 ≤ p < 1 andI(p, d, k) = 0 for p = 1.
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Figure 3.2.2 Graph description of a(d, k) constraint where the edge labels are the allow-

able runs.

Bender and Wolf [5], [8] used this expression to obtain a characterization of all cases

where the bit stuffing algorithm is capacity-achieving, i.e., its maximum average rate

equals the capacity of the(d, k) constraint. Their results are summarized in the following

proposition.

Proposition 3.2.1.The bit stuffing algorithm for(d, k) constraints achieves(d, k) capac-

ity for the following cases:

• k = d + 1 for all d ≥ 0

• k =∞ for all d ≥ 0.

It does not achieve capacity for all other values ofd andk.

For the remainingnoncapacity-achieving cases, numerical optimization of the aver-

age rate shows that bit stuffing codes achieve rates that are very close to capacity. Thus,

the algorithm is said to benear-capacity achievingfor these cases. For detailed results

see [8].

3.2.2 Motivating Example - Maxentropic Measure for the(2, 4) Case

In this subsection we demonstrate an example that triggeredthe development of the

bit flipping algorithm. Before we go through the example we need to introduce the notion
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Figure 3.2.3 Edge probabilities for maxentropic(d, k)-sequences.

of themaxentropic measure.

Consider a constraint graph where we assign nonzero probabilities to the labeled edges

leaving each state, thus producing an information source. Aresult by Shannon [3] states

that for any such graph one can always assign certain probabilities to the edges at each

state, such that the resulting constrained sequences have maximum entropy. This set

of probabilities can be computed by formulas that Shannon prescribed and is called the

maxentropic measure. Shannon further showed that this maximum entropy is equal to

the capacity of the constrained system. An encoding scheme is thus capacity-achieving

if it induces a maxentropic measure on its generated constrained output. Applying Shan-

non’s result to(d, k) constraints (see [1] for a complete derivation) yields the probabilities

shown in Figure 3.2.3, whereλd,k = 2C(d,k).

Recently, Wolf [9] proposed a modification to bit stuffing based on Shannon’s result.

He showed that the modified scheme achieves rates that are equal to capacity for all values

of d andk. The idea is to let the bit stuffer realize the maxentropic measure by feeding

it with several distinct biased streams. For example, whenk is finite we have states

d, d+1, · · · , k−1 with two edges exiting from each state, while the other states have only

one exiting edge. Each pair of emanating edges corresponds to a random bit with a certain

bias. The single edges correspond to stuffed bits. Denote the maxentropic probability

when moving from statei to statei + 1 by pi, thenpi = 1 for i = 0, 1, · · · , d− 1, k. We

first “break” the unbiased data intok−d distinct streams, denotedSd, Sd+1, · · · , Sk−1, and

input the streams intok− d different DT’s with biasespd, pd+1, · · · , pk−1. Note that each

stream is fed into exactly one of the transformers. This results in k − d biased streams,

S∗
d , S

∗
d+1, · · · , S∗

k−1, with biasespd, pd+1, · · · , pk−1 respectively. Having multiple biased

streams, the bit stuffer takes a bit from streamS∗
i when in statei. Clearly, the encoded
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Figure 3.2.4 Edge probabilities for the(2, 4) maxentropic measure.

sequences have maximum entropy.

Let us look at the maxentropic measure for the(2, 4) case, shown in Figure 3.2.4.

Denote the probability of moving from state2 to state3 by p∗. It turns out (as will be

confirmed in Section 3.3) that the probability of moving fromstate3 to state4 equals

1−p∗, wherep∗ ≈ 0.5699. This special property suggests that in this case we do not need

two DT’s in order to achieve capacity. We can use a single transformer withPr(0) = p∗

and modify the bit stuffing algorithm to obey the following rule:

• If the current run length equals2 then write the next biased bit.

• If the current run length equals3 then write the complement of the next biased bit,

i.e.,flip the next biased bit before writing.

In other words, flip the biased bit only when in state3.

Recall that bit stuffing does not achieve capacity in the(2, 4) case. Yet, the addition

of bit flipping resulted in a capacity-achieving algorithm in this case. Thus, at least in

this case, a conditional bit flipping improves the performance of bit stuffing with only a

single transformer. This observation motivated us to examine whether we could do better

by flipping in the general case. We generalize the flipping idea and analyze the resulting

algorithm in the subsection to follow.

3.2.3 The Bit Flipping Algorithm

Consider the case wherek is finite andk ≥ d + 2 and letl be an integer such that

d + 1 ≤ l ≤ k − 1. Suppose we run the bit stuffing algorithm using a single DT. We

modify the logic of the bit stuffer in the following manner:
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Figure 3.2.5 Graph description of a possible bit flipping encoder for the(d, k) constraint.

• If the current run length is smaller thanl then write the next biased bit

• If the current run length is greater or equal tol then flip the next biased bit before

writing.

In other words, flip the biased bit starting from statel. The bit flipping algorithmis

illustrated by the constraint graph in Figure 3.2.5.

Four interrelated questions arise. What is the optimal flipping position? For which

constraints can we improve bit stuffing rate by flipping? Can we achieve capacity for

more constraints using flipping? If not, how far from capacity are we? In the rest of this

chapter we settle these four questions. This subsection andSection 3.2.4 deal with the

first two questions. Section 3.3 addresses the latter two.

We first derive an expression for the average rate. When flipping a bit starting from

statel, the average biased input length is

Lin =
l−d−1
∑

j=0

(j + 1)pj(1− p)

+
k−l−1
∑

j=0

(l − d + j + 1)pl−d(1− p)jp

+ (k − d)pl−d(1− p)k−l

=
1− pl−d

1− p
+ pl−d−1(1− (1− p)k−l)

and the average output length is

Lout = Lin + d + pl−d(1− p)k−l.
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The asymptotic overall average rateR(p, l, d, k) is given by:

R(p, l, d, k) =
Lin

Lout

× h(p)

=
h(p)

1 + d+pl−d(1−p)k−l

Lin

=
[pl−d−1(1− 2p− (1− p)k−l+1) + 1]h(p)

pl−d−1(1− 2p− (1− p)k−l+2) + 1 + d(1− p)

for all p such that0 ≤ p < 1 and for alll such thatd+1 ≤ l ≤ k, and byR(p, l, d, k) = 0

for p = 1. Note that the rate of the bit stuffing algorithm, where no flipping occurs, is a

special case of this expression withl = k, i.e.,R(p, k, d, k) = I(p, d, k).

Our main goal is to show that under certain conditions the proposed algorithm can

achieve a better average rate than bit stuffing. However, thenext lemma suggests a more

extensive result. It states that when using a transformer with a bias greater than0.5,

statek − 1, i.e., one state before the last, is always the optimal statefor flipping. A

special case of this result is thatR(p, k, d, k) < R(p, k − 1, d, k) when0.5 < p < 1.

In other words, whenl is set tok − 1, the bit flipping algorithm performs better than bit

stuffing for the constraints given in Lemma 3.2.2. As one can observe in the proof, it is

actually straightforward to prove this special case. Nonetheless, we are looking for the

best possible performance. Moreover, finding that the optimal flipping position is always

k − 1 provides a simple and general formulation of the algorithm,which is independent

of d andk for the considered cases.

Lemma 3.2.2.Letd ≥ 1, d + 2 ≤ k <∞ and0.5 < p < 1. Then

R(p, l, d, k) < R(p, k − 1, d, k)

for all l such thatd + 1 ≤ l ≤ k − 2 or l = k.

Proof. Define

Al =
d + pl−d(1− p)k−l

Lin

=
d + pl−d(1− p)k−l

1− pl−d + (1− p)pl−d−1(1− (1− p)k−l)
(1− p).

Then we can write

R(p, l, d, k) =
h(p)

1 + Al
. (3.2.1)
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Clearly,Al ≥ 0 for all d + 1 ≤ l ≤ k. Therefore,Ai > Aj if and only if R(p, i, d, k) <

R(p, j, d, k). We now show thatAk−1 is strictly smaller than any otherAl. First observe

thatAk−1 < Ak for any0.5 < p < 1, as can be seen directly from the simplified forms

Ak =
d + pk−d

1− pk−d
(1− p)

and

Ak−1 =
d + pk−d−1(1− p)

1− pk−d
(1− p).

In order to prove thatAk−1 < Al for anyd + 1 ≤ l < k− 1 and0.5 < p < 1 it suffices to

show thatAl < Al−1 for anyd + 2 ≤ l ≤ k − 1.

It is easy to verify that the denominators of

Al =
[d + pl−d(1− p)k−l](1− p)

1− pl−d + (1− p)pl−d−1(1− (1− p)k−l)

and

Al−1 =
[d + pl−d−1(1− p)k−l+1](1− p)

1− pl−d−1 + (1− p)pl−d−2(1− (1− p)k−l+1)

are both positive for any0 ≤ p < 1 and anyd + 1 ≤ l ≤ k. Therefore, multiplying the

inequalityAl < Al−1 by the product of the two denominators and dividing by(1− p) we

obtain the following equivalent inequality:

(d + pl−d(1− p)k−l)

·(1− pl−d−1 + (1− p)pl−d−2(1− (1− p)k−l+1))

< (d + pl−d−1(1− p)k−l+1)

·(1− pl−d + (1− p)pl−d−1(1− (1− p)k−l)). (3.2.2)

For any0.5 < p < 1, inequality (3.2.2) reduces to

(1− p)k−l−1[(1− p)d + p(1− pl−d)] < d. (3.2.3)

Now, observe that for any0.5 < p < 1 the expression in the square brackets is a convex

combination ofd and1− pl−d. Also, note that1− pl−d < 1 ≤ d. Hence,

(1− p)d + p(1− pl−d) < d.

Sincel ≤ k − 1 and0.5 < p < 1, we have

0 ≤ (1− p)k−l−1 ≤ 1
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Figure 3.2.6 Graph description of an optimal bit flipping encoder for the(d, k) constraint.

implying that inequality (3.2.3) holds for anyd ≥ 1, l ≤ k − 1, and0.5 < p < 1, as

desired.

Looking at the graph in Figure 3.2.6 we can interpret this result as follows. At each of

the statesd, d + 1, · · · , k− 2, we would rather have a0 and move to the right than have a

1 and move back to state0, where we would have to stuffd > 0 bits. However, this is no

longer the case when at statek− 1. Having a0 will result in d+1 stuffed bits as opposed

to d stuffed bits due to a1. In this case, we prefer to go back to state0 rather than move

to the right, a preference reflected in the bit flipping.

Also, note that this result holds only forp > 0.5 and in fact is not true forp < 0.5.

However, the former suffices for our purposes, as we will showlater that the optimal bias

for bit stuffing is greater than0.5 for all cases considered but one.

3.2.4 Performance Improvement

Recall that the bit stuffing algorithm achieves capacity forthe (d,∞) and(d, d + 1)

constraints for anyd and does not achieve capacity for all other cases. Therefore, there is

room for performance improvement for all(d, k) constraints such thatd + 2 ≤ k < ∞
andd ≥ 0. In this subsection, we prove that the bit flipping algorithmachieves a higher

rate than bit stuffing for most of these constraints.

As mentioned earlier, the result of Lemma 3.2.2 is limited totransformers with a

bias greater than0.5. Since the optimal bias for bit stuffing may be smaller than0.5,

Lemma 3.2.2 does not guarantee that flipping at statek − 1 is superior to bit stuffing.

Because of the complexity of the bit stuffing rate derivative, we cannot find an explicit

form for the optimal bias. Instead, in the next sequence of lemmas we examine the rate

derivative to show that the optimal bias for bit stuffing is indeed greater than0.5 for the
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following (d, k) pairs:

• d + 3 ≤ k <∞ andd ≥ 1

• k = d + 2 andd ≥ 2.

This result together with Lemma 3.2.2 guarantees the performance improvement in these

cases.

Lemma 3.2.3.Let0 < p ≤ 0.5, d ≥ 1 andd + 3 ≤ k <∞, then

dI(p, d, k)

dp
> 0.

Proof. Consider the bit stuffing rate derivative

dI(p, d, k)

dp
=

d
(

(1−pk−d)h(p)
)

dp
f(p)− d

(

f(p)
)

dp
[(1− pk−d)h(p)]

(f(p))2

wheref(p) = 1− pk−d+1 + d(1− p). We denote the derivative’s numerator byI ′
num(p)

and shall show thatI ′
num(p) > 0 for all 0 < p ≤ 0.5, d ≥ 1 andk−d ≥ 3. By rearranging

terms we can rewrite

I ′
num(p) = h(p) ·

[

−(k − d)pk−d−1[1− pk−d+1 + d(1− p)]

+ [(k − d + 1)pk−d + d](1− pk−d)
]

+ dh(p)
dp
·
[

1− pk−d+1 + d(1− p)
]

(1− pk−d).

DefiningA = 1− pk−d+1 + d(1− p), B = (k − d + 1)pk−d + d, andC = 1− pk−d,

we see thatA, B, C > 0 for all 0 < p ≤ 0.5, d ≥ 1, k − d ≥ 3, and

I ′
num(p) = h(p)

[

− (k − d)pk−d−1A + BC
]

+
dh(p)

dp
AC.

Now, dh(p)
dp
≥ 0 ∀ 0 < p ≤ 0.5, implying that dh(p)

dp
AC ≥ 0. Hence, sinceh(p) > 0 we

need only show that

[−(k − d)pk−d−1A + BC] > 0 (3.2.4)
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for the given values ofp, k, andd. Writing the latter expression explicitly and rearranging

terms yields

[−(k − d)pk−d−1A + BC] = pk−d
[

(k − d− 1)(d + 1) + 2− pk−d
]

+ d− pk−d−1(k − d)(d + 1)

> 0.

We distinguish between two cases:k − d ≥ 4 andk − d = 3.

In the first case we use the fact that

(k − d− 1)(d + 1) + 2− pk−d ≥ 3× 2 + 2− 1

16
> 0

hence,

pk−d[(k − d− 1)(d + 1) + 2− pk−d] > 0 ∀ 0 < p ≤ 0.5, d ≥ 1, k − d ≥ 4.

It follows that showing that

d− pk−d−1(k − d)(d + 1) ≥ 0

will guarantee that inequality (3.2.4) holds. Definel = k− d; then, we want to prove that

lpl−1(d + 1) ≤ d or

lpl−1 ≤ d

d + 1
, ∀ l ≥ 4. (3.2.5)

We first consider the derivative of the left-hand side of inequality (3.2.5)

d(lpl−1)

dl
= pl−1 + lpl−1 ln(p) = pl−1

(

1− l ln(
1

p
)

)

.

For any0 < p ≤ 0.5 we have0.693 ≈ ln(2) ≤ ln(1
p
) <∞, which implies thatl ln(1

p
) > 1

and d(lpl−1)
dl

< 0. Consequently, for any0 < p ≤ 0.5 and anyl ≥ 4 we have

lpl−1 ≤ 4p3 ≤ 4p3
∣

∣

∣

p= 1
2

=
1

2
.

The right-hand side of inequality (3.2.5) is lower bounded by 1
2

for all d ≥ 1, yielding

lpl−1 ≤ 1

2
≤ d

d + 1
, ∀ d ≥ 1, l ≥ 4, 0 < p ≤ 0.5.
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In the second case, we assignk− d = 3 in the left-hand side of inequality (3.2.4) and

get

[−(k − d)pk−d−1A + BC] = d[1 + 2p3 − 3p2] + 4p3 − p6 − 3p2.

Since1 + 2p3 − 3p2 is positive for all0 < p ≤ 0.5, then inequality (3.2.4) holds if and

only if 3p2+p6−4p3

1+2p3−3p2 < d. Instead, we show that

3p2 + p6 − 4p3 < 1 + 2p3 − 3p2 (3.2.6)

resulting in
3p2 + p6 − 4p3

1 + 2p3 − 3p2
< 1 ≤ d.

Differentiating both sides of inequality (3.2.6) we observe that for0 < p ≤ 0.5, the left-

hand side is an increasing function ofp and the right-hand side is a decreasing function

of p. Therefore,

3p2 + p6 − 4p3 ≤ [3p2 + p6 − 4p3]
∣

∣

∣

p= 1
2

=
17

64

<
1

2
= [1 + 2p3 − 3p2]

∣

∣

∣

p= 1
2

≤ 1 + 2p3 − 3p2

confirming inequality (3.2.4).

Lemma 3.2.4.Let0 < p ≤ 0.5, d ≥ 2, andk − d = 2, then

dI(p, d, k)

dp
> 0.

Proof. We proceed along the lines of the preceding proof and want to show that

[−(k − d)pk−d−1A + BC] > 0

for the given values ofp, k, andd. For k − d = 2 we need to show thatd(1 − p)2 +

3p2 − 2p− p4 > 0. Now, for0 < p ≤ 0.5 andd ≥ 2 we have the following inequalities:

d(1 − p)2 ≥ d
4
≥ 1

2
, −1

3
≤ 3p2 − 2p < 0 and− 1

16
≤ −p4 < 0. Combining the three

inequalities we conclude that

d(1− p)2 + 3p2 − 2p− p4 ≥ 1

2
− 1

3
− 1

16
> 0.
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We are now ready to conclude that the optimal bit stuffing biasis strictly greater than

0.5 for the above mentioned(d, k) pairs.

Lemma 3.2.5.Let (d, k) satisfy one of the following conditions:

1. d + 3 ≤ k <∞ andd ≥ 1

2. k = d + 2 andd ≥ 2.

Then

max
0≤p≤1

I(p, d, k) = I(p∗, d, k)

for somep∗ ∈ (0.5, 1).

Proof. It is easy to verify that the bit stuffing rate functionI(p, d, k) is continuous inp on

the compact set[0, 1]. Thus, it attains a maximum somewhere in that set. The maximum

must be attained for somep∗ ∈ (0, 1) sinceI(p, d, k) = 0 for p ∈ {0, 1} and is strictly

positive for anyp ∈ (0, 1). The rate derivative exists in the set(0, 1), hence, a necessary

condition for a maximum atp∗ ∈ (0, 1) is that dI(p,d,k)
dp

(p∗) = 0. Lemmas 3.2.3 and 3.2.4

show thatdI(p,d,k)
dp

> 0 for any0 < p ≤ 0.5, thus implying that the maximum is attained

for somep∗ > 0.5.

This result brings us back to our discussion in Section 3.2.1. As said, each1 we

encounter results ind stuffed0’s, while onlyk − d consecutive0’s result ind + 1 stuffed

bits, or d+1
k−d

stuffed bits per biased0. It seems that the asymmetry betweend+1
k−d

andd

determines the best bias. We would expect that wheneverd+1
k−d

< d then inputting fewer

1’s will result in fewer stuffed bits and in a better overall rate. Indeed,d+1
k−d
≤ d if and

only if d > 0 andk − d > 1, with equality only whend = 1 andk − d = 2. For all other

casesd+1
k−d

> d. Thus, a transformer that biases the data towards more0’s (p > 0.5) would

perform better and the optimum is achieved forp > 0.5. The case(1, 3) is not covered

by these arguments but can be analyzed explicitly. Also, note that the optimal bit flipping

bias may differ from the optimal bit stuffing bias. Nonetheless, once bit flipping performs

better than bit stuffing’s best performance, then optimizing the bit flipping rate may even

further improve its performance.

We are finally in a position to state the main result of this section. We show that for

all d ≥ 1 andd + 2 ≤ k <∞, flipping the biased bit at statek− 1 strictly improves upon

bit stuffing.
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Theorem 3.2.6.Let p∗, p∗∗ ∈ [0, 1] be the optimal biases for the bit stuffing and the bit

flipping algorithms, respectively. Then for alld ≥ 1 andd + 2 ≤ k < ∞ the following

holds:

I(p∗, d, k) < R(p∗∗, k − 1, d, k).

Proof. Combining Lemmas 3.2.2 and 3.2.5 we obtain that

I(p∗, d, k) = R(p∗, k, d, k) < R(p∗, k − 1, d, k) ≤ R(p∗∗, k − 1, d, k)

for all d + 3 ≤ k < ∞ andd ≥ 1 and fork = d + 2 andd ≥ 2. It is left to examine

the case of the(1, 3) constraint. In this case, we numerically optimize both algorithms’

rate functions and obtain the following optimal biases and optimal rates:p∗ = 0.4906 and

I(p∗, d, k) = 0.5456 versusp∗∗ = 0.5557 andR(p∗∗, k − 1, d, k) = 0.5501.

The result of Theorem 3.2.6 is reasonable since the asymmetry betweend+1
k−d

andd

still dictates a biasing of the input data towards more0’s. However, the option of flipping

allows for more flexibility when fitting the data to the constraint. It enables us to change

our preference at a certain state. Indeed, when reaching a run length ofk− 1 we can save

a single stuffed bit by having a1 versus a0. Consequently, this changes our preferences

in favor of1’s at this state and the opportunity to do so results in an improved rate.

We would like to point out that the case whered = 0 was not dealt with in Theo-

rem 3.2.6. In this case, it is easy to show that bit stuffing is optimal for p∗ ∈ (0, 0.5)

and that there is no bias for which the bit flipping algorithm can improve on the bit stuff-

ing optimum. This observation agrees with the intuitive reasoning that was given for

Lemma 3.2.5 and Theorem 3.2.6.

3.3 When Does the Bit Flipping Algorithm Achieve Ca-

pacity?

In this section, we characterize the constraints for which the bit flipping algorithm is

capacity-achieving. We shall prove that, as numerical evidence suggests, bit flipping is

capacity-achieving for the(2, 4) constraint. Moreover, we shall find that this is the only
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capacity-achieving case. We conclude with performance results for the(2, 4) case and for

some selected other constraints.

Recall that an encoder for a(d, k) constraint is capacity-achieving if it induces a max-

entropic probability measure on the generated(d, k)-sequences. A well-known property

of thesemaxentropic(d, k)-sequencesis that the probability of a run ofi 0’s followed by

a 1 is equal toλ−(i+1)
d,k . This property follows from results of Shannon [3] and of Zehavi

and Wolf [10]. We use it in the proof of the next theorem, whichoutlines a complete

characterization of capacity-achieving cases.

Theorem 3.3.1.Letd ≥ 0 andd + 2 ≤ k <∞. Then the bit flipping algorithm achieves

(d, k) capacity if and only ifd = 2 andk = 4.

Proof. Let us parse the encoded(d, k)-sequence into a concatenation of (possibly empty)

runs of 0’s followed by a single1. Let Xi be a random variable denoting the length

of the i’th phrase in the parsed sequence. As mentioned earlier, thebit flipping algo-

rithm achieves capacity if and only if it generates maxentropic (d, k)-sequences. These

sequences must satisfy the following properties [1], [3], [10].

1. TheXi’s are i.i.d.

2. Pr(X = i) = λ−i
d,k, whereλd,k = 2C(d,k).

We start with the case whered + 2 < k <∞ and then proceed to deal withk = d + 2.

We now use the bit flipping graph description in Figure 3.2.6 for d + 2 < k < ∞ in

order to translate these optimality properties to the following set ofk − d + 1 equations














Pr(X = i) = pi−d−1 × (1− p) = λ−i
d,k

Pr(X = k) = pk−d−1 × p = λ−k
d,k

Pr(X = k + 1) = pk−d−1 × (1− p) = λ
−(k+1)
d,k

whered + 1 ≤ i ≤ k − 1. The firstk − d− 1 equations yield

Pr(X = i + 1)

Pr(X = i)
= p =

1

λd,k
∀ d + 1 ≤ i ≤ k − 2. (3.3.1)

Dividing the equation fori = k by the equation fori = k − 1 yields

Pr(X = k)

Pr(X = k − 1)
=

pk−d

pk−d−2(1− p)
=

p2

1− p
=

1

λd,k
. (3.3.2)
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Combining (3.3.1) and (3.3.2) we have

p2

1− p
=

1

λd,k

= p

⇔ p(2p− 1) = 0

⇔ p = 0 or p =
1

2
.

Sincep = 0 results in zero entropy and zero rate then we are left withp = 1
2
. However,

p = 1
2

impliesλd,k = 2, which contradictsk being finite. Consequently, the bit flipping

algorithm can never achieve capacity whend + 2 < k <∞.

We now refer to the graph in Figure 3.2.6 as it appears for the special case ofk = d+2.

An argument similar to that at the beginning of the proof shows that the bit flipping

algorithm achieves capacity if and only if the following three equations hold:














Pr(X = d + 1) = 1− p = λ
−(d+1)
d,k

Pr(X = d + 2) = p× p = λ
−(d+2)
d,k

Pr(X = d + 3) = p× (1− p) = λ
−(d+3)
d,k .

The first two equations reduce to







p = 1− λ
−(d+1)
d,k

p = λ
−

(d+2)
2

d,k

⇔ 1− λ
−(d+1)
d,k = λ

−
(d+2)

2
d,k

⇔ λd+1
d,k − λ

d
2
d,k − 1 = 0.

We now substitute the two expressions we have forp into the third equation and get

λ
− (d+2)

2
d,k × λ

−(d+1)
d,k = λ

−(d+3)
d,k

⇔ λ
−(d+3)
d,k × [1− λ

− d
2
+1

d,k ] = 0

⇔ λd,k = 0 or λ
− d

2
+1

d,k = 1.

Sinceλd,k ∈ (1, 2) we are left withλ
− d

2
+1

d,k = 1, which requires−d
2

+ 1 = 0 or d = 2.

Consequently, the bit flipping algorithm produces a capacity-achieving code if and only

if d = 2, k = d + 2 = 4 andλd,k is a root ofzd+1 − z
d
2 − 1.
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Table 3.3.1 Simulation results for optimal performance of bit stuffing versus bit flipping

for some(d, k) constraints.

Bit Stuff Bit Stuff Bit Flip Bit Flip Bit Stuff Bit Flip

Constraint Avg. Optimal Avg. Optimal Capacity Avg. Rate Avg. Rate

Rate Bias Rate Bias Capacity Capacity

(1,3) 0.5456 0.4906 0.5501 0.5557 0.5515 98.94% 99.76%

(1,4) 0.6103 0.5275 0.6157 0.5628 0.6175 98.83% 99.71%

(1,7) 0.6754 0.5831 0.6779 0.5928 0.6792 99.44% 99.81%

(2,4) 0.4006 0.5206 0.4057 0.5699 0.4057 98.74% 100.00%

(2,5) 0.4579 0.5634 0.4638 0.5930 0.4650 98.47% 99.74%

(3,6) 0.3680 0.5845 0.3730 0.6097 0.3746 98.24% 99.57%

(4,8) 0.3364 0.6320 0.3403 0.6480 0.3432 98.02% 99.16%

(5,9) 0.2914 0.6434 0.2946 0.6577 0.2978 97.85% 98.93%

It remains to show thatλd+1
d,k −λ

d
2
d,k − 1 = 0 in the(2, 4) case, i.e.,λ3

2,4−λ2,4− 1 = 0.

Recall thatλd,k is the largest real root of the characteristic polynomialPd,k(z), which for

a finitek takes the form

Pd,k(z) = zk+1 −
k−d
∑

j=0

zj .

Whend = 2 andk = 4 we can factorP2,4(z) and write it as

P2,4(z) = z5 − z2 − z − 1 = (z3 − z − 1)× (z2 + 1).

Sinceλd,k is real, then it must be a root ofz3 − z − 1, which completes the proof.

For the remaining non capacity-achieving cases we can numerically optimize the rates

of both algorithms. Table 3.3.1 shows optimal average ratesfor the bit stuffing and the

bit flipping algorithms for a number of constraints. Also shown are the corresponding

optimal biases (i.e., the probability of a0), the capacity of each constraint and the relative

performance of the algorithms.

Acknowledgment. This chapter is in part a reprint of the material in the papers: S. Aviran,

P. H. Siegel, and J. K. Wolf, “An improvement to the bit stuffing algorithm,” in Proc.
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4

Optimal Parsing Trees for Run-Length

Coding of Biased Data

4.1 Introduction

In constrained-code design, one typically models the unconstrained user-data as a

stream of independent and equiprobable bits (i.e., Bernoulli random bits withPr(0) =

Pr(1) = 1
2
). An important, but not the only, design goal is converting such inputs into

constrained sequences with high efficiency. As in the previous chapter, efficiency relates

to asymptotic encoding rates and the emphasis of our work is on designing efficient(d, k)-

codes.

The central theme of this chapter is twofold: a study of prior(d, k)-code constructions

from a source coding perspective and the construction of new(d, k)-codes based on vari-

able input-length source codes. The idea of constructing(d, k)-codes from source codes

is not new. Numerous previous constructions have arisen from the following duality be-

tween constrained coding and source coding. One first modelsthe constrained stream as

a structured source from which redundancy can be removed to form unconstrained and

nearly Bernoulli(1/2)-distributed output. By reversing a source encoder-decoder pair,

the decoder of a suitable source code is used to encode unconstrained Bernoulli(1/2)-

distributed input into constrained sequences, in a recoverable manner. Applications to

(d, k)-code design include the adaptation of arithmetic coding techniques [1], [2], [3],
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pioneered by Martin, Langdon, and Todd. An interesting workby Kerpez [4] derives

three(d, k)-codes from a Huffman code [5], a Tunstall code [5], [6], and an enumerative

code [7]. The rates of the four above-mentioned constructions were shown to converge

to the(d, k) capacity with increasing block length [4]. A principle common to all meth-

ods is that the choice of source code is guided by the special properties ofmaxentropic

(d, k)-sequences. As mentioned before, such sequences are desirable as they correspond

to maximizing the constrained-code rate [8]. It is well-known [8], [9] (see also Chapter 3)

that they can be parsed into a concatenation of binary strings from a predefined set of size

M = k− d + 1, where the strings are statistically independent and identically distributed

(i.i.d.). The source code then serves as adistribution transformerbetween an i.i.d.M-ary

maxentropic source and an i.i.d. Bernoulli(1/2) source. The corresponding(d, k)-code

simply applies the inverse transformation so as to induce a maxentropic distribution on

the output.

An alternative design approach emerges from the literatureon lossless coding of

i.i.d. sources for transmission over noiseless, memoryless channels with unequal symbol-

transmission costs. One can accommodate(d, k)-codes into this framework by modeling

(d, k)-sequences as the outputs of a special memoryless channel [10]. This approach is

closely related to our work and is much less investigated. Existing literature is mainly

concerned with two types of source codes: fixed-to-variablelength and variable-to-fixed

length, the latter being sparsely studied [5]. The most relevant work of the first type

is a recent algorithm by Golin and Rote [11], which efficiently finds a prefix-code of

minimum average transmission cost per source symbol when the costs are integers. An

application to(d, k)-codes is straightforward and appears in the paper. As for the second

type, Lempel, Even, and Cohn [12] derived an algorithm for constructing a prefix-free

code of minimum average transmission cost per source symbolwhen the source symbols

are equiprobable. Section 4.3 in this chapter provides moredetails on this method, in

the context of(d, k) constraints. It is interesting to note that both papers do not view the

problem from an information-theoretic standpoint, but rather treat it from a combinatorial

optimization perspective. As such, they are not concerned with maxentropic distributions.

Our work relates to(d, k)-codes of the second type, but relaxes the equiprobable source

assumption.
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This work builds upon three prior(d, k)-code constructions: thebit stuffing, bit flip-

ping, andsymbol slidingalgorithms. Recall that in Chapter 3, we showed that a simple

modification to the bit stuffing algorithm can achieve improved average rates for most

(d, k) constraints. In a following work, Sankarasubramaniam and McLaughlin [13], [14]

generalized both bit stuffing and bit flipping into an improved code construction, called

the symbol sliding algorithm. One of their key insights in [13] was an interpretation of

bit stuffing and bit flipping as applying bijective mappings between two distinct predeter-

mined sets of binary strings. Symbol sliding is essentiallyan adjustment of the mapping

to obtain further improved rates. Indeed, they demonstraterate gains over bit flipping for

several constraints and prove that symbol sliding additionally achieves capacity for all

(d, 2d + 1) constraints.

The constructions we consider here have a distinctive characteristic - a binary DT as

a first encoding step. Although one can directly(d, k)-encode the standard equiprobable

input, it turns out that the introduction of a bias into the data is key to achieving improved

asymptotic rates (see Chapter 3 and [13]). Intuitively speaking, this transformation better

conforms the data to the characteristics of maxentropic(d, k)-sequences [13]. This in

turn leads to improved rates at the constrained encoding step and to improvedoverall

rates. It is important to note that the binary DT is a special case of general distribution

transformers, such as the ones introduced by Kerpez [4] and others [1]. In fact, some of

the above-noted methods can be readily applied to the binarycase, where a Bernoulli(p)

distribution replaces theM-ary maxentropic one. Hence, a direct transformation to a

maxentropic distribution has a similar implementation to ascheme that uses a binary

DT. Still, the schemes presented here provide alternative methods of approximating a

maxentropic distribution. Since they perform the actual constrained coding on a biased

source, the challenge is to approximate the target distribution with this non-conventional

source, while using simple techniques. This is, in a sense, joint source and constrained

coding.

In this work, we first examine bit stuffing, bit flipping and symbol sliding from a

source coding viewpoint. This new perspective has motivated us to extend them into a

general framework for constructing(d, k)-codes from variable-length source codes. We

first put the framework in the context of relevant source coding literature. We next demon-
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strate that it gives rise to new code constructions which further improve upon the three

aforementioned algorithms. This prompts us to search for optimal codes under the gen-

eral framework, optimal in the sense of maximal achievable asymptotic rates. Never-

theless, finding such codes is a complex and difficult problem. We therefore resort to

studying a simplified related problem, where we seek an optimal (d, k)-code for an i.i.d.

Bernoulli(p)-distributed source. In this case, some interesting properties of optimal(d, k)-

codes arise, leading to a simplified solution for a partial class of(d, k) constraints. The

solution makes use of the Tunstall algorithm [15], which wasoriginally developed to

generate optimal variable-to-fixed length source codes.

The rest of the chapter is organized as follows. The symbol sliding algorithm is re-

viewed in Section 4.2. In Section 4.3, we outline a framework, taken from the source

coding literature, for variable-length codes for noiseless memoryless channels with arbi-

trary transmission costs. Here, we introduce notations andbasic source coding concepts

as well as survey relevant algorithms and results. Section 4.4, which is the essence of

the chapter, is devoted to studying(d, k)-codes that are based on variable-length source

codes. We conclude in Section 4.5 with some related open problems and with a discussion

of the core differences between the various constructions.

4.2 Background: the Symbol Sliding Algorithm

The work presented in this chapter was inspired by the recently suggested interpre-

tation of bit stuffing and bit flipping and by their generalization to the symbol sliding

algorithm [13]. In this section, we describe the above-mentioned interpretation and re-

view the symbol sliding algorithm.

Recall that for a finitek, any(d, k)-sequence can be viewed as a unique concatenation

of strings, each string corresponding to an allowable run ofconsecutive0’s followed by a

1. LetΓd,k = {0d1, 0d+11, · · · , 0k−11, 0k1} be the set of pertinent strings, where0t stands

for a run oft consecutive0’s. Throughout the chapter, we refer to the strings inΓd,k as

constrained phrases. Note that whenk = ∞, there exists an equivalent description that

uses strings fromΓd,∞ = {0, 0d1}.
Let us start by taking a closer look at the bit stuffer. Consider its graphical description
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Figure 4.2.1 Graph description of a bit stuffer for a(d, k) constraint withd > 0 andk

finite.

in Figure 4.2.1, and suppose that we start at state zero. We next stuff d 0’s and progress

to stated, from which we continue walking on the graph by reading thep-biased bits. At

some point, after reading at least one and at mostk − d bits, we return to the zero state,

thus completing a cycle on the graph. Encoding continues while repeatedly completing

cycles at the zero state. By observing that the output generated at each cycle corresponds

to one of the constrained phrases inΓd,k, it is possible to associate segments of thep-

biased input stream with each of these phrases. By inspecting the graph, one can see

that the bit stuffer associates thek − d + 1 input strings that are listed in Figure 4.2.2

with the various constrained phrases, according to the mapping that is specified by the

arrows in the figure. To further illustrate these input-output relations, we distinguished

the biased input bits from the stuffed bits by highlighting the latter. Figure 4.2.2 also lists

the probability of occurrence of each of the input strings asa function of the biasp. The

generated constrained phrases are statistically independent and obey the same distribution

P d,k
BS (p) =

{

1− p, p(1− p), · · · , p(k−d−1)(1− p), p(k−d)
}

, (4.2.1)

where positioni (0 ≤ i ≤ k − d) represents the probability of the phrase0d+i1. At this

point, we note that these relations were demonstrated earlier in Chapter 3 by the one-state

constraint graph in Figure 3.2.2.

A similar interpretation of the bit flipping algorithm is demonstrated in Figure 4.2.3.

First observe that bit stuffing and bit flipping operate identically on the topk − d − 1

input strings. The algorithms differ in the constrained phrases that they associate with

each of the two input strings on the bottom. The flipping of thebit at statek−1 translates

into a switching between the two associated phrases. More precisely, the longest phrase

0k1 is now associated with the input0k−d−11, whereas the second longest phrase0k−11
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Figure 4.2.2 The bit stuffer induces a mapping between a set of input words and the set

of (d, k)-constrained phrases.

is associated with the input0k−d. The algorithm is specified by the modified associations

between the two leftmost lists in Figure 4.2.3. This modification has only one effect on the

generated(d, k)-sequences - it changes the distribution that is induced on the constrained

phrases. The two longest phrases exchange their probability of occurrence, as illustrated

by the right-hand side of Figure 4.2.3.

With this interpretation in mind, we now try to explain the rate improvements gained

by bit flipping, as stated in Theorem 3.2.6. We first remind thereader of the statistical

characteristics of capacity-achieving(d, k)-encoders, which produce maxentropic(d, k)-

sequences. As we will soon show, analysis of such encoders can guide us in improving

the performance of existing encoding algorithms, such as bit stuffing. As we have noted in

Chapter 3 (see Section 3.3), the output of capacity-achieving encoders has the following

properties:

1. The constrained phrases are statistically independent and identically distributed.

2. The probability of a constrained phrase of lengthi is equal to2−iC(d,k), or equiva-

lently, toλ−i
d,k.

Following [13], we denote the maxentropic distribution of the constrained phrases as the

vector

Λd,k =
(

λ
−(d+1)
d,k , λ

−(d+2)
d,k , · · · , λ−(k)

d,k , λ
−(k+1)
d,k

)

. (4.2.2)
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Figure 4.2.3 Bit flipping corresponds to switching between the probabilities of the two

longest constrained phrases.

An apparent property ofΛd,k is the positive correlation between a phrase’s length and

its scarcity. Next, we find whether this property also holds for the bit-stuffing induced

distributionP BS
d,k (p).

Suppose we run the BS algorithm with a biasp that is greater than0.5. This is

a reasonable assumption given that the optimum is often attained in the range(0.5, 1)

(see Lemma 3.2.5). Comparing the bit-stuffing phrase probabilities with the maxen-

tropic probabilities, we see that the firstk − d bit-stuffing probabilities mimic the above-

described behavior of the maxentropic probabilities, thatis, longer phrases are less fre-

quent. The only exception is the last probability, which satisfiesp(k−d) > p(k−d−1)(1− p)

with respect to the probability preceding it, as opposed toλ
−(k+1)
d,k < λ

−(k)
d,k . In their

paper [13], Sankarasubramaniam and McLaughlin notice thatbit flipping is essentially

switching between the positions of the last two probabilities. This leads them to view

bit flipping as altering the bit-stuffing induced distribution so as to alleviate the discrep-

ancy between the generated and the maxentropic phrase distributions. They argue that

the modified distribution provides a better match toΛd,k than the initial distribution, and

attribute the rate gains whenp > 0.5 (see the special case of Lemma 3.2.2 whenl = k)

to the improved match.

Is it possible to extend the idea of phrase-probability switching to obtain further im-

proved rates? Sankarasubramaniam and McLaughlin raise this question and suggest the

symbol slidingalgorithm as a construction that results in improved rates for many con-
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straints. The guiding principle of construction is to improve the matching to the maxen-

tropic vectorΛd,k. The algorithm obtains this goal by altering the associations between

the constrained phrases and the bit-stuffing input words, resulting in the switching of cer-

tain phrase probabilities.Symbol sliding with indexj, denoted bySS(j), corresponds to

sliding p(k−d) up by j positions, while pushing each ofp(k−d−j)(1 − p), p(k−d−j+1)(1 −
p), · · · , p(k−d−1)(1 − p) down by one position. Figure 4.2.4 illustrates the modified as-

sociations as well as the new induced distribution that are involved inSS(j). It easily

follows from the preceding discussion that BS and BF are special cases of symbol sliding

with indicesj = 0 andj = 1, respectively.

In practice, one can implement a symbol sliding encoder withindexj by replacing the

bit stuffer with a component that performs the following procedure on the biased input

stream.

• If j = 0, then run thebit stuffingalgorithm.

• If j = 1 andd + 2 ≤ k <∞, then run thebit flippingalgorithm.

• If 2 ≤ j ≤ k − d andd + 2 ≤ k < ∞, then initialize by writingd consecutive

0’s. Continue by writing the biased stream while keeping track of the run length

of 0’s in theencoded stream. In parallel, perform the following operations on the

encoded stream:

1. When encountering a biased1, insertd 0’s.

2. Once the run length equalsk − j, insert a0.

3. Once the run length equalsk + 1, replace thek + 1 consecutive0’s (including

the inserted0 at a run length ofk − j) with the string0k−j10d.

At the decoder, the biased stream is recovered by inverting the operations of the encoder.

Whenj = 0, 1, the decoder is simply the BS or BF decoder, respectively. Otherwise, we

treat the case where2 ≤ j ≤ k − d − 1 and the case wherej = k − d differently, as

described below.

• If 2 ≤ j ≤ k − d − 1, discard the firstd 0’s in the constrained stream and set the

run length to0. Scan the rest of the stream while keeping track of the run length

and applying the following two operations.
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Figure 4.2.4 Symbol sliding with indexj corresponds to slidingp(k−d) up byj positions,

while pushing each ofp(k−d−j)(1 − p), p(k−d−j+1)(1 − p), · · · , p(k−d−1)(1 − p) down by

one position.

1. When encountering a1, remove the nextd 0’s and set the run length to0.

2. If the run length equalsk− d− j and the next bit is0, discard the0 bit. If the

run length equalsk − d− j and the next bit is1, replace the string0k−d−j10d

with the string0k−d and set the run length to0.

• If j = k− d, discard the firstd 0’s in the constrained stream and check the value of

the next bit. If it is0, discard it. Otherwise, insertk − d consecutive0’s beforeit.

Perform the following two scans consecutively.

Scan 1 When encountering a1, remove the nextd 0’s and check the value of the

next bit. If it is 0, discard it and resume scanning, starting at the next bit. Ifit

is 1, insertk− d consecutive0’s beforeit and resume scanning, starting at the

current1 (i.e., move the scanner pointer to this bit and repeatScan 1).

Scan 2 Scan the output ofScan 1. Whenever encountering a1 afterk − d con-

secutive0’s, remove the1.

We have seen that both BS and BF are special cases of symbol sliding. It follows

from Proposition 3.2.1 and Theorem 3.3.1 that symbol sliding achieves capacity for all

(d, d + 1) and (d,∞) constraints, as well as for the(2, 4) constraint. The following

proposition extends the capacity-achieving property of symbol sliding to an additional
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class of(d, k) constraints, namely, the class of(d, 2d + 1) constraints [13].

Proposition 4.2.1.Let 0 ≤ d + 2 ≤ k < ∞ and2 ≤ j ≤ k − d. The symbol sliding

algorithm with indexj achieves(d, k) capacity if and only ifk = 2d+1 andj = k−d =

d + 1.

Proposition 4.2.1 further states that there are no other constraints for which symbol

sliding achieves capacity. Nevertheless, for all remaining constraints, symbol sliding in-

troduces the sliding indexj as an additional parameter to optimize. This provides more

flexibility in fitting the resulting distribution to the maxentropic target distribution, com-

pared to the rate optimization of BS and BF. Numerical optimization results that are re-

ported in [13] demonstrate that symbol sliding indeed improves over BS and BF for some

constraints, yet not for all. Since optimization is essentially performed jointly overp

andj, it is important to note the following proposition, which identifies certain relations

between the bias and the sliding index [13].

Proposition 4.2.2.Let 0 ≤ d < k < ∞. Then for0 < j ≤ k − d, the average rate of

SS(j) is greater than the average rate ofSS(j − 1) if and only ifpj + p > 1.

Unfortunately, Proposition 4.2.2 does not suffice to deducethe superiority of a certain

sliding index for a given(d, k) constraint, as is established by Theorem 3.2.6 for the bit

flipping algorithm (i.e., forj = 1). It is only possible to infer that ifSS(j − 1) is optimal

for a biasp such thatpj + p > 1, then the optimizedSS(j) will outperform the optimized

SS(j − 1). The difficulty thus is in determining the range in which the optimal bias of

SS(j − 1) falls. Proposition 4.2.2 does, however, provide some insight into the jointly

optimal values by implying the optimal sliding index forp. Specifically, it follows from

the proposition thatSS(j⋆) maximizes the rate at a biasp if and only if 1 − p ≤ pj⋆ ≤
(1−p)/p. Equivalently, the optimal indexj⋆ must satisfy the conditionp(k−d−j⋆)(1−p) ≤
p(k−d) ≤ p(k−d−j⋆−1)(1 − p), which is indicative of the relations between the optimally-

shuffled constrained-phrase probabilities. In other words, the best performance is attained

when positioningpk−d in a location such that the induced probabilities form a decreasing

series, as illustrated in Figure 4.2.5. Recall that this is also the case with the maxentropic

probabilities. The reason for pointing this out at this stage is that it will prove relevant to

the different perspective on symbol sliding we present in Section 4.4.1.
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Figure 4.2.5 The optimal sliding index,j⋆, depends onp and satisfiesp(k−d−j⋆)(1− p) <

p(k−d) < p(k−d−j⋆−1)(1− p).

4.3 Preliminaries: Variable-Length Source Codes for

Noiseless and Memoryless Channels

Consider the system depicted in Figure 4.3.1. A memoryless binary information

source producesp-biased sequences for a given biasp. The sequences are to be trans-

mitted over a memoryless, noiseless channel which admits analphabet ofK symbols

Σ = {α1, α2, . . . , αK}. Each channel symbolαi has an associated transmission cost

ci. For notational convenience, we assume that the channel symbols are given ordered by

nondecreasing cost, i.e.,c1 ≤ c2 ≤ · · · ≤ cK . An encoder converts thep-biased binary se-

quences intoK-ary channel-admissible sequences by parsing the input stream into binary

strings, hereafter calledsource words, and by replacing each source word with a channel

symbol. A coding scheme of this type uses acode, which can be thought of as a dictio-

nary withK entries that correspond to each of the source words in a predetermined set

W = {w1, w2, · · · , wK}. The parsing step partitions the input stream into a concatenation

of words from the dictionaryW . The code additionally specifies a bijective assignment of

theK channel symbols to the words inW . The replacement step replaces each dictionary

string with its assigned channel symbol. Thus, a code has twoparameters: a set of source
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Figure 4.3.1 Block diagram of a system for variable-length encoding ofp-biased se-

quences for transmission over a memoryless, noiseless channel.

wordsW and an assignmentf : W → Σ of the output channel symbols to the input

source words. Throughout the remainder of this chapter, we restrict our attention to codes

that use exhaustive and prefix-free source-word sets. Whereas exhaustivity is required to

guarantee the parsing of any input stream, the prefix property, which leads to unique pars-

ing and encoding without delay, is not necessary for the assurance of unique decodability

of the input. Word-sets that are exhaustive and prefix-free are said to becomplete.

When studying prefix-free word sets, it is convenient to workwith their tree repre-

sentations. Specifically, there is a well-known bijection between complete word sets and

complete labeled trees. Such trees are also calledparsing treesin the source-coding lit-

erature [5]. In the sequel, we will deal mostly with binary parsing trees, in which each

internal node has exactly two children. We shall label the left branch with a0 and the

right branch with a1. Each leaf node corresponds to the binary string that is readoff

the labels along the path from the root to the leaf. If a treeT represents a word set

W = {w1, w2, · · · , wK}, then we shall use the notationT = {w1, w2, · · · , wK}. To de-

scribe a codef : W → Σ on the tree descriptionT of the word setW , we simply label the

K leaves according to the assignment specified byf . In particular, we list the codewords

w1, · · · , wK in a vectorV = (v1, v2, · · · , vK), wherevi corresponds to the wordwj such

thatf(wj) = αi. In light of the assumption thatc1 ≤ c2 ≤ · · · ≤ cK , the labelingV lists

the source words in a nondecreasing order of their associated transmission costs. Here-

after, we shall refer to a codef : W → Σ by specifying the tree-representation parameter

pair (T, V ). Figure 4.3.2 illustrates five trees which represent all complete word sets of

size4. It also shows leaf labels that correspond to different codes defined on these trees.

Suppose that we are parsingp-biased sequences into words from a given parsing
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Figure 4.3.2 Tree representations of all five complete word sets of size4, together with

leaf labelings that correspond to codes defined on these wordsets, and with the code-

induced distributions.

tree T = {w1, w2, · · · , wK}, and that we are encoding the words using a codeV =

(v1, v2, · · · , vK). In this case, we can compute the asymptotic probability distribution that

is induced on the source-word sequences as well as on the channel-symbol sequences. The

zero-memory and stationarity of the binary input extends toboth sequences. Hence, one

can fully characterize their statistics by specifying a probability distribution on the set of

source words and on the set of channel symbols. It is easy to see that if a wordvi consists

of li 0’s andri 1’s, then it occurs with probabilityPr(vi, p) = pli(1−p)ri . Clearly, the asso-

ciated channel symbolαi occurs with the same probability. We call the arising distribution

the code-induced distributionand denote it byPT,V (p) = (P (v1), P (v2), . . . , P (vK)),

whereP (vi) representsPr(vi, p). The distributions that are induced by the codes in Fig-

ure 4.3.2 appear below each tree.

Throughout this work, the parameter of interest is theasymptotic average information

rateof a code(T, V ), defined as the asymptotic expected input-message length per unit of

transmission cost. In our setting, we can formulate the asymptotic expected input length

as

LT,V (p) =
∑

vi∈V

P (vi) · L(vi),

whereL(vi) stands for the length ofvi. The corresponding expected transmission cost

can be expressed as

CT,V (p) =
∑

vi∈V

P (vi) · ci (4.3.1)
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and the code rate is given by

RT,V (p) =
LT,V (p)

CT,V (p)
=

∑

vi∈V P (vi) · L(vi)
∑

vi∈V P (vi) · ci
. (4.3.2)

A natural problem of interest is finding a code that maximizesthe rate for a given fixed

p. Such a code is said to beoptimal. Although this problem is mentioned in the literature

(see [5] and [12]), to the best of our knowledge, it has not been treated in its general

form. Nonetheless, we point out two special cases of the problem that were previously

addressed and solved. In both cases, the solution takes the form of an algorithm that

constructs an optimal tree.

Lempel, Even, and Cohn [12] studied the case where the input is restricted to unbiased

sequences, and thus the code-induced distribution is dyadic. Their algorithm is based on

an adaptation of the principle underlying the well-known Huffman algorithm. More pre-

cisely, an optimum code exists in which the two most costly symbols are assigned to two

source words which are of maximal (and identical) length anddiffer only in the last bit.

A tree is then constructed from the bottom up by successivelymerging the corresponding

sibling leaves into a leaf that represents a new channel symbol, whose cost is a function of

the merged-symbols costs. However, unlike the Huffman technique, such a construction

does not necessarily result in an optimal tree. Instead, oneneeds to iterate over a sequence

of tree constructions, while improving the merging cost function between iterations. The

resulting tree sequence is guaranteed to converge to an optimal tree. Unfortunately, this

algorithm relies on key properties of optimal trees that do not hold in the general case

of p-biased input. Hence, a straightforward adaptation does not seem to solve the gen-

eral problem. We are unaware of any other reported attempts to tackle either the general

problem or this special case.

The second special case relates to the minimization of the compression ratio of variable-

to-fixed length codes, and is more extensively documented inthe source coding literature.

A variable-to-fixed length (VFL) code partitions anM-ary source sequence into a con-

catenation of variable-lengthM-ary source words that are encoded into uniform-length

codewords, possibly defined on a differentD-ary alphabet. Under the assumption of a

memoryless and stationary source, which is ruled by a probability distribution P , the
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compression ratio for this class of codes takes the form

RT (P ) =
m

∑

wi∈T P (wi) · L(wi)
,

wherem is the common length of all output codewords andT is the parsing tree used

by the code. Note that the compression ratio is independent of the specific codeword

assignment that the VFL code applies. The optimization problem thus reduces to finding

the parsing tree that maximizes the expected parse-string length

LT (P ) =
∑

wi∈T

P (wi) · L(wi).

One can now easily derive the binary (i.e.,M = 2) version of this problem from the

general problem by assigning a constant cost to all channel symbols (ci = c for all 1 ≤
i ≤ K).

In [15], Tunstall provided a simple procedure to construct an M-ary parsing tree

which maximizesLT (P ) for a memoryless source with a given probability distributionP

and for any valid parsing tree sizeK. The idea is to grow the tree from the top down

by successively extending it along the leaf of largest probability. More formally, let

us denote the source alphabet byS = {s1, s2, · · · , sM} and its letter probabilities by

P = {p1, · · · , pM}; then, the following algorithm produces an optimal parsingtree.

Tunstall’s Algorithm

1. Initialize: letT = S = {s1, s2, · · · , sM} be the tree containing the root and its

M children. The leaves ofT correspond to each of theM source letters and their

respective probabilities are listed inP .

2. If T hasK leaves then stop, else perform the following operations onT :

• Select a leafwi ∈ T with maximal probability and add itsM children to

the tree (equivalently, replacewi with its M single-letter extensionswis1,

wis2,· · · ,wisM ),

• Compute the leaf probabilities for the extended tree.

Go to step 2.
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Numerous papers investigated the performance and properties of Tunstall codes under

the source model assumptions made above (a comprehensive survey and a list of refer-

ences appear in [5]). A particularly interesting perspective on these codes follows from a

result by Jelinek and Schneider [6]. They show that

H(T ) = H(P ) · LT (P ), (4.3.3)

whereH(P ) = −
∑

1≤i≤M pi log2 pi is the source entropy and

H(T ) = −
∑

wi∈T

P (wi) log2 P (wi)

is the entropy of the tree-induced distribution. As pointedout by Abrahams [5], this

implies that the Tunstall tree maximizes the entropy of the latter distribution among all

parsing trees. Additionally, it minimizes the measure

∑

wi∈T

P (wi) log2

(

P (wi)

qi

)

(known as the Kullback-Leibler distance), with respect to auniform distributionQ =

{q1, · · · , qK} = { 1
K
}Ki=1 [5]. Thus, we can think of this technique as attempting to gener-

ate fixed-length codewords which are fairly close to being equiprobable [5], [16].

In the general case, one can analogously show that the maximum-rate code also min-

imizes a “distance” measure defined by

D(T, Q) =

∑

wi∈T P (wi) log2 qi
∑

wi∈T P (wi) log2 P (wi)
, (4.3.4)

with respect to a given distributionQ = {q1, · · · , qK} = {2−C·ci}Ki=1 [5]. Here,C stands

for the Shannon capacity of the memoryless channel [8] and isgiven byC = log2 X,

whereX is the largest real root of the channel’s characteristic equationX−c1 + X−c2 +

· · · + X−cK = 1. The distributionQ is the familiar maxentropic distribution of the

channel [8]. We also note that the reduction of the problem from maximizing (4.3.2) to

minimizing (4.3.4) follows from (4.3.3) and from a divisionof (4.3.2) by−C. Intuitively,

we seek to best approximate the channel’s capacity-achieving distribution with a leaf-

distribution of a parsing tree. The criterion for proximityis (4.3.4).

Finally, in the next section, we focus on another related problem which arises in the

context of the bit-stuffing approach. We remind the reader that the bit stuffing and the
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Figure 4.3.3 Block diagram of a variable-length encoding system with a binary distribu-

tion transformer for memoryless, noiseless channels.

other algorithms presented here operate on unbiased sequences and rely on the availability

of a DT, with the flexibility of properly choosing the bias. The DT introduces an additional

parameter to optimize, with the potential benefit of better fitting the maxentropic measure.

One can apply this concept to coding for a general memorylesschannel by assuming

unbiased sequences as input and by adding a DT to the system inFigure 4.3.1, yielding

the system in Figure 4.3.3. The problem, then, is to find a pair(p, (T, V )) of a bias and a

code that jointly maximize theasymptotic average overall rateof the system, given by

IT,V (p) = RT,V (p) · h(p).

Although this problem is most interesting to us, it is not a conventional source coding

problem and has not been reported in that literature before.

4.4 A Source Coding Perspective on(d, k) Codes

We devote this section to studying binary-transformer(d, k)-codes from a source cod-

ing point of view. In Section 4.4.1, we present a general framework for the construction

of variable-length(d, k)-codes from source codes. We derive this framework as a special

case of the general setting described in Section 4.3. We thenrevisit the bit stuffing, bit flip-

ping, and symbol sliding algorithms, and formulate them as special cases of source codes

under this framework. The proposed perspective on the threealgorithms has motivated us

to examine the performance of other code constructions. In the latter two subsections, we

consider two problems which concern optimal variable-length (d, k)-codes. Section 4.4.2

considers the problem of jointly optimizing the code and thebias. Section 4.4.3 addresses

an optimization problem in which the bias is fixed.
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4.4.1 Binary-Transformer Algorithms Revisited

Recall the alternate description of binary(d, k)-sequences as a free concatenation of

strings from the set of constrained phrasesΓd,k = {0d1, 0d+11, . . . , 0k1}. We now define

a super-alphabetΣ = {α1, α2, . . . , αk−d+1}, such that the symbolαi represents the string

0i−1+d1 for all i; henceΣ representsΓd,k. This allows one to view the encoding ofp-

biased sequences into(d, k)-sequences as equivalent to the encoding of such sequences

for transmission over a memoryless noiseless channel, which admits the super-alphabet

Σ [10], [1]. Hereafter, we assume we use the system and channelmodel of Section 4.3,

and we set the symbol transmission costs to equal the length of the represented strings,

i.e.,ci = L(0i−1+d1) = i+d for all i. Under this framework, a(d, k)-code(T, V ) replaces

the parsed input words with constrained phrases fromΓd,k, while inducing a probability

distribution on the statistically independent constrained phrases. Theasymptotic average

information rate of the(d, k)-codeis

Rd,k
T,V (p) =

LT,V (p)

Lout
T,V (p)

=

∑

vi∈V P (vi) · L(vi)

Lout
T,V (p)

, (4.4.1)

whereLout
T,V (p) is theexpected binary output lengthof the code, and is given by

Lout
T,V (p) =

∑

vi∈V

P (vi) · L(αi). (4.4.2)

Here,L(αi) stands for the length of the string thatαi represents, i.e., forL(0i−1+d1) =

i + d. It is through the definition of costsci = L(0i−1+d1) that the expected transmission

cost of the codeCT,V (p) becomes its expected binary output lengthLout
T,V (p). Conse-

quently, the average(d, k)-code rateRd,k
T,V (p) equals the average transmission-code rate

RT,V (p). An optimal parsing-tree code for the above defined channel will therefore yield

a maximal rate parsing-tree(d, k)-code. Similarly, we can derive(d, k)-codes for sys-

tems that operate on unbiased data and utilize a DT to introduce a bias into the data. The

overall rate of the(d, k)-code is

Id,k
T,V (p) = Rd,k

T,V (p) · h(p). (4.4.3)

Before we proceed to examine parsing trees in more detail, itis useful to introduce

the following lemma, which states an important property of optimal parsing-tree codes

for transmission over an arbitrary memoryless channel.
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Lemma 4.4.1. Assume a channel admitting an alphabet ofK symbols with associated

costsc1 ≤ c2 ≤ · · · ≤ cK . LetT be a parsing tree withK leaves andp be the bias of a

memoryless information source. IfV = (v1, v2, · · · , vK) is a labeling of the leaves of T

such that

Pr(v1, p) ≥ Pr(v2, p) ≥ · · · ≥ Pr(vK , p) (4.4.4)

thenRT,V (p) is maximum over all possible labelings of the leaves ofT .

Proof. We wish to find a labeling of the leaves ofT which maximizes the resulting

rateRT,V (p) =
LT,V (p)

CT,V (p)
. A key observation is that the asymptotic expected input length

LT,V (p) is independent of the labeling, but rather is a function of the tree and bias only.

We can then write

LT,V (p) =
∑

vi∈V

Pr(vi, p) · L(vi) =
∑

wi∈T

Pr(wi, p) · L(wi) = LT (p)

for all V (T ). Thus, we need only find a labeling that minimizes the expected transmission

cost

CT,V (p) =
K
∑

i=1

Pr(vi, p) · ci.

It is easy to see that the minimum is attained when sorting theleaves in order of non-

increasing probability and by assigning thei’th leaf (in the sorted list) to thei’th channel

symbol. This is reflected in the labeling proposed in (4.4.4).

Lemma 4.4.1 implies that a search for a maximal rate code needs only account for the

one code that optimizes the assignment for each of the candidate parsing trees. It not only

simplifies the search but also provides a simple means of obtaining the best code for a

given tree. Once a tree is chosen, the optimal code simply assigns the least costly symbol

α1 to the most probable leaf, the next least costly symbolα2 to the second most probable

leaf, and so on. We can thus omit the labelingV when referring to a code(T, V ). The

lemma will also prove relevant in understanding the algorithms discussed in Section 4.2,

as explained below.

Thus far, we have outlined a general framework for(d, k)-codes that are based on

variable-length source codes for a memoryless channel. A code is specified by a parsing

tree in combination with the most efficient assignment of constrained phrases to the words
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of the tree. In Section 4.2, we interpreted bit stuffing as a particular mapping between the

k − d + 1 strings in

{1, 01, 021, · · · , 0k−d−11, 0k−d} (4.4.5)

and thek−d+1 constrained phrases inΓd,k. Observing that the strings in (4.4.5) constitute

the leaves of a complete tree, we can view bit stuffing, bit flipping and symbol sliding as

special cases of source codes under the general framework. For example, whenk−d = 3

we consider all possible parsing trees of size4, shown in Figure 4.3.2. The leftmost

tree corresponds to the word set{1, 01, 021, 03} and is used to generate the input words

to the three algorithms. Operating on ap-biased stream, it gives rise to the distribution

{1− p, p(1− p), p2(1− p), p3} on the input words. The sole difference between the algo-

rithms is their specified assignments of the constrained phrases{0d1, 0d+11, 0d+21, 0d+31}
to the input words. This, in fact, determines the constrained phrase probabilities. Fig-

ure 4.4.1 demonstrates the four assignments that bit stuffing, bit flipping, SS(3), and

SS(4) apply, as different labelings of the same tree. Each assignment amounts to a dif-

ferent constrained-phrase probability vector, which appears underneath each tree. For a

general value ofk − d, the tree representation of (4.4.5) has the form depicted inFig-

ure 4.4.2. From now on, we shall refer to (4.4.5) as thebit-stuffing treeand denote it by

TBS.

Consider now an optimal assignment for the bit-stuffing tree, as indicated by Lemma

4.4.1. It is attained by labeling the leaves in order of non-increasing probability, where

the leaf probabilities are

{1− p, p(1− p), p2(1− p), · · · , p(k−d−1)(1− p), p(k−d)}. (4.4.6)

However, we have seen in Section 4.2 that the ordering varieswith p, and consequently,

so does the optimal labeling. A search for such an optimal assignment is implicitly per-

formed by the symbol sliding algorithm. The sliding ofp(k−d) up to any indexj > 0 (see

Figure 4.2.5) attempts to rearrange the induced probabilities in decreasing order and thus

apply the labeling of Lemma 4.4.1. To obtain an ordered list of (4.4.6), it is sufficient to

slidep(k−d) up to an indexj⋆ such thatp andj⋆ satisfy
{

p(k−d−j⋆)(1− p) ≤ p(k−d) < p(k−d−j⋆−1)(1− p), if 0 ≤ j⋆ ≤ k − d− 1

1− p ≤ p(k−d), if j⋆ = k − d.
(4.4.7)
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Figure 4.4.1 Four labelings of the bit-stuffing tree and their induced constrained-phrase

probabilities, which correspond to (from left to right) bitstuffing, bit flipping, symbol

sliding with index3 and symbol sliding with index4.

When optimizing forj, the algorithm slidesp(k−d) up to its proper position in the ordered

set, as implied by Proposition 4.2.2. In summary, bit stuffing and bit flipping apply fixed

assignments irrespectively of the bias. In contrast, the extension to symbol sliding results

in optimized assignment per given bias, and can thus potentially achieve improved rates

over the former two algorithms.

Having optimized both the assignment and the bias for the bit-stuffing tree, we wish

to examine the achievable rates associated with other parsing trees. For a given bias, each

parsing tree of sizek−d+1 may be considered in conjunction with its optimal assignment.

We now remind the reader that the symbol sliding algorithm was motivated by the idea

that a judicious shuffling of the probabilities in (4.4.6) could result in an improved match

to the maxentropic vectorΛd,k [13]. Nevertheless, can other trees induce probabilities

that provide an even better match, better in the sense of a smaller distanceD(T, Λd,k),

as defined in (4.3.4)? In what follows, we deal with two problems that were raised in

the general discussion in Section 4.3, as they apply to(d, k)-codes. In particular, we are

initially interested in finding the tree and bias that jointly maximize the overall rate of a

scheme which includes a DT. We then address the somewhat simpler problem of finding

the optimal tree when the biasp is given. Although the first problem is more interesting

in the context of bit stuffing, an efficient solution to the second problem may simplify the
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Figure 4.4.2 The general form of the bit-stuffing tree.

solution and analysis of the first.

4.4.2 Jointly Optimal Bias and Parsing Tree Code

We begin by describing our setup for the joint optimization of the tree and the bias.

We evaluated the rate of each treeRd,k
T (p) by explicitly expressingLT (p) as a function of

p andLout
T (p) as a piecewise function ofp. The latter function corresponds to the best as-

signment and hence varies with the changes in probability ordering. MultiplyingRd,k
T (p)

by h(p), we obtained the overall rate per bias. Although one can obtain a closed-form

expression for the average rate associated with each tree and each bias, the complexity of

the rate expressions makes analysis intractable. For that reason, numerical optimization

was carried out, considering all possible parsing trees of size k − d + 1 and all biasesp

such that0 < p < 1. In addition, the fast-growing number of candidate trees confined the

search to small values ofk − d. For each such value, a broad range of(d, k) pairs was

considered.

Table 4.4.1 shows optimal trees together with their corresponding optimal average

rates for numerous(d, k) constraints, wherek − d = 3. We refer to the trees by their

numeric labels, as they appear in Figure 4.3.2, with the onlyexception being the reference

to the bit-stuffing tree. For this tree, we provide an acronymfor the most efficient of the bit

stuffing (BS), bit flipping (BF), and symbol sliding (SS) algorithms. This merely indicates

whether the optimal sliding index at the optimal bias equals0, 1, or is greater than1.

Also shown are the optimal bias (wherep = Pr(0)), the capacity of each constraint,
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and the efficiency of the optimal code. For comparison purposes, the optimized average

rate and efficiency of the symbol sliding algorithm are givenas well. We note that for

the purpose of brevity, the table provides details of only the best tree for a range ofd’s,

although optimization was carried out for all(d, d + 3) pairs such that0 ≤ d ≤ 30.

It is also worth noting that it suffices to restrict optimization to a subset of all parsing

trees. This can be done due to symmetries between the probability sets that certain trees

induce, and also because of the symmetry of the binary entropy function aroundp = 0.5.

Specifically, if there exist treesT andS such that{Pr(wi, p)}wi∈T = {Pr(ui, 1− p)}ui∈S

for all p ∈ (0, 1), then we haveId,k
T (p) = Id,k

S (1 − p) for all p ∈ (0, 1). We can thus

disregard one of these trees when optimizing over the interval (0, 1). We also omit trees

which represent different word sets but induce exactly the same leaf-distribution as a

function ofp. Such trees exhibit the same performance. In the case wherek − d = 3,

the mentioned symmetries allow one to limit the search to thethree leftmost trees in

Figure 4.3.2.

Similar details for numerous(d, d+4) and(d, d+5) constraints appear in Tables 4.4.2

and 4.4.3, respectively. After eliminating redundant trees, we were left to consider7 trees

for k− d = 4 and19 trees fork− d = 5. Figure 4.4.3 and Figure 4.4.4 depict the optimal

trees that are listed in Tables 4.4.2 and 4.4.3, respectively. In the case wherek − d = 6,

we did not construct all possible trees but accounted only for 17 trees. One of these trees

is the bit-stuffing tree of size7, while the others were generated by extending each of the

leaves of some of the trees of size6. Among the extended trees are trees number3, 4 and

5 in Figure 4.4.4, which are optimal for many(d, d + 5) constraints. In this chapter, we

did not include detailed results of the optimization fork−d = 6. We shall, however, refer

briefly to these results in the following discussion.

It can be seen from Tables 4.4.1 - 4.4.3 that for many constraints, there exists a code

construction which outperforms symbol sliding. Similar outcomes were also observed in

thek − d = 6 case. This means that certain trees give rise to probabilitydistributions

which provide a better match to the maxentropic vectorΛd,k than the bit-stuffing tree’s

induced distribution. For example, whenk − d = 3 and5 ≤ d ≤ 30, the distribution

P3(p) = {(1 − p)2, p(1 − p), p(1 − p), p2} leads to improved performance over the bit-

stuffing distributionP d,d+3
BS (p) = {1− p, p(1− p), p2(1− p), p3}. This is surprising since
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Table 4.4.1 Numerical results for optimal performance of parsing-tree codes for various

(d, d + 3) constraints.

Best Best Best Symbol Symbol

Best Tree Tree Tree Sliding Sliding

Constraint Tree Avg. Optimal Avg. Rate Avg. Avg. Rate Capacity

Rate Bias Capacity Rate Capacity

(0,3) 2 0.94500 0.716 99.81% 0.94089 99.38% 0.94678

(1,4) SS 0.61577 0.746 99.73% 0.61577 99.73% 0.61745

(2,5) SS 0.46496 0.724 100% 0.46496 100% 0.46496

(3,6) SS 0.37421 0.651 99.90% 0.37421 99.90% 0.37459

(4,7) SS 0.31361 0.654 99.80% 0.31361 99.80% 0.31423

(5,8) 3 0.27046 0.570 99.84% 0.26991 99.64% 0.27088

(6,9) 3 0.23788 0.562 99.88% 0.23691 99.47% 0.23817

(7,10) 3 0.21237 0.555 99.90% 0.21110 99.30% 0.21258

(8,11) 3 0.19184 0.550 99.92% 0.19037 99.15% 0.19199

(9,12) 3 0.17495 0.545 99.93% 0.17334 99.02% 0.17507

(10,13) 3 0.16081 0.542 99.94% 0.15911 98.89% 0.16090

10 < d < 20 3

(20,23) 3 0.08903 0.523 99.98% 0.08738 98.14% 0.08904

20 < d < 30 3

(30,33) 3 0.06158 0.516 99.99% 0.06023 97.80% 0.06159

the structure of the bit-stuffing distribution resembles the finite geometric series that the

maxentropic phrase probabilities form. To further explain, observe that the bit-stuffing

probabilities, except forp(k−d), have the formpi(1 − p) for k − d consecutivei’s. Thus,

they nearly form a geometric series, whereas it is clear thatthe maxentropic probabilities

do form such a series. On the other hand, not only doesP3(p) have a different structure, it

actually contains two identical probabilities. This property recurs for trees number3 and

5 of Tables 4.4.2 and 4.4.3, respectively. Whenk − d = 6, the property persists in the

trees that perform the best for all7 ≤ d ≤ 30.

Another interesting effect is a convergence towards a specific tree which obtains the
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Table 4.4.2 Numerical results for optimal performance of parsing-tree codes for various

(d, d + 4) constraints.

Best Best Best Symbol Symbol

Best Tree Tree Tree Sliding Sliding

Constraint Tree Avg. Optimal Avg. Rate Avg. Avg. Rate Capacity

Rate Bias Capacity Rate Capacity

(0,4) BS 0.97101 0.468 99.57% 0.97101 99.57% 0.97523

(1,5) BF 0.64901 0.574 99.71% 0.64901 99.71% 0.65090

(2,6) 2 0.49722 0.588 99.86% 0.49706 99.83% 0.49791

(3,7) SS 0.40569 0.755 100% 0.40569 100% 0.40569

(4,8) 2 0.34300 0.558 99.93% 0.34294 99.92% 0.34323

(5,9) 2 0.29725 0.549 99.80% 0.29717 99.77% 0.29786

(6,10) 3 0.26286 0.550 99.84% 0.26228 99.61% 0.26330

(7,11) 3 0.23576 0.554 99.88% 0.23472 99.44% 0.23603

(8,12) 3 0.21376 0.584 99.91% 0.21240 99.27% 0.21396

(9,13) 3 0.19553 0.584 99.92% 0.19396 99.11% 0.19570

(10,14) 3 0.18017 0.584 99.91% 0.17847 98.96% 0.18034

10 < d < 20 3

(20,23) 3 0.10090 0.584 99.64% 0.09922 97.98% 0.10126

20 < d < 30 3

(30,33) 3 0.07007 0.584 99.43% 0.06871 97.51% 0.07047

best rate, starting from a certaind. For example, tree number3 seems to asymptotically

yield the best code whenk−d = 3. We encountered this effect for all examined values of

k−d. Although we have not proved that this indeed holds ford’s larger than30, from now

on, we shall call these trees theasymptotically optimal trees. We outline the difference

between these trees and the bit-stuffing tree using the following definitions. We say that

a binary tree is askew treeif it is obtained by either consistently extending its rightmost

leaf or by consistently extending its leftmost leaf. In contrast, abalanced treeof sizeK

is a binary tree where each subtree of the root is of the same height if K = 2D for some

D, or where the two subtrees differ in height by at most1 and are balanced as well, if
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Table 4.4.3 Numerical results for optimal performance of parsing-tree codes for various

(d, d + 5) constraints.

Best Best Best Symbol Symbol

Best Tree Tree Tree Sliding Sliding

Constraint Tree Avg. Optimal Avg. Rate Avg. Avg. Rate Capacity

Rate Bias Capacity Rate Capacity

(0,5) BS 0.98545 0.48 99.73% 0.98545 99.73% 0.98811

(1,6) 2 0.66805 0.733 99.85% 0.66730 99.74% 0.66903

(2,7) 3 0.51696 0.417 99.92% 0.51643 99.82% 0.51737

(3,8) SS 0.42457 0.785 99.88% 0.42457 99.88% 0.42507

(4,9) SS 0.36199 0.778 100% 0.36199 100% 0.36199

(5,10) SS 0.31560 0.773 99.93% 0.31560 99.93% 0.31580

(6,11) 4 0.27996 0.649 99.85% 0.27979 99.79% 0.28037

(7,12) 5 0.25203 0.554 99.91% 0.25131 99.63% 0.25226

(8,13) 5 0.22922 0.555 99.94% 0.22815 99.47% 0.22937

8 < d < 30 5

(30,33) 5 0.10989 0.561 99.43% 0.10832 98.01% 0.11052
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Figure 4.4.3 Tree representations of the three codes which are optimal for various(d, d +

4) constraints in Table 4.4.2. The leftmost tree is the bit-stuffing tree.

K 6= 2D. Clearly, the bit-stuffing tree is a skew tree, while the asymptotically optimal

trees are all balanced.

A few questions arise from the preceding discussion. Do the asymptotically optimal

trees which we found maintain their optimality asd approaches infinity? If so, is there

an asymptotically optimal tree for any givenk − d? Furthermore, can we characterize

these trees, for example, by their skewness? Lastly, how canone efficiently find these

trees? These questions are difficult to address without a good insight into the joint opti-

mization problem. In the following subsection we try to pursue a better understanding of

the problem by studying another related problem.

4.4.3 Optimal Parsing Tree Codes for a Given Bias

The complexity of the joint optimization problem has led us to decompose it into

simpler problems. We next tackle the problem of finding the optimal tree when the bias

is given; that is, we consider a system which does not includea DT. With a solution

at hand, we can approach the original problem by a two-stage optimization. First, one

obtains the optimal tree per bias and afterwards, a DT is added to the system and the

overall rate is optimized. However, as pointed out in Section 4.3, the problem of finding

optimal trees for a fixed arbitrary bias is still hard and has not been addressed in prior

literature, neither for a general channel nor for the special (d, k)-channel. The only case
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Figure 4.4.4 Tree representations of the five codes which areoptimal for various(d, d+5)

constraints in Table 4.4.3. The leftmost tree is the bit-stuffing tree.

that was solved algorithmically is whenp = 0.5 [12]. Therefore, for generalp values,

we resorted to an exhaustive search over all possible parsing trees of sizek − d + 1.

The search was performed for the same values ofk − d and in the same range of(d, k)

constraints as those considered in the preceding subsection. Unlike before, we do not

eliminate symmetric trees since we examine the ratesRd,k
T,V (p) for any givenp.

Now, suppose we fixk − d, and we inspect the various rates as functions ofp, while

gradually increasingd, starting fromd = 0. When examining the optimal(d, k)-code per

bias, we noticed that a fixed pattern emerges once a certaind value is crossed. Specifically,

past this point (and up tod = 30), it appears that the optimal tree per bias is fixed,

and that the range of biases (0 < p < 1) is divided into continuous subintervals, each

corresponding to a certain optimal tree. Figure 4.4.5 illustrates this effect with an example

of the rate functions of several(6, 9)-codes. The five curves correspond to the five parsing

trees of sizek − d + 1 = 4, shown in Figure 4.3.2. We found that thed thresholds for

k−d = 3, 4 and5 are3, 6 and6, respectively. Yet, our most interesting finding is that the

fixed optimal tree for each considered bias is, in fact, the Tunstall tree for that bias. We

can intuitively explain it as follows. A code maps the input words into phrases of various

lengths ranging fromd + 1 to k + 1. Whend is considerably larger than the fixedk − d,

the variation in phrase lengths is negligible, and they are approximately equal. That said,

it only seems reasonable that the optimal VFL coding scheme will prove to be an efficient

scheme in those cases as well. Still, there seems to be more tothese observations than the
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Figure 4.4.5 The achievable rates of five(6, 9)-codes as functions ofp.

given interpretation, as the observedd thresholds are comparable to the(k− d)’s. It is an

interesting question whether the revealed properties indeed apply to arbitrarily larged’s

and(k − d)’s. In the rest of this subsection we settle this question. Wefurther discuss its

implications on the solutions to the two optimization problems that are discussed in this

chapter.

At this point, it is helpful to make a number of undemanding observations in order

to elucidate two issues: the non-uniqueness of the Tunstalltree and the sub-optimality of

non-Tunstall trees. First, consider a situation where at a certain iteration of the algorithm,

there existj > 1 leaves with the same maximal probability. Then, in each of the nextj

iterations, the algorithm will choose arbitrarily one of these leaves since they are the most

probable. Afterj iterations, one ends up with the same tree, regardless of thearbitrary

ordering. Now, suppose we have reached the desired tree sizeand have stopped before the

j’th iteration. In this case, some of the different orderingswill extend different subsets of

thej leaves, leading to different Tunstall trees. Nonetheless,it can be easily shown that

these trees result in the same average input length and in thesame induced leaf probabil-

ities. Therefore, in our context, the(d, k)-codes that correspond to such trees achieve the

same rate, which allows us to treat them as indistinguishable and refer to any of them as
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the Tunstall code. Finally, if the algorithm does not encounter leaves with equal maximal

probability, then the Tunstall tree is unique.

When considering VFL codes other than Tunstall codes, it is important to stress that

such codes are suboptimal with respect to maximizingLT (P ). In other words, if there

exist multiple optimal parsing trees, then they are exactlythe indistinguishable Tunstall

trees we described above, and no others. In this sense, we cansay that the Tunstall tree

is uniquely optimal. We formally state this observation in Lemma 4.4.4, as we shall later

make use of it. Before proving the lemma it is useful to introduce the following definition

and simple characterization of a Tunstall tree, given in [17]. For completeness we provide

a short proof of the proposed characterization.

Definition 4.4.2. A completeM-ary tree verifies theordering propertyif one can list its

nodes in order of non-increasing probability so that the obtained list can be divided into

two parts, the upper containing all internal nodes in the correct order of extension, and

the lower containing all leaves.

Proposition 4.4.3.An M-ary parsing tree is a Tunstall tree if and only if it verifies the

ordering property.

Proof. Suppose a Tunstall tree contains an internal nodeα and a leafβ such thatP (α) <

P (β). Then, at one of the preceding extensions, the algorithm should have chosen the

leaf β instead ofα, which contradictsβ being a leaf whileα being already extended.

Conversely, if a tree cannot be obtained by the algorithm, then one can always construct

the tree by a series of successive leaf extensions. However,at a certain extension, the

chosen leaf is not a leaf of greatest probability. Immediately following this extension, we

have a leafβ⋆ whose probability is greater than the probability of an internal node. This

may change only if one of the subsequent steps extends the leaf β⋆, in which case, the

ordered list of internal nodes does not appear in the correctorder of extension.

Note that for our purposes, we make a distinction only between trees that can be

generated by the Tunstall algorithm and trees that cannot. In other words, we are not

concerned with different orderings of extensions during the construction of two given

trees, as long as the final forms of the trees are identical. For that reason, the criterion for

a tree thatcan beobtained by the algorithm reduces to the probability of any internal node
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being greater than or equal to the probability of any leaf. Wenext exploit this criterion to

prove that any optimal VFL code corresponds to a Tunstall tree.

Lemma 4.4.4. Let P be a probability distribution of a memoryless source, andT be a

tree that maximizesLT (P ). Then,T can be obtained by the Tunstall algorithm.

Proof. Assume that a treeT is optimal but can not be produced by the algorithm. From

Proposition 4.4.3 and the preceding discussion we know thatT does not verify the order-

ing property, thus there exist an internal nodeα and a leafβ in T such thatP (α) < P (β).

We now construct a new parsing treeT ′ from T by pruning the subtreeT sub that descends

from nodeα (i.e., all children and all other descendants ofα farther down inT ) and re-

producing the subtree under the leafβ. Now, it is well known that for a complete tree, the

summation of probabilities of all internal nodes includingthe root is equal to the average

input length. More formally, lettingI represent the set of internal nodes ofT excluding

the root, one can verify that

LT (P ) = 1 +
∑

a∈I

P (a). (4.4.8)

Using (4.4.8) to compareLT (P ) to LT ′(P ), it can be seen that the replacement ofT sub

from α to β results in an increased average input length, that is,LT ′(P ) > LT (P ). This

contradicts the optimality ofT , and hence proves the lemma.

Let us now return to optimal variable-length codes for the(d, k)-channel. The afore-

mentioned observations suggest that for certain(d, k) pairs, the optimal variable-length

(d, k)-code is a Tunstall code for any givenp. Our findings further indicate a threshold

behavior of the applicable(d, k) pairs, namely, that givenm = k − d, there exists some

dm, such that all(d, d + m) constraints withd ≥ dm have this property. The next lemma

asserts these conjectured properties.

Lemma 4.4.5.Let m > 0 be an integer andTTun(p) be the Tunstall tree of sizem + 1

that corresponds to ap-biased binary memoryless source. Then, there exists an integer

dm, such that for any(d, d + m) constraint withd ≥ dm the following holds:

Rd,d+m
TTun(p)(p) ≥ Rd,d+m

T (p) ∀ 0 < p < 1 (4.4.9)

for any parsing treeT of sizem + 1.
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Proof. Supposep is fixed and letT be a tree description of a(d, d+m)-code. As implied

by Lemma 4.4.1, we need only consider codes which apply an optimal assignmentV .

Observe first that the expected binary output length of the code can be expressed as

the following sum of two terms:

Lout
T (p) =

∑

vi∈V

P (vi) · (d + i) = d +
m+1
∑

i=1

P (vi) · i = d + Lsub
T (p),

where the second termLsub
T (p) depends on the code, on the bias, and onm = k − d, but

is independent ofd. We now rewrite the average information rate of the code as

Rd,d+m
T (p) =

LT (p)

d + Lsub
T (p)

, (4.4.10)

and we note thatLT (p) is independent ofd as well.

Next, consider the(d, d+m)-code that corresponds to the Tunstall treeTTun(p). This

code attains the maximum rate for any given bias if and only if(4.4.9) holds for any

parsing treeT of sizem + 1. Substituting (4.4.10) into (4.4.9) and rearranging terms, we

obtain the equivalent condition

d×
(

1

LT (p)
− 1

LTTun(p)(p)

)

≥
Lsub

TTun(p)(p)

LTTun(p)(p)
− Lsub

T (p)

LT (p)
∀ 0 < p < 1 (4.4.11)

for any of the considered trees. As bothLT (p) andLsub
T (p) are independent ofd, the

right-hand side of (4.4.11) as well as the expression in parenthesis on the left-hand side

are independent ofd. Since a Tunstall tree maximizes the average input lengthLT (p)

over all parsing trees, we have

1

LT (p)
− 1

LTTun(p)(p)
≥ 0 ∀ 0 < p < 1. (4.4.12)

Furthermore, it follows from Lemma 4.4.4 that inequality (4.4.12) is strict wheneverT is

not a Tunstall tree. Hence, for a large enoughd, the left-hand side of inequality (4.4.11)

will be greater than its right-hand side for all0 < p < 1. In caseT is a Tunstall tree, then

it induces the same leaf probabilities asTTun(p), and thus achieves the same rate. We

now complete the proof by settingdm to the smallestd for which the condition in (4.4.11)

holds for all parsing trees.
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Figure 4.4.6 Tunstall regions with their corresponding trees forK = 6. After [17].

In light of Lemma 4.4.5, we proceed to examine additional characteristics of Tun-

stall trees. Here we present results by Fabris, Sgarro, and Pauletti [17], pertaining to the

relationship between the bias of the source and the structure of the Tunstall tree. They

define aTunstall regionto be the set of all source probability distributions that are opti-

mally encoded by the same Tunstall code. An analysis of the binary case results in a full

characterization of these regions and in a simple procedurefor computing them. Repre-

senting the source distribution by its biasp, it is proved that the Tunstall regions have the

form of continuous subintervals of the unit interval(0, 1). As noted earlier, there exist

biases for which the Tunstall tree is not unique, thus implying that the subintervals are

not necessarily disjoint. We have seen, however, that the performances of the multiple

Tunstall codes are the same, hence one can choose a single representative tree per bias.

To resolve this ambiguity, Fabriset al. propose to modify the Tunstall algorithm, so as to

avoid situations where multiple leaves are simultaneous candidates for extension. When

several leaves have the same probability, the algorithm lexicographically orders them and

chooses the first one. Otherwise, the criterion for choosingthe leaf of extension remains

unchanged. As a consequence, eachp belongs only to one Tunstall region, and so the

regions form a partition of(0, 1) into distinct subintervals. Figure 4.4.6 shows an exam-

ple from [17] demonstrating the segmentation of the interval (0.5, 1) into three Tunstall

regions in the case when the tree size is6. The transitions between regions occur at the

probabilitiesp1 andp2 that solve the equationsp2 = 1− p andp4 = 1 − p, respectively.

One can readily observe that the segmentation of the interval (0, 0.5) corresponds to the

symmetric trees and is therefore omitted.

The paper provides a simple method to compute the region boundaries and at the same
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time, to construct all trees by executing the algorithm oncefor the first region and then

adaptively constructing all other trees with no further executions. For a given tree sizeK,

the number of Tunstall regions in the half-unit intervalN(RTun(K)) is evaluated with the

following upper and lower bounds:

K − ⌈log(K)⌉ ≤ N(RTun(K)) ≤
(

6/π2
)

· (⌈log(K)⌉ − 1) · 2(⌈log(K)⌉−1). (4.4.13)

Note that the lower bound is reported to be tight, at least up to K = 16, as opposed to the

loose upper bound. Table 4.4.4 lists the exact number of Tunstall regions for tree sizes

ranging from4 to 10. An interesting pattern which arises from the above characterization

involves the structure of the two Tunstall trees at the extremes of the half-unit interval,

that is, the leftmost and the rightmost trees. These are always the balanced tree, which is

optimal at least forp = 0.5, and the skew tree (the bit-stuffing tree), which is optimal in

the neighborhood ofp = 1.

Table 4.4.4 Number of Tunstall regions for small size trees.

Tunstall Number

Tree Size of Regions

4 2

5 2

6 3

7 4

8 5

9 5

10 6

The above-mentioned properties of Tunstall codes are especially appealing in the con-

text of the complex problem with which we dealt in the former subsection. Recall that

the problem entails the joint optimization of the tree and the bias. For every(d, d + m)

pair whered ≥ dm, the following two-stage approach greatly simplifies the optimiza-

tion. At a first stage, one can carry out the algorithm described in [17] to compute the

Tunstall regions and corresponding trees. Subsequently, one can numerically evaluate the
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rate associated with the proper tree at each bias and proceedto optimize theoverall rate.

This way, optimization is restricted to a limited number of Tunstall trees, which can be

easily constructed. As implied by the upper bound in (4.4.13), the number of candidate

trees will not exceed the order of(k− d) log(k− d) – a significantly smaller number than

the number of all parsing trees. In fact, the upper bound is quite loose and so the actual

number seems to be much smaller as well as close to the lower bound. Lemma 4.4.5,

in conjunction with the results of [17], also provides some insight into the asymptotic

convergence pattern we observed in Tables 4.4.1 - 4.4.3. Thelemma suggests that from a

certaind onwards, only a few fixed Tunstall trees, among which is the bit-stuffing tree, are

competing for the maximum. Moreover, one can verify that theasymptotically optimal

trees in Tables 4.4.1 - 4.4.3 (as well as in thek − d = 6 case) are always the balanced

Tunstall trees. Although we can not infer that this will always be the case, we can narrow

down the “asymptotic candidates” to the relatively small set of Tunstall trees.

As a final point, an attractive property of the(d, k)-codes studied in this subsection is

that they provide a simple method for joint source-(d, k) (channel) coding. An alternative

method for combined source and(d, k)-coding ofp-biased sequences was proposed by

Kerpez [4]. It is based on arithmetic coding techniques, andwas shown to converge to the

combined source-channel capacity [8] as the length of the input string approaches infinity.

An example of a practical implementation of such a scheme, entailing a concatenation of

two arithmetic encoder-decoder pairs, appears in [18]. Although the codes we study do

not always seem to converge to the combined source-channel capacity, they have the

advantage of limited complexity since the tree size isk − d + 1, independently of the

input size. It is also interesting to compare such a joint coding scheme to a scheme that

separates the source from the constrained coding. For example, one can use a DT to

remove the redundancy and subsequently apply an optimal parsing-tree(d, k)-code. The

optimal code is found by the Lempel, Even, Cohn algorithm [12]. The separation of

encoders clearly results in additional implementation complexity due to the addition of

a DT. On the other hand, it has the advantage of being amenableto optimization for any

(d, k) pair. Let us now consider the performances of the two approaches. For a given

biasp, denote the rate that corresponds to the optimal tree byR⋆(p). Then, the maximum

achievable rate of the separating scheme equals1
h(p)
· R⋆(0.5). The joint scheme will
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outperform the separating scheme ifR⋆(p) > 1
h(p)
· R⋆(0.5), or equivalently, if

h(p) · R⋆(p) > h(
1

2
) · R⋆(

1

2
). (4.4.14)

One can see that both sides of (4.4.14) represent the optimized overall rates that are

achieved for an arbitraryp and forp = 0.5 by the optimal constructions we considered in

Section 4.4.2. Hence, differentp’s may lead to different relations.

4.5 Concluding Remarks and Open Problems

We conclude with some interesting open problems and with a qualitative discussion

of the various constructions presented here.

We studied several(d, k)-codes of a special kind. All codes use a binary DT to bias

the data before the actual constrained encoding takes place. The various constructions

gradually build on each other, with the fundamental one being the bit stuffing algorithm.

We have seen that the addition of controlled bit flipping resulted in improved rates over

bit stuffing. A recent generalization to the symbol sliding algorithm demonstrated fur-

ther improved performance. In this chapter, we extended symbol sliding into a general

framework for constructing(d, k)-codes from variable-length source codes. We showed

that the general framework gives rise to new code constructions which achieve improved

performance over symbol sliding. In essence, we can say thatmore generalized algo-

rithms tend to perform better. However, when searching for optimal codes, each level of

extension requires the optimization of an additional parameter. This in turn makes analy-

sis more complex and sometimes intractable. Moreover, at the highest level of extension,

even numerical optimization is impractical.

We proceeded to investigate optimal variable-length(d, k)-codes under the general

framework. Although limited to smallk − d values, our numerical optimization results

indicate some possible trends. First, we found that symbol sliding is suboptimal in many

cases. Rather surprisingly, the optimum in those cases corresponds to induced distri-

butions which, unlike the bit stuffing distribution, do not resemble the structure of the

maxentropic one. Second, asd increases (andk − d is fixed), the optimal code tree con-

verges to a certain specific tree, depending on the value ofk − d. One question for future
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research is whether these trees are indeed asymptotically optimal. If they are, then it is

interesting to find out if convergence occurs for anyk − d and from whatd value (as a

function of k − d). Obviously, efficiently finding or constructing these trees is a chal-

lenging problem by itself. In this regard, it may be helpful to be able to characterize their

exact form. Our results suggest that their skewness may be a possible characteristic.

We also considered the problem of finding optimal variable-length codes when the

biasp is fixed. Our main result is that for a fixedm = k − d, there existsdm such that

for all d ≥ dm and for allp, the optimal(d, k)-code corresponds to the Tunstall tree for

p. However, we did not specify whatdm is or how to compute it. A natural direction

for future research is to address this question. Furthermore, devising a general algorithm

that generates the optimal tree given an arbitrary bias and an arbitrary(d, k) pair remains

an open problem. This problem is also of interest in a wider context of the more general

joint source-channel coding problem we discussed in Section 4.3. It forms a special case,

where the transmission costs are determined byd andk, but the bias is arbitrary. In this

regard, it is worth mentioning a duality, noted by Abrahams,between the general problem

of Section 4.3 and another long-standing problem known as the Karp problem (see, for

example, [5, Sec. III.1-2] and a reference therein). A recent advance on the dual problem

is the work of Golin and Rote [11], which effectively solves it for a broad class of cases.

Their work may provide insight for the solution of our problem.

Finally, we wish to emphasize a core difference between bothbit stuffing and bit flip-

ping and their two levels of extensions. We have seen that symbol sliding as well as the

general framework rely substantially on the memoryless channel representation of(d, k)-

sequences and, furthermore, on the independence of the maxentropic constrained phrases.

However, these attributes are unique to(d, k) constraints and in general do not extend to

other constraints of interest. Specifically, they do not apply to two-dimensional (2-D)

constraints, which are of primary interest in current research on constrained coding. Con-

sequently, an extension of such constructions to other constraints is not straightforward.

The bit stuffing and bit flipping techniques, on the other hand, are based on entirely dif-

ferent principles. They operate in a streaming manner (“on the fly”) by locally satisfying

the constraint. As such, they do not operate on a “phrase level” and are not limited to

(d, k) constraints. In fact, bit stuffing has already been applied to various 2-D constraints
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and was shown to achieve high rates [19]. In cases where it wasamenable to analysis, it

was used to derive lower bounds on the unknown capacities of several 2-D constraints.

Bit-stuffing schemes for 2-D constraints are the topic of thenext chapter.
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5

Two-Dimensional Bit-Stuffing Schemes

with Multiple Distribution

Transformers

5.1 Introduction

Recent advances in high-capacity optical storage technologies have motivated the

study of two-dimensional constraints. These technologiesuse a two-dimensional (2-D)

model of the recorded data, as opposed to the traditional one-dimensional (1-D) track

model [1]. This approach gives rise to new types of error patterns, constraints and encod-

ing algorithms. Two-dimensional constraints can be definedover different 2-D lattices,

depending on the layout of the data on the recording medium. In this work, we consider

the class of 2-D run-length-limited (RLL)(d,∞) constraints as well as the ‘no isolated

bits’ (n.i.b.) constraint, both defined on the square lattice. A 2-D (d,∞) constraint con-

sists of all binary arrays in which there are at leastd zeros between any two successive

ones in any row and in any column. The 2-D n.i.b. constraint requires that every bit equals

to at least one of its four adjacent bits (i.e. the bit above, the bit below and the two bits to

90
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its sides). In other words, it prohibits the occurrence of the patterns

0

0 1 0

0

and

1

1 0 1

1

.

Let N(m, n) be the number of distinct binary arrays of sizem×n that satisfy a given

2-D constraint. Thecapacityof the 2-D constraint is defined as

C = lim
m,n→∞

1

mn
log2 N(m, n).

Unlike the 1-D case, there are no known methods for computingthe capacity of many 2-D

constraints of interest. Instead, several techniques for deriving upper and lower bounds

on the capacity were suggested. One particular lower bounding technique is based on an

analysis of a bit-stuffing encoding algorithm [2]. The algorithm converts the input se-

quence into another sequence having different statisticalproperties. It then encodes the

latter sequence into a constrained array by inserting excess bits in a manner that guaran-

tees that the constraint is satisfied.

Siegel and Wolf [2] initially introduced a bit-stuffing encoder for 2-D (d,∞) con-

straints, for alld ≥ 1. They computed a lower bound on the average rate of such a

scheme and, a fortiori, on the capacity. Roth, Siegel, and Wolf [3] then proposed and

analyzed a more general bit-stuffing scheme for the special case whered = 1. They

showed that this scheme achieves improved performance overthe original scheme. More

recently, Halevyet al. [4] presented a bit-stuffing encoder for the n.i.b. constraint. Anal-

ysis of the encoder resulted in lower bounds on its average rate. Halevyet al. further

obtained improved lower bounds on the rates of the(d,∞)-encoders presented in [2],

for d ≥ 2. Additionally, a modified bit-stuffing scheme was proposed and analyzed by

Forchhammer [5]. Application of this approach to the(2,∞) constraint yielded a further

improved lower bound on its capacity.

In this chapter, we introduce two new bit-stuffing constructions. In the first construc-

tion, we extend the idea that underlies the improved(1,∞)-construction in [3] to(d,∞)

constraints, whered ≥ 2. The second construction is a bit-stuffing scheme for the n.i.b.

constraint that is based on a capacity-achieving bit-stuffing scheme for a certain 1-D RLL

constraint. Section 5.2 focuses on(d,∞) constraints and Section 5.3 deals with the n.i.b.
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Figure 5.2.1 Rectangular arrayBm,n.

constraint. In both sections, we begin by reviewing previous bit-stuffing schemes and

proceed to describe our proposed scheme. We conclude each section with simulation re-

sults demonstrating the performance of these schemes. In Section 5.4, we summarize our

findings and suggest directions for future research.

5.2 Bit-Stuffing Schemes for(d,∞) Constraints

In this section we describe bit-stuffing schemes that encodearbitrary data sequences

into 2-D (d,∞)-constrained arrays. We start by introducing some notations and conven-

tions, which will be used throughout the chapter.

We encode the input sequences into rectangular arrays of theform

Bm,n = {(i, j) ∈ Z
2 : 0 ≤ i < m, 0 ≤ j < n},

whereBm,n is shown in Figure 5.2.1. The random constrained array that is generated by

the bit-stuffing encoder is denoted byX, whereXi,j stands for the random bit at location

(i, j) ∈ Bm,n. To properly define the encoding process, we assume zero entries outside

of the quadrant, i.e., for all(i, j) such thati < 0 or j < 0.

The bit-stuffing construction that was originally proposedby Siegel and Wolf [2]

works as follows. The encoder consists of abinary distribution transformerfollowed

by abit stuffer. The binary DT is the same element that was used by the one-dimensional

coding schemes in the previous chapters. It bijectively converts an unbiased input se-

quence into ap-biasedsequence that is subsequently fed into the bit stuffer. However, in

this chapter, we change the convention used in previous chapters and let the biasp repre-
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sent the probability that a bit is a1, instead of the probability that it is a0. This is done for

convenience of presentation. The bit stuffer scansBm,n from its upper left corner to its

lower right corner, by going down successive diagonals. It applies the following routine

on each entry:

• If the current entry already contains a0, then skip it and go to the next entry.

• If the current entry is empty, then assign the nextp-biased bit into it. If the assigned

bit is a1, then check which of thed locations to the right of it and which of thed

locations below it is empty. For each such empty location, insert (orstuff) a0.

The 0’s that we may encounter in some of the entries are always stuffed 0’s that were

inserted to the right of or below a previousp-biased1. Hence, it is unnecessary to repeat

stuffing at these entries. As a result, the number of0’s that are stuffed following a biased

1 is sometimes strictly less than2d.

At the decoder, we recover thep-biased sequence by applying a similar logic. We

successively read thep-biased bits down diagonals, while discarding the stuffed0’s to the

right of each1 and below it. The inverse DT then recovers the unbiased inputfrom the

p-biased sequence. Now, note that biased sequences containing fewer1’s will generally

result in fewer stuffed bits, yielding a higher average ratein the bit stuffing phase. On

the other hand, as we decrease the probability of a1, the rate of the transformerh(p)

decreases (whenp < 1
2
). Similarly to the original 1-D bit-stuffing scheme, the overall rate

is the product of these two rates, hence we need to optimizep to achieve the best rate.

The above technique was later extended by Roth, Siegel, and Wolf [3], for the special

case whered = 1. They proposed to use two DT’s in order to generate two distinct

biased streams at the input to the bit stuffer. When assigning a biased bit into location

(i, j), the value ofXi−1,j+1 determines the biased stream from which to take the bit.

Specifically, apk-biased bit is assigned whenXi−1,j+1 = k, for k ∈ {0, 1}, as illustrated

in Figure 5.2.2. At the decoder, the same reasoning is applied to recover the two biased

sequences. An analysis of the scheme showed that it achievesimproved performance over

the single-transformer scheme [3]. In addition, the optimal biasesp∗0 andp∗1 were found

to satisfyp∗0 < p∗1 < 0.5 (recall thatpi = Pr(1)). To interpret this result, suppose that

the current biased bit equals1. If Xi−1,j+1 = 0 then the assigned bit incurs the stuffing
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Figure 5.2.2 A bit-stuffing scheme with two biased bit streams for a 2-D(1,∞) constraint.

of two 0’s. On the other hand, whenXi−1,j+1 = 1, position(i, j + 1) is already occupied

by a stuffed0. Thus, only a single0 is stuffed in this case. Now, recall that biasing

the data serves the purpose of reducing the average penalty from stuffing. Hence, it is

reasonable to use a smaller bias for a pattern which incurs a higher penalty, as was found

in this case. Motivated by the improved performance of this scheme and by the suggested

interpretation, we now generalize it ford ≥ 2.

5.2.1 Multiple-Transformer Schemes ford ≥ 2

Consider the case whered = 2, and assume that the bit stuffer has just assigned a

biased1 into location(i, j). Figure 5.2.3 depicts examples of possible patterns that give

rise to stuffing of1, 2, 3 and4 0’s, where the stuffed bits appear in bold. It can be seen

that the number of stuffed bits depends on the occurrence of1’s in certain previously-

filled neighboring locations. In this example, there are four such locations, all highlighted

in Figure 5.2.3. Different combinations of0’s and1’s in these locations result in1 to

4 stuffed bits. In the general case, it can be shown that the number of stuffed bits is

determined by the patterns arising in a certain subset ofd2 previously-filled locations.

These locations are characterized by the set

Γ(i, j) =
{

(s, t) ∈ Z
2 i−d ≤ s < i and j < t ≤ j+d and s+t ≤ i+j

}

⋃

{

(s, t) ∈ Z
2 : i < s ≤ i+d−1

and j−d ≤ t < j−1 and s+t ≤ i+j−1
}

.
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Figure 5.2.4 depicts this set ford = 3, where its entries are marked by thick dots. By

accounting for the different patterns, we can show that theyyield any number between

1 to 2d stuffed bits. The only location that is guaranteed to be empty, and therefore

always stuffed with a0, is location(i + d, j). Following the same reasoning as in the

(1,∞) case, we would like to minimize the expected number of stuffed bits by using

smaller biases when encountering patterns that lead to morestuffed bits. Hence, we

would generate2d distinct biased streams with biasesp1, p2, . . . p2d, each one to be used

when the corresponding patterns arise. We then need to optimize for the2d biases.

The performance of the scheme was studied ford = 2 andd = 3 by simulations.

The biased streams were encoded into a rectangular array of size 400 × 400 and the

rate was averaged over a number of iterations. To optimize the rate, we performed a

brute force search over all possible combinations of the2d biases (without restricting

them to satisfy0.5 > p1 > p2 > . . . > p2d). Due to computational limitations, a coarse

search was initially conducted. A more refined search on a narrower range of probabilities

followed it. The finer search resolution consisted of increments of size0.01 for each bias.

The number of iterations was500 for d = 2 and25 for d = 3. For comparison, we

simulated the single-transformer scheme. In this case, optimization used a brute force

search with a resolution of0.005. Table 5.2.1 shows the empirical rate estimates of the

single-transformer and2d-transformers schemes ford = 2, 3. Also shown are analytical

bounds on the single-transformer scheme that were derived in [4]. We would like to point

out that for bothd = 2, 3, the optimal biases indeed satisfied the expected relations, i.e.,

0.5 > p∗1 > p∗2 > . . . > p∗2d. In addition, we note that the improved analytical bound

on the capacity of the(2,∞) constraint reported by Forchhammer [5] equals 0.44149. It

can be seen from the table that the extension to multiple transformers results in minor

improvements ford = 2, 3. Unfortunately, computational limitations prevented us from

optimizing the scheme for larger values ofd, where it may in fact prove to be more useful.

Analysis of this approach may also produce improved bounds on capacity, as the current

single-transformer analytical bounds are not tight.
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0 0

(a)

j

0 0 1 0

0 0 1 0 0

i 0 0 1 0 0

0 0 0

0

(b)

j

0 0 0

0 0 1 0 0

i 0 0 1 0 0

0 0 0

0

(c)

j

0 0 0

0 0

i 0 0 1 0 0

0 0 0

0

(d)

Figure 5.2.3 Bit stuffing for the(2,∞) constraint. Examples of four patterns that give rise

to different numbers of stuffed bit when assigning a biased1.
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• •
•

Figure 5.2.4 The setΓ(i, j) whend = 3. The set consists of all entries which affect the

number of stuffed bits when assigning a biased1.

5.3 Bit-Stuffing Schemes for the ‘No Isolated Bits’ Con-

straint

A bit-stuffing encoder for the ‘no isolated bits’ (n.i.b.) constraint was proposed by

Halevyet al. [4]. The bit stuffer utilizes two distinct inputs - an unbiased stream, denoted

by {Un}∞n=0, and a2
3
-biased stream, denoted by{Bn}∞n=0. Progressing down successive

diagonals, the bit stuffer applies the following rules to determine the value of each entry

Xi,j:

• If (Xi−1,j−1 = Xi−2,j = Xi−1,j+1 6= Xi−1,j), then setXi,j to equalXi−1,j.

• If (Xi,j−2 = Xi−1,j−1 6= Xi,j−1) and either(Xi−1,j−1 6= Xi−2,j) or (Xi−1,j−1 =

Xi−1,j), then read the next biased bitBn. If (Bn = 1), then setXi,j to equalXi,j−1.

Else, setXi,j to equal the complement ofXi,j−1.

• Otherwise, setXi,j to equal the next unbiased bitUn.

The above procedure checks if the bit at location(i−1, j) is currently isolated by the bits

to its sides and by the bit above it. If so, then a stuffing of an identical value at location

(i, j) prevents a possible violation of the constraint. If this is not the case, then a specific
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Table 5.2.1 Empirical estimates and analytical bounds on the rate of bit-stuffing encoders

for (d,∞) constraints.

Multiple- Single- Analytical

d TransformersTransformer Bounds

Avg. Rate Avg. Rate From [4]

2 0.4447 0.4420 0.4267

3 0.3674 0.3647 0.3402

pattern is searched for. In this pattern, the bit to the left (i.e. Xi,j−1) is isolated by its

neighbors to the left and above, while the bit above (i.e.Xi−1,j) is not isolated by its

neighbors to the left and above. When this pattern occurs, webiasXi,j towards the value

of Xi,j−1. For all other patterns,Xi,j will assume equally likely values. One can verify

that this process is invertible, hence we can recover the twostreams at the decoder.

5.3.1 Schemes Based on One-Dimensional Maxentropic Probabilities

In this subsection, we construct a bit-stuffing scheme for the n.i.b. constraint by draw-

ing a connection to a capacity-achieving scheme for the one-dimensional(0, 3) constraint.

The latter scheme is based on a multiple-transformer bit-stuffing method, which was

recently proposed by Wolf [6]. A detailed description of this method appears in Sec-

tion 3.2.2 of Chapter 3. Here, we briefly review it before we present our construction.

The idea behind the 1-D scheme is to emulate a walk on the graphwith maxentropic

probabilities, by using different biases at different states. Denote the maxentropic proba-

bility when moving from statei to statei + 1 by µi. We first generate aµi-biased stream

for each state,i, which has a pair of emanating edges. Since the number of suchstates

is k − d, we need to generate that many biased streams. Having multiple biased streams,

the bit stuffer takes aµi-biased bit when in statei. Keeping track of the constraint graph,

the random value that each biased bit assumes determines thenext state. The single edges

leaving all otherd + 1 states correspond to stuffed bits. Clearly, this method produces

maxentropic(d, k)-sequences.
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Figure 5.3.1 Maxentropic edge probabilities for the 1-D(0, 3) constraint.

In the context of our work, we are interested in such a capacity-achieving construction

for the (0, 3) constraint. Figure 5.3.1 shows the constraint graph with the maxentropic

edge probabilities. Looking at the scheme, we observe that the three biases (i.e., the

probabilities of a1) increase with increasing state labels. This can be interpreted by

observing that stuffing occurs only when reaching state3. Therefore, at all other states, we

would rather have a1 and move to state0 than have a0 and move to the right. Moreover,

as we progress farther right, we are more likely to incur a stuffed-bit penalty. Thus, the

closer we get to state3, the more we wish to avoid it, which is reflected in an increasing

bias towards a1. It is important to note that bit stuffing with a single biasedstream, i.e.,

with the same bias on all edges, does not achieve capacity [7]. Hence, the adjustment

of the bias to the “foresight” or likelihood of future stuffed bits resulted in improved

performance. Unfortunately, this technique is limited to constraints which have a finite-

state graph description. It is not directly applicable to the 2-D n.i.b. constraint, as we are

unaware of such a description in this case. However, we can adapt this approach to design

a high-rate encoder.

We now describe the bit stuffer for the n.i.b. constraint anddraw an analogy to the

(0, 3) construction. First, we maintain the stuffing strategy of the encoder that is described

in Section 5.3. This means that stuffing occurs at location(i, j) only if the bit at(i− 1, j)

is already isolated by its3 other nearest neighbors. If this is not the case, then a biased

bit is assigned to location(i, j). A key observation is that the assignment of the current

biased bit can help avoid possible isolation of several bitsand hence result in fewer stuffed

bits. To illustrate this idea, recall that the n.i.b. constraint prohibits the occurrence of two

patterns, as shown in Section 5.1. These patterns involve5 bits, arranged in the following



100

configuration:

a

b c d

e

.

For each such subset of bits, the central bit, c, should not beisolated. Now, observe that

each bit we write takes any of the positions ‘a’ to ‘e’ with respect to prohibited patterns

on different subsets of bits. Thus, it might affect the occurrence of these patterns at the

corresponding subsets.

Recall that the bit stuffer first checks if we are about to violate the constraint. It then

views location(i, j) as assuming position ‘e’ in the configuration. At this point,the bits

at positions ‘a’, ‘b’, ‘c’ and ‘d’ determine whether or not stuffing occurs. We denote the

event that leads to stuffing bySi,j, i.e.,

Si,j = {Xi−1,j 6= Xi−2,j} ∩ {Xi−1,j 6= Xi−1,j−1}∩ {Xi−1,j 6= Xi−1,j+1}.

Figure 5.3.2(a) depicts one of the patterns that lead to stuffing, where the configuration

entries are highlighted. In case stuffing is not required, weview (i, j) as occupying posi-

tion ‘d’ in reference to locations(i, j−1), (i, j−2), (i−1, j−1), and(i+1, j−1). These

entries are highlighted in Figure 5.3.2(b). In this case, weknow the values at positions

‘a’, ‘b’ and ‘c’. Thus, we may encounter the following relations:c 6= b andc 6= a. Let

Fi,j = {Xi,j−1 6= Xi,j−2} ∩ {Xi,j−1 6= Xi−1,j−1}

describe these relations. Then consider the case describedby the eventAi,j = Si,j ∩ Fi,j.

Figure 5.3.2(b) shows a pattern that belongs to eventAi,j. Note that this is just one

possible pattern, whereas some other patterns will fall into this category as well. In this

case, the value assumed byXi,j might lead directly to stuffing at(i+1, j−1) (i.e., position

‘e’). We regard eventAi,j as being “very close” to a future stuffing event. Still, we can

biasXi,j towards the value at position ‘c’, to try to avoid this futurestuffing event. Thus,

we setd = c or d 6= c according to the value of ap1-biased bit, for somep1.

Next, we consider the case wherec = b or c = a (i.e., eventFi,j ∩ Si,j), which

guarantees that stuffing will not occur at(i + 1, j − 1). We now view(i, j) as if it

occupies position ‘c’, with respect to the highlighted entries shown in Figure 5.3.2(c).
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0 1 0

i 0 1 ?

Si,j ←→ stuffing

(a)

j

1

0 1 1

i 0 1 ?

Ai,j ←→ p1

(b)

j

0

1 1 0

i 0 1 ?

Bi,j ←→ p2

(c)

j

0

1 0 0

i 0 1 ?

Ci,j ←→ p3

(d)

Figure 5.3.2 Bit stuffing for the n.i.b. constraint. Examples of four patterns which corre-

spond to stuffing and to eventsAi,j, Bi,j andCi,j.

Here we distinguish between two possible patterns:a = b anda 6= b, where ‘a’= Xi−1,j

and ‘b’ = Xi,j−1. The first pattern, denoted by

Gi,j = {Xi,j−1 = Xi−1,j}
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allows for possible stuffing at ‘e’= Xi+1,j, depending on the future values at ‘c’ and

‘d’, whereas the latter eliminates the possibility of such event. Thus, if we encounter the

first pattern, we would like to biasXi,j towards the value at positions ‘a’ and ‘b’ (see

Figure 5.3.2(c) for an example). LetBi,j denote the event that corresponds to this case,

i.e.,

Bi,j = Si,j ∩ Fi,j ∩Gi,j.

We now compare eventsAi,j andBi,j according to a criterion of “severity” or “prox-

imity to a future stuffing event”. We note that whenAi,j occurs, then the value of the

current bit determines the occurrence of a stuffing event. However, whenBi,j occurs, the

current bit can only increase the likelihood of such an event. In this case, stuffing depends

on an additional future bit. Hence, we say thatBi,j is “farther away” thanAi,j. Following

the reasoning behind the 1-D maxentropic probabilities, the closer we get to stuffing a

bit, the more we try to avoid it. Consequently, whenBi,j occurs, we would use a biasp2,

such thatp2 < p1. Finally, we consider the second pattern (a 6= b), in which case we view

(i, j) as ‘b’ (see Figure 5.3.2(d)). Clearly, biasing the current bit towards the complement

of Xi−1,j+1 (‘a’) would help prevent stuffing at(i + 1, j + 1) (‘e’). This case corresponds

to the event

Ci,j = Si,j ∩ Fi,j ∩Gi,j.

We rank it as the “farthest” among the three cases, as here 3 bits need to be assigned before

stuffing is determined. We therefore use an even smaller biasp3, such thatp3 < p2 < p1.

Having classified the possible patterns into three categories, we now search for the

three biases. One approach would be to optimize the rate by a brute force search over

all allowable triplets. However, we suggest to choose the biases based on a similarity

to the 1-D(0, 3) construction. According to this perspective, a pattern which requires

stuffing is analogous to reaching state3. EventAi,j corresponds to state2, as this is

the closest to stuffing. Hence, we setp1 to equal the maxentropic bias at this state, i.e.,

p1 = 1−µ2 = 0.6583. Similarly,Bi,j corresponds to state1 and sop2 = 1−µ1 = 0.5593.

EventCi,j corresponds to state0, leading top3 = 1− µ0 = 0.5188.

We simulated the proposed scheme using a600×600 array and averaged the rate over

250 iterations. The average rate was approximately0.92218. For comparison, Halevy

et al. reported an empirical estimate of approximately0.917 and an analytical bound of
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0.91276 on the rate of their scheme [4]. To estimate the capacity, they applied the method

proposed by Weeks and Blahut [8]. This resulted in an estimate of the first ten decimal

places, namely0.9238294367. In addition, we performed a brute force optimization of

our scheme over all possible biases. A search with increments of0.001 yielded an average

rate of approximately0.9223, where the optimal biases arep1 = 0.654, p2 = 0.552 and

p3 = 0.52. These optimal results are fairly close to the maxentropic(0, 3) probabilities.

Finally, we note that this idea can be extended to an encodingscheme for the n.i.b.

constraint defined on the hexagonal lattice. This constraint has been considered for use in

future optical disks [1]. In this case, we use maxentropic probabilities from a 1-D(0, 5)

constraint. Simulations suggest that the achieved rate is very close to the optimized rate

and that the optimal probabilities are close to the maxentropic ones as well. The average

rate is approximately0.9768. However, when applying the method of [8], we could not

generate long enough sequences of bounds to get an estimate of the capacity. Still, we

could bound it between0.9583 and0.9893.

The high rates achieved by our scheme suggest that the connection between the 1-D

and the 2-D constraints may not be coincidental. Analysis could possibly provide further

insight into this connection, as well as improved bounds on the capacity of the constraints.

5.4 Conclusion and Future Directions

We proposed two new bit-stuffing schemes, one for the class of2-D run-length-

limited (d,∞) constraints and one for the 2-D ‘no isolated bits’ constraint. Both schemes

are based on interleaving biased bits with multiple different biases into a 2-D array,

while stuffing extra bits when necessary. We examined the performance of the suggested

schemes through simulations. Results suggest that the scheme for(d,∞) constraints did

not yield significant gains over previous bit-stuffing schemes for small values ofd. Since

an optimization of this scheme for largerd’s is currently impractical, we cannot draw any

conclusions in these cases. Therefore, it may still be worthwhile to test the scheme’s per-

formance ford’s larger than 3 once it is computationally feasible. In addition, analysis of

this scheme is an interesting and challenging direction forfuture work. As we mentioned

earlier, such analysis has the potential of producing improved bounds on the unknown
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2-D capacity, as the current analytical bounds are not tight.

As opposed to the first scheme, the scheme for the n.i.b. constraint achieved improved

empirical rates over a previously suggested scheme. The optimized rate and the rate

obtained when assigning the maxentropic probabilities were shown to be very close to

each other as well as close to the estimated capacity. Hence,analyzing the suggested

scheme may yield improved lower bounds on the capacity. As analysis in this case seems

to be difficult, it may be easier to consider a slightly simpler variant of this scheme, where

only one bias is used. In other words, one should use the same decision rules as before

when assigning the biased bits, but setp1 = p2 = p3. Simulations of this scheme achieved

an average rate of approximately 0.916, which is very close to the empirical rate of the

scheme in [4] (which is approximately 0.917). Since the analytical lower bounds on the

latter scheme are not tight, analysis of the former scheme may still improve on these

bounds.
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Noise-Predictive Turbo Equalization for

Partial-Response Channels

6.1 Introduction

Today’s digital magnetic recording devices employ a noise-predictive maximum-likeli-

hood (NPML) detection scheme in the readback process [1], [2]. This scheme was intro-

duced to alleviate the effects of noise enhancement and coloration, present in conventional

partial-response maximum-likelihood (PRML) systems. Theidea is to first equalize the

recording channel to a conventional low-degree partial-response (PR) transfer polyno-

mial, f(D) = 1 + f1D
1 + + fMDM , whereD is a delay operator and the coeffi-

cients{fi}Mi=1 are integers. As this colors the noise, the equalizer is concatenated with

a noise whitening filter, whose transfer polynomial isp(D) = 1 + p1D + ... + pJDJ .

Consequently, the channel is shaped to a generalized partial-response (GPR) polyno-

mial of the formg(D) = f(D)p(D). The filtered samples are then decoded by a se-

quence detector that takes bothf(D) andp(D) into account. Current high-density disk

drives use degree-4 polynomials which closely match the recording channel, such as

g(D) = (1−D)(1 + p1D + p2D
2 + p3D

3) andg(D) = (1−D2)(1 + p1D + p2D
2) [3].

The associated NPML detector is simply a 16-state Viterbi detector, matched to the GPR

channel model. This combination significantly mitigates the effects of noise enhancement

at the cost of increased-complexity detection.
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Figure 6.1.1 Block diagram of a partial-response system with an NPML detection scheme.

Iterative decoding and detection schemes have been found todramatically improve the

performance of many communication systems. As such, they are currently regarded as po-

tential candidates for integration into future-generation recording systems. In particular,

the framework ofturbo equalizationis the state-of-the-art method of iterative decoding

and detection for intersymbol interference (ISI) channels. Within this framework, low-

density parity-check (LDPC) error-correction codes are ofspecial interest [4], [5]. They

exhibit excellent performance in diverse applications andappear to have the potential to

approach the maximum possible rate of transmission over themagnetic recording chan-

nel. Numerous authors considered the application of various turbo equalization schemes

to partial-response channels [6], [7], [8]. However, theseworks treated the noise in the

system as white noise - an assumption which does not accurately model a realistic record-

ing system.

In [9], Mittelholzer, Dholakia and Eleftheriou modified a standard turbo equalization

system forconventionalPR channels so as to account for the spectral shaping of the

noise. Their scheme fits naturally within the NPML framework, incorporating the GPR

targetg(D) = (1−D2)(1+ p1D + p2D
2) into a standard turbo equalization architecture,

as shown in Figure 6.1.2. The idea follows directly from the NPML approach, that is, one

first whitens the noise at the output of the PR equalizer, creating a new GPR channel with

enhanced ISI but approximately-white noise. Standard iterative detection and decoding

methods, which were designed for channels with white noise,are then applied to the new

ISI channel. The performance of the modified system was foundto be substantially better

than that of the baseline turbo equalization system. As withNPML systems, the penalty

is in the form of increased detection complexity.
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Figure 6.1.2 Block diagram of a generalized partial-response (GPR) system with a stan-

dard turbo equalization detection and decoding scheme. Thechannel detector in this

scheme is matched to the GPR channel.

In this chapter, we propose a new approach to noise prediction in a turbo equaliza-

tion system. Whereas the NPML-based method embeds noise prediction into the channel

equalization and detection, the proposed system adjoins a separate noise prediction com-

ponent to a turbo equalization system forconventionalPR channels. This configuration

offers reduced detection complexity and gives rise to new forms of noise prediction.

6.2 System Model

The block diagram in Figure 6.2.1 illustrates a standard turbo equalization scheme

for magnetic recording systems. A stream of message bits{ai} is divided intoL-bit

blocks, where each block is encoded by a low-density parity-check (LDPC) encoder into

a binary codeword of lengthN (b1, b2, · · · bN). The bit stream is then mapped into a

bipolar symbol stream{xi}, xi ∈ {+1,−1}, which is written on the disk. We model

the recording channel by a Lorentzian channel model with additive white Gaussian noise

(AWGN) due to system electronics. During the read process, the readback signal is passed

through an analog low-pass filter, followed by a sampler. A zero-forcing equalizer shapes

the overall transfer function to a target PR polynomialf(D) = 1 + f1D
1 + + fMDM .

This leads to noise enhancement and spectral coloration. The output of the equalizer can

be expressed as

ri = xi +

M
∑

m=1

fmxi−m + ni, (6.2.1)
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Figure 6.2.1 Block diagram of a partial-response system with a turbo-equalization detec-

tion and decoding scheme.

whereni is sampled colored noise. The equalizer outputs are then decoded by a turbo

equalization scheme, which includes a PR channel detector and an LDPC decoder.

6.3 Turbo Equalization for ISI channels

Turbo equalization (TE) is a technique for suppressing ISI by iteratively exchanging

probabilistic orsoft information between a channel detector and an error-correction code

(ECC) decoder. The idea was introduced by Douillardet al. shortly after the advent of

turbo codes and their iterative decoding technique [18]. Itextended the turbo-decoding

principles from the decoding of coded transmission over a memoryless channel to the

joint equalization (detection) and decoding of coded transmission over channels with

memory. Since then, this concept has evolved into a generic method, which has been

studied and applied to diverse applications, including magnetic recording systems [7],

[8], [9], [10], [11].

The main attribute of the constituent channel detector and ECC decoder is their abil-

ity to operate on bitwise soft information as their input, aswell as producing bitwise soft

information at their output. Such components are called soft-input soft-output (SISO)
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modules, employing SISO algorithms. The SISO characteristic is what facilitates the

iterative process of exchanging the soft information between the modules. When ade-

quately performed, the process results in substantial performance gains over traditional

non-iterative detection and decoding schemes. The soft information that flows within the

turbo equalization system (henceforth theturbo equalizer) pertains to various probability

estimates. The turbo equalizer’s final outputs correspond to estimates of the probabili-

ties that each of the transmitted bits takes on a value of0 or 1. Compared to the hard

bit-decisions (i.e.,0 or 1) delivered by traditional decoding/detection algorithms, these

estimates convey additional information of how reliable their associated hard-decisions

are. Moreover, by accounting for reliability information,SISO algorithms can make use

of the more reliable estimates in order to provide improved-reliability estimates of bits

whose initial estimates were not as reliable. The soft information pertaining to a bit is

usually expressed in terms of the ratio of two probability estimates, each corresponding

to one of the two possible hard-decisions. It is also common to work with the logarithm

of these ratios, as it simplifies the required computations.

We distinguish between three types of soft information in the system: prior, posterior,

and extrinsic. The input to a SISO algorithm serves asprior information with respect to

that algorithm, and corresponds to bitwise probability estimates that are available before

the algorithm’s processing takes place. The algorithm thenprocesses the prior infor-

mation in conjunction with any additional knowledge it has on the coded bits, such as

their respective noisy observations and/or certain relations between them. The processing

results in two probabilistic quantities, the first being theexact (or approximate) condi-

tional probability of a bit’s value, given the information that is accessible to the algorithm.

This is called thea posterioriprobability (APP), as it forms an updated orposterior in-

formation on each bit. The second quantity is theextrinsic information, which can be

straightforwardly computed for each bit from its prior and posterior information, as will

be explained later. The latter form of output is used when a SISO module is incorporated

within an iterative scheme that involves other SISO modules. In particular, it is the ex-

trinsic output which is passed by a SISO module to the other modules. One can think of

it as capturing new information, which the module has obtained by utilizing knowledge

that is availableonly to it.



111

A generic turbo equalization scheme works as follows [12], [13]. The detector begins

by producing extrinsic information based on noisy output samples from the channel, the

channel model, and any prior information on the bits. Typically, the transmitted bits

are assumed to be equally likely, in which case no prior information is available for the

detector. Next, the detector’s bitwise extrinsic information is provided to the ECC decoder

which, in turn, treats it as prior information when generating its own extrinsic output.

The ECC decoder’s extrinsic output, reflecting the code constraints, is then fed back to

the detector for use as prior information. This completes one detection and decoding

iteration, and the process repeats for several iterations until a stopping criterion is met.

The final output of the iterative process is the posterior information produced by the ECC

decoder at the last iteration. It consists of estimates of the a posterioriprobability ratios

(APPR) of the coded bits, given the channel output samples, the channel model, and the

code constraints. Final hard-decisions are then made by choosing the most likely value for

each bit, or alternatively, by zero-slicing the logarithm of the APPR’s. At this point, we

note that some instances of turbo equalization require the interleaving of the encoded data

before it is sent through the channel. At the turbo equalizer, matching interleaving and de-

interleaving take place when information is passed betweenthe two constituent modules.

Interleaving serves the purpose of weakening the statistical dependencies among nearby

bits. In this way, it contributes to more accurate estimation by the employed algorithms.

In the case of LDPC codes, interleaving is inherently built into the code structure and

need not be performed explicitly. Since our work focuses on LDPC codes, we chose to

omit interleaving from the above description.

Various SISO algorithms and error-correcting schemes can fit within the framework

we have described. A typical choice for a channel detector isthe maximuma posteriori

probability (MAP) detector, which is based on the Bahl-Cocke-Jelinek-Raviv (BCJR) al-

gorithm [14]. Other common choices include approximationsto the BCJR algorithm [15],

and the soft-output Viterbi algorithm (SOVA) [16]. Anothertype of detector, which was

shown to perform well for several partial-response channels, is based on the application

of the sum-product algorithm [17] to a particular graphicaldescription of the ISI chan-

nel [8], [10]. Commonly used error-correction schemes other than LDPC codes include

parallel concatenated convolutional codes (more familiaras “turbo codes”) and a single
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convolutional code [18]. Similar to channels with memory, convolutional codes can be

decoded by the BCJR algorithm, by its approximations, or by the SOVA algorithm. In the

case of turbo codes, two such decoding elements operate concurrently, while exchanging

soft information according to the “turbo principle” described above. LDPC codes are usu-

ally decoded by the message-passing algorithm, also known as the sum-product or belief

propagation algorithm [17], but may also be decoded by approximations to it [9].

In this work we focus on schemes that employ a MAP detector forthe partial-response

channel and a message-passing decoder for an LDPC code. In the next sections we review

MAP detection, LDPC codes, and the message-passing algorithm for decoding LDPC

codes. A detailed description and rigorous derivation of the BCJR and message-passing

algorithms can be found, for example, in [12].

6.3.1 Maximum A Posteriori Probability (MAP) Detection for ISI

Channels

As evident from its name, a maximuma posterioriprobability detector finds the hard

bit-decisions which maximize thea posterioriprobability (APP) of each transmitted bit,

given the sequence of channel outputs and given prior bit probabilities. It is well known

that such a detector achieves the minimum bit-error rate andis thus optimal in that sense.

The MAP detector is based on the BCJR algorithm, operating onthe trellis description

of the ISI channel. Assuming that the noise is white Gaussianwith known variance, the

BCJR algorithm computes the APP ratio (APPR) of each transmitted bit

Q(bi|r1, r2, · · · , rN)
.
=

Pr(bi = 1|r1, r2, · · · , rN)

Pr(bi = 0|r1, r2, · · · , rN)
=

Pr(xi = +1|r1, r2, · · · , rN)

Pr(xi = −1|r1, r2, · · · , rN)
,

(6.3.1)

where(r1, r2, · · · , rN) is the received sequence of channel outputs. The detector then sets

the bit estimatêbi to the value with the maximum APP, i.e.,

b̂i = arg max
b∈{0,1}

Pr(bi = b|r1, r2, · · · , rN).

Before we continue to describe the BCJR algorithm, we note that it was originally

introduced in the broader context of estimating the transitions of a hidden Markov model.

Hence, it is applicable to several other decoding and detection problems, such as the
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decoding of convolutional codes [14] and the detection of constrained sequences [12]. In

what follows, we review only the special case of detection for ISI channels, highlighting

the key concepts of the algorithm and the points of relevanceto our work.

Consider the following model, describing the samples{ri} obtained at the output of a

noisy ISI channel

ri =
M
∑

m=0

hmxi−m + ni. (6.3.2)

Here,{xi} is the bipolar input to the channel,ni is a white Gaussian noise sample with

varianceσ2, and thehm’s represent the real-valued channel impulse response. Thealgo-

rithm is best described using the trellis diagram description of the corresponding noiseless

channel model

ρi =

M
∑

m=0

hmxi−m. (6.3.3)

The trellis has2M states of the form(xi−M , · · · , xi−2, xi−1), which maintain the memory

of the channel. LetS be the set of channel states, and denote bysi the state of the channel

at time indexi. From each statesi−1 = (xi−M , · · · , xi−2, xi−1), it is possible to reach

only two states at the next time indexi, depending on the value ofxi. Each such valid

state transition corresponds to an edge or a branch in the trellis, connectingsi−1 to si.

We label each branch with a pair(x(si−1, si), ρ(si−1, si)), wherexi = x(si−1, si) and

ρi = ρ(si−1, si) are the input and the noiseless channel output that correspond to this

transition, respectively. Finally, we use the notationr
k
j to represent the subsequence of

consecutive channel output samples(rj , rj+1, · · · , rk−1, rk).

An efficient computation of the APP’s in (6.3.1) relies on a particular decomposition

of the joint probability

Pr(si−1 = s′, si = s, r1, r2, · · · , rN), (6.3.4)

wheres′ and s can be any two channel states. This probability relates to a particular

transition (branch) at time indexi. It can be shown that the channel’s finite memory

together with the white noise assumption lead to the following factorization:

Pr(si−1, si, r1, r2, · · · , rN) = Pr(si−1, si, r
i−1
1 , ri, r

N
i+1)

= Pr(si−1, r
i−1
1 ) · Pr(si, ri|si−1) · Pr(rN

i+1|si)

.
= αi−1(si−1) · γi(si−1, si) · βi(si),
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where

αi−1(si−1)
.
= Pr(si−1, r

i−1
1 )

βi(si)
.
= Pr(rN

i+1|si)

γi(si−1, si)
.
= Pr(si, ri|si−1).

The termsαi−1(si−1) andβi(si) are calledforward state metricsandbackward state

metrics, respectively. The core of the BCJR algorithm is a recursivecomputation of

these metrics for each states ∈ S and for each time indexi, according to the following

recursions:

αi(s) =
∑

∀s′∈S

αi−1(s
′)γi(s

′, s) (6.3.5)

and

βi(s) =
∑

∀s′∈S

βi+1(s
′)γi+1(s, s

′). (6.3.6)

The forward recursion in (6.3.5) is typically initialized with α0(0) = 1, andα0(s) = 0 for

all s 6= 0, where0 stands for the all-zero channel state. Similarly, the backward recursion

in (6.3.6) is initialized withβN(0) = 1, andβN(s) = 0 for all s 6= 0. These initial values

require the lastM bits of each block to be set to zero, which incurs a slight rateloss.

Nonetheless, other initial values are possible as well, provided that they indeed reflect

the distribution of the states at timesi = 0 and i = N . Both recursions make use of

branch metricsγi(si−1, si), which correspond to the likelihood of the transitions between

the states. These are computed before the algorithm carriesout the forward and backward

recursions.

The branch metricγi(si−1, si) can be written as follows

γi(si−1, si) = Pr(si, ri|si−1) = Pr(si|si−1) · Pr(ri|si−1, si).

It equals zero for each pair of statess′, s which are not connected by an edge. For each

pair of connected states, i.e., for each state transitions′ → s, the branch metric takes the

form

γi(s
′, s) = P prior(xi = x(s′, s)) · Pr(ri|si−1 = s′, si = s), (6.3.7)

whereP prior(xi) is the prior bit probability that is fed to the detector. Under the assumption

of additive Gaussian noise, the second probability in (6.3.7) is given by

γ̃i(s
′, s)

.
= Pr(ri|s′, s) = Pr(ri|ρi = ρ(s′, s)) =

1√
2πσ

e−(ri−ρ(s′,s))2/2σ2

, (6.3.8)
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whereρ(s′, s) is the corresponding noiseless channel output, given in (6.3.3). We call

γ̃i(s
′, s) thebranch likelihood, as it utilizes the channel outputs to estimate how likely a

branch was traversed. It follows from (6.3.7) that the branch metric explicitly accounts

for both the channel outputs and the prior bit information toindicate the probability of a

transition. On the other hand, the recursive computation ofthe forward and backward state

metrics incorporates the branch metrics, thus implicitly accounting for prior information

and for the channel outputs. In the context of turbo equalization, it is important to note

that the update of prior probabilities between iterations requires the rerunning of these

recursions. However, the branch likelihoods do not change and need be computed only

once, during the first iteration.

Finally, we combine the different metrics to produce the APPR values as follows. We

first compute the joint probabilityPr(xi = x, rN
1 ) by summing the transition probabilities

Pr(si−1, si, r
N
1 ) over all the branches that assume an input ofxi = x, i.e.,

Pr(xi = x, rN
1 ) =

∑

∀s′→s : x(s′,s)=x

Pr(si−1 = s′, si = s, rN
1 ). (6.3.9)

Dividing (6.3.9) byPr(rN
1 ), we obtain the bit’s APPPr(xi = x|rN

1 ), and the APP ratio

Q(bi|rN
1 ) =

Pr(xi = +1|rN
1 )

Pr(xi = −1|rN
1 )

=

∑

∀s′→s : x(s′,s)=+1 αi−1(s
′)γi(s

′, s)βi(s)
∑

∀s′→s : x(s′,s)=−1 αi−1(s′)γi(s′, s)βi(s)
. (6.3.10)

At a last step, a bit-decision is made by comparingQ(bi|rN
1 ) to 1, thus choosing the value

whose corresponding APP is larger.

As mentioned earlier, when incorporating a SISO detector ina turbo equalizer, one

is interested in the extrinsic portion of the detector’s output. We obtain the extrinsic

information by factoring the termP prior(xi) out of both sums in (6.3.10), thus writing the

APPR as

Q(bi|rN
1 ) =

P prior(xi = +1) ·
∑

∀s′→s : x(s′,s)=+1 αi−1(s
′)γ̃i(s

′, s)βi(s)

P prior(xi = −1) ·
∑

∀s′→s : x(s′,s)=−1 αi−1(s′)γ̃i(s′, s)βi(s)
.

The APPR is now split into two quantities, the prior information and the extrinsic infor-

mation, as follows

Q(bi|rN
1 ) =

P prior(xi = +1)

P prior(xi = −1)
·Qextrinsic(bi|rN

1 ),
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where

Qextrinsic(bi|rN
1 )

.
=

∑

∀s′→s : x(s′,s)=+1 αi−1(s
′)γ̃i(s

′, s)βi(s)
∑

∀s′→s : x(s′,s)=−1 αi−1(s′)γ̃i(s′, s)βi(s)
. (6.3.11)

6.3.2 Low-Density Parity Check (LDPC) Codes

Binary low-density parity-check (LDPC) codes are linear block error-correcting codes

defined by binary parity-check matrices in which the proportion of 1’s is very low. Such

parity-check matrices are said to besparseor to have alow densityof 1’s. LDPC codes

were introduced more than 40 years ago by Gallager in his Ph.D. thesis, together with

an associated iterative SISO decoding algorithm [4]. However, these codes were essen-

tially forgotten until the mid-90’s, when the advent of iterative decoding techniques has

led researchers to rediscover them [5]. It has been shown that the performance of LDPC

codes can get very close to theoretical limits on a memoryless channel with AWGN, al-

though this requires the block length to be quite large. Nowadays, due to their acceptable

decoding complexity and their remarkable performance, they are of great practical and

theoretical interest to researchers.

A binary linear block code can be defined by a binary parity-check matrixH, where

the code consists of all binary codewordsb = (b1, b2, · · · , bN) that satisfy a set of linear

equations (in modulo 2 arithmetic) given byHb
T = 0

T . An example of a parity-check

matrix and its associated linear equation system appears inFigure 6.3.1. We denote by

M the number of rows inH, where each row corresponds to aparity-check equationthat

all codewords must satisfy. Hereafter, we assume thatH is full rank, in which case the

number of input message-bits isL = N −M and the rate of the code isL
N

. In caseH

is not full rank, i.e., it contains some linearly dependent rows, one can remove the extra

dependent rows to obtain a matrixH ′, containing the remaining independent rows. In

this case,M equals the number of rows inH ′, and the code rate is higher than in the

full-rank case. Gallager considered parity-check matrices where there is a fixed number

of 1’s per column and a fixed number of1’s per row. Codes defined by such matrices are

now calledregular LDPC codes. In recent years, it has been found that matrices with

varying numbers of1 along rows and columns can yield codes which outperform regular

codes. These are known asirregular LDPC codes.
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The definition of LDPC codes through their parity-check matrices is closely related

to their associated decoding algorithm, known asmessage-passing decoding. Such defi-

nition does not specify, however, any particular encoding method. An obvious approach

to mappingL-bit input blocks intoN-bit codewords is to obtain a systematic generator

matrix for the code [19]. We obtain it by first reducingH to the form ofH⋆ = [P |IL]

via Gaussian elimination, whereIL is an identity matrix of dimensionsL×L andP is of

dimensionsL ×M . The systematic generator matrix then takes the formG =
[

IL|P T
]

.

Encoding is done by multiplying the input blocka by G, i.e.,b = aG, where the firstL

bits of b are the information bits ina. However, as opposed to the sparse parity-check

matrixH, the matrixP is generally not sparse and hence the encoding complexity ishigh

(proportional toN2). This poses a practical problem, especially in view of the fact that

in general, LDPC codes are very powerful only when the block length is quite large. In

practice, however, one can use various methods that providegreatly reduced encoding

complexity. Some of these methods take advantage of the sparseness ofH, whereas oth-

ers propose modifications of LDPC codes or structured LDPC codes that allow for simple

encoding.

Before we continue to describe the iterative decoding of LDPC codes, it is helpful

to introduce a graphical description of these codes, known as aTanner graph. We will

later use this graph to explain the principles of message-passing decoding. A Tanner

graph of an LDPC code is a bipartite graph, containing two distinctive sets of nodes, with

edges only connecting nodes from different sets. One set containsN variable nodes,

each corresponding to a bit in the codeword, while the other set containsM parity-check

nodes, each corresponding to one parity-check equation imposed on the bits. Anedge

connects variable nodei with parity-check nodej if the bit associated with variable node

i participates in the parity-check equation that nodej represents. Figure 6.3.1 illustrates

the Tanner graph representation of the code that is defined bythe matrixH shown in the

figure. The squares denote the parity-check nodes (or simplycheck nodes) and the circles

denote the variable nodes (orbit nodes). Switching between the two code representations

is straightforward - each variable node is associated with acolumn inH and each parity-

check node is associated with a row inH. The edges correspond to the1’s in H.

The Tanner graph provides a complete characterization of the code’s structure. Its key
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Figure 6.3.1 A parity-check matrix representation of an LDPC code and its associated

Tanner graph.

property is the description of the complex overall dependencies between the bits through

a system of simple relations between small subsets of the bits. These simple relations

correspond to parity-check constraints that are imposed onsubsets of the bits, and are

referred to aslocal constraints. Their simplicity allows for simple local decoding, which

amounts to evaluating the probabilities of each of the participating bits, based on these

relations. The interrelations between the various local dependencies form the overall code

structure. It is through these interrelations that the local structures communicate their

evaluations and obtain new information from each other. Theexchange of information

takes place along the edges of the graph in the form of sent messages. The simple local

decoding then repeats while accounting for the new information, yielding updated results

which reflect the relationships between “distant” bits.

The described approach to the decoding of a complex structure illustrates the prin-

ciples of the message-passing algorithm. In fact, Tanner graphs and message-passing

decoding of LDPC codes are instances of the much wider concepts of factor graphsand

the sum-productalgorithm [17]. Factor graphs provide a means of expressinghow a

global function factors into local functions, and are suitable for modeling the dependen-

cies among different elements in various communication systems. The sum-product algo-
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rithm is a computationally efficient algorithm for evaluating the global function through

local computations and an exchange of information along theedges of the factor graph.

The global function is typically the posterior probabilitydistribution of certain variables,

given the system’s structure as modeled by the graph. It is worthwhile noting that the

BCJR algorithm is another special case of the sum-product algorithm, where messages

are serially passed along a graphical description of an ISI channel.

6.3.3 Message-Passing Decoding of LDPC Codes

In the message-passing algorithm, messages are passed along the edges of the Tanner

graph from bit nodes to check nodes and vice versa. The computation of messages is car-

ried out at the bit nodes and check nodes, and a message corresponds to two probability

estimates that are associated with bit values0 and1. It is also convenient to work with

the ratio of the two estimates, as in the BCJR algorithm. Before presenting the algorithm,

we introduce the following notations. Letbi denote thei’th bit node andfj denote the

j’th check node, and suppose an edgeeij connectsbi andfj . A message from bit node

bi to check nodefj is composed of two values:µbi→fj
(0) andµbi→fj

(1). In the oppo-

site direction, check nodefj sends bit nodebi a message with two valuesµfj→bi
(0) and

µfj→bi
(1). Finally, we denote byFi the set of check nodes that are connected tobi by

an edge, i.e., the set of all parity-check equations in whichbi is involved. Similarly,Bj

stands for the set of bit nodes connected tofj by an edge, or for all bits that participate in

thej’th parity-check equation.

The input to the algorithm consists of initial estimates of each bit’s probability. These

estimates comprise the prior bit probabilitiesP prior(bi), i = 1, 2, · · · , N , with respect to

the algorithm. They are available either from some prior processing of the channel outputs

and/or from other SISO modules operating in conjunction with the LDPC decoder (as in

turbo equalization). A single iteration entails the calculation and sending of messages

from the bit nodes to the check nodes and from the check nodes to the bit nodes. The

fundamental local decoding principle is as follows: theoutgoingmessage from a node

along an edge is a function of theincomingmessages along allotheredges connected to

that node. Specifically, a message from a bit nodebi to a check nodefj is the following
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Figure 6.3.2 Message-passing local decoding rule: the outgoing message from a node

along an edge is a function of the incoming messages along allotheredges connected to

that node.

product

µbi→fj
(b) = kij · P prior(bi = b) ·

∏

fj′∈Fi\{fj}

µfj′→bi
(b), b ∈ {0, 1}, (6.3.12)

wherekij is a normalization constant ensuring thatµbi→fj
(0) + µbi→fj

(1) = 1. The

µfj′→bi
(b)’s are messages that were previously passed tobi along all edges connected to

it except foreij, as illustrated in Figure 6.3.2(a). Note that in the figure, we model the

prior information as an incoming message from an outer source flowing along an extra

edge. The messageµbi→fj
(b) represents the probability thatbi = b given information

from adjacent check nodes except forfj itself, and given prior information on the bits.

An implicit assumption in its evaluation is that all incoming messages convey statistically

independent probabilities, hence the product in (6.3.12).

The local knowledge that a check node possesses is that the values of its connected bit

nodes sum to0. The message fromfj to bi µfj→bi
(b) reflects this information by capturing

the likelihood that thej’th equation holds given thatbi = b, and given probability distribu-

tions of the other bits involved. Figure 6.3.2(b) demonstrates the participating incoming

and outgoing messages. At first, it seems that the computation of the likelihood requires

an exhaustive consideration of all bit-configurations thatare consistent with a zero-sum.

Fortunately, this seemingly complex calculation has a simplified solution, proved by Gal-
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lager [4]. It turns out that the probability thatI independentbits sum to0 equals

1

2
+

1

2

I
∏

i=1

(1− 2pi) ,

where{p1, p2, · · · , pI} are their respective probabilities of assuming a1. Accordingly,

the probability that the bits sum to1 equals

1

2
− 1

2

I
∏

i=1

(1− 2pi) .

Since the incoming messages from adjacent bit nodes are in the form of their probabilities,

the likelihood of thej’th equation being satisfied, given thatbi = b, is

µfj→bi
(0) =

1

2



1 +
∏

bi′∈Bj\{bi}

(

1− 2µbi′→fj
(1)
)





µfj→bi
(1) =

1

2



1−
∏

bi′∈Bj\{bi}

(

1− 2µbi′→fj
(1)
)



 .

(6.3.13)

Note that again, the decoding rule relies on the assumption of independence of the incom-

ing probabilities.

The message-passing algorithm entails repeated calculations of messages by Equa-

tions (6.3.12) and (6.3.13) and their exchange according toa certain given schedule. This

process stops once a certain condition is met, such as when a maximum number of itera-

tions is reached. The algorithm outputs two types of probabilistic quantities - an estimate

of each bit’sextrinsicprobability with respect to the code, and an estimate of eachbit’s

a posterioriprobability with respect to the code. The extrinsic probability describes the

new information that was obtained from the knowledge of the code structure, i.e., from

the parity-check relations imposed on the bits. It is the product ofall incoming messages

P extrinsic(bi = b | Hb
T = 0

T ) = ki ·
∏

fj∈Fi

µfj→bi
(b), b ∈ {0, 1}, (6.3.14)

whereki normalizes the product such thatP extrinsic(0) + P extrinsic(1) = 0. The APP relates

to the bit probability conditioned on the knowledge of the code structure. It accounts for

both the prior information and the extrinsic information asfollows

P posterior(bi = b | Hb
T = 0

T ) = k′
i · P prior(bi = b) ·

∏

fj∈Fi

µfj→bi
(b), b ∈ {0, 1},

(6.3.15)
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wherek′
i is another normalizing constant. As noted earlier, one can also take the quotient

of the two probabilities of each type to form the following extrinsic output

Qextrinsic(bi | Hb
T = 0

T ) =
∏

fj∈Fi

µfj→bi
(1)

µfj→bi
(0)

,

and APPR output

Q(bi | Hb
T = 0

T ) =
P prior(bi = 1)

P prior(bi = 0)
·Qextrinsic(bi | Hb

T = 0
T ).

The algorithm prescribes the rules for message calculationbut leaves flexibility for

different schedules of message passing. Basically, there is a choice among a range of

schedules, from a fully parallel schedule to a serial schedule. In a fully parallel schedule,

all nodes (both checks and bits) compute their messages concurrently, and exchange them

afterwards. A serial schedule means that the nodes compute and pass their outputs one

after the other, according to a certain order. A commonly used schedule is to divide each

iteration into two halves. In the first half, all bit nodes compute and send their messages

to the check nodes. In the second half, all check nodes make their estimates and send

them to the bit nodes. We adopt the latter schedule in the description of the algorithm

that we give below. Finally, we note that the choice of schedule may affect the decoding

performance as well as implementation complexity.

Another factor which may affect the performance of a code is the presence of cycles in

its Tanner graph, where cycles are paths which start and end at the same node. It is well

known that when the graph has no cycles, message-passing canyield the exact bitwise

APP’s given the code structure. However, the existence of cycles can be seen to violate

the independence assumption on which Equations (6.3.12) - (6.3.15) rely. In such cases,

the algorithm outputs only an estimate or an approximation of the APP, which might

be poor, thereby degrading performance. Still, there is ample empirical evidence that

message-passing decoding yields good estimates for many codes whose corresponding

graphs contain cycles. It is widely presumed, however, thatvery short cycles, especially

those of length4, can severly degrade message-passing performance, and should thus be

avoided. A comprehensive analytical treatment of the effects of cycles on the decoding

performance has not been developed to date.

We end this section with a summary of the message-passing algorithm for decoding

of LDPC codes. We note that the description to follow is just one of a number of possi-
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ble applications of message-passing principles to this problem. As we mentioned before,

there is room for various schedules and stopping rules. We introduce the following short-

hand notation. Letpi denote the prior probability that thei’th bit equals1, and letqi(0)

andqi(1) denote the estimates of the bit’sa posterioriprobabilities at the output of the

algorithm. The corresponding extrinsic probabilities areqext
i (0) andqext

i (1). We denote

the bit-to-check and check-to-bit messages byqij(b) andrji(b), respectively. For each bit

nodebi, the setCi = {j : hji = 1} consists of the indices of its adjacent check nodes.

Similarly, for each check nodefj , the setRj = {i : hji = 1} represents the indices of its

adjacent bit nodes.

Message-Passing Algorithm for Decoding LDPC Codes

• Step 0.Initialize. For all edgeseij on the graph set

rji(0) = rji(1) =
1

2
.

For all i = 1, · · · , N , setpi to the prior bit probabilities that are input to the algo-

rithm.

• Step 1.Compute messages from bit nodes to check nodes. For all edgeseij on the

graph calculate

qij(0) = kij · (1− pi) ·
∏

j′∈Ci\{j}

rj′i(0)

qij(1) = kij · pi ·
∏

j′∈Ci\{j}

rj′i(1),
(6.3.16)

wherekij is chosen such thatqij(0) + qij(1) = 1.

• Step 2.Compute messages from check nodes to bit nodes. For all edgeseij on the

graph calculate

rji(0) =
1

2
+

1

2

∏

i′∈Rj\{i}

(1− 2qi′j(1))

rji(1) = 1− rji(0).

(6.3.17)
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• Step 3.Compute tentativeposterioroutputs. For alli calculate

qi(0) = k′
i · (1− pi) ·

∏

j∈Ci

rji(0)

qi(1) = k′
i · pi ·

∏

j∈Ci

rji(1),
(6.3.18)

wherek′
i ensures thatqi(0) + qi(1) = 1.

The correspondingextrinsicoutputs are computed as

qext
i (0) = ki ·

∏

j∈Ci

rji(0)

qext
i (1) = ki ·

∏

j∈Ci

rji(1),
(6.3.19)

whereki ensures thatqext
i (0) + qext

i (1) = 1.

• Step 4. Check stopping criterion. For alli make a tentative bit decision from

posterioroutput by

b̂i =

{

1, qi(1) > qi(0)

0, otherwise.
(6.3.20)

If Hb̂
T = 0

T or if we have reached a maximum number of iterations, then stop.

Else, go to step 1.

6.4 Noise Predictive Turbo Equalization

6.4.1 Background: Noise Prediction

In noise prediction, one uses a set of known noise values{ni+k : k ∈ K} to predict

an unknown noise termni. Given a set of indicesK we are interested in a linear predictor

pK(D) =
∑

k∈K

ckD
k

that minimizes the mean-squared prediction error, defined as

E[e2
K ]

.
= E[(ni − n̂i] = E[(ni −

∑

k∈K

ckni+k)
2].
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Here, n̂i stands for the predicted value ofni. The optimal predictor coefficients{cK
k },

together with the minimal mean-squared error (MMSE), can bederived from the noise

autocorrelation [20]. In magnetic recording systems, where the noise is colored by a

tapped delay line equalizer, the noise autocorrelation is merely a function of the equal-

izer’s coefficients. Given the computed autocorrelation, the derivation of the optimal

predictor coefficients amounts to the solution of a system oflinear equations, known as

the Yule-Walker equations. In order to simplify the presentation, we shall use the fol-

lowing terminology throughout the section. Given a setK, the predictorpK(D) always

represents theoptimalMMSE predictor for that set. The error power ofpK(D) refers to

theminimalmean-squared errorE[(e⋆
K)2].

The following property is of considerable importance in thecontext of this work. If

the noiseni is correlated, then the MMSE is smaller than the noise power,i.e.,

E[(e⋆
K)2] = E[(ni −

∑

k∈K

cK
k ni+k)

2] < E[n2
i ].

As we will explain later, we attempt to predict the actual colored noise sampleni and

then replace it with the resulting prediction errore⋆
K . Thus, aside from a partial whitening

effect on colored noise, it can be seen that the application of noise prediction has the

benefit of reducing noise power. Both effects can contributeto improved detection and

decoding.

6.4.2 A Noise Predictive Turbo Equalization Scheme

Figure 6.4.1 depicts a noise-predictive turbo equalization (NPTE) system. Each it-

eration starts with a standard turbo equalizer iteration, consisting of a single BCJR pass

followed by T LDPC decoding iterations. The APPR’s produced by the TE,{Qi}, are

used to determine a subset of the colored noise terms that canbe reliably estimated. Given

a predefined threshold,R ≥ 1, the system performs the following actions for each bit.

1. If Qi > R or Qi < 1
R

, then declarexi reliable and setx̃i = 1 or x̃i = −1,

respectively.

2. If the M+1 consecutive bits{xi, xi−1, , xi−M} are declared reliable, then compute a
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Figure 6.4.1 Noise-predictive turbo equalization system block diagram.

reliable colored noise estimate, ñi, by

ñi = ri − x̃i −
M
∑

m=1

fmx̃i−m. (6.4.1)

Otherwise, markni asnon-estimated.

Next, for each noise term, a variable length predictor of theform

pK(D) =
−1
∑

k=−l

cK
k Dk +

m
∑

k=1

cK
k Dk, l, m > 0,

is found, and the resulting predicted value and prediction error power are then determined,

as follows.

3. For each bit, search for neighboring reliable colored noise estimates on both past

and future samples. Stop at the first non-estimated noise term in each direction. Let

i− vi andi + zi denote the indices of the outermost past and future estimated noise

terms, respectively.

4. For a predefined integerJ > 0, representing the maximum number of prediction

taps, consider all possible sets of the form

Kl,m = {k ∈ Z \ {0} : −l ≤ k ≤ m},
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wherel, m are nonnegative integers such thatl + m ≤ J .

• If vi + zi ≤ J then set(li, mi) = (vi, zi).

• If vi + zi > J then find a pair(li, mi) that minimizes the error power of

pKl,m(D), over all setsKl,m with l ≤ vi, m ≤ zi andl + m = J .

SetKi = Kli,mi
.

If (li, mi) 6= (0, 0) then set

n̂i =
−1
∑

k=−li

cKi

k ñi+k +

mi
∑

k=1

cKi

k ñi+k and σ∗2
i = E[(e⋆

Ki
)2]. (6.4.2)

Otherwise, set̂ni = 0 andσ∗
i
2 = σ2.

Note that predictors of different noise terms may use different sets of neighboring reliable

estimates combined with the appropriate predictor coefficients. It is also possible that

both li andmi equal0. In this case, no prediction will occur in the current iteration.

Moreover, the predictor of any given noise term may change and need to be recalculated

between TE iterations. It is also worth pointing out that thecoefficients and error power

that correspond to each of the setsKl,m are computed in advance using the known noise

autocorrelation.

Finally, new sample values are produced for each bit. Updated BCJR branch like-

lihoods that correspond to these values are derived as follows, to be used in the next

iteration.

5. Letr∗i = ri − n̂i. For each trellis branch calculate

γ̃∗
i (s

′, s) =
1√

2πσ∗
i

e−(r∗i −ρ(s′,s))2/2σ∗2
i . (6.4.3)

Note that new likelihoods are calculated only when a prediction occurs. In case it does

not, one merely needs to set the likelihoods to their initialvalues (i.e., whereri andσi were

used in (6.4.3) and notr∗i andσ∗
i ). In the next iteration, the BCJR will utilize the updated

likelihoods along with updated prior probabilities obtained from the LDPC decoder.

It is through Equation (6.4.3) that the modified samples and their associated variances

are accounted for in the next round of detection. To justify (6.4.3), we first express the
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new sample as

r∗i =

M
∑

m=0

fmxi−m +

(

ni −
(

−1
∑

k=−li

cKi

k ñi+k +

mi
∑

k=1

cKi

k ñi+k

))

. (6.4.4)

We make the assumption that correct noise estimates are fed back, in view of the threshold-

based selection of reliable bit estimates. Furthermore, asTE iterations progress, we expect

that soft outputs of increasing reliability will be generated. Under this assumption, (6.4.4)

reduces to

r∗i =
M
∑

m=0

fmxi−m + e⋆
Ki

. (6.4.5)

Observing thate⋆
Ki

is a zero-mean Gaussian random variable of varianceσ∗2
i = E[(e⋆

Ki
)2],

we obtain Equation (6.4.3), with the PR channel branch labelρ(s′, s) =
∑M

m=0 fmxi−m.

We can now summarize the entire NPTE procedure with the following outline of the

algorithm.

• Step 0. Initialize. Compute an initial set of branch likelihoods, based on channel

outputs and variance.

• Step 1.Iterate once on TE. Check stopping criterion.

• Step 2.Determine reliable bits. Make tentative colored noise estimates from avail-

able reliable bit decisions.

• Step 3.Predict noise by using up to J tentative estimates.

• Step 4.Obtainupdated samplesbased on the prediction of Step 3. Replace BCJR

likelihoods with updated likelihoods that correspond to these samples. Go to Step

1.

6.5 Simulation Results

Simulations were performed for a Lorentzian channel with AWGN at recording densi-

ties of 2.60 and 2.85. The channel was equalized to two different PR targets using a finite-

length approximation to an ideal lowpass filter and a 21-tap zero-forcing equalizer. The
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Figure 6.5.1 Performance of turbo equalization schemes at recording densityPW50/Tb

= 2.60.

equalization targets were the PR4 (f(D) = 1−D2) and EPR4 (f(D) = (1−D)(1+D)2)

channels, giving rise to 4-state and 8-state trellises, respectively. The LDPC code has rate

8/9 and a block length of 4896. Each turbo equalizer iteration consists of running the

BCJR algorithm once and subsequently performing a single message-passing decoding

iteration, i.e., T=1. A single turbo equalizer iteration isfollowed by the above-mentioned

noise prediction procedure, both together comprising a single detection/decoding itera-

tion. The maximum number of detection/decoding iterationswas 24. Simulations of

the NPTE scheme with various threshold values between R=1 and R=50 indicated that a

threshold of R=9 obtains good overall performance, hence R=9 was used for all simula-

tions. The maximum number of prediction taps was set to J=2. This means that one can

predict a noise sample by using either up to 2 past (to the left) nearest neighbors, or up to

2 future (to the right) nearest neighbors, or up to 1 neighboron each side. The signal-to-

noise-ratio (SNR) is defined as the ratio of the mean-square signal value and the variance

of the noise, both measured at the input to the equalizer.

Figure 6.5.1 shows performance curves for a recording density of 2.60. We simulated

a standard turbo equalizer for a PR4 channel (PR4-TE) as wellas the suggested NPTE
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Figure 6.5.2 Performance of turbo equalization schemes at recording densityPW50/Tb

= 2.85.

scheme for the same channel (PR4-NPTE). We also considered astandard turbo equalizer

matched to an EPR4 channel (EPR4-TE) as an alternative scheme. The reason is that

at high densities, an EPR4 channel provides a better fit to thereal channel characteristics

than a PR4 channel, but in turn, is more complex (i.e., has a larger memory). The statistics

were gathered using simulation runs of 3,000 codewords or approximately107 transmitted

bits. It can be seen that NPTE with R=9 and J=2 on a PR4 channel outperforms standard

TE on an EPR4 channel by about 1.5 dB. Similar gains were reported in [9] for a standard

TE on the 16-state trellis targetg(D) = (1 − D2)(1 + p1D + p2D
2). A similar effect,

but of a slightly smaller magnitude, holds for a density of 2.85, as one can observe from

Figure 6.5.2. Note that the same TE and NPTE parameters were used at this density as

well.

As noted earlier, we also tested the sensitivity of the NPTE system performance to the

reliability threshold R. The performance curves shown in Figure 6.5.3 pertain to selected

threshold values ranging from R=1 to R=50. All other system parameters remain fixed

at the values reported above. The curves demonstrate that NPTE performance improves

with increasing value of R up to approximately9 ≤ R ≤ 12. Then, performance starts
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Figure 6.5.3 Sensitivity of the NPTE system to the reliability threshold R at recording

densityPW50/Tb = 2.60.

degrading when further increasing R. A possible reason is that a too small R may result

in feedback of many incorrect estimates leading to mispredictions, whereas a too large R

may yield too few reliable estimates and thus limited and infrequent predictions.

6.6 Conclusion and Discussion

The emergence of iterative decoding principles has opened the door to new methods

for handling colored noise. In this chapter, we proposed a new method for incorporat-

ing noise prediction into a standard turbo equalizer. It is based on iteratively whiten-

ing the noise in a selective manner, while utilizing the softinformation produced by a

standard turbo equalizer. When applied to a PR4 channel, theproposed scheme substan-

tially improves upon conventional turbo equalizers for both PR4 and EPR4 channels. It

achieves performance comparable to previously suggested methods that are based upon

turbo equalization of generalized PR channels, while reducing the overall system com-

plexity.
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In order to comprehend the differences between present technologies and the proposed

new method, recall that the former integrate noise prediction into the channel structure and

detection. The present conventional approach is rooted in the characteristics of existing

detection and decoding techniques. Specifically, noise prediction is irrelevant to the tra-

ditional ECC decoder (e.g., for decoding of Reed-Solomon codes [19]), which operates

on hard-decisions. In contrast, an iterative SISO ECC decoder can both benefit from and

contribute to noise processing. Consider, for example, thetransmission of LDPC encoded

data over a memoryless channel with additive colored noise.One could design a noise-

predictive LDPC decoder, based on the ideas presented here.That is to say, it is possible

to slightly adapt the noise prediction procedure describedin Section 6.4.2 to operate on

the soft inputs and outputs of the LDPC decoder.

In the case of ISI channels, prediction is a stand-alone module that exchanges soft

information with the turbo equalizer. One benefit of our approach is the use of a simpler

channel model with fewer states than corresponding generalized PR channel models. In

addition, iterative systems provide soft or reliability information for the entire block on

a bit-basis. This facilitates an adequately reliable estimation in Step 2 of the NPTE pro-

cedure, as well as a judicious and noncausal prediction in Step 3. Reliable estimation

combined with a careful choice of tentative prediction tapshelps reduce misprediction.

Consequently, it results in increasingly refined noisy samples and thereby in improved

turbo equalization performance. The causal prediction filters used in NPML systems and

in [9] arise from the serial nature of maximum-likelihood Viterbi detectors [1]. Specif-

ically, at each time instance (i.e., for each bit), only information on prior bits has been

processed and can be fed back in the form of tentative noise estimates. Nevertheless,

noncausalprediction filters may enhance noise reduction compared tocausalprediction

filters with thesamenumber of taps. Indeed, for the noise models considered hereand

when J=2, prediction through one adjacent past sample and one adjacent future sample

incurs a smaller error power than that associated with the 2 previous nearest or the 2 next

nearest neighbors. This effect might not hold for arbitrarynoise models, but can be shown

to hold in our case (i.e., when equalizing from densities 2.60 and 2.85 to a PR4 channel).

The proposed prediction module is self-contained, and as such, its integration is not

limited to the systems described earlier. In general, it maybe added to a variety of SISO
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systems, as long as the noise model is known or has been estimated. For example, it

can be used for joint equalization and decoding of two-dimensional (2-D) ISI channels,

arising in novel page-oriented storage technologies (see,e.g., [21]). Noise prediction for

a two-dimensional correlation model was proposed in [22], where a 2-D ISI channel was

equalized to a memoryless channel, using a zero-forcing equalizer. The power of the

arising colored noise was reduced through 2-D noise prediction. The noise whitening

process was incorporated into a 2-D multilevel coding with multistage decoding scheme,

where multiple LDPC codewords are interleaved into an array. In a similar manner, one

can use a zero-forcing equalizer in conjunction with a single LDPC code that encodes

the whole array. Then, the NPTE algorithm can be adapted to whiten the 2-D colored

noise between message-passing iterations. Obviously, this approach is not limited to

zero-forcing equalization. For example, it can work jointly with 2-D detection schemes

such as the iterative multi-strip (IMS) detector, proposedin [23].

We conclude this chapter by mentioning a recently publishedrelated work by Kay-

nak, Duman, and Kurtas [24] on noise predictive belief propagation (NPBP) detection.

The authors suggest an alternate way of harnessing the advantages of state-of-the-art de-

tection techniques to combat the effects of colored noise. They incorporate causal noise

prediction filters into the SISO partial-response channel detector that was proposed in [8]

(see also [10] for further results). This detector applies the message-passing algorithm to

a certain graphical description of the PR channel. Its primeadvantage is in its parallel

message-passing schedule, facilitating a fully parallel implementation of the algorithm,

in contrast to the serial schedule used by the BCJR algorithm. The proposed NPBP de-

tector obtains tentative bit decisions and noise estimatesin a similar manner to the NPTE

algorithm. However, its whitening process is not selectiveand utilizes fixed and causal

predictors. All noise samples are predicted systematically, regardless of the reliability of

the relevant estimates. Although a certain threshold-based technique is applied in order

to alleviate feedback of erroneous bit decisions, it does not benefit from the reliability

information provided by the SISO detector. An important quality of NPBP is that its in-

tegration of noise prediction retains the detector’s parallel architecture. This allows for

fast detection as well as for fast parallel implementation of NPBP turbo equalization with

LDPC codes. It would be interesting to compare the performances of NPTE and NPBP,
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and also to consider the integration of NPTE principles intothe parallel detector in [8].
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