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Self-organizing linear output map (SOLO): An artificial neural

network suitable for hydrologic modeling and analysis
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[1] Artificial neural networks (ANNs) can be useful in the prediction of hydrologic
variables, such as streamflow, particularly when the underlying processes have complex
nonlinear interrelationships. However, conventional ANN structures suffer from network
training issues that significantly limit their widespread application. This paper presents a
multivariate ANN procedure entitled self-organizing linear output map (SOLO), whose
structure has been designed for rapid, precise, and inexpensive estimation of network
structure/parameters and system outputs. More important, SOLO provides features that
facilitate insight into the underlying processes, thereby extending its usefulness beyond
forecast applications as a tool for scientific investigations. These characteristics are
demonstrated using a classic rainfall-runoff forecasting problem. Various aspects of model
performance are evaluated in comparison with other commonly used modeling
approaches, including multilayer feedforward ANNs, linear time series modeling, and
conceptual rainfall-runoff modeling. INDEX TERMS: 1821 Hydrology: Floods; 1860 Hydrology:

Runoff and streamflow; 1869 Hydrology: Stochastic processes; KEYWORDS: artificial neural network, self-

organizing feature map, principal component analysis, rainfall-runoff modeling, overfitting, SOLO

Citation: Hsu, K., H. V. Gupta, X. Gao, S. Sorooshian, and B. Imam, Self-organizing linear output map (SOLO): An artificial

neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38(12), 1302, doi:10.1029/2001WR000795, 2002.

1. Introduction

[2] Artificial neural network (ANN) methods have found
increasing utility in a variety of hydrological applications
[Maier and Dandy, 2000; ASCE Task Committee on the
Application of Artificial Neural Networks in Hydrology,
2000]. Among the most widely used network structures
are the Multilayer Feedforward Network (MFN), the recur-
rent neural network (RNN), and the radial basis function
(RBF) network. In previous work [Hsu et al., 1995, 1997a,
1997b, 1999; Sorooshian et al., 2000], the applicability of
ANN methods for hydrologic applications such as stream-
flow forecasting and estimation of spatial precipitation
fields was investigated. Relevant to this paper, Hsu et al.
[1995] showed that a 3-layer MFN (Figure 1a) provides
excellent one step ahead predictions of streamflow, includ-
ing both flood peaks and recessions. Hsu et al. [1997a]
explored the RNN extension of the MFN structure (Figure
1b) which adds time-delayed feedback loops to simulate the
‘‘storage capacity’’ of a dynamical hydrologic system.
[3] However, the existence of multiple local optima and

extensive regions of parameter insensitivity complicates the
identification and training ofMFN and RFN networks, which
significantly limits their widespread application [Gupta et
al., 1997]. Therefore it is important to resolve the network
identification problem while maintaining high standards of
network performance and accuracy. This paper presents a
multivariate ANN procedure, entitled self-organizing linear
output map (SOLO), whose structure has been designed for
rapid, precise, and inexpensive estimation of network struc-

ture/parameters and system outputs, as well as estimates of
their uncertainty. More important, SOLO provides additional
insight into the underlying input-output processes, thereby
extending its usefulness beyond forecast applications. The
scope of this paper is organized as follows. The architecture
of the SOLO model and an illustrative application to a
streamflow prediction problem are described in sections 2
and 3, respectively. In addition, the performance of SOLO is
evaluated in comparison with multilayer feedforward ANNs,
a linear time series model, and a conceptual rainfall-runoff
model. Section 4 discusses how the analysis of intermediate
products generated by the network can facilitate insight into
the underlying structure of the input-output process. Techni-
cal issues including identification of network size, stability of
the parameter estimates, principal component analysis, the
relationship to linear input-output modeling, and ‘‘overfit-
ting’’ are discussed in section 5. Issues of model prediction
uncertainty are presented in section 6.

2. SOLO Model

[4] The architecture of a SOLO network is listed in
Figure 2. This network consists of three layers. The input
layer is comprised of n0 neural units (one for each variable
of the input vector), each connected to all units of the
classification and mapping layers. The classification and
mapping layers consist of n1 � n1 matrixes (Figure 2): one
to classify the input information using a self-organizing
feature map (SOFM) [Kohonen, 1989] and the other to map
the inputs into the outputs using multivariate linear regres-
sion. The SOFM matrix functions as a ‘‘switchboard’’ to
turn ‘‘on’’ or ‘‘off’’ the units of the regression matrix: i.e.,
the SOFM matrix classifies each input vector and deter-
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mines to which unit in the regression matrix it must be
routed for output prediction. The values of the network
parameters (i.e., connection weights linking the units) are
determined by the process of calibration (i.e., training).
[5] The mathematical description of SOLO is as follows.

Let wji represent the connection strength (weight, parameter)
linking the ith input variable (i = 1,. . .n0) to the jth SOFMunit
( j 2 n1 � n1), and let vji represent the connection strength
linking the same ith input variable to the jth regression unit.

Compute the Euclidian ‘‘distance’’ dj between the input
vector, x = {xi, i = 1,. . . n0}, and the jth SOFMunit as follows:

dj ¼
Xn0
i¼1

xi � wji

� �2" #0:5
ð1Þ

Compute this distance to each SOFM unit and select the
unit, c, which has the smallest distance, i.e., dc= min(dj), for

Figure 1. (a) A three-layer feedforward neural network and (b) a three-layer recurrent neural network.

Figure 2. The architecture of a SOLO network.
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all j. This identifies the input cluster to which the input
vector xi belongs. All of the corresponding outputs of the
units of the SOFM matrix will be ‘‘0’’, except for the cth

unit, for which the output will be ‘‘1’’. This output is used to
determine which unit of the regression matrix is to be used
in the computation of the output value z from the input
vector (x)

z ¼
Pn0
i¼1

vjixi þ vj0 if j ¼ c

¼ f otherwise

ð2Þ

where f means that the outputs other than the unit j = c are
not selected or estimated. In this way, each unit of the
regression matrix is represented by a linear input-output
regression function that is associated with a single input
cluster. The input-output function mapping is therefore
accomplished by a set of n1 � n1 piecewise linear regression
functions that covers the entire input domain.
[6] The training of the network connection weights wji

and vji is achieved as follows. First, the weights, wji, of the
SOFM matrix are trained using an iterative nonsupervised
(self-organizing) procedure. In this procedure, the weights,
wji, in the SOFM matrix are initialized to randomly selected
values and are then adjusted so that the nodes which are in
the neighborhood �c of the node (c), determined to be
closest to the current input vector, are moved towards the
input vector using the iterative adjustment rule:

wji mð Þ ¼ wji m� 1ð Þþ h mð Þ xj � wji m� 1ð Þ
� �

if j 2 �c mð Þ

wji mð Þ ¼ wji m�1ð Þ otherwise
ð3Þ

Here, m is the training iteration, �c(m) defines the size of a
neighborhood around the winner unit c, and h(m) is the
learning rate (step size) at the iteration m. This procedure is
applied several times to the entire data set of input vectors.
As the training proceeds, the sizes of both �c(m) and h(m)
are progressively reduced, and the SOFM stabilizes to a
form that approximates the distribution of the data in the
input space.
[7] Next, the weights vji of the linear regression matrix

are determined. Due to the self-organizing (clustering)
procedure outlined above, each node of the regression
matrix has become associated with a distinct region of the
input space. Therefore the input-output data now associated
with node j are used in the determination of the nodal
regression parameters (vji) by solving the linear set of
equation

Z ¼ X qþ e ð4Þ

where Z is a p � 1 vector with p output training data (runoff
observations), X is a p � n0 matrix with p sets (rows) of
training input vectors (xi)

T, i = 1, . . .n0, q is a n0 � 1 vector
of regression parameters (weights) for unit j, q = [vj1, vj2,
. . ., vjn0]

T, and e is a p � 1 vector of estimation errors with
zero mean and variance se

2. In general, because the number
of equations (size, p, of the data set) exceeds the number of
unknown regression parameters (n0), the ‘‘optimal’’ (un-
biased) estimates of q can be determined by minimizing the

root mean square error of the output residuals, using the
equation:

q̂ ¼ XTX
� ��1

XTZ ð5Þ

However, the solution of equation (5) is typically com-
plicated by the presence of significant correlation among the
input variables (xi), causing the matrix (X ) to be colinear
and the inverse matrix (XTX )�1 to be singular. This problem
is avoided by applying a principal component transforma-
tion (C) (also called empirical orthogonal function) [Jolliffe,
1986; Tatsuoka and Lohnes, 1988; Peixoto and Oort, 1992]
to the matrix X to obtain a matrix Y having independent
(orthogonal) column vectors:

Y ¼ XC ð6Þ

Here Y is the p � n0 matrix of principal components, and C
is the p � n0 transformation matrix with eigenvectors
derived from the covariance matrix of X: E(XTX ) and CTC =
CCT = I (Appendix A). Substituting equation (6) into
equation (4) yields

Z ¼ YCT qþ e ¼ Ybþ e ð7Þ

where b = CTq can be determined without difficulty, using
the relevant analog to equation (5), because the variables
in Y are independent (orthogonal). Selecting and including
only the largest principal components of Y, those that
explain the majority of the variance, can avoid the
instability in estimates of the regression parameters. In
SOLO, the number (m) of the largest principal components
used in the regression is determined to ensure that the

ratio V ¼
Pm
i¼1
li=

Pp
j¼1

lj:100% > 95%: This reduces the dimension of

the inverse matrices to be solved during regression,
thereby simplifying and speeding up the network training.

3. Use of SOLO for Streamflow Prediction

[8] Applied ANNs in streamflow prediction are discussed
in many recent publications. Smith and Eli [1995] trained
MFNs to predict the peak discharge and peak time from
synthetic data and hypothetical watersheds. In the study by
Minns and Hall [1996], runoff was generated from a simple
nonlinear model using synthetic storm events. The results
show that the performance improved with more hidden
layers in the network. Mason et al. [1996] applied RBF
networks in runoff prediction and showed that RBFs are
more efficient than slow back propagation learning strategy
in the model calibration. Tokar and Johnson [1999]
explored the network performance to the training data set
and found that the model trained from both dry and wet
records had a better prediction accuracy. Ahmad and Simo-
novic [2001] used MFNs to predict the amount and timing
of peak flow, base flow, timing of rising and falling limbs,
and shape of the runoff hydrograph. For more other relevant
ANN applications, readers may refer to the summary papers
from Maier and Dandy [2000] and the ASCE Task Commit-
tee on the Application of Artificial Neural Networks in
Hydrology [2000].
[9] In this case study, the SOLO network was applied to

the problem of streamflow prediction, and its performance
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was compared with that of four commonly used hydrological
modeling approaches. The test data consisted of 36 years (1
October 1948 to 30 September 1983) of daily rainfall and
streamflow data for the Leaf River basin (1949 km2) near
Collins, Mississippi. With respect to the data record used in
the model calibration, in the previous study, Yapo et al.
[1996] suggested that approximately eight years of data are
required to obtain calibrations that are relatively insensitive
to the data period selected. To avoid models calibrated from
an insufficient data record, the first 11 years of data were
selected for model development and calibration, and the
remaining 25 years were used for performance evaluation.
The comparison is based only on the ability of each model to
provide accurate one-day-ahead predictions of streamflow.
Note, however, that each model has different input data
requirements, as mentioned in the associated subsections.

3.1. ARX Model

[10] The ARX (n1, n2) time series model (autoregressive
with exogenous inputs) is a lumped linear regression
structure that has been used extensively for the prediction
of streamflow using observed rainfall and runoff sequences
[O’Connell and Clark, 1981; Wood, 1980]:

q t þ 1ð Þ ¼
Xn1
i¼0

aiq t � ið Þ þ
Xn2
j¼0

bj r t � jð Þ þ e t þ 1ð Þ ð8Þ

where ai and bj are parameters, and q(t) and r(t) are the
observed streamflow and rainfall sequences, respectively.
The time unit t is one day, and e(t + 1) is the error of
streamflow estimation. Three previous time steps of rainfall
and streamflow observations are used as the inputs to the
model (i.e., n1 = n2 = 2). For a fair comparison of various
model performances, the same six input variables in the
ARX, MFN, and SOLO models were also selected. The
parameters of the ARX model (ai, bj) are determined by
minimizing the root mean square error (RMSE) of the
streamflow residuals computed over the training data set:

minF ai; bj
� �

¼ min
X
t

q tð Þ � q̂ tð Þð Þ2
" #

ð9Þ

3.2. Multilayer Feedforward Network (MFN)

[11] The MFN model [see Hsu et al., 1995] is widely
used to model nonlinear processes because the simple three-
layer network MFN (n0, n1, n2) shown in Figure 1a has been
mathematically proved [Hornik et al., 1990; Gallant and
White, 1992] to be capable of mapping any kind of
continuous nonlinear function (n0, n1, and n2 represent the
number of units in the input, hidden, and output layers,
respectively). For a comparison of different models, the
same six input variables used in the ARX model are used as
network inputs:

x ¼ x1; x2; x3; x4; x5; x6½ 	T

¼ r tð Þ; r t � 1ð Þ; r t � 2ð Þ; q tð Þ; q t � 1ð Þ; q t � 2ð Þ½ 	T ð10Þ

The output layer has a single unit representing the runoff
prediction, and the hidden layer uses three units, based on

tests exploring the use of different numbers of hidden nodes,
with performance evaluated over both calibration and
evaluation data [Hsu et al., 1995]. The optimal network
structure for one-day-ahead prediction of streamflow q̂ (t + 1)
on the Leaf River basin was determined to be MFN(6, 3, 1),
written as

yj ¼ f
Xn0¼6

k¼1

wjkxk þ wj0

 !
ð11Þ

q̂ t þ 1ð Þ ¼ f
Xn1¼3

k¼1

vkyk þ v0

 !
ð12Þ

f :ð Þ ¼ 1

1þ exp :ð Þ ð13Þ

where f (.) is the neural transfer function, yk is the output of
unit k in the hidden layer, wjk is the connection weight
between the unit k in the input layer and unit j in the hidden
layer, vjk is the connection weight between the unit j in the
output layer and unit k in the hidden layer, wj0 and v0 are bias
weights. Estimates for the parameters (wjk and vk) were
determined by minimizing the RMSE using the linear least
squares simplex (LLSSIM) algorithm [Hsu et al., 1995].

3.3. Recurrent Neural Network (RNN)

[12] The RNN model (Figure 1b) is an extension of the
MFN network to include internal temporal storage/memory
processes. Its application to the problem of streamflow
prediction has been discussed by Hsu et al. [1997a]. The
RNN architecture requires that only the rainfall data at the
current time step be used as external input to the network (i.e.,
(xi) = r(t), i = 1). The network architecture for streamflow
prediction on the Leaf River basin is RNN(1, 4, 1), written as

yj tð Þ ¼ f wj1r tð Þ þ
Xn1
k¼1

wr
jkyk t � 1ð Þ þ wj0

 !
ð14Þ

where f (.) is the neural transfer function (equation 13), yj(t)
is the output of the hidden unit j at time t, wj1 is the
connection weight from the input unit to the hidden layer
unit j, wr

jk is the time-delayed recurrent connection weights
from the hidden unit k to the hidden unit j, and wj0 is the
bias weight. Model output is calculated by

q̂ t þ 1ð Þ ¼ f
Xn1
j¼1

vjyj tð Þ þ v rq̂ tð Þ þ v0

 !
ð15Þ

where vj is the connection weight from hidden unit j to the
output unit, vr is the time-delayed output recurrent connec-
tion weight, and v0 is the bias weight. As with the MFN, the
network connection weights, {w, wr, v, vr}, were determined
by minimizing the RMSE using the LLSSIM algorithm.

3.4. SAC-SMA Model

[13] The Sacramento Soil Moisture Accounting (SAC-
SMA) model is a conceptual multistorage streamflow simu-
lation model, developed and maintained by the U.S. National
Weather Service [Burnash et al., 1973; Burnash, 1995]. The
inputs to the model include the mean basin precipitation at
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the current time step, r(t), and the mean basin evapotranspi-
ration. A description of the SAC-SMA model is given by
Sorooshian et al. [1993]. The parameters of the SAC-SMA
model were calibrated using the shuffled complex evolution
(SCE-UA) algorithm, developed at the University of Arizona
[Duan et al., 1992]. Discussions related to conceptual rain-
fall-runoff model identification and use are given by Sor-
ooshian et al. [1993], Sorooshian and Gupta [1995], Gupta
et al. [1998], and Boyle et al. [2000, 2001].

3.5. SOLO Model

[14] As described above, the SOLO model uses piecewise
linear regression functions to predict the streamflow. To
remain consistent with the ARX, MFN, and RNN models,
the input vector (x) used here consisted of the three most
recent precipitation and streamflow observations (see equa-
tion 10). The SOFM and regression matrixes were selected
to consist of 15 � 15 nodes each. A discussion regarding
the selection of the size of the SOFM and regression
matrices is given later.

3.6. Results

[15] Summary statistics of the one-day-ahead streamflow
prediction performance of the five models (ARX, MFN,
RNN, SOLO, and SAC-SMA) are presented in Table 1. It
shows that the SOLO model consistently provides the best
values for the NSE (Nash-Sutcliffe coefficient of effi-
ciency), RMSE, CORR (correlation), and BIAS (bias)
statistics for both the 11-year calibration and 25-year
evaluation periods. The MFN model provides the next best
performance, having similar statistics to SOLO. The
remaining three models (RNN, ARX, and SAC-SMA)
provide significantly worse calibration and evaluation per-
formance; in particular, the SAC-SMA model has notice-
ably larger residual bias (BIAS = 5.44).
[16] The CPU time required for model calibration (on a

SUN SPARC workstation) is a gross indication of the
relative efficiencies of the different modeling procedures.
As indicated in Table 1, the ARX model is the most efficient
procedure, requiring less than five minutes to calibrate the
model using 11 years of data. SOLO is next, requiring 1.5
hours, most of which were spent on the SOFM classification
step. However, the SAC-SMA model required eight hours,
and the MFN and RNN models each required over 40 hours
of CPU time. While this is a somewhat crude basis for
comparison, the results strongly support the conclusion that
the SOLO network can provide a superior approximation of
the complex nonlinear rainfall-runoff relationship in an
efficient manner.
[17] A more detailed comparison of model performance is

given in Figures 3 and 4. The daily RMSE values (cms)

plotted against the volume of annual streamflow (cms) for
each model for each year are shown in Figure 3. The solid
squares represent calibration years, while the solid circles
represent the evaluation years. For each model, it is clear that
the error variance increases with ‘‘wetness’’ of the year (i.e.,
the annual RMSE increases with annual streamflow) in a
somewhat linear fashion. An arbitrary line has been added to
each graph from (0,0) to (70,40) to provide a basis for simple
visual comparison. Notice that the SOLO model provides
relatively smaller RMSEs over the full range of annual flows.
The SAC-SMA model performs well on high-flow (wetter)
years but not as well on low-flow (drier) years. The perform-
ance of the ARX model is similar to the SAC-SMA for low-
flow years but is poorer for high-flow years. The RNNmodel
provides the worst performance in high-flow years.
[18] Plots of the hydrographs comparing one-day-ahead

model predictions with streamflow observations are shown
in Figure 4 for the wettest year (1980) of the evaluation
period. For this year, the RMSEs are (in order of decreasing
performance) SOLO = 25.39 cms, SAC-SMA = 30.44 cms,
MFN = 32.31 cms, ARX = 34.36 cms, and RNN = 47.45
cms. The SOLO and MFN models show the closest tracking
of the flows on all portions of the hydrograph. The SAC-
SMA shows some difficulty in tracking the recessions. The
ARX model shows undesirable (high-frequency) ‘‘spikes’’
during transitions between high- and low-flow periods and a
significant tendency to underestimate the recessions.

4. Insights Into the Network Structure

[19] The SOFM layer of SOLO partitions the input space
into a number of regions, each represented by a number of
nodes, such that the nodal connection weights (wji) repre-
sent the cluster mean values for the associated subset of the
data. A linear regression equation is then fit between the
inputs and outputs for each region so that the result is an
efficient, and arbitrarily accurate, piecewise linear approx-
imation of the entire input-output domain.
[20] An interesting by-product of this approach is that an

analysis of the properties of the SOFM layer can facilitate
insight into the underlying structure of the input-output
process. To illustrate this, we present an example in which
the SOFM layer was constructed using only a 2 � 2 grid of
nodes. The model was trained using the same 11-year Leaf
River basin daily rainfall-runoff time series described in
section 3. A 100-day portion of the observed rainfall
hyetograph and observed and simulated streamflow hydro-
graphs for water year 1961 is shown in Figure 5. As a result
of the classification step, each of the four SOFM nodes is
activated by a different characteristic pattern (let us call it a
‘‘mode’’) of input (rainfall) behavior. Hence, a different

Table 1. Comparison of Models Using 11-Year Calibration Data and 25-Year Evaluation Data

Statistics

Calibration Evaluation

NSE RMSE CORR BIAS Time, hours NSE RMSE CORR BIAS

ARX 0.917 17.24 0.961 0.105 0.08 0.894 20.53 0.949 �0.036
MFN 0.951 13.57 0.976 0.369 46 0.923 17.91 0.962 0.588
RNN 0.904 19.31 0.954 �0.682 41 0.842 25.81 0.924 �0.593
SOLO 0.959 12.36 0.980 0.074 1.5 0.929 17.01 0.965 0.036
SAC-SMA 0.911 17.80 0.959 2.29 8 0.915 19.43 0.960 5.444
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linear regression equation (one of four) is utilized to provide
one-step-ahead predictions of different portions of the
streamflow hydrograph. In Figure 5, the streamflow pre-
dictions, q(t + 1), associated with each of these ‘‘modes’’ of
input-output behavior are indicated by different symbols
(squares, triangles, diamonds, and stars). Note that the
automatic classification algorithm has identified four dis-
tinct modes of behavior: base flow recessions (indicated by
squares), rising limbs (indicated by diamonds), peaks and
quick recessions (indicated by triangles), and early portions
of the rising limb having temporary reductions in rainfall
intensity (indicated by stars). It is interesting to note that the
first three of these are consistent with how a hydrologist
might visually partition the hydrograph [e.g., Boyle et al.,
2000, 2001], while the fourth represents a subtlety of
behavior that might not normally draw the attention.
[21] Detailed results for the 15 � 15 node SOFM classi-

fication utilized in the model comparison study presented
earlier are shown in Figure 6. Note that each SOFM node
has six weights, corresponding to each of the six input
variables ( j = 1, . . . ,6). To illustrate the distribution of
weights across the SOFM matrix, an icon was constructed
consisting of three vertical bars (representing the three

rainfall inputs {r(t � 2), r(t � 1), r(t)} and three line-
connected squares (representing the three streamflow inputs
{q(t � 2), q(t � 1), q(t)}. The size of the vertical bar is
proportional to the strength of the rainfall input contribu-
tion, and the relative vertical position of the squares
represents the strength of streamflow contribution. Figure
6 visually illustrates the distribution of rainfall-runoff modes
identified by the classification algorithm. For comparison,
an interpolated contour plot of the distribution of average
streamflow prediction q(t + 1) associated with the layout of
SOFM nodes is given in Figure 7a. Analyses of the input-
output relationships constructed (learned) by the SOLO
procedure are presented in Figures 6 and 7a. For discussion,
the five specific SOFM regions outlined loosely in Figure 6
by ellipses and connected by arrows have been identified.
The association between these five classification regions
and the rainfall-runoff process is also clearly illustrated in
Figure 8. The regions are (1) base flow region (region I), (2)
increasing rainfall region (region II), (3) peaking hydro-
graph region (region III), (4) quick recession region (region
IV), and (5) slow recession region (region V).
[22] Region I is located in the central area of the SOFM

matrix. The behavior is characterized by no-rain and low-

Figure 3. The annual RMSE (cms) with respect to the annual streamflow (cms) of the testing models.
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level, almost unchanging streamflows during a 3-day period
(Figure 6). The corresponding streamflow prediction is
associated with a region of very small values, as shown in
Figure 7a.
[23] Region II is located in the top right corner area of the

SOFM matrix. Rainfall is steadily increasing during the
3-day period, but streamflows have only just begun to

respond (Figure 6). The model predicts high streamflow
levels during the next period, as given in Figure 7a. Thus
this region identifies the initial stages of a rain storm and the
associated rising limb of the hydrograph.
[24] Region III is located in the bottom right and middle

portion of the SOMF matrix. The rainfall has peaked, but
the streamflow continues to increase (Figure 6). A region of

Figure 4. The daily flow time series of testing models over highest validation flow year (1980).
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moderate to high streamflow predictions is displayed in
Figure 7a. This region is therefore associated with predic-
tion of the peak levels of the hydrograph.
[25] Region IV is located in the bottom left corner of the

SOFM matrix. Rainfall intensities have reduced consider-
ably, and the hydrograph has begun to recede. Streamflows,
however, are still reasonably high. This region is associated

with the early (quick) streamflow recession and determines
the rate at which the streamflow will diminish.
[26] Region V is located in the left-middle portion of the

SOFM matrix. There has been no rainfall during the past
three days, and streamflow has continued to recede. The
model predicts a progressively diminishing streamflow
value. The remaining portion of the SOFM matrix, not

Figure 5. Daily rainfall and observed and simulated streamflow from 2 � 2 units installed in the SOFM
layer.

Figure 6. Classified characteristics in 15 � 15 SOFM units demonstrated by six normalized network
connection weights.
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discussed above, is clearly associated with events with
small durations of rainfall leading to moderate streamflow
responses.
[27] Another by-product of the classification scheme is the

ability to analyze the level of prediction uncertainty asso-
ciated with each SOFM node, and by extension, the uncer-
tainty level associated with prediction of different portions of
the hydrograph. An interpolated contour plot of the evalua-
tion period root mean square error (RMSE) over the SOFM
matrix is presented in Figure 7b. Consistent with the findings
presented earlier (Figure 5), a comparison of Figures 7a and
7b indicates that the RMSE is directly related to the level of
streamflow; for region I, the RMSEs are around 5 cm/d,
increasing to 10–30 cms/d for regions II and III, and 30–40
cm/d for flood peaks (streamflows exceeding 100 cms/d).
This information is used later (see section 6) to provide
estimates of 95% confidence intervals on the predictions.
[28] Prediction accuracy provided by the SOLO model

will depend on correct selection of the physical input
variables containing information relevant to the generation

of streamflow (output variable). Further, the training data set
must contain sufficient variability that is representative of
the underlying input-output process. While the skill and
experience of the researcher will ultimately determine which
input variables are selected for model development, the
kinds of tools and analyses presented above can significantly
facilitate the input selection and model construction process.

5. Technical Issues Related to Model Performance

[29] Some technical issues related to model performance
are given in this section. These include the selection of the
size of the SOLO network (i.e., the number of nodes in
the SOFM matrix), the identification of stable estimates for
the network weights via windowing and principal component
analysis, and comments regarding ‘‘overfitting’’ to the data.

5.1. Selecting the Size of the SOFM Matrix

[30] In the example presented above, the selection of
SOFM matrix sizes (2 � 2) and (15 � 15) was essentially

Figure 7. Contour maps of (a) averaged estimated streamflow and (b) estimated RMSEs over the 15 �
15 SOFM units.

Figure 8. A relationship between five classification regions and the rainfall-runoff process.
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arbitrary and for illustrative/exploratory purposes only. To
determine parsimonious/optimal size for the Leaf River
basin model, a series of experiments using progressively
larger SOFM matrix sizes was conducted. The RMSE,
correlation (CORR), and bias (BIAS) statistics, respectively,
evaluated over the streamflow prediction residuals as a
function of network matrix size are displayed in Figures
9a–9c. The results indicate only marginal improvements for
networks of size exceeding 5 � 5. The statistics indicate a
small tendency towards negative bias (underestimation) over
both the calibration and evaluation periods. High correlation
(0.96) between observed and one-day-ahead predicted
streamflows over the 25-year evaluation period is obtained.

5.2. Windowing to Ensure Stability of the Model
Parameters (Network Weights)

[31] The stability of the parameters estimated for the
regression function associated with each SOFM node
depends to a large extent on the number of data points
available. For the Leaf River basin rainfall-runoff example
presented above, 11 years of daily data correspond to a total

of 4017 sample data points. The distribution of training data
across the 15 � 15 SOFM matrix after the input classi-
fication step has been completed is shown in Table 2.
Notice that the distribution is highly uneven, with most of
the data points belonging to the central region (region I)
associated with base flow recession and very small numbers
of data points in regions associated with high streamflow
values. For many of these nodes, the small number of
available data points is insufficient to ensure stable esti-
mates of the regression parameters (in this example, each
node has seven regression parameters: one corresponding to
each of the six input variables and one to allow for a bias
adjustment term).
[32] The solution implemented in SOLO is to extend a

large enough window around each node to include data
from the surrounding nodes in the fitting of the nodal
regression equation. This amounts to a strategy of ‘‘borrow-
ing’’ data from neighboring nodes having somewhat ‘‘sim-
ilar’’ input-output characteristics. The method involves the
selection of a minimum sample size threshold (herein
selected empirically to be five times the number of param-

Figure 9. Test of model performance from different size of SOFM units: (a) root mean square error, (b)
correlation coefficient, and (c) bias estimates. Model performance of the SOLO model with respect to the
percentage of the total data variation (explained by the principal components): (d) root mean square error,
(e) correlation coefficient, and (f ) bias estimates.
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eters) and an extension of the window associated with that
node to be just large enough to include enough data to
satisfy that threshold. The size of the neighborhood � is
defined as a matrix of (2n + 1 � 2n + 1), n = 0, 1. . .
centered at the calculation unit. The neighborhood sizes
determined for the Leaf River basin example are given in
Table 3, and the resulting number of training data points
thereby associated with each unit are presented in Table 4.
Notice that the nodes with large numbers of data do not
need to borrow data from the neighbors, while the neigh-
borhood size for some of the nodes is as large as 3.
[33] The use of data/node windowing has a very interest-

ing implication. Consider an extreme case where the win-
dow size for each node is made so large that it includes the
data from all of the other nodes. In this case, the procedure
would identify an identical linear input-output regression
model for all nodes, so that the effective output of SOLO
would be identical to that of the linear time series ARX
model. If the window size were then to be gradually
reduced, the individual regression models at each node
would begin to differ, and the overall input-output relation-
ship would progressively adjust to match the underlying
nonlinearity of the system. In the extreme case of no-
windowing, the regression model at each node can be quite
different (if so indicated by the data). The SOLO procedure
therefore implements a sensible identification strategy in
which (1) the availability of very small amounts of data

would lead to identification of a linear input-output model,
(2) the availability of large amounts of data would support
the detection of system nonlinearity, and (3) the availability
of data that are distributed in a nonuniform fashion over
different modes of system behavior would lead to a smooth-
ing (windowing) effect which ensures a balanced trade-off
between system stability and system nonlinearity.

5.3. Regression Using Principal Component Analysis

[34] Another strategy used in SOLO to ensure stable
estimates for the network weights is the use of principal
component analysis. A complication inherent in the selec-
tion of relevant input variables is the tendency for informa-
tive input variables to be correlated to some degree. In the
rainfall-runoff example presented earlier, the three previous
rainfall values and three previous streamflow values are
necessarily correlated in time. The SOLO procedure utilizes
principal component (PC) transformations of the input
space associated with each node before construction of the
nodal input-output regression equation. This ensures a well-
posed regression problem and also reduces the number of
regression variables (and hence model parameters). The
variation of the performance of the 15 � 15 Leaf River
basin SOLO model with respect to the percentage of total
data variation (explained by the principal components)
detailed in Figures 9d–9f. By selecting the number of
PCs to account for 95% of the total variance (V = 95%),

Table 2. Number of Data Classified in Each SOFM Unit: 15 � 15 SOFM Units

SOFM Unit Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 4 3 1 2 4 2 2 0 3 1 3 2 1 6
2 5 1 4 8 4 1 5 5 4 2 2 1 2 2 3
3 1 6 2 5 6 5 4 4 2 2 5 2 3 3 9
4 2 1 8 11 6 29 12 9 4 2 3 3 2 3 7
5 1 5 2 3 2 3 55 10 3 7 3 7 4 18 4
6 3 4 2 4 2 5 12 76 29 11 64 24 28 0 2
7 2 0 2 7 4 3 11 200 195 101 2 4 5 4 2
8 1 6 3 17 44 39 9 727 1422 19 17 7 5 3 2
9 3 4 4 12 16 19 7 4 1 21 4 2 0 2 1
10 2 4 2 5 17 4 4 3 7 77 5 28 11 10 1
11 3 2 3 2 3 4 1 2 1 13 13 32 7 2 3
12 3 1 6 3 1 2 3 5 3 7 32 3 0 3 4
13 5 1 1 1 1 1 1 2 6 5 13 4 2 3 1
14 3 1 2 3 1 3 3 4 2 2 5 4 1 2 2
15 5 0 4 0 3 2 3 3 5 6 4 1 2 2 3

Table 3. Window Size of SOFM Unit for Including Sufficient Number of Data in Regression Analysis

SOFM Unit Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 2 2 2 2 2 2 2 2 2 3 3 2 2 3
2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2
3 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2
4 2 2 1 1 1 1 1 1 1 2 2 2 1 1 1
5 2 2 1 1 1 1 0 1 1 1 1 1 1 1 2
6 2 2 2 2 2 1 1 0 1 1 0 1 1 1 2
7 2 2 1 1 1 1 1 0 0 0 1 1 1 1 2
8 2 2 1 1 0 0 1 0 0 1 1 1 2 2 2
9 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2
10 2 2 1 1 1 1 1 2 1 0 1 1 1 1 2
11 2 2 2 1 1 1 2 2 1 1 1 1 1 1 2
12 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2
13 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2
14 3 2 2 2 2 2 2 2 2 1 1 1 2 2 3
15 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3
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the evaluation period RMSE reaches 21 cms/d, the CORR is
0.94, and the BIAS is �0.02 cms. Notice that the perform-
ance degrades sharply for V less than 80%. For the 15 � 15
Leaf River basin SOLO model, the numbers of principal
components associated with different selections for V are
given in Figure 10. With V chosen to be 99.9%, 196 of the
225 nodes utilize all six of the principal components (PCs),
while 29 of the nodes use five PCs. In contrast, when V is
reduced to 90%, only five nodes use five PCs, 40 nodes use

four PCs, 170 nodes use three PCs, and 10 units use two
PCs. To balance model efficiency with performance, the
value, V = 95%, is suggested.

5.4. Overfitting

[35] Overfitting is a term used when the model fits the
calibration data very well, but the performance degrades
significantly over independent evaluation periods. To avoid
this phenomenon, it is common to reference both the calibra-

Table 4. Total Number of Data Included in Finding Regression Parameters According to the Window Size of Each SOFM

Unit Listed In Table 2

SOFM Unit Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 65 43 55 56 56 58 50 45 43 38 77 82 45 37 52
2 40 65 83 111 36 125 110 101 73 59 48 47 63 52 43
3 48 76 46 54 75 72 74 49 151 89 72 86 99 85 69
4 47 78 43 45 70 122 131 103 43 284 219 203 45 53 44
5 41 71 40 40 65 126 55 210 151 126 124 138 89 68 94
6 42 84 142 212 295 97 375 76 632 415 64 141 94 67 89
7 42 85 45 85 125 129 1082 200 195 101 249 156 80 51 80
8 42 87 55 109 44 39 1019 727 1422 1782 177 46 233 141 76
9 41 84 57 120 173 159 816 2184 2281 1573 180 79 68 131 58
10 47 86 38 64 82 75 48 2404 129 77 195 102 94 37 54
11 44 67 105 42 41 39 118 203 118 158 210 131 96 41 50
12 39 53 76 74 77 79 84 165 44 93 122 106 56 123 52
13 40 49 58 51 57 57 65 89 36 75 75 64 148 81 37
14 49 39 45 37 44 45 54 68 114 48 44 36 91 37 81
15 39 45 53 63 61 74 40 48 64 66 62 56 49 91 37

Figure 10. Distribution of the number of principal component variables and the selected total data
variance used (V%); the Leaf River SOLO model has six input variables and 15 � 15 SOFM nodes.
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tion and evaluation data during model development and
training. An interesting by-product of the procedures
described above for selection of network size and for stabi-
lizing the parameter estimates is that these procedures seem to
counter the tendency towards ‘‘overfitting’’ of the regression
functions. For network sizes smaller than n1 = 5, the network
performance tends to oscillate, but for n1 > 5, the performance
remains consistent (see Figures 9a–9c). In fact, the perform-
ance of the 15� 15 network is no worse than that of the 5� 5
network during both calibration and evaluation, suggesting
that the tendency towards overfitting has been avoided.

6. Model Prediction Uncertainty

[36] An important extension of the piecewise linear meth-
odology used by SOLO is the ability to use the classical
regression theory to provide robust estimates of the model
output uncertainty. If the principal component data for an
SOFM node are represented by y and the model prediction of
streamflow by ẑ, then ẑ ¼ y b̂, where b̂ is the vector of linear
regression parameters [see equation (7)]. Accordingly, the
expected value of the estimate ẑ is y b̂; and the variance of ẑ is
s2g with g = yT(YTY)�1y, if the error in z comes from a
normal distribution. Based on this, the upper and lower
bounds (Ua, La) of the model output predictions correspond-
ing to a 100(1 � a) confidence range can be derived as

Ua ¼ y b̂þ t1�a=2;n�ps
ffiffiffi
g

p

La ¼ y b̂� t1�a=2;n�ps
ffiffiffi
g

p

where t1�a/2,n�p is a t distribution with n � p degrees of
freedom, n is the size of data, and p is the rank of Y [Haan,
1977].
[37] A 100-day portion of the observed and predicted

streamflow hydrographs for water year 1980 (an evaluation

year) is given in Figure 11. The plot also shows the 66%
and 95% upper and lower confidence bounds associated
with the one-step-ahead streamflow predictions. Note that
the piecewise linear SOLO model uses a total of 225 linear
regression functions, each associated with a slightly differ-
ent characteristic input-output behavior. The prediction
uncertainty, as shown in Figure 11, is relatively small for
the low and medium range of streamflows.
[38] It has been suggested in the literature [Sorooshian and

Dracup, 1980; Sorooshian et al., 1983] that the errors
associated with the rainfall-runoff process are not homoge-
nous (i.e., have nonconstant variance). Sorooshian and Dra-
cup [1980] commented that large flows tend to have larger
error variance compared to smaller flows, partially because of
the nonlinear nature of the rating curve used to transform
stage measurements to flow volume estimates. The informa-
tion depicted in Figures 7a, 7b, and 12 support this view.
Figures 7a and 7b show that the size of residual RMSE
increases with flow value and the distributions of the cali-
bration data residuals (on the range [-20, 20] cms/d) for each
of the 225 SOFM nodes, as presented in Figure 12. The va-
riances are small in the central region I (low flows) and higher
in the regions associated with precipitation variability and
larger flows. The assumption of normally distributed residual
error is reasonably good for node location (14,4), as displayed
in Figure 13. However, the assumption does not hold up as
well for other nodes. Further study of the residual distribution
and its relation to the construction of accurate confidence
bounds is ongoing and will be reported in due course.

7. Summary and Discussion

[39] In previous work [Hsu et al., 1995, 1997a, 1997b,
1999; Sorooshian et al., 2000], the applicability of ANN
methods for hydrologic applications such as streamflow

Figure 11. 100 days of observed and predicted streamflow data for water year 1980 (evaluation year);
predicted streamflow confidence bounds (66% and 95%) included.

ð16Þ
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forecasting and estimation of spatial precipitation fields was
investigated. The work presented here was motivated by
network identification difficulties associated with classical
ANN approaches that reduce performance accuracy and limit
widespread application. A novel artificial neural network
structure (SOLO) suitable for a wide variety of hydrologic
(and nonhydrologic) applications was presented and illus-
trated using a case study application to streamflow forecast-
ing. The similarities and differences between SOLO and

several commonly used streamflow-forecasting approaches
were discussed. The case study illustrates the relative supe-
riority of the SOLO procedure and its ability to provide
rapid, precise, and inexpensive estimation of network struc-
ture/parameters and system outputs. Equally important to
scientists are the characteristics of SOLO that facilitate
insight into the underlying physical/functional processes,
thereby extending SOLO’s usefulness beyond applied fore-
cast applications.

Figure 12. Distribution of calibration data residuals (on the range of [�20 20]) at 15 � 15 SOFM
nodes.

Figure 13. (a) Distribution of error residuals for the SOFM node (14,4) and (b) normal distribution plot
of error residuals for the SOFM node (14,4).
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[40] The power of the SOLO approach comes from a
judicious merging of classical linear regression theory with
self-organizing (data clustering) ideas developed by ANN
researchers. The result is a function-mapping algorithm
based on nodal piecewise linear principal component
regression. Of course, the prediction capability of the
resulting model is critically dependent on judicious selec-
tion of informative input variables. The structure of SOLO
facilitates detailed analyses of the explanatory power of the
current input selection separately over different portions of
the input-output process. The value of this capability will be
reported in the future.
[41] Our experiences with the SOLO architecture lead us

to suggest that further study of its capabilities and useful-
ness is warranted. In related work, the use of the SOLO
architecture for estimating regional- and global-scale pre-
cipitation fields by combining satellite-based remotely
sensed data with atmospheric model outputs and surface
measurements is being explored. One feature of SOLO
which has been explored in that context (and has not been
discussed here) is that the piecewise linear mapping can be
readily combined with a recursive parameter identification
procedure to facilitate (1) progressive model identification
from new data as they become available and (2) recursive
model updating to track temporal changes in the behavior of
the underlying system. Furthermore, extensions of the nodal
principal component regression algorithm from ARX to
other regression structures such as ARMAX (autoregressive
moving average with exogenous inputs) are straightforward
to implement. Of particular interest to researchers, however,
will be further investigation to determine what information
about model system behavior can be revealed (visualized)
by creative analyses of the properties of the SOFM matrix.
[42] As always, constructive dialog and collaboration

with researchers interested in these methods is invited.
The code for the SOLO algorithm can be obtained by
request from the first author (hsu@sahra.arizona.edu).

Appendix A

A1. Principal Component Transformation

[43] Consider a standardized data matrix, X, which has p
rows (observations) and n0 columns (variables). Let the
covariance matrix of standardized input variables be �,
where � = Cov(X ) = E(XTX ). The linear transformed
orthogonal matrix Y is presented as:

Y ¼ XC ðA1Þ

where Y is the principal components with element (i, j) of ith
observation and jth principal component, and C is a (n0 �
n0) matrix with eigenvector elements of the covariance
matrix of X: � = Cov( X) = E( XTX ), and CTC = CCT = I.
[44] Because the transformed components are uncorre-

lated to each other, the covariance matrix of principal
components is listed below:

Cov Y½ 	 ¼ E YTY
� �

¼ E CTX TXC
� �

¼ �

¼

l1 0 . . . 0

0 l2 . . . 0

. . . . . . . . . . . .
0 0 . . . ln0

0
BB@

1
CCA ¼ CT�C

ðA2Þ

[45] The solution of the PCA provides a set of orthogo-
nal-based eigenvectors, C, with their eigenvalues, li, rep-
resenting the variance of each component after PCA
transformation. The total variance of the data matrix is
represented as:

trace �ð Þ ¼ trace C�CT
� �

¼ trace �ð Þ ¼
Xn0
i¼1

li ðA3Þ

[46] This shows that the total variance of the data matrix
is identical to the total variance after PCA transformation.
The orthogonal PCA coordinates are selected according to
the first component having the largest variance of the data
matrix, X, whereas the other principal components are
ranked from large variance to smaller variance, i.e., l1 �
l2 � . . . � ln0. To preserve most of the data variance after
transformation, one could select the first few principal
components with the coverage of most variances in the
original data matrix. The percentage of total variance
explained by the first mth component is:

V ¼
Xm
i¼1

li

Xn0
j¼1

lj

,
:100% ðA4Þ

[47] The higher the selection of the total data variance, V,
the better the properties of the data matrix are preserved. A
small number of principal components are selected, but still
retain most of the data variance in the selected components,
if the reduction of variables is considered. If the trans-
formation is to prevent the colinearity of regression varia-
bles, the selected component number m in equation (A4)
can be set for a higher total variance, such as V = 95% �
99%. This higher total variance is mainly to avoid very
small lk, k = m + 1 � n0, which may cause very high
variance in the estimated regression parameters.

A2. Principal Component Regression

[48] A multivariate linear regression model having p
observations and n0 independent variables is given below:

Z ¼ X qþ e ðA5Þ

where Z is a vector of p observations ( p � 1), X is p � n0
matrix with element (i, j) of ith observation and jth
independent variable, q is a vector of regression coeffi-
cients, q = [v1, v2, . . ., vn0]

T, and e is a vector of estimation
error ( p � 1) with zero mean and variance se

2. Parameters
are estimated from minimizing the root mean square error of
sample data and are given below

q̂ ¼ XTX
� ��1

XTZ ðA6Þ

where q̂ is the unbiased estimates of regression parameters.
The above equation estimates the unbiased regression
parameters that minimized the root mean square error. When
the input variables are colinear, the inverse matrix of (XTX)�1

becomes singular, which makes finding regression para-
meters difficult. To reduce the uncertainty of the regression
estimates, principal component transformation of input
variables into uncorrelated variables before regression
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analyses is useful for finding more reliable regression
parameters.
[49] Substituting the input variable of the linear regres-

sion function, as shown in equation (A5), with the trans-
formed principal component variables from equation (A1),
we obtain

Z ¼ YCT qþ e ¼ Ybþ e ðA7Þ

where b = CTq are the regression parameters of principal
components.
[50] Parameters of principal component regression are

estimated as

b̂ ¼ YTY
� ��1

YTZ ðA8Þ

When multicolinearities exist among original input vari-
ables, the regression parameters show high variance to those
variables that are colinear to others. The regression
parameters of the original variable, q, are given below

q̂ ¼ Cb ¼ C YTY
� ��1

YTZ ¼ C��1CTX TZ ¼
Xn0
k¼1

l�1
k eke

T
k X

TZ

ðA9Þ

where � is a diagonal matrix with kth largest eigenvalue, lk,
on kth diagonal element. The ek is the eigenvector of the
principal component with kth largest eigenvalue. Assume
that observations are uncorrelated and have a constant
variance of s2 for each observation zi. The covariance
matrix of q̂ is given below

E q̂ q̂T
� �

¼ s2C YTY
� ��1

YTY YTY
� ��1

CT ¼ s2C YTY
� ��1

CT

¼ s2C��1CT ¼ s2
Xn0
k¼1

l�1
k eke

T
k ðA10Þ

If multicolinearity appears in the original variables, X, it will
reveal that the eigenvalues are very small in the later
principal components. The variances of the regression
parameters become very large from the value of lk

�1 term in
the above equation. To avoid large variance on the
regression parameters, those small eigenvalue terms in the
calculation are removed. The new regression parameters are
then expressed as

~q ¼
Xm
k¼1

l�1
k eke

T
k X

TZ ðA11Þ

where lk, k=m +1, m+2,. . .,n0, are with very small eigenvalues
being removed. The covariance of new regression para-
meters is reduced, and the covariance matrix of those
regression parameters becomes:

E ~q~qT
� �

¼ s2
Xm
k¼1

l�1
k eke

T
k ðA12Þ

Because none of the above eigenvalues are small numbers,
the variances of the estimated regression parameters are not
that high. We have:

q0 ¼ q̂� ~q ¼
Xn0

k¼mþ1

l�1
k eke

T
k X

TZ; E q̂
� �

¼ q ðA13Þ

If the above term is nonzero, omitting this term would result
in a biased estimate. However, the advantage from the
reduction of parameter variance is substantial under multi-
colinear circumstances.
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