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Harmonic Balance Analysis of Lur’e Oscillator
Network with Non-diffusive Weak Coupling

Bryan Lee and Tetsuya Iwasaki

Abstract—The central pattern generator (CPG) is a group
of interconnected neurons, existing in biological systems as a
control center for oscillatory behaviors. We propose a new
approach based on the multivariable harmonic balance to
characterize the relationship between the oscillation profile
(frequency, amplitude, phase) and interconnections within the
CPG, modeled as weakly coupled oscillators. In particular,
taking advantage of the weak coupling, we formulate a low-
dimensional matrix whose eigenvalue/eigenvector capture the
perturbation in the oscillation profile due to the coupling. Then
we develop an algorithm to estimate the perturbed oscillation
profile of a given CPG, and suggest an optimization to synthesize
the interconnections to produce a given oscillation profile.

Index Terms—Network analysis and control, Cooperative con-
trol, Neural networks, Coupled oscillators

I. INTRODUCTION

Located in the central nervous system of animals are neural
oscillator circuits, called the central pattern generators (CPGs),
which drive rhythmic behaviors of the body. The ability of
CPGs to cooperate with external constraints and adapt to
changing environment make them an attractive foundation for
control design in many engineering applications. For example,
CPG-inspired controllers have been designed for numerous
robotic systems [1], [2] with such useful properties as gait
adaptation [3], online trajectory generation [4], and resonance
exploitation [5].

Whether modeling a biological CPG in nature or designing
an artificial CPG for engineering applications, the main chal-
lenge remains to find the relationship between the neuronal
connections and the resulting oscillation profile. Specifically,
for a given CPG, it is of interest to find conditions under
which a stable limit cycle exists and to predict the frequency,
amplitude, and phase. For this purpose, the coupled-oscillator
architecture of CPGs has facilitated the analysis.

In the literature, analysis and synthesis problems have been
solved for coupled oscillators with diffusive coupling, based on
the contracting/convergent systems [6]–[8] and Floquet theory
[9]. However, diffusive coupling is not suitable for modeling
of biological CPGs – for example, the synaptic interactions
between segmental oscillators of leech CPG for swimming are
active during steady swimming [10]. For oscillator networks
with non-diffusive weak coupling, the phase reduction meth-
ods [11]–[13] simplify the synchronization analysis but ignore
the amplitude variation and remove the oscillatory dynamics.
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The multivariable harmonic balance (MHB) provides a flexible
framework for both analysis and synthesis of CPGs with non-
diffusive coupling [14]. The method is not always accurate
due to harmonic approximations but has been found effective
in predicting oscillation profiles [15]–[17].

In this paper, we consider a network of m oscillators with
non-diffusive weak coupling, and present a new characteri-
zation of the relationship between the interconnections and
the oscillation profile through the MHB analysis. Specifically,
the oscillator network is described as a Lur’e system, i.e., a
feedback connection of linear dynamics and static nonlinear-
ities. Exploiting the weak coupling, we condense the multi-
dimensional oscillator dynamics and their interactions into
scalar parameters to obtain an m × m matrix. The matrix
captures the essential dynamics of the network such that its
diagonal entries contain the intra-oscillator perturbations of
the amplitudes and phases due to coupling and its eigenvector
encodes the inter-oscillator phases. Reversing the analysis, we
formulate an optimization to synthesize interconnections that
produce a desired oscillation profile.

The benefits of our approach in comparison with existing
MHB methods are that it (a) reduces computational cost of
the analysis over [14], [16] through dimensional reduction
achieved by exploiting the weakness of coupling, (b) covers a
class of CPGs wider than or different from those in [14]–[16]
as we allow possibly non-diffusive coupling with arbitrary
dynamics for every neuronal connections, (c) provides more
design flexibility over [14], [15] by allowing small variations
of the oscillation profile due to coupling as design freedom,
and (d) gives a rigorous proof for the MHB condition with a
stability property, which was missing in [17].

We use the following notation. We denote by Re(x), Im(x),
and ∠x the real part, imaginary part, and phase angle of
x ∈ C, respectively. A scalar function f : R 7→ R acts on
a vector x ∈ Rn elementwise to generate vector f(x) ∈ Rn.
Expressions col(·) and diag(·) denote the matrices obtained
by stacking their arguments in a column and diagonal, respec-
tively. For a function F (x) of a scalar variable x, its derivative
is denoted by Ḟ (x). For time signals u(t) and y(t), notation
y = f(s)u means y(t) := L−1 [f(s)L[u(t)]] where L is the
Laplace transform operator.

II. PROBLEM FORMULATION

A. General Objective

We consider coupled m oscillators described by

qi =Mo(s)ψ(qi) + σ

m∑
j=1

∆ij(s)ψ(qj), i ∈ Im, (1)



where qi(t) ∈ Rn are the membrane potentials and Im :=
{1, 2, . . . ,m}. Here, ψ : R 7→ R is an odd sigmoid function
representing the threshold and saturation effects of the neu-
ronal dynamics. Each oscillator is formed by a local group
of n neurons, which we call a “segment,” and the neurons
are “intrasegmentally” connected through dynamics Mo(s). In
addition, “intersegmental” connections are made between os-
cillators through σ∆ij(s), and are assumed weak compared to
the intrasegmental connections (small σ > 0). The segmental
oscillators are assumed to be nominally identical with the same
dynamics Mo(s), but the terms σ∆ii(s) capture possible small
variations. Note that system (1) is a Lur’e system described
by

q = M(s)ψ(q), (2)

where q := col(q1, . . . , qm) ∈ Rmn and

M(s) := Mo(s) + σ∆(s), Mo(s) := I ⊗Mo(s), (3)

with ⊗ denoting the Kronecker product. This class of systems
cannot be captured by existing models in [14]–[16] which
require identical dynamics for all neurons.

The objective is to characterize the relationship between
the neural connections M(s) and the profile of oscillations
(frequency, amplitude, phase) of the weakly coupled segmental
oscillators. The characterization should be simple and explicit
to allow for computational analysis and synthesis.

B. Precise Problem Statement

To achieve the objective, we use the MHB method [14]
and make a precise mathematical statement of the problem so
that its solution provides a characterization of the oscillation
profile. Assume a periodic solution q(t) to (2) and consider
the sinusoidal approximation q(t) ≈ Im(q̂ejωt) where ω ∈ R
is the frequency and q̂ ∈ Cmn is the phasor capturing the
amplitude α := |q̂| and phase ∠q̂, where only the relative
phases matter since (2) is autonomous. The static nonlinearity
ψ, acting on q(t) in (2), is approximated by

ψ(q) ≈ K(α)q, K(α) := diag(κ(α)), (4)

where κ is the describing function of ψ defined by

κ(a) :=
1

aπ

∫ π

−π

ψ(a sin θ) sin θdθ, (5)

so that κ(a)x is the first harmonic term of the Fourier series
of ψ(x) for x := a sinωt. The dynamics of (2) in the neigh-
borhood of the periodic solution q(t) is thus approximated by
the quasi-linear system

q = M(s)K(α)q, (6)

which has a solution q = Im(q̂ejωt) if and only if

q̂ = M(jω)K(α)q̂, α := |q̂|, (7)

is satisfied. In this case, (6) has characteristic roots s = ±jω.
Definition 1: The quasi-linear system (6) is said to be m-

stable if all the characteristic roots are in the open left half
plane except for a simple pair on the imaginary axis. A pair
(ω, q̂) ∈ R×Cmn satisfying the MHB equation (7) is said to
be an m-stable solution if (6) with α := |q̂| is m-stable.

An m-stable solution (ω, q̂) of the MHB equation (7)
predicts existence of a stable limit cycle for (2), and the
oscillation profile for q(t) is estimated as q ≈ Im(q̂ejωt).
This claim is based on the harmonic approximation and does
not have a theoretical guarantee, but has been supported
by a number of numerical experiments [14]–[17]. We will
rigorously characterize m-stable solutions, and demonstrate
usefulness of the characterization by example systems through
numerical simulations. To this end, let us introduce:

Assumption 1: Consider an isolated segmental oscillator
r = Mo(s)ψ(r) where r(t) ∈ Rn represents one of the
variables qi(t) in (1) with σ = 0. The MHB equation for
this system admits an m-stable solution (ωo, r̂) ∈ R× Cn:

r̂ =Mo(jωo)Kor̂, Ko := K(ao), ao := |r̂| ∈ Rn, (8)

and the associated quasi-linear system r = Mo(s)Kor is m-
stable. Moreover, ±jωo are not poles of ∆ij(s) in (1).

Given a segmental oscillator satisfying Assumption 1, we
will seek an m-stable solution (ω, q̂) to the MHB equation (7)
for the coupled oscillators in (1). Note that, when uncoupled
(σ = 0), the MHB equation (7) admits a solution (ω, q̂) with
ω = ωo and q̂i = r̂ejϕi where ϕi ∈ R for i ∈ Im are arbitrary.
For a small σ > 0, we assume that the solution is slightly
perturbed in the following form [15]:

ω = ωo + σω̃ +O(σ2), q̂i = (I + σPi)r̂e
jϕi +O(σ2), (9)

where i ∈ Im, Pi ∈ Cn×n is a diagonal matrix, ϕi ∈ R is the
intersegmental phase, and ω̃ ∈ R is the frequency perturbation.
The problem we address is the following:

Problem 1: Consider the coupled oscillators in (1), which
can be written as (2). Suppose Assumption 1 holds. Find a
necessary and sufficient condition on (ω̃, Pi, ϕi) for i ∈ Im,
such that (ω, q̂) of the form (9) is an m-stable solution of (7)
when σ > 0 is sufficiently small.

A solution to this problem is given in the next section, and
its applications to analysis and synthesis will be discussed in
the sections that follow.

III. MAIN RESULT

Let us first provide a perturbation analysis of the MHB
equation (7) with (3) when the coupling strength σ > 0 is
arbitrarily small. The result is proven in Appendix A.

Lemma 1: Consider the weakly coupled oscillators de-
scribed by (2) with (3). Suppose Assumption 1 holds, and let
(Pi, ϕi, ω̃) ∈ Cn×n × R × R be given for i ∈ Im, where Pi

are diagonal. Then (ω, q̂) of the form (9) satisfies the MHB
equation (7) with α := |q̂| up to O(σ) if and only if 1(
jω̃ṀoKo +MoS +∆Ko + (MoKo − I)P

)
(I ⊗ r̂)ejϕ = 0,

(10)
P := diag(P1, . . . , Pm), Ko := I ⊗Ko,

S := diag(S1, . . . , Sm), Si := K̇oRe(Pi)A,

A := diag(ao), K̇o := diag(κ̇(ao)).

(11)

For computational verification of (10), κ(x) and κ̇(x) can be
calculated via numerical integration and derivative using (5).

1∆ denotes ∆(jωo). This notation applies to all transfer functions.



For Mo(s) = CXB with X := (sI − A)−1, its derivative is
given by Ṁo(s) = CẊB = −CX2B, which can be verified
by taking the derivative of (sI −A)X = I .

Next we give a condition for the MHB solution in Lemma 1
to be m-stable when σ > 0 is sufficiently small. The proof
(Appendix B) is based on an eigenvalue perturbation result,
applied to system (6) in the state space.

Lemma 2: Consider the weakly coupled oscillators de-
scribed by (2) with (3). Suppose Assumption 1 holds, and let
(Pi, ϕi, ω̃) ∈ Cn×n × R × R be given for i ∈ Im, where Pi

are diagonal. Suppose (ω, q̂) of the form (9) satisfies the MHB
equation (7) with α := |q̂|. Then the associated quasi-linear
system (6) is m-stable for sufficiently small σ > 0 if and only
if matrix Λp defined by

Λp := β(I ⊗ ℓ̂∗)
(
MoS +∆Ko

)
(I ⊗ r̂),

β := −1/(ℓ̂∗ṀoKor̂)
(12)

has all the eigenvalues in the open left half plane except for
a pair on the imaginary axis, where S and Ko are defined in
(11), and ℓ̂∗ is the left eigenvector of MoKo associated with
eigenvalue 1, normalized such that ℓ̂∗r̂ = 1.

Combining the above two lemmas, we have a characteriza-
tion of m-stable solutions to the MHB equation (7). Since the
stability condition is given in terms of the matrix Λp in (12),
we break down the MHB equation (10) into two equations: one
gives an eigenvalue condition on Λp, and the other captures
the remaining constraints.

Proposition 1: Consider the weakly coupled oscillators
described by (2) with (3). Suppose Assumption 1 holds, and
let (Pi, ϕi, ω̃) ∈ Cn×n × R × R be given for i ∈ Im, where
Pi are diagonal. Then (ω, q̂) of the form (9) satisfies (7) with
α := |q̂| up to O(σ) and the associated quasi-linear system
(6) is m-stable for sufficiently small σ > 0 if and only if

eig
(
β(U + Λ)

)
\{jω̃} ⊂ C−,

β(U + Λ)ejϕ = jω̃ejϕ,
(W +Ω)ejϕ = 0,

(13)

where C− is the open left half plane,

U = diag(u1, . . . , um), Λij = ℓ̂∗∆ijKor̂,
W = diag(w1, . . . , wm), Ωij = N∗∆ijKor̂,

ui := ℓ̂∗MoSir̂, Si := K̇oRe(Pi)diag(ao),

wi := N∗(jω̃ṀoKo +MoSi + (MoKo − I)Pi)r̂,

and N ∈ Cn×(n−1) is the orthogonal complement of r̂.
Proof. Multiplying β(I⊗ ℓ̂∗) and (I⊗N∗) from the left, it

can be verified that (10) is equivalent to the equalities in (13).
The eigenvalue condition in (13) follows from Lemma 2 once
we verify that Λp in (12) is equal to β(U + Λ).

To gain insights, let us consider a simple case where
the neuronal dynamics within each segment are nominally
identical and represented by a scalar transfer function fo(s).
In this case, Mo(s) is given by the product of fo(s) and
a constant matrix M̄o capturing the connection topology,
strength, and inhibitory/excitatory property. We also focus on
the intersegmental oscillation properties and choose to ignore
the small intrasegmental variations due to the weak coupling.
Specifically, we assume Pi = piI in (9) so that pi, ϕi ∈ R

capture the intersegmental amplitude and phase, while the
oscillation profile within each segment remains to be captured
by the nominal phasor r̂. With these two simplifications,
Proposition 1 reduces to the following.

Corollary 1: Consider Proposition 1. Suppose

Pi = piI, Mo(s) = fo(s)M̄o,

where pi ∈ R and M̄o ∈ Rn×n are constant parameters and
fo(s) is a scalar transfer function. Then conditions

eig(Λp)\{jω̃} ⊂ C−,
Λpe

jϕ = jω̃ejϕ, Λp := γP+ βΛ,
Ωpe

jϕ = 0, Ωp := P⊗ v +Ω,
(14)

are equivalent to (13), where

P := diag(p1, . . . , pm), γ := βℓ̂∗MoK̇odiag(ao)r̂,

β = −fo/ḟo, v := N∗MoK̇odiag(ao)r̂,

Proof. The result follows by noting that

ṀoKor̂ = ḟoM̄oKor̂ = (ḟo/fo)r̂,

β = −1/(ℓ̂∗ṀoKor̂) = −fo/ḟo,
wi = N∗MoK̇odiag(ao)r̂pi ⇒ W = P⊗ v.

Without coupling (σ = 0), the quasi-linear system (6) has
eigenvalue jωo with multiplicity m and the rest are in the
open left half plane due to Assumption 1. With weak coupling
(small σ > 0), the segmental oscillations with frequency near
ωo would be coordinated with orbital stability if the m− 1 of
the eigenvalues at jωo move to the left. Because the eigen-
values of Λp are the derivatives of the eigenvalues jωo with
respect to σ, the orbital stability is expected when Λp satisfies
(14). The condition in (14) gives a simple characterization of
m-stable solutions and its practical use will be discussed in
the next two sections.

IV. ANALYSIS

This section will address the analysis problem: Given a CPG
model (1), estimate the oscillation profile of a stable periodic
solution, if any. Specifically, we assume that each segmental
oscillator r =Mo(s)ψ(r) in isolation has a stable limit cycle
on which r(t) ≈ Im[r̂ejωot]. When weakly coupled as in (1)
with a small σ > 0, the segmental oscillators may coordinate
with specific intersegmental phases, while exhibiting small
variations in the amplitude and frequency:

qi(t) ≈ Im[(1 + σpi)r̂e
j((ωo+σω̃)t+ϕi)].

Corollary 1 states that the oscillation profile can be estimated
by solving (14) for (ω̃, ϕ,P).

In (14), jω̃ is the “maximal” eigenvalue of Λp with the
largest real part. The corresponding eigenvector ejϕ gives the
estimated intersegmental phases ϕi, provided the eigenvector
has the same magnitude for all its entries. Thus, the amplitude
parameter P should be selected such that the maximal eigen-
value λ is purely imaginary, and the associated eigenvector
v satisfies the uniform magnitude property. We propose a
heuristic algorithm to numerically search for such P based on a
fixed point iteration. Define the mapping P̄ = µ(P) as follows.
For a given P, let (λ, v) be the maximal eigenvalue-eigenvector



pair of Λp, let (jω̃, ejϕ) be the projection of (λ, v) onto the set
(jR, ejRm

), and let P̄ be the solution P to the second equation
in (14). Then a solution (ω̃, ϕ,P) to the first two constraints
in (14) satisfies P = Re[µ(P)]. Thus the fixed point iteration
Pk+1 = Re[µ(Pk)], or its relaxation, may provide a solution
at convergence.

Algorithm 1
1) Initialize k = 0 and pk = 0 ∈ Rm, and choose positive

scalars ε1 < 1 and ε2 ≪ 1.
2) Let Pk := diag(pk) and compute the maximal eigen-

value λ ∈ C and the associated eigenvector v ∈ Cm of
γPk + βΛ. Set ω̃ := Im(λ) and ϕ := ∠v.

3) Update pk by

p̄k := Φ∗(jω̃I − βΛ)ejϕ/γ, Φ := diag(ejϕ),
pk+1 = pk + ε1Re

(
p̄k − pk

)
,

4) If ∥pk+1 − pk∥ < ε2, then set P := Pk and stop.
Otherwise increment k and go to step 2.

This algorithm is heuristic, its convergence is not guaran-
teed, and the third constraint in (14) is ignored. However,
our numerical experience suggests that it works well for the
purpose of obtaining a rough estimate for the intersegmental
properties. Since the analysis involves eigenvalue computation
for m × m matrix Λp, the computational cost is reduced
in comparison with [14], which ignores the weak coupling
structure and involves nm× nm matrix M(jωo).

Example 1. We consider a model of the leech CPG for
swimming described as a chain of 17 segmental oscillators.
The model is identical to the one in [18] except that interseg-
mental time-delay e−kτds is replaced by its approximation

fk(s) :=
αk

1 + τks
,

αk := 1/ cos(kωoτd),
τk := tan(kωoτd)/ωo,

where kτd is the communication delay over k segments, ωo

is the nominal frequency, and (αk, τk) are chosen such that
fk(jωo) = e−jωokτd . We will estimate the oscillation profile
using Corollary 1. The existing methods [14]–[17] cannot be
applied since the model does not belong to the classes of CPGs
they considered.

Each segmental oscillator has three neurons, and the phasor
r̂ ∈ C3 and the nominal frequency ωo can be computed using
Proposition 2 in [14]. The amplitude is uniform and

ao = |r̂| = 13.45× col(1, 1, 1), ωo = 14.43.

The actual frequency from simulation of the segmental os-
cillator is ωsim

o = 15.26. Using Algorithm 1 with ε1 = 0.1
and ε2 = 10−9, we have computed (ω̃,P, ϕ) to estimate
the oscillation profile. In Fig. 1, history of the first entry of
qi(t) ∈ R3 for i ∈ I17, and amplitude and phase of q̂i from
simulation (blue) and estimation (red) are shown for three
neurons in each segment. The time course shows convergence
to the stable limit cycle within a few cycles, and the peaks
of the 17 curves in the steady state shift from left to right
(linear decrease of the phase plots) with peak values largest
in the middle segments (top blue curve in the amplitude plot).
While the phase estimate closely agrees with the simulated
phase, the amplitude estimate (single red curve), which is

assumed uniform within a segment, provides a reasonable
approximation to the average amplitudes within each segment
(average of blue curves).

The frequency perturbation ω̃ = −9.24 is negative, re-
sulting in the estimated frequency ω = ωo + σω̃ = 13.88
with σ = 0.06, which roughly agrees with ωsim = 14.53
from simulation. The quasi-linear system has eigenvalues
0.04±13.86j and the rest with the maximum real part −0.51,
approximately satisfying the m-stability (and hence correctly
suggesting orbital stability of the limit cycle) although the third
condition in (14) is ignored in the analysis.
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Fig. 1. MHB analysis of the leech CPG

V. SYNTHESIS

This section will address the synthesis problem: Given a
segmental oscillator r =Mo(s)ψ(r) and desired intersegmen-
tal phase ϕ ∈ Rm, determine the intersegmental connections
∆(s) such that the CPG model (1) with small σ > 0 possesses
a stable limit cycle on which qi(t) oscillates with phase ϕi for
i ∈ Im. While this problem is for the design of a synthetic
CPG, it can also be interpreted as the modeling of a biological
CPG to identify the neuronal connections that reproduce the
observed intersegmental phase ϕ.

In the general synthesis problem, the perturbations of the
frequency ω̃ and amplitude P may also be specified as desired,
or alternatively, may be left as design variables to facilitate
satisfaction of the phase specification. The latter approach may
be preferred when the intersegmental connections are subject
to dynamical/structural constraints, such as a communication
delay or distributed network topology, which make the former
approach infeasible. In this case, the phase specification may
be satisfied at the expense of slight perturbations in the
frequency and amplitudes from the nominal values of the
segmental oscillator.

To formalize the synthesis, let the (k, ℓ) entry of ∆(s),
denoted by δkℓ(s), specify the connection from the ℓth neuron
to the kth neuron as δkℓ(s) = gkℓ(s)xkℓ where gkℓ(s) captures
the dynamics of the synaptic connection and xkℓ captures
the excitatory/inhibitory type and strength of that connection.
Then the connection parameter vector x is defined by stacking
the scalar parameters xkℓ for possible connections. Since there
may exist multiple solutions for ∆(s), let us consider the ℓ1-
norm minimization:

min
x

∥x∥1 s.t.
{

Λpe
jϕ = jω̃ejϕ, Ωpe

jϕ = 0,
W ∗(Λp + Λ∗

p)W < γI,
(15)



where W ∈ C(m−1)×m is the orthogonal complement of
ejϕ. The use of the ℓ1-norm is motivated by the LASSO
regularization, which attempts to minimize the number of
nonzero weights in a linear regression model. For the synthesis
of coupled oscillators, using the ℓ1-norm seeks the essential
connections. Noting that Λp and Ωp depend linearly on x, the
problem is convex and easily solved.

We may also allow small perturbations in the frequency
and amplitudes by adding (ω̃,P) as additional optimization
variables in (15) while keeping convexity. This provides design
flexibility for the synthesis of a CPG. With the existing
approaches [14], [15], the desired amplitudes and phases of
all mn neurons have to be specified. Such tight specifications
can lead to infeasible design especially in the presence of
constraints on the network topology. In contrast, our approach
allows us to specify only the intersegmental phases, leaving the
small intersegmental amplitude variations as a design freedom
and possibly making the design feasible.

The Lyapunov inequality in (15) is a sufficient condition
for the eigenvalue condition in (14) when γ ≤ 0 since γ/2
is an upper bound on Re(λi) for i ∈ Im−1 where λi for
i ∈ Im are the eigenvalues of Λp with λm = jω̃. Since the
eigenvalues of the quasi-linear system (6) near the imaginary
axis are approximately equal to jωo + σλi, the magnitude of
σγ/2 estimates a lower bound on the rate of convergence to
the target oscillation – the larger, the faster.

Example 2. We consider the design of coupled oscillators
(1) for the specifications in Table I. The segmental oscillator
is found using Proposition 4 of [14] as

Mo(s) = fo(s)M̄o,
fo(s) := 1/(1 + τos),

M̄o :=

 0.79 0.65 0
0 1.14 1.20

−2.68 0 1.58

 ,
where the ℓ1-norm of vec(M̄o) is minimized. For the inter-
segmental connections, we assume ∆ij(s) = fk(s)∆̄ij with
constant ∆̄ij that is allowed to be nonzero if k := |i− j| = 1,
and fk(s) is defined as in Example 1 with ωo = π and
τd = 0.015. The entries of nonzero ∆̄ij are stacked into vector
x ∈ R72 and are optimized to achieve the oscillation profile
in Table I. As in Example 1, the existing methods cannot be
used for the synthesis unless fk(s) = fo(s).

We have found that the optimization (15) over (x, ω̃) with
uniform amplitudes (P = 0) was infeasible for any γ < 0 due
to the restriction of the nearest neighbor coupling (k = 1).
Hence, we let P be an additional free variable in (15) to
allow small amplitude variations. With variables (x, ω̃,P), the
value of γ < 0 does not alter the essential result since it just
scales the solution and the scaling freedom can be absorbed
into σ. The design result with σγ = −0.1 is shown in Fig.
2, where the optimized amplitudes (1 + σpi)ao and specified
phases ∠r̂ + ϕi for i ∈ I5 are compared with the simulated
values. We see slight perturbations in the amplitudes from ao
as intended, making the optimization feasible. The interseg-
mental phases are closely matched with the specification. The
optimized frequency ωo+σω̃ = 3.07 and simulated frequency
ω = 2.98 are both close to the nominal frequency ωo = π
of the segmental oscillator. Simulated time courses of qi1(t)
indicated fast convergence from random initial conditions,

TABLE I. Design specifications

threshold nonlinearity in neurons ψ(x) = tanh(x),

# of neurons in a segmental oscillator, n 3
nominal frequency, ωo [rad/s] π
intrasegmental amplitude, ao 1,2,3
intrasegmental phase, ∠r̂ [deg] 0,60,120
intrasegmental time constant, τo [s] 0.2
# of segmental oscillators, m 5
intersegmental phase, ϕ [deg] 0,-35,-50,-90,-180

confirming stability of the limit cycle. Finally, we note that
the ℓ1 optimization in (15) eliminated 37 out of the 72
connections, with 2 to 6 retained out of 9 connections between
two adjacent oscillators.
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Fig. 2. MHB synthesis of CPG via optimization (15)

VI. CONCLUSION

Exploiting the weakness of the coupling, we have trans-
formed the MHB condition into a simple eigenvalue-
eigenvector equation. The resulting condition enabled the
analysis of a given CPG to predict the oscillation profile,
as well as the synthesis of intersegmental connections to
achieve phase coordination with specified or unspecified inter-
segmental variation of amplitudes. Consideration of amplitude
variation in weakly coupled oscillators will help to model bio-
logical observations realistically as well as design engineering
systems with added design freedom. For example, the leech
CPG for swimming may be modeled as coupled oscillators
based on experimental data. Membrane potential data qi(t) of a
segmental oscillator, partially known topology of the neuronal
connections, and physiological parameters, such as synaptic
time constants, are known from the literature. Solving the
optimization (15), one can determine the synaptic strengths
and identify missing connections to develop a high fidelity
model, which could be validated by further experiments.

APPENDIX

A. Proof of Lemma 1
The MHB equation (7) can be written as

q̂i =Mo(jω)K(αi)q̂i + σ

m∑
j=1

∆ij(jω)K(αj)q̂j , (16)

where αi := |q̂i| and i ∈ Im. From (9), we have

αi =
(
I + σRe(Pi)

)
ao +O(σ2),

K(αi) = Ko + σK̇oRe(Pi)diag(ao) +O(σ2),

Mo(jω) =Mo(jωo) + jω̃σṀo(jωo) +O(σ2),
∆ij(jω) = ∆ij(jωo) +O(σ),

(17)



where Ko := K(ao) and we used the approximation

x, y ∈ C ⇒ |(1 + σy)x| =
(
1 + σRe(y)

)
|x|+O(σ2).

Directly substituting these relationships and (9) into (16),
neglecting O(σ2) terms, and dividing by σ yield(
jω̃ṀoKo +MoSi + (MoKo − I)Pi

)
vi +

m∑
j=1

∆ijKovj = 0,

for i ∈ Im, where vi := r̂ejϕi . Here, we note that the O(σ0)
terms vanish due to Assumption 1. Assembling the above
equations for i ∈ Im, we obtain (10).

B. Proof of Lemma 2

Let (Ao, Bo, Co) be a minimal realization of Mo(s). Then
the system r =Mo(s)Kor can be written as

ẋo = Āoxo, Āo := Ao +BoKoCo, r = Coxo.

Due to Assumption 1, the system is m-stable with an eigen-
value at jωo. Note that the MHB equation (8) and the
definition of ℓ̂∗ imply

r̂ = Cox̂o, x̂o := (jωoI −Ao)
−1BoKor̂,

ℓ̂∗ = ŷ∗oBoKo/β, ŷ∗o := βℓ̂∗Co(jωoI −Ao)
−1,

(18)

where β is chosen such that ŷ∗o x̂o = 1, and we also have

(Āo − jωoI)x̂o = 0, ŷ∗o(Āo − jωoI) = 0. (19)

Now, consider the quasi-linear system (6). Note that

Mo(s) = C(sI −A)−1B,
A := I ⊗Ao, B := I ⊗Bo, C := I ⊗ Co,

and let a minimal realization of ∆(s) be given by

∆(s) = H(sI − F )−1G.

Then the quasi-linear system (6) is described by

ẋ = Ax, x := col(x, ξ),

A :=

[
A 0
0 F

]
+

[
B
G

]
K(α)

[
C σH

]
.

From (17), we have

α = col(α1, . . . , αm), K(α) = Ko + σS +O(σ2).

We then see that

A =

[
A+BKoC 0
GKoC F

]
+ σ

[
BSC BKoH
GSC GKoH

]
+O(σ2).

Note from (19) that

(A+BKoC)Xo = jωoXo, Xo := I ⊗ x̂o,
Y ∗
o (A+BKoC) = jωoY

∗
o , Yo := I ⊗ ŷo.

Therefore,[
A+BKoC 0
GKoC F

] [
Xo

Ξ

]
= jωo

[
Xo

Ξ

]
,[

Yo
0

]∗ [
A+BKoC 0
GKoC F

]
= jωo

[
Yo
0

]∗
,

Ξ := (jωoI − F )−1GKoCXo,

From Theorem 4.1 in [19], the eigenvalue jωo of A at
σ = 0, with geometric multiplicity m, is perturbed to the
open left half plane except for one on the imaginary axis with
sufficiently small σ > 0 if all the eigenvalues of

Λp :=

[
Yo
0

]∗ [
BSC BKoH
GSC GKoH

] [
Xo

Ξ

]
have negative real parts, except for one on the imaginary axis
which is equal to jω̃ where ω̃ gives the first order term in (9).
Direct calculation gives

Λp = Y ∗
o B(S +Ko∆(jωo)Ko)CXo.

Noting from (18) that

I ⊗ r̂ = CXo, I ⊗ ℓ̂∗ = Y ∗
o BKo/β,

Y ∗
o B = β(I ⊗ ℓ̂∗)Mo(jωo),

we can verify that Λp is given by (12).
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