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Recommendation engine is an integral part in digital business nowadays as abundant user

interactions could be captured. This paper provides a comprehensive overview on exist-

ing approaches to solve implicit feedback recommendation systems. It introduces implicit

feedback data and the challenge of solving recommendation problems uniquely for implicit

feedback. Theoretical aspects sort out the necessary formulation, statistical learning, sam-

pling and optimization approaches. To make theory into practice, several implementations

using different combinations of statistical learning and optimization methods are applied on

an real world e-Commerce data to illustrate the performance and drawbacks.
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CHAPTER 1

Introduction

Recommendation system became popular recently due to the fact that it can help drive

organization growth by recommending items that users would potentially like. Recommen-

dation system is ubiquitous and it is embedded into our lives. From buying food, listening to

music to online shopping, we would almost rely on some degree of technology from a hidden

recommendation system given that there is a massive amount of information on the internet.

Therefore, recommendation system plays an important role on driving user engagement. It

also helps maintain platforms’ ecosystems and a good recommendations could potentially

increase web session time and reduce customer churn. As a result, customers would stick to

the service if they always find something they like especially by recommendations.

The most common ways to recommend products to someone, naturally thinking, would be

showing them the most popular items over a certain time window on the platform. However,

this is problematic as each user will be recommended the same set of items. Recommenda-

tion system becomes more personalized as users’ preferences are unique to each other. A

recommendation system needs user and item input, interactions between them to be built.

Complex recommendation system will take additional consideration on user features such as

locations, age and gender and item features such as item categories and genres.

The goal of this thesis is to walk through and review some standard approaches used in

building personalized recommendation systems using e-commerce consumer data. We will

show the difference between explicit feedback and implicit feed, as well as the statistical

learning techniques when dealing with implicit feedback.
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The order of the topics are as follows: Chapter 1 will continue to introduce the objective

and challenges on building a recommendation system. Chapter 2 will introduce the basic

data structure for the recommendation system, discuss explicit feedback and implicit feed-

back. Chapter 3 will start introducing main approaches on dealing with implicit feedback.

In chapter 4, we will implement the methods from chapter 3 in an e-Commerce data set,

introduce evaluation metrics for implicit feedback recommendation and provide comparison

and discussion on the statistical learning result. Chapter 5 will discuss some improvements

that could be executed in the future and a summary of this thesis.

1.1 Objective

The main objective of a recommendation system varies by different industries. For subscrip-

tion businesses such as Spotify and Youtube, it is to retain users and make them stay longer

to consume more music or videos. Therefore, user engagement is the metrics to track. For an

online shopping platform, the system is used to match user preference and drive sales. Sales

could then be the final metrics to measure. Depending on the business domain, recommen-

dation systems usually recommend top k items to a user based on a score calculated from

some input information such as user and item interactions. Here k is an arbitrary integer

less than 20.

1.2 Challenges

There are several challenges that need to be solved in order to build a recommendation

system. First is scalability, which is a major challenge when facing a data set with millions

of users. General approaches would then need to learn millions of model parameters using

optimization methods like Stochastic Gradient Descent. A better computing system could

be a solution to deal with scalability, while another approach [14] was proposed to make the
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recommendation system more scalable by introducing a density based clustering algorithm.

Secondly, the cold start problem arises naturally when new users or items arrive. Under

a cold start situation, most recommendation systems are not able to learn any parameters

as historical data is lacking. Furthermore, cold start problems could cause model inaccuracy

when it comes to ranking. Take item as an example, it has high probability to rank as

irrelevant items due to the lack of interactions, which will then cause no user interactions as

the system treats it as an unpopular item. This cycle will make items that have the potential

to be a popular item end up being in a low ranking, which could cause revenue loss.

Thirdly, sparsity is considered as one of the challenges in building a recommendation

system. Sparsity occurs when users only interact with a very small subset of items compared

to the total number of items. This makes it difficult to apply methods such as nearest

neighboring methods due to the difficulty of finding overlap items between users to compute

similarity. Regularization is one way to control overfitting when dealing with sparse data.

Item distribution skewness could add challenges in the model fitting process. This means

a certain number of items occur on almost every user’s interaction, which causes a higher

probability of being updated during the stochastic gradient descent algorithm. This is even

more severe when working with pairwise learning, where a positive and negative sample

are sampled simultaneously to learn the correct ranking. Eventually, it will not produce a

personalized recommendation.
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CHAPTER 2

Background

Recommendation systems generally can be separated into three categories, content-based

[12], collaborative filtering and hybrid approach. Content-based approaches rely on user/item

features such as age, location and sex and item categories to learn the probability a user

would like a specific item or the rating of a user would rate a specific item. One drawback

of content-based recommendation systems is the steps taken to form characteristic features

on user and item, which requires domain knowledge and significant amounts of engineering.

Content-based recommendation systems are less personalized compared to collaborative fil-

ters because it mainly relies on identifying what type of products/items you like, which might

already be liked by many users.

Collaborative filtering approaches are based solely on past user/item interactions. It

can be categorized into two sub categories, memory-based and model-based. Memory-based

methods find user or item similarities and rank them based on the scale of similarities. For

user-based collaborative filtering, the system looks for the most N similar users relative to the

target user and predicts the score of an non-interacted item by taking into account all selected

user similarities, target item scores and all items average scores. However, memory-based

methods computing are expensive when it comes to large user interaction data therefore,

suffer from scaling issues. Model-based methods, on the other hand, are more efficient and

scalable when facing large data sets. The main idea is to map a user-item interaction matrix

into two lower dimension latent spaces and learn the weights on both matrices recursively

to minimize errors between predicted and actual scores.
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Hybrid approaches [2] combine both user/item interaction and user/item features if avail-

able. These methods could achieve state-of-art performance by combining collaborative fil-

tering and content-based recommendation. There are various ways to build such as deep

learning [3] and factorization machine [15].

A recommendation system starts with a set of users U , a set of items I and an interaction

set S ⊆ U × I. S can be ratings, number of songs played and indicators indicating whether

or not a user interacted with an item. Under this condition, S is an m × n matrix with

m rows where each row represents one particular user and n columns where each column

represents an item. Given the fact that the majority of users have only interacted with a

small subset of items, S is an extremely sparse matrix with a high percentage of missing

values. A recommendation system can also accept additional inputs other than user-item

interactions, such as item and user features if supplied. Item features are represented into

a n× p matrix where p is the number of total item-feature weights. Similarly, user features

can also be embedded as an m× q, where q represents the number of user features, into the

training.

Singular Value Decomposition [8], and its extended application has been utilized to solve

the matrix completion problem with regularization [20] in order to prevent overfitting on

the training data. Matrix Factorization has been a successful approach in recommendation

system research because of its scalability and accuracy in extremely large data sets.

2.1 Explicit and Implicit Feedback

Input data in a recommendation system is separated into two categories, explicit and implicit

feedback. Explicit feedback is the feedback directly input from users, such as movie rating

and product rating at Amazon. Explicit feedback directly reflects users affinity or frustration

on products or movies they have consumed, meaning that it is quantifiable.

Another type of feedback is called implicit feedback. This type of feedback is more
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pervasive and passive as it is not generated by user direct actions. User behaviors like click,

view, streaming, share, save and purchase are considered as implicit feedback because these

feedback would come along with the user when they are browsing websites or using streaming

services. While implicit feedback is easy to collect, it comes with noise. [6] Implicit feedback

is non-negative feedback as they are not directly expressed by the user. A user did not

interact with a certain item does not mean he/she did not like it. It could just mean he/she

was not aware of it when browsing the system. Even if a user has an interaction such as

purchase, it comes with uncertainty on whether the user were in real favor of the items or it

could be a gift for someone else.

2.2 Challenges

While explicit feedback is less noisy and biased, it is expensive and hard to collect as it is

input by users. In the real world, the majority of users are not someone who would make

frequent ratings on movies. On the contrary, they would either rate a movie when they really

like it or really hate it. Therefore, explicit feedback often comes with emotion. Additionally,

user personality could affect their rating. Someone with a more generous personality might

give movies a higher rating while someone with strict rules might give lower ratings no matter

what movies they watched.

Implicit feedback is more noisy, and the steps it takes to learn and evaluate implicit

feedback recommendation are different. In an explicit feedback system, mean square error

(MSE), root mean squared error (RMSE) or mean absolute error (MAE) are commonly

used to evaluate performance of the rating prediction. These metrics evaluate how good

the predictions are to the actual user rating by taking the difference between the predicted

and actual rating. For implicit feedback, prediction also generates a predicted score for an

interaction. However, this predicted score does not mean rating but rather, user preference

on the items. [6] In implicit feedback data, missing data is set to zero meaning no clicks or
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no views for an item. However, a missing rating cannot be set as zero from explicit feedback

data. When evaluating model performance, predicting a zero feedback would yield a good

result using MSE/RMSE/MAE whereas it is meaningless for implicit feedback. Therefore,

we need to consider ranking related metrics to evaluate model performance. [18]
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CHAPTER 3

Methods

While there are popular methods [7, 13] have been developed to generate item prediction

with implicit feedback data, many of them were not optimized for ranking.[1, 17] These

methods such as SVD and matrix factorization, are built to optimize if an item is interacted

by a user or not. The prediction itself quantifies the scale of the confidence of the item

selection. However, it is more important to emphasize effort on how to rank a list of items

because rankings are related to user preference on certain items. Additionally, we want a

system to generate personalized ranking, which means every single user will be recommended

a list of items that are unique to their preference.

A popular way to provide personalized ranking [17] items is to use a loss function called

Bayesian Personalized Ranking by uniformly sampling positive samples and negative samples

and optimizing for the correct ranking. Another pairwise optimization method, WARP

loss [19], was developed to make the optimization convert faster by considering a violation

situation in which the negative sample score is greater than positive sample utility score.

We will discuss the theoretical part of loss function BPR and WARP, along with two

scoring methods, matrix factorization and factorization machines.

3.1 Model Based Collaborative Filtering

Matrix factorization [10] is a common model-based approach for collaborative filtering [9].

It starts with defining a user-item interaction matrix with entries rui, and aim to find a way
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to approximate it using a user latent matrix Xu and a item latent matrix Yi, where a row of

Xu represent a user’s hidden attributes toward an item and a row of Yi represent an item’s

hidden attributes. Xu and Yi are also called user and item embedding space. The utility

score or interaction score rui can be represented as the dot product between xu and yi.

r̂ui = xT
u yi =

f∑
k=1

xu,kyi,k (3.1)

where f is the number of hidden factors represented by the lower embedding.

3.2 Factorization Machine

Factorization machine [15, 16] is a generic method to mimic matrix factorization while com-

bining the ability to add feature interaction terms. It takes advantage of the lower embedding

techniques on the second or higher order interaction between input variables including user,

item and metadata. This attribute makes it capable of modeling data with high sparsity

while learning interactions between users and items. Factorization machine requires a for-

mat of data input in which each row represents a user, its interacted item, user features

and item features if available similar to the setup for support vector machine. To formulate

a factorization machine, we recall a first-order linear model and then add a second order

interaction term between each of the independent variables. In second order polynomial

regression, interaction wj,j′ between xj and xj′ form a p× p weight matrix, storing pairwise

interaction between each variable.

f̂P R(x) = w0 +
p∑

j=1
wjxj +

p∑
j=1

p∑
j′=j+1

wj,j′xjxj′ (3.2)

There are three model parameters w0 ∈ R, w ∈ R and W ∈ Rp×p. Given the number of

interaction terms are high when categorical features present, learning the weight in W can

be extremely expensive. However, factorization machine have the ability to learn W in a

feasible way by introducing a low rank embedding on W, where wj,j′ ≈ ⟨vj , vj′ ⟩, i.e. inner
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Figure 3.1: Input data where each column represent an user (blue), item (orange) and item-

user features. It indicates one when a row belongs to specific user and item. The column on

the far right is the target. [15]

product. In matrix form W ≈ VVT where V ∈ Rp×k and k ≪ p. Therefore, we can rewrite

(3.2) in the following way:

f̂P R(x) = w0 +
p∑

j=1
wjxj +

p∑
j=1

p∑
j′=j+1

xjxj′

 k∑
f=1

vj,fvj′,f

 (3.3)

The computational cost for estimating the interaction terms using lower rank embedding

is O
(

kp2−kp
2

)
, which can further be expressed as O(kp2). This will greatly increase the

computation time of the learning process. However, it can be shown that the interaction

terms can be computed in linear time O(kp) by reformulating the terms suggested by [15].

The main idea starts with subtracting all self-interaction terms and expanding the algebraic

term as follow:
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p∑
j=1

p∑
j′=j+1

⟨vj, vj′⟩xjxj′ = 1
2

p∑
j=1

p∑
j′=1
⟨vj, vj′⟩xjxj′ − 1

2

p∑
j=1
⟨vj, vj⟩xjxj

= 1
2

 p∑
j=1

p∑
j′=1

k∑
f=1

vj,fvj′,fxjxj′ −
p∑

j=1

k∑
f=1

vj,fvj,fxjxj


= 1

2

k∑
f=1

 p∑
j=1

vj,fxj

 p∑
j′=1

vj′,fxj′

− p∑
j=1

v2
j,fx2

j


= 1

2

k∑
f=1


 p∑

j=1
vj,fxj

2

−
p∑

j=1
v2

j,fx2
j



(3.4)

Note here equation (3.4) only requires linear time complexity O(kp).

A popular way to learn the model weights in FM models is by stochastic gradient descent

for different loss functions. For SGD, the gradient is computed as follow:

∂

∂θ
f̂(x) =



1, if θ = w0

xj, if θ = wj

xj

( p∑
i=1

vi,fxi

)
− x2

jvj,f , if θ = vj,f

(3.5)

Later on, we will apply this gradient to account for pairwise loss.

3.3 Bayesian Personalized Ranking

Bayesian Personalized Ranking is an optimization approach to learn personalized ranking of

items uniquely for every user. BPR helps achieve the optimal ranking by sampling positive

item and negative item uniformly for every sampled user, and compute their scoring function

difference. Once the difference has been computed, stochastic gradient descent is applied to

update model parameters depending on which scoring functions are used.

To illustrate the theoretical aspect of BPR, we first define U as a user set, I as an

item set and S ⊆ U × I as implicit feedback of the user-item interaction matrix. Let
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I+
u = {i ∈ I : (u, i) ∈ S} and U+

i = {u ∈ U : (u, i) ∈ S} be all the positive items and users

with positive items respectively. We also define i >u j as item i is preferred over item j by

user u, which is a main assumption of BPR. In addition, the training set of BPR optimization

is Ds = {(u, i, j) | i ∈ I+
u ∧ j ∈ I\I+

u }, displaying the negative item i and positive item u.

BPR aims to maximize the posterior probability p(Θ | i >u j). By Bayes theorem,

p(Θ | i >u j) ∝ p(>u| Θ)p(Θ) (3.6)

where p(>u| Θ) is the likelihood of a correct ranking given the model parameter and p(Θ) is

the prior of the model parameter. p(Θ) is initialized by a normal distribution zero mean and

variance-covariance matrix ΣΘ = λΘI. Since each user-item pair is independent, likelihood

can be written as

p(>u| Θ) =
∏
u∈U

p(>u| Θ) =
∏

(u,i,j)∈S

p(i >u j | Θ) (3.7)

Then the probability p(i >u j | Θ) is defined by a sigmoid transformation

p(i >u j | Θ) = σ(x̂uij(Θ)) (3.8)

where

σ(x̂uij) = 1
1 + e−x̂uij

(3.9)

During optimization, a logarithmic function is applied to P (Θ |>u) directly,which makes

it easy to separate the computation of the likelihood and prior.

ln p(Θ |>u) = ln p(>u| Θ)p(Θ)

= ln
∏

(u,i,j)∈Ds

p(i >u j)p(Θ)

=
∑

(u,i,j)∈Ds

ln p(i >u j | Θ) + ln p(Θ)

=
∑

(u,i,j)∈Ds

ln σ(x̂uij(Θ)) + ln p(Θ)

=
∑

(u,i,j)∈Ds

ln σ(x̂uij(Θ)) + ln e− λθ
2 θT θ

=
∑

(u,i,j)∈Ds

ln σ(x̂uij(Θ))− λθ

2 ||θ||
2

(3.10)
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3.4 BPR Learning

In the last section, we derive the loss function of BPR and we show how to use BPR to learn

model parameters. Note that the loss function becomes differentiable when the sigmoid

function is applied with the scoring function.

∂BPR−OPT

∂Θ =
∑

(u,i,j)∈Ds

∂

∂Θ ln σ(x̂uij)− λΘΘ

=
∑

(u,i,j)∈Ds

1
σ(x̂uij)

∂

∂Θσ(x̂uij)− λΘΘ

=
∑

(u,i,j)∈Ds

1
σ(x̂uij)

σ
′(x̂uij)

∂

∂Θ(x̂uij)− λΘΘ

=
∑

(u,i,j)∈Ds

(
−e−x̂uij

1 + e−x̂uij

)
∂

∂Θ(x̂uij)− λΘΘ

(3.11)

Gradient descent requires summing all the gradients for all samples, which makes the

learning algorithm not feasible. Therefore, stochastic gradient descent is instead used for

the learning to make the optimization faster, meaning that only (u, i, j) ∈ S will be used for

an update:

Θ← Θ + α

(
e−x̂uij

1 + e−x̂uij

∂

∂Θ(x̂uij) + λΘΘ
)

(3.12)

3.5 BPR Pairwise Learning on Factorization Models

3.5.1 Matrix Factorization

In BPR learning, a positive sample and a negative sample are uniformly sampled to learn

the ranking. The utility score xuij is calculated by subtracting the utility score of xui from

xuj, which is used for the gradient update. Here, x̂ui can be viewed as the predicted score of

user u preference over item i. We will use matrix factorization and factorization machines

to represent the utility score, and derive the gradient for each model parameters.
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Matrix factorization method has model parameter Θ = (X, Y ). Therefore,

x̂uij = x̂ui − x̂uj =
k∑

f=1
xu,fyi,f −

k∑
f=1

xu,fyj,f (3.13)

Here, the model parameters need to be learned from BPR are xu,f , yi,f and yj,f :

∂

∂θ
x̂uij =



yi,f − yj,f , if θ = xu,f

xu,f , if θ = yi,f

−xu,f , if θ = yj,f

(3.14)

The final gradient update rules for matrix factorization are:

xu,f ← xu,f + α

(
e−x̂uij

1 + e−x̂uij
(yi,f − yj,f ) + λxxu,f

)
(3.15)

yi,f ← yi,f + α

(
e−x̂uij

1 + e−x̂uij
(xu,f ) + λy+yi,f

)
(3.16)

yj,f ← yj,f + α

(
e−x̂uij

1 + e−x̂uij
(−xu,f ) + λy−yj,f

)
(3.17)

3.5.2 Factorization Machines

Compared to matrix factorization, factorization machines are a more generic way to model

item and user features and their interactions. Here we present how to learn factoriza-

tion machine in pairwise setting and the gradient update rules for each model parameters,

{w0, w, V}. V contain all the the hidden embedding weights for user, item, user features

and item features when supplied.

Recall from (3.4), utility score for an item i and user u can be written as follow:

f̂(u, i) = w0 +
p∑

l=1
wlx

(i)
l + 1

2

d∑
f=1

( p∑
k=1

vk,fx
(i)
k

)2

−
p∑

k=1
v2

k,fx
(i)
k

2

 (3.18)

where p is the number of features including user and item and vk,f is the latent embedding

weights for the corresponding feature. Similarly, we need to subtract f̂(u, i) with f̂(u, j) to
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optimize the parameter in BPR, where f(u, j) is the predicted score for a negatively sampled

item during the learning process.

Let’s define g(u, i, j) = f̂(u, i)− f̂(u, j), and with some algebraic manipulations:

g(u, i, j) =
p∑

l=1
wl

(
x

(i)
l − x

(j)
l

)
+

1
2

d∑
f=1

(( p∑
l=1

vl,fx
(i)
l

)
−
( p∑

l=1
vl,fx

(j)
l

)
−

p∑
l=1

v2
l,f (x(i)

l )2 +
p∑

l=1
v2

l,f (x(j)
l )2

)
(3.19)

The generic gradients of (3.19) are:

∂

∂θ
ĝu,i,j =


x

(i)
l − x

(j)
l , if θ = wl

p∑
l=1

vl,f

(
x

(i)
l x

(i)
k − x

(j)
l x

(j)
k

)
− vk,f

(
(x(i)

k )2 − (x(j)
k )2

)
, if θ = vk,f

(3.20)

where x
(i)
k and x

(j)
k are feature values k on under item i and j. Given there are w, V, we

are representing these two parts in terms of item weights wi, item features weights wif , item

latent factor weights vi,f , user latent factor weights vu,f , user features latent weights vuf,f

and item features latent weights vif,f . wif , wuf,f and vif,f are not available when there are no

user and item features. Under this case, the factorization machine will be reduce to general

matrix factorization plus bias terms on item i. Let’s assume that we have both user and

item meta features available, then the corresponding gradients on each parameters based on

(3.20) are:
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∂

∂θ
ĝu,i,j =



x
(i)
i − x

(j)
i , if θ = wi

x
(i)
if − x

(j)
if , if θ = wif

vi,f − vj,f +
Q∑

h=1
vifh,f

(
x

(i)
ifh
− x

(j)
ifh

)
, if θ = vu,f

vu,f +
(

N∑
h=1

vh,fxh

)
, if θ = vi,f

−vu,f −
(

N∑
h=1

vh,fxh

)
, if θ = vj,f

vu,f

(
x

(i)
ifn
− x

(j)
ifn

)
, if θ = vifn,f

xufn (vi,f − vj,f ) , if θ = vufn,f

(3.21)

where Q is the number of item features and N is the number of user features.

3.6 Weighted Approximate-Rank pairwise loss

BPR is a powerful method to deal with ranking tasks to achieve personalized recommenda-

tion. However, the uniform sampling makes it converge slowly because a large percentage of

the sampled pairs (u, i, j) has predicted score f(u, i) > f(u, j), which is an obvious ranking

where positive items rank higher than negative items. Since the process is uniform, the

probability that it can sample a pair (i, j) where f(u, i) < f(u, j) is small. In order to learn

the correct ranking, violation pairs need to be identified so that the gradient can be updated.

We can use WARP [19] a.k.a Weighted Approximate Rank Pairwise Loss to make the

learning process more accurate by identifying violating item pairs. Unlike BPR, where

gradient update will be performed after (u, i, j) is sample, WARP will only make an update

when the sampled when f(u, j) > f(u, i), meaning the predicted score of a negative item is

higher than the predicted score of a positive item. This is a violation on the current ranking

order.

In addition, the scale of an update is also taken into account where there is an update.
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If it takes a small number of steps to find a violated sample j, then the gradient will yield a

large update. Similarly, the gradient will yield a small update when it takes a large number

of steps to find a violated sample.

The loss function of WARP start with the definition:
∑

i∈I+

L (ranki(fu)) (3.22)

where I+ is the set of positive feedback of a user u and

ranki(fu) =
∑
i ̸=j

I(f(u, j) > f(u, i)) (3.23)

Then by applying a trick along with a differentiable log function:

L(ranki(fu)) = log(ranki(fu))ranki(fu)
ranki(fu)

= log(ranki(fu))
∑

j /∈I+ I (fu(j) ≥ fu(i))
ranki(fu)

=
∑

j /∈I+

log(ranki(fu))I (fu(j) ≥ fu(i))
ranki(fu)

=
∑

j /∈I+

log(ranki(fu)) | 1 + fu(j)− fu(i) |+
ranki(fu)

=
∑

j /∈I+

log(ranki(fu)) | 1 + fu(j)− fu(i) |+

(3.24)

where Hinge Loss is applied to transform the indicator component I(fu(j) ≥ fu(i)) into a

differentiable function | 1 + fu(j)− fu(i) |+. It is also noted that the probability to draw a

negative sample j is 1
ranki(fu) which accounts for the denominator for the last step.

According to the WARP, computing ranki(fu) is a computational expensive task because

we have to compute all the predicted scores fi(x) for all items. An innovative way to estimate

the term ranki(fu) is using ⌊Y −1
N
⌋ borrowing from the concept of geometric distribution. It

need to sample N trails before the sampling process find a negative item j, which can be

treated as geometric distribution:

p(Nk = k) = (1− p)k−1 p (3.25)
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where p = k
Y −1 . The mean of Nk is 1

p
, which is Y −1

K
.

3.7 WARP loss on Factorization Models

In the previous section, we walked through the definition of WARP Loss in detail. To

formulate the learning step in WARP, stochastic gradient descent is again applied. We can

rearrange the last step of (3.24),

∑
j /∈I+

log(ranki(fu)) | 1 + fu(j)− fu(i) |+ =
∑

j /∈I+

log(ranki(fu))(1− x̂uij)

=
∑

j /∈I+

log(⌊Y − 1
k
⌋)(1− x̂uij)

(3.26)

and then the gradient update will be:

θ ← θ + γ
(

log(⌊Y − 1
k
⌋
)(

∂x̂uij

∂θ

)
(3.27)

where ∂x̂uij

∂θ
would be (3.14) for matrix factorization and (3.21) for factorization machine.
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CHAPTER 4

Application on Pairwise Learning

In the experiment section, we aim to implement the statistical methods and the learning

algorithms introduced in Chapter 3. One of the natural challenges that arise during the

learning step is the cold-start problem [4], and we will alleviate the impact of cold-start by

performing a filter on item interactions on a user base. We will also show the experimental

results using BPR, WARP loss with two scoring models, matrix factorization and factoriza-

tion machine with item features. In order to evaluate how the loss function can help learn

the ranking of items, we will also introduce common evaluation metrics to measure model

fit on implicit feedback.

4.1 Data

RetailRocket is an e-Commerce online platform bringing personalized shopping experience to

web shoppers. The data used in the analysis comes from Kaggle.com. It describes three types

of user events, view, add-to-cart and purchase ranging from 2015-05-02 to 2015-09-17. There

are a total 1,407,580 unique visitors and 235,061 unique items available for interactions. The

following table (Figure 4.1) demonstrates the structure of the event data, where a user could

view an item multiple times at different times. In this analysis, we turn the item interacted

count into a binary feedback in order to apply the pairwise learning-to-rank methods, which

also focus on ranking task rather than predicted preference. For example, if a user views an

item 10 times, the binary format will indicate 1 and 0 otherwise. The potential drawbacks

is to treat all the interaction items equally where some items might have more views than
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the other for a user. To model the actual number of implicit feedback, an alternative least

square has been proposed [6]. Graded pairwise learning [11] can also deal with numeric type

of feedback by applying ranking methods with extension on BPR.

Users Items Interactions Sparsity

1407580 235061 2145179 99.99%

Table 4.1: Retail Rocket data summary

(a) Actual feedback demo (b) Binary feedback

Figure 4.1: Transformation from actual feedback count to binary feedback

In addition to the event log data, additional metadata on items is provided such as

item category, item availability and item parent category. Majority of the context on item

properties has been hashed, which creates difficulties in translating to meaningful text.

In this experiment, we would want to isolate the cold start problem and focus on visitors

with enough feedback for our study. The data set has severe skew on interaction distribution,

where 79.5% visitors have only one interaction. (Figure 4.2) As training and testing sets are

needed during the training and evaluation process, we filter the data and include only visitors

that have 6 or more item interactions during 4.5 months.
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Figure 4.2: Distribution of user-item interactions

4.2 Model

In Chapter 3, we introduce two main optimization algorithms, BPR loss and WARP loss

on factorization models. In this chapter, we put together the pseudo code for these two

approaches.

4.2.1 BPR Algorithm

In BPR optimization, a user u is sampled from user pools, a positive item i belongs to

user u and a negative item (non-interacted) j are sampled. Then the predicted scores for i

and j are computed, and the difference between two scores are taken. The way to compute

the predicted score depends on the modeling approach. We used matrix factorization and a

factorization machine to compute the predicted value. Once the difference in predicted value

between i and j has been computed, the model parameters are learned by batch stochastic

gradient descent.
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Algorithm 1 BPR Optimization
Input: m× n user item interaction matrix, Ds = {(u, i, j) | i ∈ I+

u ∧ j ∈ I \ I+
u }

initialize Θ̂

repeat

Draw (u, i, j) ∈ Ds

Compute x̂ui, x̂uj

Compute x̂uij = xui − xuj

Θ← Θ + γ
(

e−x̂uij

1+e−x̂uij

∂
∂Θ(x̂uij) + λΘΘ

)
until convergence

Return Θ̂

Depending on the modeling approach, the input data is usually formatted as a m × n

matrix with m users and n items. This is the default input data structure for matrix

factorization. When dealing with factorization machines, there are three data structures

required. The first data structure is the same as matrix factorization m × n. The second

data structure, user metadata, is a structure where each row represents a user along with

its attributes such as age, days since last visit, total purchases etc. The third data structure

is item metadata where each row represents an item along with its features including item

category, item tags etc.

Parameters Θ̂ need to be initialized. Regardless of the scoring function, we will initialize

the embedding matrix Vu, Vi, and Vif , to normal distribution with mean 0 and standard

deviation 1. For the first-order weights, wi and wif , we initialize them as zero vectors with

corresponding length equivalent to the number of items and the number of item features.

All embedding matrices are set to 15 hidden factors for this whole analysis.
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4.2.2 WARP Loss

WARP loss differs from BPR by selecting a so-called violated negative item where its pre-

dicted value is higher than the predicted value of the targeted positive items. In terms of

running time, WARP is slower than BPR as it is more difficult to find an violated item when

iteration increases since most of the item pairs have been corrected on prior iterations. In

practice, instead of going through all the items, a threshold could be applied on deciding

when to stop finding the negative sample with violation if a large set of items presented. It

would significantly reduce the training time especially on the last several iterations.

Similar to BPR, WARP also optimized ranking by drawing (u, i, j) from the user item

interactions. The computing step on xui and xuj is again dependent on the modeling ap-

proaches.

4.3 Evaluation Metrics

4.3.1 AUC

The evaluation metrics for implicit feedback is different from the one used to evaluate a

explicit feedback recommendation engine. Rather using RMSE, common metrics on rank-

ing task are AUC, precision@k, recall@k, NDCG(Normalized Discounted Cumulative Gain)

AND MRR (Mean Reciprocal Rank) [18]. In this experiment, we are choosing to use AUC

and precision@k as our core evaluation on our implementation.

AUC was introduced as an evaluation in [17] to measure performance of a ranking task.

AUC is a measurement for overall ranking quality as it involves comparison on all positive

and negative item pairs. AUC can be related to the BPR optimization by expressing, for a

specific user u, by
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Algorithm 2 WARP Optimization
Input: m× n user-item matrix, Ds = {(u, i, j) | i ∈ I+

u ∧ j ∈ I \ I+
u }

initialize Θ̂

repeat

Draw (u, i, j) ∈ Ds

Compute x̂ui

Set N = 0

repeat

Pick a negative item j ∈ I−
u

Compute x̂uj N = N + 1

until x̂uj > x̂ui − 1 or N > Y − 1

if x̂uj > x̂ui − 1 then

Make a gradient update:

θ ← θ + γ
(
log(⌊Y −1

k
⌋
) (
−∂x̂uij

∂θ

)
Enforce ∥Vu∥2≤ C

Enforce ∥Vi∥2≤ C

until convergence

end if

until validation error does not improve

Return Θ̂
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AUC(u) = 1
| I+

u || I \ I+
u |

∑
i∈|I+

u |

∑
j∈|I\I+

u |

I(x̂uij > 0) (4.1)

where I is an indicator function:

I(x̂uij > 0) =


1, if x̂uij > 0

0, otherwise
(4.2)

Intuitively, AUC is averaging on all the combinations of positive item and negative item

pairs by counting pairs where positive item predicted score is higher than negative item

predicted score given that a positive item is preferred over a negative item if the predicted

score is higher. AUC usually ranges between 0.5 and 1, where 0.5 means a poor fit and

1 means perfect fit. An example of using AUC is where a recommended system does not

always show the top ranked items because there might be items in the top list that are out

of stock. In this situation, we want to move further down to the recommended list where

the overall ranking comes into play.

4.3.2 Precision@k

Different from AUC, the concept of precision@k focuses on the k recommended items, where

k is usually less than 20. The top k recommended items are decided by the predicted score

using the underlying scoring function e.g. matrix factorization. Then precision@k is defined

as the number of items that are relevant among the top k recommended items, where relevant

items means interacted items. When we evaluate the testing data, relevant items are the

interacted items on the testing data. Mathematically, it can be expressed as, for each user:

precision@k = # of relevant items from top k recommended
k

(4.3)

Note that the maximum value of precision@k could be less than 1 as it depends on the

number of items in the testing data. For example, if a user only has 3 positive items in the
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testing data, then the maximum precision is 3/5, i.e. 0.6.

4.4 Experiment Result

Due to limited computing power, computing factorization machines (3.21) with WARP loss

(3.27) using gradient descent is expensive and slow on local machines. There are N = 269

item features after transforming the categories into binary coding where the iteration needs

to go through all of the item features.

We are also imposing a limit on searching for a violation in WARP loss xui < xuj + 1.

Gradient is updated until it finds such a violation, which could potentially take up the

number of times equivalent to the total negative item numbers for a user. Given that the

training data contains 66,117 items, the time to find out a violation pair will be prolonged

especially for a higher number of iterations.

Epoches BPR-MF BPR-FM WARP-MF WARP-FM

2 0.502 0.501 0.502 0.552

5 0.502 0.505 0.509 0.598

10 0.498 0.509 0.534 0.638

15 0.497 0.512 0.564 0.664

25 0.499 0.506 0.596 0.808

Table 4.2: AUC on testing data / Retail Rockets

We run the experiment by iterating the learning process 2, 5, 10, 15 and 25 times for

each of the scoring and loss function combinations. In only two iterations, WARP-FM has

already outperformed the remaining learning methods by AUC. An interesting result is that

BPR does not improve the AUC and precision@k even if the iteration increases. This is

expected as uniform sampling usually takes a substantial amount of training time to convert

without some additional steps to pick the pair of items for training. However, we see some
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prominent progress using the WARP loss implementation, by adding additional item features

in particular. As the result shown, AUC reaches 0.81 after 25 iterations using item features

embedding on item categories.

Epoches BPR-MF BPR-FM WARP-MF WARP-FM

2 0.0006 0.0004 0.000 19 0.000 22

5 0.000 89 0.0005 0.000 23 0.000 35

10 0.000 38 0.0006 0.000 36 0.000 513

15 0.000 38 0.000 89 0.000 57 0.000 72

25 0.0004 0.0012 0.0009 0.003

Table 4.3: Precision@5 on testing data / Retail Rockets

Recommendation system is typically asked for delivery of the top ranking of items. The

precision results show that we still need to fine tune our model and continue to optimize the

top K recommendations.
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CHAPTER 5

Discussion

5.1 Future Improvement

We have showcased how pairwise learning could solve an implicit recommendation task by

introducing item pairs, a.k.a a positive and negative item schema. Our result shows that

additional features could potentially help improve the model accuracy. However, our model

suffers from some bottleneck. The first one is speed. When data becomes large, computing

the interaction terms within factorization machines depends largely on the resources given a

linear run-time provided from the formula. Indeed, the training data we used only contain

less than 5% of users and the majority of users have only interacted with one item. It is

likely that the majority of these users are new users while we also need to use more data to

justify this hypothesis. That means cold-start can be an issue when new users/new items

arrive. [5] can provide various choices to deal with cold-start problems in recommendation.

The next improvement is item features. Given that we do not have user features avail-

able, we can exploit more item features in addition to item categories. However, detailed

information about items was hashed except for the item category. This makes it challenging

to generate meaningful features to interpret its relationship with the item attributes. One

of the improvements can be to pick the top ten text features appearing across items and

start generating binary features to enrich the item feature space. Otherwise, a wide range

of Natural Language Processing techniques could be applied to uncover insights on the text

data and then incorporate it into the training data.
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In this analysis, we are modeling binary feedback in pairwise learning. However, there

are common scenarios where implicit feedback is being represented as numeric value such as

the number of views for the same items. If there are two positive interactions for a user,

converting the numeric feedback into binary value could downgrade the importance of one

positive on another given that one item had more views than the other. Lerche and Jannach

[11] derived a potential approach to tackle this concern and it extended the existing BPR

framework by changing the scoring function into a weighted function that can take the scale

of feedback and meta information into account.

5.2 Summary

In this analysis, we implemented BPR and WARP loss using two of the most successful

modeling approaches, matrix factorization and factorization machines using implicit feed-

back data from an e-Commerce business. With the technique of pairwise loss learning, the

recommending system was able to learn correct item order preference to optimize overall or

top ranking with implicit feedback. We specifically tested four models with maximum 25

iterations and discovered that the best performance so far occurs on the maximum iteration

using WARP loss with factorization machines by adding additional item information. It

turned out that adding this additional feature could improve the overall AUC score, equiv-

alent to overall ranking quality. In summary, pairwise learning is a good candidate for

personalized recommendation in implicit feedback.
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