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ABSTRACT OF THE DISSERTATION

Low-Rank Approximations for Estimation of Multivariable Dynamics with

Application to Energy Systems

by

Yangsheng Hu

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor Raymond A. de Callafon, Chair

System identification is a powerful tool for estimation of the systematic and causal

dynamic relations by learning from measurements of input/output data. It provides an

effective alternative when first-principles modeling is intractable. It plays an important role

in model-based controller design especially during the stage of software-in-the-loop (SIL)

and has been widely exploited in a wide range of real-world applications. This dissertation

presents a study of theories and applications on multi-input multi-output (MIMO) system

identification for estimation of multivariable dynamics between input/output data. The

objective is to finally obtain a simplified dynamic model by emphasizing low-rank information
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during estimation with the aid of singular value decomposition (SVD).

In this dissertation, we study the Covariance Based Realization Algorithm (CoBRA)

for estimation of linear time-invariant and time-periodic dynamics and the tensor network

(TN) based algorithm for estimation of nonlinear dynamics described by Volterra series. The

CoBRA, one branch of subspace methods by using covariance data, is able to focus on the

estimation of a low-order deterministic model from noisy data by exploiting the low-rank

feature of the data matrix. We propose an optimal implementation of the CoBRA and inves-

tigate its efficacy in a closed-loop setting compared with other subspace methods. A MIMO

Volterra model is powerful to approximate nonlinear dynamics on the basis of input/output

observations. We cope with the curse of dimensionality during model formulation and present

TN-based noniterative algorithms for MIMO Volterra system identification. The proposed

algorithms show numerical advantages over iterative algorithms.

This dissertation also studies two real-world applications in energy systems which

involve estimation of multivariable dynamics. First, we investigate the microgrid dynamic

modeling with power flow covariance data. We propose a model structure which consists of

a MIMO linear part concatenated by a static nonlinear part to account for the power loss in

transmission lines. Second, we study the modeling for lithium-ion batteries to accurately pre-

dict the output terminal voltage. We develop a TN-based Volterra double-capacitor (VDC)

model, which is capable of predicting both static and dynamic nonlinearities simultaneously

in a more accurate way than other equivalent circuit models (ECMs).
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Chapter 1

Introduction

1.1 System Identification

System identification is a technique building mathematical models of dynamic systems

from input/output measurement data [1, 2, 3, 4]. It serves as a powerful alternative when

first-principles modeling is intractable. On the other hand, it is impossible to model every

single detail of a system due to the complexity or limited knowledge. This is one limitation

of using first-principles modeling. However, data-driven modeling using system identification

can capture important features observed from the data and facilitate the modeling process

by careful selections of certain model structures. With the proliferation of various sensors

of high precision and low cost, system identification becomes more and more attractive

nowadays. As a core subject of control systems theory, system identification is also crucial

for the model-based controller design.

A large amount of papers on system identification have been published over the last

60 years. The theory of system identification started in the mid-1960s when two important
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papers were published. The first one was contributed by K.J. Åström and B. Torsten in [5],

in which the maximum likelihood (ML) was extended to estimate AutoRegressive Moving

Average with eXogenous inputs (ARMAX) models. Many relevant identification techniques

which are now labeled as prediction error methods (PEM) and instrumental variable (IV)

methods have been developed since then. These techniques have been summarized and an-

alyzed comprehensively in [1, 2]. The second one was contributed by B.L. Ho and R.E.

Kálmán in [6], in which the deterministic state-space realization problem was solved for the

first time by constructing a Hankel matrix by using impulse responses. This work provided

insights into identification of a state-space model which more naturally accounts for a multi-

input multi-output (MIMO) system than a transfer function used in PEM. A new effort

in system identification and digital signal processing by referring to the QR decomposition

and the singular value decomposition (SVD) emerged in the mid-1980s. These realization

theory-based techniques have been intensively studied and led to a development of the so-

called subspace (identification) methods. It should be noted that the origin of subspace

methods may date back to multivariable statistical analysis especially to the principal com-

ponent analysis (PCA) due to H. Hotelling in the 1930s [7, 8, 9]. The first comprehensive

monograph on subspace methods for linear system identification was published by P. Van

Overschee and B.L. De Moor in [10]. T. Katayama advanced subspace methods by incorpo-

rating stochastic realization theory [11]. Another development of subspace methods is the

emergence of predictor-based subspace identification (PBSID) [12], which is similar to esti-

mating a high-order ARX structure. An advantage of subspace methods over PEM especially

in MIMO system identification is that there is no need to refer to nonlinear optimization

algorithms which often lead to local optima.
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A lot of effort has been put into the linear system identification mostly based on

classical statistical methods. However, nonlinear system identification still remains as an

important open issue and available techniques that have been demonstrated effective in

practice can be found in [13, 14]. In addition, system identification theory is being pushed

forward in recent years by interacting with other fields such as statistics, machine learning,

etc and it brings up many interesting topics [15, 16, 17].

1.2 Motivation and Problem Formulation

Estimation of multivariable dynamics may be required when multiple inputs and even

multiple outputs are involved in an application problem. System identification, serving as

the interface between the real-world applications and the mathematical world of control

theory and model abstractions, is usually an necessity for dynamic modeling and successful

applications. In addition, different techniques of system identification are selected based on

the character of the models to be estimated: linear, nonlinear, time-invariant, parametric,

MIMO, etc. The problem of estimating a reliable model becomes more difficult and compli-

cated especially when only short and noisy data is available and/or the model structure is

too rich with too many parameters to be estimated which leads to overfitting problem. Also,

one expects a simplified model capturing the major dynamics between the input/output data

for the sake of numerical robustness and controller design. Thus, how to perform low-rank

approximations during system identification becomes crucial for estimation of multivariable

dynamics.

The real-world systems are in general nonlinear by nature but can be approximated
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by a linear time-invariant model around a certain equilibrium. This observation lays the

foundation for the intensive research in system identification by using linear time-invariant

models. For the estimation of linear multivariable dynamics, subspace methods are pre-

ferred due to its numerical advantage over PEM. It is worth investigating the properties and

implementation of subspace methods in the case of noise-contaminated data. The Covari-

ance Based Realization Algorithm (CoBRA), as a branch of subspace methods, allows one

to extract the low-rank deterministic information from the noisy data by using covariance

pre-processing. The corresponding estimates are consistent, but the optimal implementation

of the CoBRA is still an open issue.

Although linear system identification is widely used, the need for nonlinear system

identification extends far beyond the control application field. Nonlinear models are instru-

mental in achieving a basic understanding of how a system works such as brain activity

modeling and chemical reactions. Since every system that is not linear is nonlinear, nonlin-

ear system identification is an expansive topic and it is impossible to give a full overview

of all aspects of this field. A user guide for the state-of-the-art nonlinear system identifica-

tion can be found in [14]. Among these techniques, we are interested in the identification

of Volterra models, which are always bounded-input bounded-output stable. In addition, a

MIMO Volterra model of high degree and long memory length is able to capture compli-

cated coupled nonlinear multivariable dynamics. However, a normal representation of such

a model suffers from the curse of dimensionality and requires a prohibitively large storage to

save an enormous amount of parameters. This observation motivates us to break the curse

of dimensionality with the aid of a tensor network (TN) technique. However, developing

consistent and numerically robust TN-based algorithms which are able to estimate a model
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with low TN-ranks from short and noisy data is crucial and also an open issue for Volterra

system identification.

System identification has attracted a lot of attention due to its practical significance

and data-driven property which makes it widely applicable to many different fields. On the

other hand, applying the system identification techniques to real-world applications will pro-

vide insights into the practical efficacy and inspire further improvements. In this dissertation,

we will investigate two real-world applications in energy systems where system identification

is applied for estimation of multivariable dynamics. We only consider two types of energy

systems: microgrid power delivery system and battery energy storage system. The first appli-

cation is the estimation of microgrid power flow dynamics via the CoBRA. Feedback control

of transient effects in power flow through a microgrid requires a better understanding of the

dynamic aspects of distributed energy resources (DERs) located within the microgrid. The

second application is the estimation of battery dynamics via TN-based Volterra system iden-

tification. Rechargeable batteries have been widely used nowadays due to the proliferation

of portable consumer electronics, electric vehicles, etc and advanced battery management

systems require proper battery models. The battery dynamics is nonlinear by nature and a

careful modeling will facilitate utilizing the full potential from a battery without violating

constraints.

1.3 Main Contributions

In this dissertation, we aim to push forward the theories on the CoBRA and MIMO

Volterra system identification and apply them to the real-world applications. Our main
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contributions are summarized as follows:

• A detailed investigation of CoBRA: The CoBRA, a branch of subspace methods

using covariance data, has been demonstrated to be effective in identifying a low-order

model from experimental data contaminated with unknown and possibly high-order

spectral characteristics. We propose to modify the basic CoBRA to adapt to different

settings. First, we extend the CoBRA to identify an LTP system by referring to its

generalized time-lifted model. We develop a novel method to compute a topologically

equivalent realization for the linear time-periodic (LTP) system and a measure of the

estimation quality. Second, we investigate the statistical properties of the CoBRA

in detail and develop an optimal implementation of the CoBRA in terms of minimum

variance. The optimal CoBRA is then incorporated into a two-stage closed-loop system

identification and shows superior performance to other competitive methods.

• Development of TN-based algorithms for MIMO Volterra system identifi-

cation: Volterra model serves as one of the powerful alternatives to approximate the

nonlinear dynamics on the basis of input/output observations. Few literature exploits

the Volterra models of high degree or even the MIMO case to capture complicated cou-

pled nonlinear behaviors within data. This is due to the exponentially growing number

of kernel coefficients as the degree increases, also known as the curse of dimensionality.

We propose novel TN-based algorithms for MIMO Volterra system identification since

the TN structure can break this curse by trading storage for computation. We pro-

pose two noniterative TN-based algorithms with/without regularization and both can

automatically seek a low-rank representation of a MIMO Volterra model to overcome
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overfitting. The proposed algorithms show advantages over the Alternating Linear

Scheme (ALS) and the Modified ALS (MALS) which are iterative and do not guar-

antee a convergence to an appropriate solution. In addition, by using the properties

of cumulant, we derive the persistent excitation condition for MIMO Volterra system

identification with Gaussian distributed input signals.

• Microgrid dynamic modeling with power flow covariance data: Feedback

control of transient effects in power flow through a microgrid requires a better under-

standing of the dynamic aspects of DERs located within the microgrid. We present

a data-driven approach to modeling DER power flow dynamics within a microgrid by

using the discrete-time dependent covariance between active and reactive power flow.

First, we consider a simplified case with the microgrid excited around one power equi-

librium and demonstrate that the CoBRA works well in a microgrid setting. Then, we

consider a more realistic case taking into account nonlinearities such as ramp limit in

the DER inputs and power loss due to the admittance of the microgrid network. It is

shown via a simulation and an experimental study that simulated and measured power

flow transient effects can be matched with high accuracy.

• Lithium-ion battery modeling for terminal voltage prediction: Accurate bat-

tery modeling is fundamental for battery management system to function well and

extract the full potential from a battery without violating constraints. It has been

demonstrated that a (nonlinear) double-capacitor (NDC) model can accurately de-

scribe the operation of a lithium-ion cell by using an electrical circuit structure. We

propose a TN-based Volterra double-capacitor (VDC) model to further improve the
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prediction performance of the NDC model. The whole modeling can be regarded as a

combination of equivalent circuit model (ECM) and supervised learning. We propose

a bond core sweeping algorithm to estimate low-rank TN-cores. The experimental

results show that the VDC model outperforms other ECMs in battery modeling.

1.4 Organization

The remaining part of the dissertation is organized into three parts. Part I performs

an in-depth study in the CoBRA, including Chapters 2,3. Part II investigates the MIMO

Volterra system identification, including Chapters 4,5. Part III concerns the real-world ap-

plications to energy systems by using the CoBRA and MIMO Volterra system identification,

including Chapters 6,7.

In Chapter 2, we extend the CoBRA to perform the parameter estimation for MIMO

LTP systems in the time domain. A generalized time-lifted state-space model for an LTP

system is developed so that the CoBRA can be applied to get a low-rank deterministic linear

time-invariant model. We formulate a topologically equivalent realization for the original

LTP system by using the estimated time-lifted model.

In Chapter 3, we conduct an in-depth study of the statistical behavior of the noise

effects on the CoBRA. We propose an approach to reducing the variance of an estimate

obtained by the CoBRA via the choice of optimal row and column weighting matrices. We

adopt a two stage technique with the estimate on an intermediate instrument for closed-loop

implementation of the CoBRA.

In Chapter 4, we investigate the MIMO Volterra system identification in the TN
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representation, which alleviates the high storage cost due to the curse of dimensionality. We

propose noniterative TN-based algorithms with two tuning factors to solve either a linear or

ridge regression to produce low-rank estimates and the simulation results show advantages

over the iterative algorithms proposed in other literature.

In Chapter 5, we derive a persistent excitation condition for the parameter estimation

in MIMO Volterra system identification in the case of zero mean, Gaussian distributed (not

necessarily white) input signals. We assume a symmetric structure of kernels without loss

of generality. We reformulate and simplify the persistent excitation problem by performing

a moments to cumulants conversion.

In Chapter 6, we use the CoBRA to identify a low-order dynamic model during

microgrid dynamic modeling with power flow covariance data. We consider the nonlinearity

caused by line power loss by estimating the admittance matrix of the microgrid network.

The resulting model consists of a linear dynamic part and a static nonlinear part and shows

high prediction accuracy in a simulation and an experimental study.

In Chapter 7, we use the MIMO Volterra system identification to improve the pre-

diction performance in battery modeling. We adopt the Volterra model to build a mathe-

matical mapping from features, which are obtained from a linear double-capacitor model, to

the output terminal voltage. We implement the TN-based algorithm to compute a low-rank

representation of the Volterra model.

In Chapter 8, we summarize and draw concluding remarks for this dissertation. We

will also look into the future of relevant research.
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Part I

Covariance Based Realization

Algorithm
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Chapter 2

Identification of Linear Time Periodic

Systems via CoBRA

This chapter focuses on the parameter estimation of multi-input multi-output (MIMO),

linear time-periodic (LTP) systems in the time domain. Discrete-time state-space models

are selected for the description of LTP systems and the Covariance Based Realization Al-

gorithm (CoBRA), one branch of subspace methods, is used for the identification of the

generalized time-lifted state-space model for an LTP system. The use of the CoBRA for

estimation is motivated by the robustness against output noise with (high-order) noise dy-

namics and a focus on the estimation of low-rank deterministic model for the LTP system.

In addition to the use of the CoBRA, a novel method is proposed to compute a topologically

equivalent realization for the original LTP system. The method includes two different but

theoretically equivalent approaches to calculating the state matrices, the estimate difference

between which can be also used as a measure for the estimation quality.
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2.1 Introduction

System identification for linear time-invariant (LTI) models is well established in

recent decades [2, 3]. System identification is about building a mathematical model with low

order, followed by a procedure to estimate a finite number of parameters, from experimental

input and output data. However, there are many cases where the time-invariant assumption

cannot be met due to time-varying intrinsic nature of the data generating system [18, 19].

Among these time-varying cases, a variety of systems can be modeled appropriately through

LTP models.

If the physical system contains periodic motion (e.g. electrical motors, fans, wind

turbines, human locomotion, etc.), then a nonlinear time-invariant system can be formulated

around the periodic stable trajectory. Alternatively, a system may be subjected to multi-

rate sampling and LTP models are often encountered [20, 21, 22, 23]. LTP models can also

capture the features that are not presented in the LTI approximation. For example, the

effect of frequency-coupling dynamics can be captured by an LTP model in the applications

that use grid connected DC/AC inverters [24]. As in the LTI case, there is a large number

of possible situations where the parameters of the LTP model for a real system can not be

determined directly from first principles. That’s when system identification or experiment

based modeling can be used as a powerful alternative regardless of the physical structure.

However, relatively little attention of system identification has been paid to LTP mod-

els. A comprehensive summary of different descriptions of LTP models can be found in [25].

Most experimental identification methods for LTP models are conducted in the frequency

domain based on the idea of harmonic transfer function (HTF) in the exponentially modu-
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lated periodic (EMP) regime [20, 26]. Very few results are performed in the time domain and

they are typically applicable to the general time-varying case [27]. Although a large amount

of data is required, it is more straightforward to perform the time domain identification.

This chapter investigates a novel method to identify a state-space representation of an LTP

model in the time domain while reducing the requirement of storage space.

A (MIMO) LTP model can be reformulated as an LTI time-lifted state-space form

with augmented input and output signals [25]. Once an LTI time-lifted representation is

used, identification methods for (MIMO) LTI systems can be incorporated. Popular tech-

niques are subspace methods [3, 10, 11]. One advantage of a subspace method is the lack

of nonlinear optimization and facilitated by the robust numerical computation of QR fac-

torization and singular value decomposition (SVD). However, the storage requirements and

numerical computations become intensive since a large number of data points may be needed

in the time domain.

The CoBRA, a branch of subspace methods, provides a solution to this problem

[28, 29, 30]. The CoBRA enables the data compression by using covariance functions. In

addition, correlation with an instrumental variable avoids the estimation of possibly high

order noise model and allows a focus on the estimation of potential low-order deterministic

dynamics.

The contribution of this chapter is to formulate a CoBRA that enables the identifi-

cation of discrete-time LTP models. This is done by proposing a novel method to compute

a topologically equivalent realization in the time domain. Two different but theoretically

equivalent approaches to calculating the state matrices are given in the proposed method.

The extent of the closeness between the two estimated state matrices can be used as an

13



additional measure for the estimation quality.

The remaining part of the chapter is organized as follows: Section 2.2 provides in-

sights into the potential time-invariant property of LTP models and proposes a generalized

time-lifted state-space reformulation. The procedure of incorporating the CoBRA into the

identification of LTP models is presented in Section 2.3. Pole location constraints based

on the concept of monodromy matrix are also included. In Section 2.4, a novel method for

a topologically equivalent realization of the original LTP model is proposed. Section 2.5

illustrates the efficiency of the proposed method by a simulation and Section 2.6 summarizes

this chapter.

2.2 Representation of Discrete-Time LTP Systems

2.2.1 Time-Invariant Relation in Discrete-Time LTP Systems

Consider the following state-space model for a discrete-time LTP system:
x (t+ 1)= A (t)x (t) +B (t)u (t)

y (t)= C (t)x (t) +D (t)u (t)

(2.1)

where A(t) ∈ Rn×n, B(t) ∈ Rn×p, C(t) ∈ Rm×n, D(t) ∈ Rm×p are periodic matrices of period

T , and t ∈ Z. u(t), y(t), and x(t) are input, output, and state vectors, respectively. Note

that it is assumed here that the dimension of x(t) is fixed to be n. In order to determine the

stability of the above system, we should refer to the corresponding monodromy matrix [31]:

Ψ (l) = Φ (l + T, l) , l ∈ {1, 2, · · · , T} (2.2)
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where Φ(t, l) is state-transition matrix defined by

Φ (t, l) =


I, if t = l

A (t− 1) · · ·A (l + 1)A (l) , if t > l

(2.3)

It is obvious that Ψ(l) is a serial concatenation of A(t) over a single period and its eigenvalues

are called characteristic multipliers, independent of l [31]. The system is stable if and only if

its monodromy matrix is stable, i.e., all the eigenvalues of Ψ(l) are lying in the unit disk in

the complex plane. From now on, we assume that the LTP system to be identified is stable.

Since it is not straightforward to see the potential invariant relationship from (2.1),

we first resort to its equivalent input-output representation via the convolution sum

y (t) =
∞∑
i=0

Mi (t)u (t− i) (2.4)

where Mi(t) ∈ Rm×p, i = 0, 1, 2 · · · are periodic Markov coefficients of period T over t. The

relationship between (2.1) and (2.4) can be described by

M0 (t) = D (t)

MkT+s (t) = C (t) Ψ(t)kΦ (t, t− s+ 1)B (t− s)
(2.5)

where k = 0, 1, · · · and s ∈ {1, 2, · · · , T}. Using the periodicity of Mi(t), we can rewrite the

output y (kT + s) of (2.4) at time instant t = kT + s according to

y (kT + s) =
T−1∑
i=0

[
∞∑
j=0

MjT+i (s)u ((k − j)T + s− i)

]
︸ ︷︷ ︸

Hi,s(z)us−i(kT )

=

[
H0,s (z) H1,s (z) · · · HT−1,s (z)

]


us (kT )

us−1 (kT )

...

us−T+1 (kT )



(2.6)
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where ul (kT ) = u (kT + l), Hi,s(z) is a time-invariant transfer function for any fixed i

and s, and z is a one step ahead shift operator over k. For a given s, we can obtain a

time-invariant relation as shown in (2.6). It is obvious that the system is also with period

Tc = cT, c ∈ {1, 2, · · · }. The reason for introducing Tc is that the proposed method may

need to construct the time-lifted model using more than one period of the signals. Also, the

symbol η is used from now instead of s to represent the more general case. Thus, we can

further define an augmented signal in a generalized sense

u(η) (k) =

[
uη(kTc)

′ · · · uη+Tc−1(kTc)
′

]′
(2.7)

and y(η)(k) is defined in a similar way. Note that x′ represents the transpose of a vector (or

matrix) x in this chapter. We are not using xT instead as in other chapters to avoid the

confusion between the transpose and period T in this chapter. Without too much effort, we

have the following time-invariant relation from (2.6)

y(η) (k) = G(η) (z)u(η) (k) (2.8)

where G(η)(z) is a fixed block transfer function from u(η)(k) to y(η)(k) for a given η ∈

{1, 2, · · · , Tc}. At this point, we have deduced the potential time-invariant relation contained

in the given LTP system.

2.2.2 Generalized Time-Lifted State-Space Reformulation

Since a realization algorithm is used in this chapter, a state-space form is preferred.

Although (2.8) provides us with a time-invariant framework between the augmented signals

{u(η)(t), y(η)(t)}, we would not go further into the specific representation of G(η)(z). Instead,
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we denote η = dT + l, l ∈ {1, 2, · · · , T}, where d is some integer to make this equation hold,

and a state-space form of the relation in (2.8), which is a generalization of the time-lifted

state-space model in [25], and given by
xη (k + 1) =A(η)xη (k) +B(η)u(η) (k)

y(η) (k) =C(η)xη (k) +D(η)u(η) (k)

(2.9)

where xη (k) = x (kTc + η), and matrices A(η) ∈ Rn×n, B(η) ∈ Rn×pTc , C(η) ∈ RmTc×n, and

D(η) ∈ RmTc×pTc are functions of {A(t), B(t), C(t), D(t)} in (2.1) defined as follows:

A(η) = Φ (l + Tc, l) = [Ψ (l)]c (2.10)

B(η) =

[
Φ (l + Tc, l + 1)B (l) · · ·

Φ (l + Tc, l + Tc − 1)B (l + Tc − 2) B (l + Tc − 1)

]
=

[
[Ψ (l)]c−1Φ (l + T, l + 1)B (l) · · ·

Φ (l + T, l + T − 1)B (l + T − 2) B (l + T − 1)

]
(2.11)

C(η) =

[
C(l)′ Φ(l + 1, l)′C(l + 1)′

· · · Φ(l + Tc − 1, l)′C(l + Tc − 1)′
]′

=

[
C(l)′ Φ(l + 1, l)′C(l + 1)′

· · ·
[
Ψ(l)′

]c−1
Φ(l + T − 1, l)′C(l + T − 1)′

]′
(2.12)

D(η) =
{(
D(η)

)
ij

}
, i, j = 1, 2, · · · , Tc (2.13)
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where
(
D(η)

)
ij

is given by

(
D(η)

)
ij
=


0, if i < j

D (l + i− 1) , if i = j

C (l + i− 1) Φ (l + i− 1, l + j)B (l + j − 1) , if i > j

(2.14)

Remark 1. Note that B(η) is the reversed extended controllability matrix and C(η) is the

extended observability matrix. D(η) can be nonzero even if the original LTP system in (2.1)

has one-step time delay, i.e., D(l) = 0. Although the time-lifted state-space model in (2.9) is

with the augmented signals {u(η)(t), y(η)(t)}, the order of the reformulated model is still the

same as the original one.

2.3 CoBRA for LTP Systems

Given the augmented signals {u(η)(t), y(η)(t)}, the CoBRA can be used to identify

the unknown matrices in (2.9) up to a similarity transformation. It can reduce the storage

requirements and allow pole location constraints during parameter estimation. Only basic

notations and procedures are outlined here and more details on CoBRA method can be

found in [28, 29, 30].

2.3.1 Realization by CoBRA

Usually only the noise contaminated measured output z(t) = y(t) + v(t) is available,

where v(t) is a quasi-stationary zero mean (probably colored) Gaussian noise with unknown

spectrum. Although it may not cause an ambiguity, it should still be mentioned that z

here is not an operator as in Section 2.2. For the time-lifted version in (2.9), we have
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z(η)(k) = y(η)(k) + v(η)(k). We may assume that v(t) is the output of a linear (probably

time-invariant or periodic) system with a zero mean Gaussian white noise e(t) as the input.

Similarly as in (2.8), the following time-invariant relation holds:

v(η) (k) = H(η) (z) e(η) (k) (2.15)

where H(η)(z) is a fixed block transfer function from e(η)(k) to v(η)(k) for a given η =

{1, 2, · · · , Tc}. The augmented e(η)(k) is still Gaussian white noise although its dimension

increases. Thus, the augmented v(η)(k) is still a quasi-stationary zero mean Gaussian noise

but with a different spectrum. In many cases, we care more about the deterministic part of

a system than the noise dynamics. For this reason, we introduce an instrumental variable

ξ(t) satisfying:

• ξ (t) ∈ RpTc×1 is correlated with u(η)(t).

• ξ (t) ∈ RpTc×1 is uncorrelated with v(η)(t).

In that case, we have Rz(η)ξ = Ry(η)ξ + Rv(η)ξ = Ry(η)ξ since the stochastic part Rv(η)ξ = 0 in

the ideal case. The time-lifted state-space form in (2.9) can be rewritten as:
Rxηξ (τ + 1) = A(η)Rxηξ (τ) +B(η)Ru(η)ξ (τ)

Rz(η)ξ (τ) = C(η)Rxηξ (τ) +D(η)Ru(η)ξ (τ)

(2.16)

where τ ∈ {−τ̄ ,−τ̄ + 1, · · · , 0, 1, · · · , τ̄} and the initial condition is Rxηξ (−τ̄) = Rτ̄ . The

values of these covariance functions can be used to create the block Hankel matrices
R

(−τ̄)
z(η)ξ

= Hankel
(
Rz(η)ξ (τ) , r,−τ̄ , τ̄ − 1

)
R

(−τ̄+1)
z(η)ξ

= Hankel
(
Rz(η)ξ (τ) , r,−τ̄ + 1, τ̄

)
Ru(η)ξ = Hankel

(
Ru(η)ξ (τ) , r + 1,−τ̄ , τ̄

) (2.17)
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where

Hankel (g (τ) , r, τ1, τ2) =



g (τ1) g (τ1 + 1) · · · g (τ2 − r + 1)

g (τ1 + 1) g (τ1 + 2) · · · g (τ2 − r + 2)

...
...

...

g (τ1 + r − 1) g (τ1 + r) · · · g (τ2)


(2.18)

and r is the number of block rows. Note that the Hankel matrix of the input signal should be

of full row rank. These Hankel matrices are related by the data matrix equations according

to

R
(−τ̄)
z(η)ξ

= Oτ̄Rxηξ + TRu(η)ξ (2.19)

R
(−τ̄+1)
z(η)ξ

= Oτ̄A(η)Rxηξ + ~TRu(η)ξ (2.20)

where Rxηξ=

[
Rxηξ (−τ̄) Rxηξ (−τ̄ + 1) · · · Rxηξ (τ̄ − r)

]
, T and ~T are Toeplitz matrices

of unknown Markov parameters, R
(−τ̄+1)
z(η)ξ

is the one-step time-shifted version of R
(−τ̄)
z(η)ξ

in

(2.17), and Oτ̄ is the extended observability matrix

Oτ̄ =

[
C(η)

′ (C(η)A(η)

)′ · · · (
C(η)A

τ̄−1
(η)

)′]′
(2.21)

Now we may introduce an orthogonal projection

Π⊥R′u(η)ξ
= I−R′u(η)ξ

[
Ru(η)ξR

′
u(η)ξ

]−1

Ru(η)ξ (2.22)

and (2.19) and (2.20) can be rewritten into

R
(−τ̄)
z(η)ξ

Π⊥R′u(η)ξ
= Oτ̄RxηξΠ

⊥
R′u(η)ξ

(2.23)

R
(−τ̄+1)
z(η)ξ

Π⊥R′u(η)ξ
= Oτ̄A(η)RxηξΠ

⊥
R′u(η)ξ

(2.24)
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From the expression, the estimation of matrix A(η) can be done by solving the optimization

problem

min
A(η)

∥∥∥∥Oτ̄A(η)RxηξΠ
⊥
R′u(η)ξ

−R
(−τ̄+1)
z(η)ξ

Π⊥R′u(η)ξ

∥∥∥∥
F

(2.25)

whose solution is explicit and given by

Ā(η) = (Oτ̄ )
‡R

(−τ̄+1)
z(η)ξ

Π⊥R′u(η)ξ

(
RxηξΠ

⊥
R′u(η)ξ

)†
(2.26)

Note that Oτ̄ and RxηξΠ
⊥
R′u(η)ξ

can be estimated through the singular value decomposition

of (2.23) via

R
(−τ̄)
z(η)ξ

Π⊥R′u(η)ξ
=

[
Un Us

]Σn 0

0 Σs


Vn′
Vs
′


≈ UnΣ1/2

n︸ ︷︷ ︸
Oτ̄

Σ1/2
n Vn

′︸ ︷︷ ︸
RxηξΠ

⊥
R′
u(η)ξ

(2.27)

where n is the selected order for the time-lifted system in (2.9) so that Σn contains the

dominant singular values in comparison to Σs. An estimate C̄(η) for matrix C(η) can be

achieved by selecting the first mTc rows of Oτ̄ computed in (2.27).

Estimation of matrices B(η), D(η) and the initial condition Rτ̄ can then be done via

a linear regression optimization as in common subspace methods. Given matrices Ā(η) and

C̄(η), these parameters are related via

Rz(η)ξ (τ) =C̄(η)Ā
τ+τ̄
(η) Rτ̄+

τ+τ̄∑
i=1

C̄(η)Ā
i−1
(η) B(η)Ru(η)ξ (τ − i)+D(η)Ru(η)ξ (τ) (2.28)

and this relation can be transformed into a linear regression form by using the vectorization
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operator vec(·):

vec
(
Rz(η)ξ (τ)

)
=

[
ϕ0 (τ) ϕB (τ) ϕD (τ)

]
︸ ︷︷ ︸

ϕ(τ)


vec (Rτ̄ )

vec
(
B(η)

)
vec
(
D(η)

)

 (2.29)

where 

ϕ0 (τ) = IpTc ⊗ C̄(η)Ā
τ+τ̄
(η)

ϕB (τ) =
τ+τ̄∑
i=1

R′u(η)ξ
(τ − i)⊗ C̄(η)Ā

i−1
(η)

ϕD (τ) = R′u(η)ξ
(τ)⊗ ImTc

(2.30)

Finally, denote

Y =



vec
(
Rz(η)ξ (−τ̄)

)
vec
(
Rz(η)ξ (−τ̄ + 1)

)
...

vec
(
Rz(η)ξ (τ̄)

)


,X =



ϕ (−τ̄)

ϕ (−τ̄ + 1)

...

ϕ (τ̄)


then the estimates of R̄τ̄ , B̄(η), D̄(η) can be obtained by solving the following optimization

problem:

min
Rτ̄ ,B(η),D(η)

∥∥∥∥∥∥∥∥∥∥∥∥
Y −X


vec (Rτ̄ )

vec
(
B(η)

)
vec
(
D(η)

)



∥∥∥∥∥∥∥∥∥∥∥∥
2

(2.31)

2.3.2 Pole Location Constraints

It is obvious from (2.9) that matrix Ā(η) is a multiple of the monodromy matrix

Ψ (l), whose eigenvalues are fixed and independent of l. Thus, pole location constraints can

be incorporated into the estimation of A(η) during solving (2.25). Stability constraints are

mostly used to avoid unstable estimates due to computational errors. It can be transformed
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into the following relaxed convex optimization problem:

min
Q,P

∥∥∥∥∥Oτ̄Q−R
(−τ̄+1)
z(η)ξ

Π⊥R′u(η)ξ

(
RxηξΠ

⊥
R′u(η)ξ

)†
P

∥∥∥∥∥
F

s.t. a⊗ P + b⊗Q+ b′ ⊗Q′ ≥ 0,

P = P ′ > 0,

trace (P ) = n

(2.32)

where a = 1 − δ, δ ∈ [0, 1] and b =

[
0 1

0 0

]
. The estimate of A(η) can be found from the

optimal {Q̄, P̄} via Ā(η) = Q̄P̄−1 and the eigenvalues of Ā(η) are restricted inside the disk

with radius (1− δ) in the complex plain. More details and other kinds of constraints can be

found in [32].

2.4 Topologically Equivalent Realization

An estimated state-space model of (2.9) up to a similarity transformation can be

obtained from Section 2.3. The next step is to extract the underlying LTP model described

in (2.1) from the estimated time-lifted model of (2.9).

2.4.1 Definition of Topological Equivalence

For the LTI case, only an equivalent realization up to a similarity transformation

can be achieved by subspace identification methods. Similarly, we would like to find an

equivalent form for (2.1).

Definition 1. [33] The matrices Ā(t), B̄(t), C̄(t), and D̄(t) are said to be topologically
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equivalent to matrices A(t), B(t), C(t), and D(t) in (2.1) if the following conditions

Ā (t) = L (t+ 1)A (t)L−1 (t)

B̄ (t) = L (t+ 1)B (t)

C̄ (t) = C (t)L−1 (t)

D̄ (t) = D (t)

(2.33)

are satisfied, where the matrices L(t) and L−1 (t) in (2.33) are bounded for all t ∈ Z.

The following relation can be also derived using (2.33):

Φ̄ (t2, t1) = L (t2) Φ (t2, t1)L−1 (t1) (2.34)

where Φ̄ (t2, t1) is the state-transition matrix corresponding to Ā(t).

If {Ā(t), B̄(t), C̄(t), D̄(t)} are periodic matrices of period T , matrix L(t) should also

be periodic, i.e., L (kT + l) = L (l). Thus, the following equations holds:

Ā (1) = L (2)A (1)L−1 (1)

...

Ā (T − 1) = L (T )A (T − 1)L−1 (T − 1)

Ā (T ) = L (1)A (T )L−1 (T )

Ā (kT + l) = Ā (l)

(2.35)

Ψ̄ (l) = L (l) Ψ (l)L−1 (l) (2.36)

and similar properties can be obtained for B̄(t) and C̄(t).

Remark 2. Given the same input signal and zero initial state, a system with a topologically

equivalent form of (2.1) will produce the same output.
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2.4.2 Identification Framework

Assumption 1. The pair {A(t), B(t)} in (2.1) is uniformly controllable [27]. In terms of

(2.11), it means there exists a positive integer c = δ such that B(η) is of full row rank n for

any l ∈ {1, 2, · · · , T}. Denote the smallest δ as δ1.

Assumption 2. The pair {A(t), C(t)} in (2.1) is uniformly observable [27]. In terms of

(2.12), it means there exists a positive integer c = δ such that C(η) is of full column rank n

for any l ∈ {1, 2, · · · , T}. Denote the smallest δ as δ2.

Let Assumption 1,2 hold for the following discussions. Thus, select c such that c >

max{δ1, δ2}. Suppose we’ve already got the realizations of the time-lifted state-space models

in (2.9) for η ∈ {1, 2, · · · , Tc}. In other words, {Ā(η), B̄(η), C̄(η), D̄(η)}, which are the similarity

transformations of the matrices shown in (2.10)–(2.13), can be achieved. This can be done

by using LTI system identification methods such as CoBRA method in Section 2.3. Denote

these relations as 

Ā(η) = L (l)A(η)L
−1 (l)

B̄(η) = L (l)B(η)

C̄(η) = C(η)L
−1 (l)

D̄(η) = D(η)

(2.37)

It is enough to choose η = 1, 2, · · · , T , in which case η = l.

Result 1. Given {Ā(η), B̄(η), C̄(η), D̄(η)}, a topologically equivalent realization {Ā(t), B̄(t),

C̄(t), D̄(t)} of (2.1) is given by

B̄ (l) = B̄(l+1) (:, p (Tc − 1) + 1 : pTc) (2.38)

C̄ (l) = C̄(l) (1 : m, :) (2.39)
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Ā (l) B̄(l) (:, p+ 1 : pTc) = B̄(l+1) (:, 1 : p (Tc − 1)) (2.40)

C̄(l+1) (1 : m (Tc − 1) , :) Ā (l) = C̄(l) (m+ 1 : mTc, :) (2.41)

and D̄(l) can be obtained directly from (2.14). Note that the period of these matrices is T .

Proof. Under Assumption 1,2, the result can be proved using the periodicity and relations

in (2.10)–(2.13) and (2.37).

Remark 3. The interesting point is that there are two approaches to compute matrix Ā(l), l ∈

{1, 2, · · · , T} as shown in (2.40) and (2.41), denoted as Āα(l) and Āβ(l) respectively. The-

oretically speaking, it is sufficient to use only one of them, i.e., Ā(l) = Āα(l) = Āβ(l).

However, the advantage of this point is that it can be used to testify if the estimated model

is right. Taking computational errors into account, the achieved model is not applicable if

d(Āα(l), Āβ(l)) > ε, where d (·, ·) is a metric and ε is the allowance of error.

2.5 Simulation Results

The efficiency of the proposed CoBRA method for identification of an LTP system

is illustrated by means of a simulation example. Consider an LTP system described by a
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state-space model in (2.1) with the following parameters:

A (1) =

 1.55 −0.6

1 0

 , A (2) =

 1.78 −0.93

1 0


B (1) = B (2) =

 1

0


C (1) =

[
1 −0.9

]
, C (2) =

[
1 −0.85

]
D (1) = D (2) = 0

where the period is T = 2. The measured output is z(t) = y(t)+v(t), where v(t) is a colored

noise described by

v (t) =
q−1

1 + 0.3q−1
e (t)

in which e(t) is zero mean Gaussian white noise.

For excitation a PRBS signal is used as an input signal with the amplitude changing

randomly between −1 and 1. For the noise v(t) perturbing the output, the variance of e(t)

is chosen to be 0.32. Furthermore, c is chosen as c = 2 so that Tc = 2T for the time-lifted

state-space model in (2.9), which is a four-input four-output LTI system from the augmented

input u(η)(k) to the output y(η)(k). We use the CoBRA in Section 2.3 to get an estimate

{Ā(η), B̄(η), C̄(η), D̄(η)} for η = 1, 2, · · · , T in (2.9), where the instrumental variable is chosen

as ξ(t) = u(η)(k).

The values of the covariance functions are computed by using their sample coun-

terparts with data length N = 1500. Note that the original data length is 4N = 6000.

Other parameters are set as τ̄ = 50, r = 30 in (2.17), and n = 2 in (2.27). Pole location

constraints are not implemented in this simulation. Finally, a topologically equivalent real-
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ization {Ā(l), B̄(l), C̄(l), D̄(l)} with l ∈ {1, 2, · · · , T} can be obtained by using Result 1. It

can be also observed that the parameters of the given LTP system change mildly. Thus, it

is reasonable to consider an LTI model for identification. This can be done directly by using

the CoBRA and included here for comparison purposes.

From our experience, choosing Ā(l) = Āβ(l) computed in (2.41) performs better. For

the purpose of a good demonstration, a single simulation experiment with the above setting

is conducted. The computed estimates Ā(l) are shown as below:

Āα (1) =

 0.7073 −0.1857

−0.2679 −0.9537


Āβ (1) =

 0.7054 −0.1685

−0.2665 −0.9525


(2.42)



Āα (2) =

 0.7417 0.3651

0.3241 −0.8709


Āβ (2) =

 0.7423 0.3630

0.3193 −0.8864


(2.43)

It can be observed that Āα(l) ≈ Āβ(l), l ∈ 1, 2, · · · , T . Thus, we conclude that the original

periodic dynamics are captured and the estimated results are acceptable. The corresponding

simulated outputs and output errors are illustrated in Fig. 2.1. The accuracy of both ap-

proaches is acceptable, with the method in (2.41) leading to slightly smaller output errors.

Note that, without taking the periodic dynamics into account, the (average) variance of the

output error from an LTI model is larger than the variance of the output error obtained from

the estimated LTP models.
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Figure 2.1: The simulated outputs of the estimated topologically equivalent LTP models via
CoBRA. The output error from an LTI model estimated via CoBRA is also illustrated with
a larger output error variance.
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Theoretically, Āα(l) should be equal to Āβ(l). In practice, noise and computational

errors exist, and estimation of A(l) using (2.41) is recommended. Its accuracy just depends

on the estimate C̄(η). However, estimating A(l) through the method in (2.40) is based on the

estimate B̄(η), which is further based on the estimate {Ā(η), C̄(η)} as shown in (2.29). Thus,

computational errors may be accumulated.

2.6 Conclusion

In this chapter, a novel time domain parameters estimation method for LTP models

has been proposed based on the CoBRA. The method is based on time-lifted signals, but

these signals may be of a high dimension, so a large amount of data points may be required.

The CoBRA reduces the storage requirements and emphasizes the identification of the de-

terministic part of the system. Two approaches to estimating the state matrices of an LTP

system are introduced and provide us with a way of determining if the estimate captures

the periodic dynamics of the LTP system. The proposed method is efficient in terms of the

simulated outputs as illustrated in the simulation example.

This chapter is based on the following paper that was published:

Y. Hu and R.A. de Callafon, “Covariance Based Realization Algorithm for identification of

linear time periodic system,” in Proceedings of 2018 Annual American Control Conference

(ACC), Wisconsin Center, Milwaukee, USA, Jun. 27–29, 2018, pp. 1102–1107.
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Chapter 3

Closed-Loop System Identification via

CoBRA

The Covariance Based Realization Algorithm (CoBRA), a branch of subspace meth-

ods, enables the estimation of multivariable models using a large number of data points

due to the use of finite size covariance matrices. The covariance pre-processing allows the

CoBRA to ignore any (high-order) noise dynamics and focus on the estimation of the low-

order deterministic model. However, subspace methods and the CoBRA in particular are not

maximum-likelihood methods. In this chapter, an in-depth study on the statistical behavior

of the noise effects is conducted. A method to reduce the variance of an estimate obtained

by the CoBRA is proposed via the choice of optimal row and column weighting matrices.

For closed-loop implementation of the CoBRA, a two stage technique is adopted with the

estimate on an intermediate instrument. At the first stage, a least-length perturbation of

a scalar accuracy function is used to obtain an analytic solution for the optimal weighting

matrices. The instruments produced by the first stage are then used for the identification at
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the second stage to extract the plant model.

3.1 Introduction

In this chapter, we focus on the closed-loop identification of multi-input multi-output

(MIMO) discrete-time LTI systems. Popular techniques for the identification of MIMO

systems are subspace methods, which are well-known to have a computational advantage

over prediction-error methods (PEM) [10, 11]. It should be noted that subspace methods

will identify a state-space model up to within a similarity transformation. In a closed-

loop setting, the correlation of the input signals with the process and measurement noise

signals is a well-known issue that hampers consistent parameter estimation when noise model

estimation is omitted. Solutions to circumvent this issue have been traditionally classified as

direct, indirect, and joint input-output methods [34]. A comprehensive summary of recent

direct subspace methods can be found in [12]. Those methods are based on a predictor

form and assume that the bias is negligible for an appropriate past window size, making the

methods equivalent to identification of a vector-ARX structure. Direct subspace methods

have less restrictions on the controller, but they are seeking an innovation model, which may

be of high-order since the noise dynamics are included. Joint input-output methods based on

Orthogonal Decomposition (ORT) and Canonical Correlation Analysis (CCA) are proposed

in [11] and followed by a model order reduction in a closed-loop setting.

In many cases, one is more interested in the estimation of a low-order deterministic

model. Thus, an alternative approach is based on the introduction of an instrument, which

is correlated with the closed-loop data, but uncorrelated with the noise on the data. The
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use of an instrument allows one to ignore noise dynamics and focus on the deterministic

model identification. With the aid of the instrumental variable (IV), the CoBRA has been

demonstrated to be efficient in identifying low-order deterministic models [28, 35, 29]. Fur-

thermore, the use of covariance functions allows pre-processing of the MIMO closed-loop

data and restricts the column number of Hankel data matrices to a level O(1) instead of

O(N) as in traditional subspace methods, where N is the data length. In this sense, the

CoBRA can cope with a large amount of data without extensive storage requirement and

enable consistent model identification in the presence of colored closed-loop noise. Note that

the use of covariance functions for MIMO system identification is not new and has been

investigated in other works [36, 37, 38], but they refrain from using an IV to reduce the noise

effects.

In this chapter, the CoBRA is incorporated into a two stage indirect method in a

closed-loop setting. At the first stage, the CoBRA is applied to perform a joint input-

output identification, which is actually an open-loop identification of the whole closed-loop

system. At the second stage, the CoBRA is applied again to extract the plant model from

the estimated noise-free input and output signals, which are the instruments produced by

the closed-loop model from the first stage.

It is obvious that the estimation accuracy of the first stage plays a very important role

in identifying an accurate model of the plant. Tuning the IV can be a reasonable approach

to achieving better performance. In [39], the optimal extended instrumental variable (EIV)

estimation was proposed to obtain an optimal estimation in terms of parameter covariance.

In [40], the optimal refined instrumental variable (RIV) estimation, which is actually equiva-

lent to the optimal EIV, was described from the aspect of maximum likelihood optimization.
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Both optimal EIV and RIV are tackling Box-Jenkins-like models. In [41], a combined in-

strumental variable-weighting subspace fitting (IV-WSF) approach was proposed to estimate

a deterministic transfer function model based on an IV matrix (also named instrumental-

product matrix). The parameters were estimated through optimally extracting the range or

null space of the Sylvester matrix within the IV matrix.

In the CoBRA framework, the covariance function of a sampled signal and IV can

be seen as an IV matrix. However, the CoBRA stacks different IV matrices to construct

Hankel matrices within a state-space model and extracts the range space of the extended

observability matrix for parameter estimation. In addition, for MIMO state-space models, an

optimal column weighting matrix was proposed for MOESP-like (Multivariable Output-Error

state SPace identification) subspace methods in [42] by using a similar idea from [39, 43].

This chapter analyzes a two stage CoBRA for closed-loop MIMO system identifica-

tion. Under mild assumptions, a statistical analysis of the noise effect reduction by the IV

is formulated on the basis of the properties of a sum of stochastic variables. An approach is

then provided to reduce the variance of an estimate obtained by the CoBRA via the choice

of optimal row and column weighting matrices. For the closed-loop implementation of the

CoBRA, a two stage procedure is proposed with an estimate obtained from an intermediate

instrument. At the first stage, a least-length perturbation of a scalar accuracy function is

used to obtain an analytic solution for the optimal weighting matrices. The resulting in-

struments produced by the first stage are used for the identification at the second stage to

formulate a plant model.

The remaining part is organized as follows. Section 3.2 presents the objective of the

closed-loop identification and an introduction of the two stage technique and CoBRA. A sta-
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tistical analysis of a stochastic vector signal with bounded covariance is given in Section 3.3.

In Section 3.4, an optimization problem is formulated that can be used to tune the IV to

achieve an optimal variance reduction. A least-length perturbation is also introduced to

achieve an analytic solution. The two stage CoBRA is summarized in Section 3.5, where in

Section 3.6, a closed-loop simulation example is given to demonstrate the efficiency of the

proposed method. Section 3.7 summarizes this chapter.

3.2 CoBRA in a Closed-Loop Setting

3.2.1 Closed-Loop Identification of MIMO Systems

Consider a LTI minimal system G(q−1) described by a state-space model:
x (t+ 1)= Ax (t) +Bu (t)

y (t)= Cx (t) +Du (t) + v (t)

(3.1)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×p, and v (t) is a zero mean stochastic noise

signal with unknown spectral properties, but assumed to be uncorrelated with the input.

Note that if we are only interested in modeling the deterministic part of the system, any

process noise on the state equation can be ignored here since it can be incorporated into

v (t). The noisy output can also be represented as y (t) = ȳ (t) + v (t), where ȳ (t) is the

noise-free part.

In a closed-loop setting as shown in Fig. 3.1, the input can be represented as

u (t) =r1 (t)− C
(
q−1
)

[y (t)− r2 (t)]=ū (t) + w (t) (3.2)

where the controller C (q−1) is assumed to be LTI, {r1(t), r2(t)} are the reference signals and

35



Figure 3.1: Block diagram of a closed-loop system.

ū (t) and w (t) are respectively the deterministic and stochastic part of u(t). Obviously, the

noise part w(t) of the input is correlated with v(t) in the output, which is a common issue

in a closed-loop identification setting.

The objective is to identify, from the experimental data {r1(t), r2(t),u(t),y(t)}, the

deterministic parameters {A,B,C,D} in (3.1) up to within a similarity transformation,

regardless of the spectral properties of the noise v(t).

To cope with the correlation of {u (t) ,y (t)} with v(t) during a closed-loop identi-

fication, a two stage technique is used in this chapter. The first stage is to identify the

deterministic model from the reference signals {r1 (t) , r2 (t)} to the noisy joint input-output

signals {u (t) ,y (t)}. This model can be used to produce an estimate of the noise-free version

{ū (t) , ȳ (t)}, known as instruments. The second stage is to identify the deterministic part

of the system described in (3.1) by using {ū (t) , ȳ (t)} from the first stage.

3.2.2 Realization through CoBRA

CoBRA can serve as a powerful tool to extract the underlying low-order deterministic

state-space model. In order to handle deterministic and stochastic signals simultaneously, a
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general (cross) covariance function of two zero mean signals s1(t) and s2(t) is denoted as:

Rs1s2 (τ) = Ē
{

s1 (t) s2(t− τ)T
}

= lim
N→+∞

1
N

N−1∑
t=0

E
{

s1 (t) s2(t− τ)T
} (3.3)

whose sample counterpart is

R̂s1s2 (τ) =
1

N

N−1∑
t=0

s1 (t) s2(t− τ)T (3.4)

Note that Ē {·} is called the extended expectation associated with the normal expectation

operator E{·}. Set si(t) = 0 for t /∈ [0, N − 1]. A bounded IV ξ(t) is introduced to eliminate

the noise effect and satisfying

(a) ξ (t) ∈ Rp×1 is correlated with {u(t),y(t)},

(b) ξ (t) ∈ Rp×1 is uncorrelated with v(t).

Note that Rvξ (τ) = 0 and Ryξ (τ) = Rȳξ (τ) in the ideal case if v(t) is assumed to be

of zero mean. This means that computing the covariance functions could be used to eliminate

the noise effect. However, the sample covariance function in (3.4) is used in practice when

finite number N of sampled experimental data is available. Thus, the noise term will not

vanish. Without too much effort, we can obtain the following matrix equation:

R̂yξ = OrR̂xξ + ΨR̂uξ + R̂vξ (3.5)
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where

Or=

[
CT (CA)T · · · (CAr−1)

T

]T

R̂xξ = Hankel
(
R̂xξ (τ) , 1, τ1, τ2 − r + 1

)
R̂fξ = Hankel

(
R̂fξ (τ) , r, τ1, τ2

)
, f ∈ {y, u, v}

Hankel (g (τ) , τ0, τ1, τ2) =



g (τ1) g (τ1 + 1) · · · g (τ2 − τ0 + 1)

g (τ1 + 1) g (τ1 + 2) · · · g (τ2 − τ0 + 2)

...
...

...

g (τ1 + τ0 − 1) g (τ1 + τ0) · · · g (τ2)


and Ψ is a Toeplitz matrix with unknown Markov parameters. A high-quality estimation

of the extended observability matrix Or is the most important part in subspace methods.

Note that r, satisfying r > n, is the number of block rows, and τ1, τ2 are selected so that

−τ̄ ≤ τ1 < τ2 ≤ τ̄ for some finite τ̄ > 0 and the Hankel matrix of the input signal are

of full row rank. Then, the following matrix equation can be obtained by introducing an

orthogonal projection:

R̂yξΠ
⊥
R̂T
uξ

= OrR̂xξΠ
⊥
R̂T
uξ

+ R̂vξΠ
⊥
R̂T
uξ

(3.6)

where Π⊥
R̂T
uξ

= I − R̂T
uξ

[
R̂uξR̂

T
uξ

]−1

R̂uξ and the Toeplitz matrix Ψ with unknown system

information is removed. Note that R̂xξΠ
⊥
R̂T
uξ

is also assumed to be with full row rank equal

to the system order n.

The remaining procedures are similar to classical (MOESP [44]) subspace methods:

the first step is to perform SVD on R̂yξΠ
⊥
R̂T
uξ

and then extract the range space of the extended

observability matrix Or, which leads to Ôr = OrT
−1 with T being a nonsingular similarity

transformation matrix and the estimate of parameters {Â, Ĉ} through the shift-invariance

structure of Ôr; the second step is to estimate parameters {B̂, D̂} (and the initial state) via
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a linear regression optimization by using the estimated {Â, Ĉ} from the first step. Note that

the estimated {Â, B̂, Ĉ, D̂} are related to the original {A,B,C,D} in (3.1) by a similarity

transformation T and they are actually equivalent from the perspective of input-output

description. This is a common feature for subspace methods.

In the ideal case of a perfect covariance estimate using (3.3), consistent parameter

estimation can be achieved. However, the noise effect of the residue R̂vξΠ
⊥
R̂T
uξ

may not

be eliminated even if the noise signals are ideally stationary, independent and identically

distributed (i.i.d.), and of zero mean. This is due to the use of the sample counterpart

in (3.4) and the limited number of data points in practice. Note that (3.4) is computing

the average of the terms under summation. For an i.i.d. stochastic signal, we can resort

to the Law of Large Numbers for the properties of its average over the time line. Under

the structure of CoBRA, it’s interesting and necessary to investigate the properties of the

average of the product of a more general noise signal and IV.

3.3 A Statistical Analysis of A Stochastic Vector Signal

with Bounded Covariance

Since we are computing the covariance functions using (3.4) in practice, the noise

term R̂vξ in (3.6) is actually composed of the average of the product of v(t) and ξ(t − τ)

over a given time interval. The properties of this average for a finite data length N will

provide us an insight into how to design or tune an IV appropriately to reduce the noise

effect contained in R̂vξΠ
⊥
R̂T
uξ

as much as possible. It leads to deriving an optimal CoBRA in
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Section 3.4.

Proposition 1. Let
{
n′ (t) ∈ Rm′ , t ∈ N,m′ ∈ N

}
be an arbitrary stochastic signal and SiN =

N∑
t=i

n′ (t) a partial sum. Denote SN = S1
N . If there exist c > 0, δ < 3

2
such that the variance

of any SiN satisfies

Tr
{

Var
{
SiN
}}
≤ c(N − i+ 1)δ (3.7)

then

SN
N
→ µN , w.p.1, as N → +∞ (3.8)

where µN = 1
N

N∑
t=1

E {n′ (t)} and w.p.1 means with probability 1.

Proof. One can subtract µN from SN
N

beforehand. Thus, we can assume that µN = 0 in the

proof without loss of generality. Also, if one can prove that

(
SN
N

)
k

→ 0, w.p.1, as N → +∞ (3.9)

for all k ∈ {1, 2, · · · ,m′}, then we can prove the result in (3.8). The idea here is similar to

the proof of Theorem 2B.1 in [2]. To apply Borel-Cantelli lemma to prove the convergence

of
{(

SN
N

)
k

}
, one could first sparsify the sequence by considering the subsequence

{(
SN2

N2

)
k

}
.

For ∀ε > 0, the following relation can be obtained via Chebyshev’s inequality and condition

(3.7)

P

{∣∣∣∣(SN2

N2

)
k

∣∣∣∣ > ε

}
≤ 1

ε2
Var

{(
SN2

N2

)
k

}
≤ c

ε2

N2δ

N4

where P {·} denotes the probability of a given statement. Thus,

+∞∑
N=1

P

{∣∣∣∣(SN2

N2

)
k

∣∣∣∣ > ε

}
≤ c

ε2

+∞∑
N=1

1

N4−2δ
< +∞
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for δ < 3
2
, which, via Borel-Cantelli’s lemma, further implies that

(
SN2

N2

)
k

→ 0, w.p.1, as N → +∞ (3.10)

Now, we come back to the original sequence. Obviously,

sup
N2≤i≤(N+1)2

∣∣(Si
i

)
k

∣∣ =
∣∣∣(SN̂

N̂

)
k

∣∣∣
≤ 1

N̂

∣∣(SN2)k
∣∣+ 1

N̂

∣∣(SN2+1

(N+1)2

)
k

∣∣
where N̂ is the solution to the first equality. In addition, the first term on the right of the

inequality approaches 0 w.p.1 in terms of (3.10). With the same technique as above, one can

easily prove that the second term also approaches 0 w.p.1. Thus,

sup
N2≤i≤(N+1)2

∣∣∣∣(Sii
)
k

∣∣∣∣→ 0, w.p.1, as N → +∞ (3.11)

which proves (3.9).

Note that only a sufficient condition is given and it is not required for n′(t) to be

stationary or white. It only assumes that the variance of the sum does not increase too

fast. In other words, the covariance between n′(t1) and n′(t2) is bounded and should go to

zero not too slowly as |t1 − t2| → +∞. This assumption is mild but abstract. If we further

assume that the stochastic signal n′(t) is stationary, the variance of SN
N

can be written in a

closed form.

Corollary 1. Let
{
n′ (t) ∈ Rm′ , t ∈ N,m′ ∈ N

}
be a stationary stochastic signal described

by n′ (t) = H (q−1) e (t), where e(t) ∈ Rm′ is a white noise with zero mean and variance I,

and H(q−1) is a stable LTI filter with distinct poles {ak, k = 1, 2, · · · ,mv}. Then,

SN
N
→ 0, w.p.1, as N → +∞ (3.12)
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and the variance Var
{
SN
N

}
satisfies

Tr
{

Var
{
SN
N

}}
= 1

N

(
γ0 − 2

mv∑
k=1

γk
1−a−1

k

)
+ 2

N2

mv∑
k=1

γk
1−a−1

k

1−aNk
1−ak

= O
(

1
N

)
(3.13)

where {γk, k = 0, 1, · · · ,mv} are some fixed constants related to a given H (q−1).

Proof. It is obvious that

n′ (t) = De (t) +
+∞∑
l=1

CAl−1Be (t− l)

where {A,B,C,D} is a state-space realization of H (q−1) and assume without loss of gen-

erality that A is in a diagonal form. To reduce the number of unnecessary denotations, we

use the same representation as in (3.1) for the system matrices of H (q−1) without caus-

ing confusion. Since H (q−1) is a stable filter, the variance of n′(t) should be finite, i.e.,

Tr {Var {n′ (t)}} = γ0 for some constant γ0. Denote Cov {·, ·} as the covariance function of

two stochastic vector signals. For any τ > 0, the covariance matrix is as follows:

Cov {n′ (t) ,n′ (t− τ)} = CAτ−1BDT +
+∞∑
l=0

CAτ+lBBTAlCT.

Assume that the eigenvalues of A satisfy the condition |a1| < |a2| < · · · < |amv |. This

assumption will not affect the form of the final result when conjugate complex poles are taken

into account. Since B,C, and D are fixed, the components of CAτ−1BDT will be the linear

combination of
{
aτ−1
k , k = 1, 2, · · · ,mv

}
. Similarly, the components of CAτ+lBBTAlCT will

be the linear combination of
{
aτ+l
k alh, k, h = 1, 2, · · · ,mv

}
, where aτ+l

k alh = aτk(akah)
l. Thus,
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there exist certain constants αk, βk,h such that

Tr {Cov {n′ (t) ,n′ (t− τ)}}

= Tr
{
CAτ−1BDT

}
+

+∞∑
l=0

Tr
{
CAτ+lBBTAlCT

}
=

mv∑
k=1

αka
τ−1
k +

+∞∑
l=0

mv∑
k=1

mv∑
h=1

βk,ha
τ
k(akah)

l

=
mv∑
k=1

(
αk
ak

+
mv∑
h=1

βk,h
1− akah

)
︸ ︷︷ ︸

γk

aτk

Note that |ak| < 1 for a stable filter and

Tr
{

Var
{
SN
N

}}
= Tr

{ N∑
i=1

N∑
j=1

Cov{n′(i),n′(j)}

N2

}
=

N∑
i=1

N∑
j=1

Tr{Cov{n′(i),n′(j)}}

N2

= 1
N2

(
Nγ0 + 2

N∑
i=1

i−1∑
j=1

mv∑
k=1

γka
i−j
k

)

= 1
N2

(
Nγ0 + 2

mv∑
k=1

γk
N∑
i=1

aik
i−1∑
j=1

a−jk

)
(3.14)

which can prove (3.13) after a few calculations. Since n′ (t) is stationary and of zero mean,

(3.13) also implies that (3.7) holds, which proves (3.12).

In order to cope with the noise part R̂vξΠ
⊥
R̂T
uξ

, it is necessary to investigate the proper-

ties of the cross covariance function between a stochastic signal and a bounded deterministic

signal.

Proposition 2. Let
{
ϕ′ (t) ∈ Rp′ , t ∈ N, p′ ∈ N

}
be a bounded deterministic signal such that

‖ϕ′ (t)‖2 ≤ c <∞ and ϕ′(t) is uncorrelated with the n′ (t) in Corollary 1. Denote Sϕ′,N (τ) =

N∑
i=1

nϕ′ (i, τ), where nϕ′ (i, τ) = vec
{

n′ (i)ϕ′(i− τ)T
}

. Then,

Sϕ′,N (τ)

N
→ 0, w.p.1, as N → +∞ (3.15)
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and the variance Var
{
Sϕ′,N (τ)

N

}
satisfies

Tr
{

Var
{
Sϕ′,N (τ)

N

}}
=

p′∑
l=1

1
N2

(
N∑
i=1

wi,i,τ
l γ0 + 2

N∑
i=1

i−1∑
j=1

wi,j,τ
l

mv∑
k=1

γka
i−j
k

)
= O

(
1
N

)
(3.16)

where wi,j,τ
l = ϕ′l (i− τ)ϕ′l (j − τ) is bounded weighting and {γk, k = 0, 1, · · · ,mv} are some

fixed constants as in Corollary 1.

Proof. The covariance function of nϕ′l (t, τ) is

Cov
{
nϕ′l (i, τ) ,nϕ′l (j, τ)

}
= E

{
n′ (i)ϕ′l (i− τ)ϕ′l (j − τ) n′(j)T

}
= wi,j,τ

l Cov {n′ (i) ,n′ (j)}

and we have

Tr
{

Var
{
Sϕ′,N (τ)

N

}}
=

p′∑
l=1

Tr

{ N∑
i=1

N∑
j=1

wi,j,τl Cov{n′(i),n′(j)}

N2

} (3.17)

Similarly as in (3.14), the proof of (3.16) is straightforward. Note that the weighting wi,j,τ
l

is bounded, and n′ (t) is stationary and of zero mean. Thus, (3.16) also implies that the

corresponding version of (3.7) holds, which proves (3.15).

Remark 4. Note that the newly constructed signal nϕ′ (t, τ) is not stationary since it may

have different values of covariance functions at different time instants. In fact, similar results

as in Proposition 2 can be obtained for a non-stationary n′(t) as long as it satisfies (3.7).

Compared with (3.14) for a fixed N , the variance in (3.16) is altered due to the

introduction of weighting. The value of the weighting wi,j,τ
l depends on the lth component of
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ϕ′(t). Obviously, for a fixed length N , the value of (3.16) arrives at its minimum if ϕ′(t) = 0.

However, we need to add some constraints on ϕ′(t) for specific purposes throughout the

procedure of tuning ϕ′(t) in practice.

3.4 Variance Reduced Open-Loop Identification

As explained in Section 3.2.2, the estimation of the extended observability matrix

Or plays an important role in the first step of the CoBRA. Thus, a good estimate of Or

expects to lead to a good parameter estimation of the system model. In order to quantify

the accuracy of the estimation, the covariance matrix of the parameter estimates is usually

considered [45]. Equivalently, the covariance matrix of the estimation errors could also be

used, where the trace function of the covariance matrix is used for a comparison of the

accuracy.

We can seek possible approaches to designing or tuning the IV ξ(t) based on a scalar

accuracy function to achieve an optimal parameter estimation. Note that we are seeking an

optimal estimate of Or in terms of a minimum variance in this chapter, rather than directly

considering the system matrices or transfer functions. To consider a more general case, we

post-multiply (3.6) by a positive definite matrix Wc, pre-multiply it by a positive definite

orthogonal matrix Wr, and perform SVD on the left hand side

WrR̂yξΠ
⊥
R̂T
uξ

Wc =

[
Q̂1 Q̂2

] Ŝ1 0

0 Ŝ2


 V̂ T

1

V̂ T
2

 (3.18)

where diag{Ŝ1, Ŝ2} contains the singular values distributed in a non-increasing order. Ŝ1

represents the set of n dominant singular values corresponding to the n principal left singular
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vectors. Note that Ŝ2 will go to zero if the noise effect is eliminated as the data length N

goes to infinity. The reason for making Wr an orthogonal matrix will be explained in Section

3.4.1.

It can be observed from (3.6) that the residue term will impact the quality of pa-

rameter estimation. From Proposition 2, the component R̂vξ of the residue in (3.6) will

vanish when the data length N goes to infinity as long as the noise signal v (t) satisfy the

corresponding conditions. As mentioned in Remark 4, the residue term will also vanish (or

approach a constant) if the noise signals satisfy the conditions listed in Proposition 1, where

the stochastic signal is not necessary to be stationary. Thus, one approach to eliminating

the noise effect with a mild assumption on the noise signals is to let the data length N go

to infinity.

However, limited data is more practical. In this case, we can assume that the noise

signals within a certain period are stationary and satisfy the conditions in Corollary 1.

Given the data with a fixed length N , we are seeking an estimate with a minimum noise

effect. A scalar accuracy function needs to be defined to quantify the quality of the estimate.

Obviously, this function should be a function of the residue term and arrive at its minimum

when the residue term vanishes.
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3.4.1 Optimal Variance Reduction in Weighted CoBRA

The following asymptotic relations can be derived from (3.6) and (3.18) by using

Proposition 2:

Wr

(
R̂yξΠ

⊥
R̂T
uξ

−OrR̂xξΠ
⊥
R̂T
uξ

)
Wc → 0, w.p.1

WrR̂yξΠ
⊥
R̂T
uξ

Wc − Q̂1Ŝ1V̂
T

1 → 0, w.p.1

as N goes to infinity. To distinguish the asymptotic equivalence from the exactly holding

equivalence, such relations are denoted with a symbol
A
=:

WrR̂yξΠ
⊥
R̂T
uξ

Wc
A
= WrOrR̂xξΠ

⊥
R̂T
uξ

Wc
A
= Q̂1Ŝ1V̂

T
1 (3.19)

In addition, there exists a nonsingular matrix Tr,c related to Wr and Wc such that

WrOrR̂xξΠ
⊥
R̂T
uξ

Wc =
(
WrOrT

−1
r,c

) (
Tr,c∆Wc

)
and

WrOrT
−1
r,c

A
= Q̂1, Tr,c∆Wc

A
= Ŝ1V̂

T
1 (3.20)

where ∆ = R̂xξΠ
⊥
R̂T
uξ

. For subspace methods, one is only interested in the extraction of the

range space of Or, spanned by its column vectors and denoted as range(Or). Note that

range (Or) = range
(
OrT

−1
r,c

)
and OrT

−1
r,c

A
= W−1

r Q̂1 from (3.20). Thus, Or is estimated by

Ôr = W−1
r Q̂1 with range(Ôr)

A
= range(Or).

The estimation error of Ôr can be defined as the part lying in the orthogonal com-

plement of the subspace range (Or):

ε = Π⊥OrÔr = Π⊥OrW
−1
r Q̂1 (3.21)

where Π⊥Or = I−Or

(
OT
r Or

)−1
OT
r . The matrix factorization for Π⊥Or suggested in [42, 46] to

handle the singularity will not affect the final results in this chapter because of the cyclic
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property of trace operator Tr (AB) = Tr (BA) and the property of the product Π⊥OrΠ
⊥
Or

=

Π⊥Or of the matrix projection.

Remark 5. Optimally extracting the range space is considered to be finding the corresponding

basis vectors in the directions that produce unbiased range space with the smallest variance.

Wr and Wc are actually applied to tune the angles of the basis vectors. To make (3.21)

reasonable, all possible estimated basis vectors should be with the same scaling. In this sense,

Wr should be orthogonal performing only rotation operations. Q̂1, which is related to Wr

and Wc, has already been scaled via SVD.

The noise term in (3.6) can be rewritten such that

R̂vξ =
1

N

N−1∑
t=0

n (t)ϕ(t− τ1)T

︸ ︷︷ ︸
Mϕ,N (τ1)

(3.22)

where

n (t) =


v (t)

v (t+ 1)

...

v (t+ r − 1)


(3.23)

ϕ (t) =


ξ (t)

ξ (t− 1)

...

ξ (t+ τ1 − τ2 + r − 1)


(3.24)

and r � N . In addition, we can also derive from (3.6) and (3.18) the following relations
Π⊥OrR̂yξΠ

⊥
R̂T
uξ

Wc = Π⊥OrMϕ,N (τ1)Π⊥
R̂T
uξ

Wc

Π⊥OrR̂yξΠ
⊥
R̂T
uξ

WcV̂1Ŝ
−1
1 = Π⊥OrW

−1
r Q̂1︸ ︷︷ ︸

ε

(3.25)
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where the orthonormality of V̂1, V̂2 is used. Also, (3.20) implies

V̂1Ŝ
−1
1 =

(
Ŝ1V̂

T
1

)† A
=
(
Tr,c∆Wc

)†
(3.26)

where (·)† represents the right pseudo-inverse. Thus, in an asymptotic sense,

ε = Π⊥OrMϕ,N (τ1) Π⊥
R̂T
uξ

Wc

(
Ŝ1V̂

T
1

)†
A
= Π⊥OrMϕ,N (τ1) Π⊥

R̂T
uξ

Wc

(
Tr,c∆Wc

)†
= Π⊥OrMϕ,N (τ1) H

=
1

N

N−1∑
t=0

n′ (t)ϕ′(t− τ1)T

︸ ︷︷ ︸
Mϕ′,N (τ1)

(3.27)

where n′ (t) = Π⊥Orn (t), ϕ′ (t) = HTϕ (t) represent the weighted signals and

H = Π⊥
R̂T
uξ

W2
c∆

T
(
∆W2

c∆
T
)−1

T−1
r,c . (3.28)

The direct effect of the left weighting matrix Wr on the estimation error ε in (3.27) is

asymptotically eliminated. In addition, it will be shown in Section 3.4.3 that the unknown

matrix Tr,c doesn’t affect the optimal accuracy. Thus, we may choose Wr = I , without

loss of generality, from an asymptotic perspective. Although only finite data is available, the

asymptotic properties are approximately preserved for a relatively large data length N .

The vectorized version of above is vec (ε)
A
=Sϕ′,N (τ1) with the form denoted in Propo-

sition 2. According to Proposition 2, all the components of the error term ε will converge

to zero w.p.1 as N goes to infinity with the trace of the variance of vec (ε) decreasing at the

rate O
(

1
N

)
. Thus, in order to minimize the variance of the estimation error regardless of the

data length N , we should multiply ε by
√
N , which leads to the following scalar accuracy
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function

V(ε) = Tr
{

Var
{√

Nvec (ε)
}}

= Tr
{
E
{
Nvec (ε) vec(ε)T

}}
A
= Tr

{
E
{
NSϕ′,N (τ1)Sϕ′,N(τ1)T

}}
︸ ︷︷ ︸

V̂(ε)

.

(3.29)

Note from (3.16) that ϕ′ (t) can tune the variance via a weighting wi,j,τ
l . Thus, an ideal

optimization problem of finding the optimal IV ξ(t) without introducing the freedom Wc

can be summarized as

min
ξ(t)

V̂(ε) = Tr
{

Var
{√

NSϕ′,N (τ1)
}}

s.t. n′ (t) = Π⊥Orn (t) , ϕ′ (t) = HTϕ (t) ,

ξ (t) ∈ Cξ,Wc = I,

(3.30)

where Cξ is a certain constraint satisfying the conditions in Section 3.2.2. However, the

analytic solution is intractable since H is typically a nonlinear function of ξ(t). Instead,

a tangible alternative of tuning ϕ′ (t) is to solve a new optimization problem based on the

positive definite freedom variable Wc

min
Wc

V̂(ε) = Tr
{

Var
{√

NSϕ′,N (τ1)
}}

s.t. n′ (t) = Π⊥Orn (t) , ϕ′ (t) = HTϕ (t) ,

ξ (t) ∈ Cξ,Wc � 0.

(3.31)

3.4.2 Results On the Scalar Accuracy Function V̂(ε)

In order to solve the optimization problem in (3.31), one should derive an explicit rep-

resentation for the scalar accuracy function V̂(ε). The result is summarized in the following

theorem.
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Theorem 1. The following relation holds for the scalar accuracy function V̂(ε)

V̂ (ε)

A
=

∑
|τ |≤N−1

Tr {MH (τ)}Tr
{

Π⊥OrRnn (−τ)
}

A
= lim

τ̄n→+∞
V̂τ̄n (ε)

(3.32)

where

MH (τ) = HTR̂t,s
ξξ (τ)TH (3.33)

V̂τ̄n (ε) =
∑
|τ |≤τ̄n

Tr {MH (τ)}Tr
{

Π⊥OrR̂nn (−τ)
}

(3.34)

with H defined in (3.28), and Rnn (−τ), R̂nn (−τ) are defined in (3.3) and (3.4) with n (t)

given by (3.23). Note that R̂t,s
ξξ (τ) is a block lc × lc matrix with the t, s-th element being

R̂ξξ (τ + s− t) ∈ Rp×p and lc = τ2 − τ1 − r + 2 is the number of the block columns of the

Hankel matrices in (3.5).

Proof. According to [46], we have

Var
{√

Nvec (ε)
}

A
=

∑
|τ |≤N−1

MH (τ)⊗
(
Π⊥OrRnn (−τ) Π⊥Or

)
A
= lim

τ̄n→+∞

∑
|τ |≤τ̄n

MH (τ)⊗
(

Π⊥OrR̂nn (−τ) Π⊥Or

)
Then, (3.32) can be proved straightforwardly.

Remark 6. In (3.32), V̂τ̄n (ε) could be used as an approximation of V̂ (ε) if two assumptions

are made. First, the summand should be negligible for |τ | > τ̄n. Thus, either Rnn (−τ) is

of finite support with |τ | ≤ τ̄n, or R̂ξξ (τ) tends to be around zero very quickly for |τ | > τ̄n.

The former case is reasonable since n(t) can be seen as the output of a stable filter. τ̄n is

selected such that sufficient noise information is included. Note that the selection of τ̄n is
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independent of τ̄ in (3.5). The latter case can be achieved by appropriately choosing the IV.

Second, Rnn (−τ) is estimated by R̂nn (−τ) under the assumption of ergodicity.

3.4.3 Least-Length Perturbation and Solution

From Theorem 1 and Remark 6, we could take the following approximation of V̂ (ε)

for a sufficiently large N

V̂ (ε)

≈ V̂τ̄n (ε)

A
= Tr

{(
OT
r Or

)− 1
2
(
∆W2

c∆
T
)−1

∆W2
c(

Π⊥
R̂T
uξ

ΣΠ⊥
R̂T
uξ

)
︸ ︷︷ ︸

MΣ

W2
c∆

T
(
∆W2

c∆
T
)−1(

OT
r Or

)− 1
2

}
(3.35)

where

Σ =
∑
|τ |≤τ̄n

R̂t,s
ξξ (τ)TTr

{
Π⊥OrR̂nn (−τ)

}
(3.36)

and the relation T−1
r,cT

−T
r,c

A
=
(
OT
r Or

)−1
[46], derived from (3.18) and (3.20), is used during the

second step in (3.35). Thus, the scalar accuracy function V̂ (ε) and V̂τ̄n (ε) are asymptotically

invariant to Tr,c introduced by the similarity transformation during estimating the extended

observability matrix Or.

In practice, the accuracy function V̂(ε) in (3.31) is replaced by V̂τ̄n (ε) since only finite

experimental data is available. Some existing results can be applied to solve the optimization

problem in (3.31) analytically as long as MΣ and Wc in (3.35) are positive definite. However,

MΣ is rank deficient and appears to be positive semi-definite in the ideal case. Moreover,

it may sometimes have several small negative eigenvalues due to the approximation and

numerical errors in practice. Note that only information within |τ | ≤ τ̄n is included in the
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approximation V̂τ̄n (ε) when finite data is available. Thus, MΣ may not be an ideal positive

semi-definite matrix as suggested by the construction of V̂(ε). We can split V̂τ̄n (ε) into two

parts: one is with a positive definite matrix M′
Σ in the middle and has an analytic minimum

solution; the other one with the residue MΣ −M′
Σ. On the other hand, it is appealing

to obtain an analytic solution by ignoring the residue at the cost of losing minor accuracy

instead of using nonlinear or non-smooth optimizations. Thus, the same idea of perturbing

the Hessian matrix in modified Newton methods is used here to perturb MΣ into a positive

definite matrix M′
Σ. This procedure can be summarized into the following optimization

problem

min
M′Σ

‖MΣ −M′
Σ‖F

s.t. cond (M′
Σ) ≤ β, M′

Σ � 0

(3.37)

where cond(·) denotes the spectral condition number and β is a specified positive constant.

The selection of β depends on the highest condition number that a digital device could

endure. Note that MΣ is symmetric and can be rewritten as MΣ = UΣΛΣU
T
Σ through eigen-

decomposition. We assume that ΛΣ = diag (λ1, λ2, · · · , λnΣ
) with the eigenvalues ordered

such that λ1 ≥ λ2 ≥ · · · ≥ λnΣ
. The lower bound of the expected smallest eigenvalue is then

given by σ = λ1/β with λ1 > 0.

Proposition 3. The solution for (3.37) is given by M′
Σ = UΣΛ′ΣU

T
Σ , where Λ′Σ = diag(λ′1, λ

′
2,

· · · , λ′nΣ
) and

λ′i =


λi, if λi ≥ σ

σ, otherwise

Proof. This proposition can be easily proved by referring to [47]. Let Y = UT
Σ M′

ΣUΣ. We
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have Y � 0 since M ′
Σ � 0. Then,

‖MΣ −M′
Σ‖

2
F = ‖ΛΣ −Y‖2

F

=
∑
i 6=j

y2
ij +

∑
i

(λi − yii)2

≥
∑

λi<λ1

(λi − yii)2

Note that the diagonal entries of a positive definite matrix must be positive, i.e., yii > 0.

Attaining the lower bound above implies yij = 0 for i 6= j and y11 = λ1 > 0. In this

case, {yii} are the eigenvalues of M′
Σ. Also, the lower bound of the smallest eigenvalue of

M′
Σ is given by σ = λ1/β since cond (M′

Σ) ≤ β. This implies min {yii} ≥ σ. Further, we

have
∑

λi<λ1

(λi − yii)2 ≥
∑
λi<σ

(λi − σ)2, whose lower bound can be uniquely achieved with

Y = Λ′Σ = diag
(
λ′1, λ

′
2, · · · , λ′nΣ

)
.

Note that M′
Σ is a positive definite matrix satisfying the given constraint and with

the least-length perturbation in terms of the Frobenius norm. Replace MΣ in (3.35) by M′
Σ

calculated in (3.37) and denote the perturbed expression as V̂′τ̄n (ε). A practical version of

the optimization problem in (3.31) can be written as

min
Wc

V̂′τ̄n (ε)

s.t. n′ (t) = Π⊥Orn (t) , ϕ′ (t) = HTϕ (t) ,

ξ (t) ∈ Cξ,Wc � 0.

(3.38)

Theorem 2. The analytic solution for (3.38) is given by

W∗
c = (M′

Σ)
− 1

2 (3.39)

Proof. The optimal solution W∗
c for (3.38) can be obtained according to Appendix II.2 in

[2].
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Remark 7. The derivation and the final optimal weighting matrix for CoBRA are different

from the work in [42]. Weightings are applied based on the covariance data instead of the raw

data. Weighted CoBRA produces the optimal low-order deterministic model instead of the

possibly high-order innovation model. In addition, the matrix perturbation in Section 3.4.3

is needed to get an approximate but analytic optimal weighting for (3.31).

3.5 Two Stage Implementation of CoBRA for Closed-

Loop Identification

3.5.1 Approximation of System and Noise Information

The variance reduced open-loop identification via CoBRA has been investigated in

Section 3.4. In order to compute the matrix MΣ in (3.35), one needs the system information

Or and sample covariance values R̂nn (−τ) of the noise. This can be done by computing an

initial system model Gint(q−1) through CoBRA without introducing the freedom {Wr,Wc}

as in (3.18). One can get an approximation of Or directly from a state-space representation

of Gint(q−1). The noise signal v(t) in one experiment can be estimated by

v (t) = y (t)− ȳ (t) ≈ y (t)−Gint
(
q−1
)

u (t). (3.40)

All of the above discussions boil down to an iterative implementation of weighted

CoBRA for open-loop MIMO system identification:

(i) Given {u (t) ,y (t)}, we compute an initial system model Gint(q−1) by applying the

unweighted (i.e. Wr = I,Wc = I ) CoBRA described in Section 3.2.2;
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(ii) Approximate v(t) using (3.40), construct n(t) in (3.23), and compute R̂nn (−τ) using

(3.4). In addition, Or is estimated from a state-space model of Gint(q−1);

(iii) Compute the weighting matrices in (3.18) such that Wr = I and Wc = W∗
c as in

(3.39);

(iv) Given the same {u (t) ,y (t)}, apply the weighted CoBRA to obtain the estimated

{Â, B̂, Ĉ, D̂} in (3.1).

The last three procedures can also be iterated to seek a possibly better performance. Ex-

cept for the weighting matrices, the other parameter settings (i.e., the model order, Hankel

matrices, etc) for weighted and unweighted CoBRA should be the same.

3.5.2 Summary of Two Stage CoBRA

The two stage technique described in Section 3.2.1 is implemented to cope with closed-

loop identification of MIMO systems. Relevant signals are denoted as follows:

r (t) =

 r1 (t)

r2 (t)

 ,yJ(t) =

 u (t)

y (t)

 , ȳJ(t) =

 ū (t)

ȳ (t)


where r(t) is the reference signal and ȳJ (t) is the noise-free version of the joint input-output

signal yJ (t) contaminated by noise in a closed-loop setting. The iterative implementation of

the weighted CoBRA in Section 3.5.1 is applied at the first stage to identify a deterministic

model GJ(q−1) from r(t) to yJ(t). Then, ȳJ(t) is estimated through a simulation output

ȳJ (t) = GJ (q−1) r (t). At the second stage, the unweighted CoBRA is performed to identify

a deterministic model from ū(t) to ȳ(t), leading to estimates of the parameters {Â, B̂, Ĉ, D̂}

for the plant G(q−1) in (3.1).
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3.6 Simulation Results

Suppose that the plant to be identified and the controller are given by
G (q−1) = 0.03228q−1+0.03164q−2

1−1.781q−1+0.926q−2

C (q−1) = 1−0.8q−1

1−0.6q−1

The noise signal v(t) is assumed to be generated by a stable filter H(q−1) such that v (t) =

H (q−1) e (t) and

H
(
q−1
)

=
1− 1.55q−1 + 1.045q−2 − 0.3388q−3

1− 2.4q−1 + 2.2725q−2 − 0.8303q−3
· σe

where σe = 0.2. The reference signal r2(t) = 0 and r1(t) is a realization of Gaussian white

noise with zero mean and variance σ2
r = 32. Note that the signals {u (t) ,y (t)} are heavily

contaminated by the noise in the closed-loop setting. The true open-loop poles of G(q−1)

and the closed-loop poles of the system GJ(q−1) from r1(t) to yJ(t) are respectively

pol1,2 = {0.8905± 0.3647i}

pcl1,2 = {0.8531± 0.4200i} , pcl3 = 0.6424

A two stage CoBRA described in Section 3.4 is implemented. In (3.5), we choose r = 10,

τ1 = −20, τ2 = 50, and τ̄ = 50 for both stages. At the first stage, the closed-loop model order

is known as ncl = 3, the instrument is ξ(t) = r1(t) and we select τ̄n = 100 in (3.36). The

optimal weighting W ∗
c is computed as (3.39) with β = 106 in (3.37). At the second stage, the

open-loop model order is known as nol = 2 and the instrument is ξ(t) = ū(t). Different data

lengths N are used to illustrate the efficiency of the proposed two stage CoBRA method.

For a given data length N , 100 Monte Carlo simulations are performed each time. The Root
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Mean Square Error (RMSE) of the estimated poles is defined as

RMSE =

√√√√ 1

mp

mp∑
i=1

|p̂i − pi|2

where mp indicates the number of the estimated poles p̂i and true poles pi.

For the purpose of comparison, we perform six other closed-loop identifications simul-

taneously. Five of them are two stage methods but with unweighted CoBRA, ORT, CCA

[11], PO-MOESP [44], and N4SID/PEM method at the first stage, respectively. Note that

PEM is using an initial model estimated by N4SID. The last one is VARX-based PBSIDopt

method [48], which is a direct closed-loop subspace method. ORT expects to obtain a good

deterministic model since it decomposes the signal into deterministic and stochastic parts.

It should also be noted that CCA, PO-MOESP, and PBSIDopt implicitly assume that the

system to be identified is with an innovation model, which requires a higher order estimation

due to the incorporation of noise dynamics. The drawback is obvious: one needs to estimate

a higher order model at the first stage than actually needed for producing a deterministic

simulation output.

For a fair comparison at the first stage, CCA and PO-MOESP method are first used

to identify a 6th order closed-loop model, followed by a model order reduction to the true

order of the deterministic part. As for PBSIDopt, we directly identify a 5th order open-loop

model followed by a model order reduction. Note that the past window size p for PBSIDopt

has to be large (e.g., p = 25) to get asymptotic consistent estimates.

For the first stage, the RMSEs of estimated closed-loop real and complex poles are

illustrated in Fig. 3.2 and Fig. 3.3. It can be also observed that the total RMSEs can be

illustrated just by Fig. 3.2 since the errors in estimated complex poles are relatively small.
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Obviously, the proposed iterative implementation of weighted CoBRA produces much smaller

errors for both real and complex poles even when the data length N is relatively short.

However, to achieve a same level of estimation performance for an unweighted counterpart,

one needs to select a much larger length N . ORT method also shows a good estimate in

terms of total RMSEs but it is not good at estimating complex poles. CCA method is

struggling to capture the real poles. In view of a joint performance, the unweighted CoBRA

is intermediate. PEM is not always the best in practice since the estimated parameters may

run into local minima via nonlinear optimization.
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Figure 3.2: RMSE of real poles at the first stage.

For the second stage, the RMSEs of estimated open-loop poles, which are the poles

of the plant to be identified, are illustrated in Fig. 3.4. The inaccuracy of the estimates

from the first stage propagates to the second stage. Undoubtedly, the proposed two stage

CoBRA produces a rather more accurate estimate for a relatively short data. Although the

total RMSEs at the first stage are dominated by the real poles, it is interesting to observe

that the accuracy of both real and complex poles at the first stage will affect that of the

59



1000 2000 3000 4000 5000 6000 7000

N

10
-3

10
-2

R
M

S
E

Weighted CoBRA

Unweighted CoBRA

ORT

CCA

PO-MOESP

N4SID/PEM

Figure 3.3: RMSE of complex poles at the first stage.

second stage. Unweighted CoBRA is still intermediate at the second stage. The direct

method PBSIDopt does not show a remarkable performance in estimating the low order

deterministic model. Although an exact conclusion can not be given, it is undoubted that

smaller errors in both real and complex poles estimation at the first stage will lead to, with

a bigger chance, a better estimate at the second stage.
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Figure 3.4: RMSE of (complex) poles at the second stage.
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3.7 Conclusion

In this chapter, a variance reduced two stage CoBRA has been proposed to cope with

the closed-loop identification of MIMO systems. At the first stage, a weighted CoBRA is

applied to obtain an optimal closed-loop joint input-output model in terms of a minimum

variance. This model produces instruments for the identification at the second stage, where

a better estimate can be expected. An in-depth statistical analysis of a stochastic vector

signal with bounded covariance has been given in order to show how the noise term in the

CoBRA behaves as the data length goes to infinity and how the instrumental variable affects

the covariance. In order to obtain an analytic solution for the optimal tuning, a least-length

perturbation is performed at the cost of losing only minor accuracy. Simulation examples

demonstrate the efficiency of the proposed method.

This chapter is based on the following papers that were published:

Y. Hu and R.A. de Callafon, “Optimal weighting for covariance based realization algorithm,”

in Proceedings of IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne,

VIC, Australia, Dec. 12–15, 2017, pp. 5274–5279.

Y. Hu, Y. Jiang and R.A. de Callafon, “ Variance reduction in Covariance Based Realization

Algorithm with application to closed-loop data,” Automatica, vol. 113, pp.108683, 2020.
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Part II

MIMO Volterra System Identification
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Chapter 4

Tensor Network-based Parameter

Estimation of Volterra Systems

This chapter investigates the multi-input multi-output (MIMO) Volterra system iden-

tification by using a Tensor Network (TN) technique. Volterra model serves as one of the

powerful alternatives to approximate nonlinear dynamics on the basis of input/output ob-

servations. The kernel representation of a Volterra model is attractive since it is linear in

the kernel coefficients and always stable. Although the kernel representation suffers from

the curse of dimensionality, the demand for storage requirements can be relieved by using a

TN representation. This allows one to approximate complicated coupled nonlinear dynamics

with high degree and even MIMO Volterra models.
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4.1 Introduction

The (truncated/finite support) Volterra model is very attractive among different non-

linear models since it is linear in the kernel coefficients and always stable. A simple least

squares solution can be obtained. The Volterra model is formulated based on the Volterra

series functional expansion and has been widely studied since the seminal work of Wiener

[49, 50, 51]. The Volterra model has been demonstrated to be effective in many applications

such as equalization [52], acoustic echo cancellation [53], loudspeaker modeling [54] and lin-

earization [55], speech modeling [56], distortion compensation in narrowband communication

system [57], distortion analysis [58], identification of nonlinear systems for control [59, 60],

active noise control [61], identification of an imaging system [62], and modeling of biological

and physiological systems [63]. These applications usually assume that the linear dynamics

still dominate although the nonlinear effects are nonnegligible. Thus, they did not exploit

the Volterra models of high degree or even the MIMO case to capture complicated coupled

nonlinear behaviors between signals. It has been pointed out in [64] that this is restricted

by the exponentially growing number of Volterra kernel coefficients as the degree increases,

i.e., the curse of dimensionality. This restriction is caused by the use of Kronecker product

based structure, which implies redundancy in the kernel coefficients but will simplify nota-

tion and matrix computations. The intense storage requirement may also explain why only

few contributions on the MIMO Volterra system identification can be found in the recent

years [64, 65, 66, 67].

TN can relieve the curse of dimensionality by referring to techniques for multidi-

mensional arrays, i.e., tensors. For example, the storage cost of a square nd × nd matrix

64



is typically n2d, which can be prohibitively large as d increases. A linear TN called Tensor

Train (TT) or Matrix Product State (MPS) could reduce the storage cost to approximately

dn2r2, where r is the maximal TN-rank and usually low in practice [68, 65]. A TN rep-

resentation for the MIMO Volterra system was proposed in [64]. The Alternating Linear

Scheme (ALS) and the Modified ALS (MALS) algorithms were derived therein to compute

the TN-cores with low TN-ranks. The MALS algorithm can search the appropriate TN-ranks

automatically whereas the ALS algorithm is required to fix the TN-ranks. Both algorithms

are implemented to update the TN-cores in an iterative fashion. However, a particular initial

guess for the TN-cores to be estimated should be provided and there is no guarantee for both

algorithms to converge to an appropriate solution in the end via the alternating iterations.

In this chapter, a noniterative TN-based algorithm for MIMO Volterra system identifica-

tion is proposed to overcome these drawbacks. Two tuning factors are adjustable to obtain

low-rank TN-cores for the Volterra kernel coefficients. The resulting Volterra model shows

better prediction accuracy than those from the ALS and MALS algorithms as illustrated in

the simulation examples.

The remaining part of this chapter is organized as follows. Section 4.2 gives the tensor

description of a MIMO Volterra system. The problem formulation is presented in Section 4.3.

The noniterative TN-based algorithms are developed in Section 4.4. In Section 4.5, simula-

tion examples are given to demonstrate the efficiency of the proposed algorithms. Section 4.6

summarizes this chapter.
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4.2 The Tensor Description of Volterra System

The normal description of Volterra system can be found in [69] and the persistent

excitation condition was derived therein and also presented in Chapter 5. Besides the nor-

mal description, we can also use a tensor description of a Volterra system to reduce memory

storage and improve numerical computations. Tensors are referring to the multi-dimensional

arrays in this chapter. A d-way tensor is denoted as T ∈ Rn1×n2×···×nd where a boldface calli-

graphic letter is used to differentiate it from vectors and matrices. The integers n1, n2, · · · , nd

are the dimensions and the entries of the tensor are referred to by T (i1i2···id) via d integer

indices (i1i2 · · · id). Note that a vector is a 1-way tensor and a matrix is a 2-way tensor.

Definition 2. (The k-Mode Product [68]) For a tensor T ∈ Rn1×···×nk×···×nd and a matrix

U ∈ Rpk×nk , the k-mode product X = T ×k U is defined as

X (i1···ik−1jik+1···id) =

nk∑
ik=1

U(jik)T (i1···ik−1ikik+1···id)

and X ∈ Rn1×···×nk−1×pk×nk+1×···×nd.

Definition 3. (Tensor Train (TT) Decomposition [68]) The d-way tensor T can be repre-

sented by a linear Tensor Network (TN) such that

T (i1i2···id) =
∑

α0,··· ,αd

T (α0i1α1)

1 T (α1i2α2)

2 · · ·T
(αd−1idαd)

d

where T1, · · · ,Td are called TT-cores. Each Tk is a 3-way tensor of dimensions rk−1×nk×rk,

where rk−1, rk are called the TT-ranks and r0 = rd = 1 here.

The redundancy in kernel coefficients does not affect the characteristics of the specified

Volterra system whereas it allows one to represent it as a compact form. To represent the
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MIMO Volterra system via the tensor description, an alternative form is [64]

y (t) = Vūt + w(t) (4.1)

where V ∈ Rm×(pM+1)d contains the kernel coefficients and

ūt = (ut ⊗ · · · ⊗ ut)︸ ︷︷ ︸
d terms

∈ R(pM+1)d

ut =
[
1,uT

M (t)
]T ∈ RpM+1

uM (t) =
[
uT (t) , · · · ,uT (t−M + 1)

]T ∈ RpM

u (t) =
[
u(1) (t) , · · · , u(p) (t)

]T ∈ Rp

The matrix V can be written into the (d + 1)-way Volterra tensor V of dimensions (pM +

1)× · · · × (pM + 1)×m satisfying

yT (t) = V×1 uT
t ×2 uT

t · · · ×d uT
t + wT(t)

= (V1×2 uT
t )(V2×2 uT

t ) · · · (Vd×2 uT
t ) + wT(t)

(4.2)

where V1, · · · ,Vd are the TN-cores of the Volterra tensor V . Note that the last core Vd is of

dimensions rd−1× (pM+1)×m and the other cores Vi are of dimensions ri−1× (pM+1)×ri

with r0 = 1. Thus, the TN representation V1, · · · ,Vd here is actually a generalization of

the TT-decomposition with the last TT-rank rd = m. The (d + 1)-way Volterra tensor,

originally containing m(pM + 1)d elements, can be stored with O((d − 1)r2(pM + 1) +

mr(pM + 1)) elements via the TN representation, where r is the maximal TN-rank. The

storage requirement can be greatly reduced if the TN-ranks are small. For a MIMO Volterra

system of high degree, the TN representation in (4.2) is preferred considering a limited

memory.

67



4.3 Problem Formulation

The MIMO Volterra system identification in this chapter is to estimate the TN rep-

resentation V1, · · · ,Vd of the Volterra tensor V in (4.2), given the input and output data

{u(t),y(t)} for t = 1, · · · , N . In other words, the parameter estimation described in (4.1)

will be performed in the TN representation. Before we discuss the solution in the TN rep-

resentation, the original optimization problems in different scenarios are presented. Define

YT = (y (1) ,y (2) , · · · ,y (N)) ∈ Rm×N ,

UT = (ū1, ū2, · · · , ūN) ∈ R(pM+1)d×N

and then we have to solve the following linear equations

YT = VUT (4.3)

from (4.1) if the noise signal w(t) is neglected. However, there will be modeling errors and

measurement noise in practice and thus least squares estimators are used.

First, solving (4.1) can be described by the linear regression (ordinary least squares

optimization) problem:

min
V
‖YT −VUT‖2

F (4.4)

Since the optimization problem (4.4) is inherently underdetermined due to the redun-

dant kernel formulation, one may resort to the ridge regression (l2-norm regularization) as

below:

min
V

1

N
‖YT −VUT‖2

F + λ‖V‖2
F (4.5)

whose closed-form solution is usually computed as

V = YTU
(
UTU +NλI(pM+1)d

)−1

(4.6)
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or

V = YT
(
UUT +NλIN

)−1
U (4.7)

with certain λ > 0. Choosing the first expression (4.6) or the second expression (4.7) depends

on how (pM +1)d and N compare. The one corresponding to the smaller between (pM +1)d

and N is usually selected to reduce the storage requirement.

Finally, one may also want to emphasize the possible sparse structure of the Volterra

system. This corresponds to the LASSO regression (l1-norm regularization) as below

min
V

1

2N
‖YT −VUT‖2

F + β‖vec (V)‖1 (4.8)

where β > 0 and vec(·) is the vectorization operator. Without much effort, (4.8) can be

written into a normal LASSO regression over a vector variable as

min
v

1

2N
‖vec(YT)− (U⊗ Im) v‖2

2 + β‖v‖1 (4.9)

where v = vec(V). In general, there is no closed-form solution for (4.8) except for the

univariate case [70].

In this chapter, (4.4) and (4.5) will be solved in the TN representation in a noniterative

way and their numerical results will be used for comparison during the sparse Volterra system

identification.

4.4 Noniterative Tensor Network based Algorithm

4.4.1 TN-based Ordinary Least Squares

The Alternating Linear Scheme (ALS) and Modified ALS (MALS) were used to solve

(4.4) to determine the TN-cores in (4.2) in an iterative fashion in [64]. Both ALS and MALS
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estimate the TN-cores directly without referring back to the original V. This avoids the

complexity of computing the matrix inversion of UT and the infinite amount of solutions

caused by the redundancy in kernel coefficients. On the other hand, the ALS method requires

that the TN-ranks are fixed, which is less flexible. In addition, both methods require a

particular initialization and do not guarantee the convergence to an appropriate solution.

In this subsection, a noniterative approach involving four steps, described in Algo-

rithm 1–4 respectively, is proposed to calculate the solution for (4.4) with minimum Frobenius

norm in terms of the TN representation.

Lemma 1. If the Singular Value Decomposition (SVD) of UT is

UT = LSZT =
[
L1 L2

][S1

0

][
ZT

1

ZT
2

]
(4.10)

where the diagonal entries of S1 consist of the nonzero singular values. Then, the solution

of (4.4) with minimum Frobenius norm is

V = YTZ1S
−1
1 LT

1 (4.11)

Proof. Follows from SVD properties.

In order to obtain the TN representation of the matrix V, the SVD in Lemma 1

should be carried out in the TN form. We first calculate the TN representation of UT. Note

that

UT = ŨT � · · · � ŨT︸ ︷︷ ︸
d terms

where � denotes the column-wise Kronecker product, i.e., Khatri-Rao product, and ŨT =

[u1,u2, · · · ,uN ]. The TN representation of UT can then be efficiently constructed by (d−1)

70



SVDs and Khatri-Rao products [65]. The upper bounds of the corresponding TN-ranks are

given in Lemma 2. In practice, these upper bounds are attained if the input signals are

persistently exciting. Different from [65], a δ-truncated SVD is introduced in this chapter

during computing the TN representation of UT to actively remove less significant modes

and reduce the computational cost. For each SVD cycle, the sum of squares of all truncated

singular values is not greater than δ2. The pseudocode following a MATLAB fashion is sum-

marized in Algorithm 1. Note that the idea of using SVD for low-rank system identification

is also used in subspace methods [71, 46, 72].

Algorithm 1: Compute the TN representation of UT

Input: ŨT ∈ R(pM+1)×N , degree d, expected accuracy εu in percentage
Output: TN-cores U1, · · · ,Ud of UT

1 Initialization: r0 ← 1, rd ← N

2 U1 ← reshape(ŨT, [r0, pM + 1, rd])
3 for j = 1, · · · , d− 1 do

T← reshape(Uj, [rj−1(pM + 1), rd])

T← T� ŨT

T← reshape(T, [rj−1(pM + 1), (pM + 1)rd])
[L,S,Z]← SVD(T,‘econ’)
δ ← εu‖S‖F
rj ← numerical TN-rank determined by δ-truncated SVD
L1 ← L(:, 1 : rj)
S1 ← S(1 : rj, 1 : rj)
Z1 ← Z(:, 1 : rj)
Uj ← reshape(L1, [rj−1, pM + 1, rj])
Uj+1 ← reshape(S1Z

T
1 , [rj, pM + 1, rd])

Lemma 2. The TN-ranks of UT have upper bounds

rj ≤

 j + pM

pM

 , j = 1, · · · , d− 1

Proof. Similar to the proof of Theorem 4.1 in [65].
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Since the first (d− 1) tensors U1, · · · ,Ud−1 are orthogonal via the SVD in Algorithm

1, only the last tensor Ud needs to be modified to get the TN-based SVD of UT. This

modification is summarized in Algorithm 2. Note that r̃ = min(rd−1(pM + 1), N).

Algorithm 2: Compute the TN-based SVD of UT

Input: TN-cores U1, · · · ,Ud of UT

Output: TN-cores L1, · · · ,Ld of orthogonal matrix L, diagonal matrix S, and
orthogonal matrix Z in (4.10)

1 for j = 1, · · · , d− 1 do
Lj ← Uj

2 T← reshape(Ud, [rd−1(pM + 1), rd])
3 [L,S,Z]← SVD(T,‘econ’)
4 r̃ ← size(L, 2)
5 Ld ← reshape(L, [rd−1, pM + 1, r̃])

Figure 4.1: Illustration of the noniterative TN-based algorithm for estimating Volterra kernel
coefficients.

Then, the TN representation of (4.11) can be written out straightforwardly as in

Algorithm 3. It is worth noting that the TN-ranks of the obtained V1, · · · ,Vd are not

changed and can be still very large. In practice, the TN representation of the Volterra tensor
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can be expected to be of low TN-ranks. Thus, a TT-rounding proposed in [68] is followed

to do the TN-recompression and summarized in Algorithm 4. It reduces the ranks with

a guaranteed accuracy. A δ-truncated SVD is also performed during recompression. The

whole noniterative TN-based algorithm described as above for estimating the Volterra kernel

coefficients is illustrated in Fig. 4.1.

Algorithm 3: Compute the TN representation of the kernel coefficients
in (4.11)

Input: TN-cores L1, · · · ,Ld, matrix S and Z obtained in Algorithm 2
Output: TN-cores V1, · · · ,Vd of the solution (4.11)

1 for j = 1, · · · , d− 1 do
Vj ← Lj

2 r ← numerical rank of UT determined from matrix S
3 S1 ← S(1 : r, 1 : r)
4 Z1 ← Z(:, 1 : r)
5 Vd ← Ld ×3 (YTZ1[S−1

1 ,0])

Algorithm 4: Perform TN-recompression [68]

Input: TN-cores V1, · · · ,Vd obtained in Algorithm 3, expected accuracy ε in
percentage

Output: TN-cores V̂1, · · · , V̂d with reduced TN-ranks
1 Initialization: δ ← ε√

d−1
‖V‖F

2 Right to left orthogonalization via LQ decomposition
for j = d, d− 1, · · · , 2 do

[d1, d2, d3]← size(V̂j)

[L,Q]← lq(reshape(V̂j, [d1, d2d3]))

V̂j ← reshape(Q, [size(Q, 1), d2, d3])

V̂j−1 ← Vj−1 ×3 L

3 Left to right compression via δ-truncated SVD
for j = 1, 2, · · · , d− 1 do

[d1, d2, d3]← size(V̂j)

[L,S,Z]← SVD(reshape(V̂j, [d1d2, d3],‘econ’))
r̂j ← numerical TN-rank determined by δ-truncated SVD

V̂j ← reshape(L(:, 1 : r̂j), [d1, d2, r̂j])

V̂j+1 ← V̂j+1 ×1 (S(1 : r̂j, 1 : r̂j)Z(:, 1 : r̂j)
T)
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Remark 8. The Volterra system identification can be seen as the corner case of identifying

the polynomial state-space model in [65] when the linear state sequence is ignored. However,

the algorithm in [65] can not directly handle the corner case. The first novelty of the proposed

algorithm in this subsection is using δ-truncated SVD to actively remove less significant modes

rather than the rank-gap as in [65]. The second novelty is introducing the TN-recompression.

Remark 9. Factors εu ∈ [0, 1) in Algorithm 1 and ε ∈ [0, 1) in Algorithm 4 are adjustable

to reduce both computational cost and TN-ranks. Note that εu emphasizes the low-rank

expression by actively neglecting the less significant modes in the input matrix UT when the

degree d is high, whereas ε focuses on the low-rank features or sparsity of the obtained kernels

during recompression.

4.4.2 TN-based Ridge Regression

Before solving the ridge regression in the TN representation, two types of block matrix

operations are introduced as below.

Definition 4. (The Strong Kronecker Product [73]) The strong Kronecker product between

a block ri × rj matrix X = [Xij] with Xij ∈ Rnx×mx and a block rj × rk matrix Y = [Yjk]

with Yjk ∈ Rny×my is defined as

X |⊗|Y = [Kik] := K

where K is a block ri × rk matrix with

Kik =

nj∑
j=1

Xij ⊗Yjk ∈ Rnxny×mxmy
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Definition 5. (The C-Product [73]) The core contracted product (C-product) between a block

r1 × r2 matrix X = [Xi1i2 ] with Xi1i2 ∈ Rn×p and a block r3 × r4 matrix Y = [Yi3i4 ] with

Yi3i4 ∈ Rp×m is defined as

X |•|Y = [Zj1j2 ] := Z

where Z is a block r1r3 × r2r4 matrix with Zj1j2 = Xi1i2Yi3i4 ∈ Rn×m, j1 = i1 + (i3 − 1)r1,

and j2 = i2 + (i4 − 1)r2.

As shown in (4.6) and (4.7), there are two close-form expressions for the ridge regres-

sion. If (pM + 1)d � N due to the curse of dimensionality, the second expression should

be selected and implemented in the TN representation to alleviate the storage requirement.

Otherwise, one can just select the first expression and compute it in the original matrix form.

For the rest of this subsection, a noniterative approach to computing the second closed-form

expression in (4.7) is derived.

The large-scale matrix UT can be approximated by the TT decomposition U1, · · · ,Ud,

which can be obtained in Algorithm 1. As pointed out in [73], the TT decomposition can

be compactly represented as strong Kronecker products of block matrices, which leads to

UT = Ublk
1 |⊗| · · · |⊗|Ublk

d (4.12)

where the block rj−1× rj matrix Ublk
j =

[
Ublk
j,i1i2

]
, j ∈ {1, · · · , d− 1}, i1 ∈ {1, · · · , rj−1}, i2 ∈

{1, · · · , rj} with Ublk
j,i1i2

= reshape(Uj(i1, :, i2), [pM + 1, 1]). Since rd = N , one can write Ublk
d

into a block rd−1 × 1 matrix instead such that Ublk
d =

[
Ublk
d,i11

]
with Ublk

d,i11 = reshape(Ud(i1, :

, :), [pM + 1, N ]) for i1 ∈ {1, · · · , rd−1}. The reason for using the strong Kronecker products

is to simplify the computations between tensors. Similarly, the large-scale matrix U can

be represented as strong Kronecker products of block matrices by transposing the block
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components of Ublk
j in (4.12), which leads to

U = Ublk,T
1 |⊗| · · · |⊗|Ublk,T

d (4.13)

where Ublk,T
j =

[
(Ublk

j,i1i2
)T
]
, j ∈ {1, · · · , d}.

Proposition 4. Given UT and U represented as strong Kronecker products in (4.12) and

(4.13), the matrix UUT +NλIN , whose inverse is required in (4.7), can be written in strong

Kronecker products of block matrices as below

UUT +NλIN = Cblk
1 |⊗| · · · |⊗|Cblk

d (4.14)

where the block rλj−1 × rλj matrix Cblk
j =

[
Cblk
j,k1k2

]
, j ∈ {1, · · · , d}, k1 ∈ {1, · · · , rλj−1}, k2 ∈

{1, · · · , rλj } for certain {rλ0 , rλ1 , · · · , rλd}.

Proof. The basic matrix operations can be efficiently computed by matrix TT decomposition

for large-scale matrices [73]. Thus, the matrix UUT ∈ RN×N can be computed based on the

C-product from (4.12) and (4.13) as below

UUT = Wblk
1 |⊗| · · · |⊗|Wblk

d (4.15)

where Wblk
j = Ublk,T

j |•|Ublk
j is a block r2

j−1 × r2
j matrix for j ∈ {1, · · · , d − 1} and a block

r2
d−1 × 1 matrix for j = d.

On the other hand, the diagonal matrix NλIN can be represented as

NλIN = Iblk
1 |⊗| · · · |⊗|Iblk

d (4.16)

where the block 1× 1 matrices Iblk
j = [1] for j ∈ {1, · · · , d− 1} and Iblk

d = [NλIN ].
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Finally, the addition of two matrices can be efficiently computed in terms of matrix

TT decomposition such that

UUT +NλIN =

[
Wblk

1 Iblk
1

]
|⊗|

Wblk
2 0

0 Iblk
2

 |⊗| · · ·

|⊗|

Wblk
d−1 0

0 Iblk
d−1

 |⊗|
Wblk

d

Iblk
d


(4.17)

where one can denote

Cblk
1 =

[
Wblk

1 Iblk
1

]
, Cblk

d =

Wblk
d

Iblk
d


and

Cblk
j =

Wblk
j 0

0 Iblk
j


for j ∈ {2, · · · , d− 1}. Note that rλ0 = rλd = 1 and rλj = r2

j + 1 for j ∈ {1, · · · , d− 1}.

The TN-cores C1, · · · ,Cd of the matrix UUT + NλIN can be derived directly from

(4.14). Its inverse matrix can be calculated by referring to the TN-based SVD described in

Algorithm 2. Since the final representation of UUT +NλIN is an N ×N matrix, which does

not suffer the curse of dimensionality, one can actually contract all the TN-cores to recover

the original matrix and then compute the matrix YT(UUT + NλIN)−1 without referring

to its dual TN representation. To get the TN-cores V1, · · · ,Vd of the final ridge solution

as described in (4.6), one needs to connect the matrix YT(UUT + NλIN)−1 to the TN

representation of U, which can be done in a similar way as for (4.11). The TN-ranks will

increase during matrix operations, so the TN-recompression is also required in the next step
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to obtain V̂1, · · · , V̂d with reduced TN-ranks. Computing the TN-based ridge solution is

summarized in Algorithm 5.

Algorithm 5: TN-based ridge regression

Input: TN-cores U1, · · · ,Ud of UT via Algorithm 1, l2-norm regularization
coefficient λ, expected accuracy ε in percentage during TN-recompression

Output: TN-cores V̂1, · · · , V̂d of the ridge solution in (4.7) with reduced TN-ranks
1 Ublk

1 , · · · ,Ublk
d ← determined by (4.12)

2 Ublk,T
1 , · · · ,Ublk,T

d ← determined by (4.13)
3 for j = 1, 2, · · · , d do

Wblk
j ← Ublk,T

j |•|Ublk
j

Iblk
j ← [1]

Vj ← Uj

4 Iblk
d ← [NλIN ]

5 Cblk
1 , · · · ,Cblk

d ← determined by (4.17)
6 C← Cblk

1 |⊗| · · · |⊗|Cblk
d

7 Vd ← Vd ×3 (YTC−1)

8 V̂1, · · · , V̂d ← TN-recompression by Algorithm 4

4.5 Simulation Results

All simulations in this section were performed on an Intel Core i5-10210U CPU with

16 GB RAM.

4.5.1 SISO Volterra System

The SISO Volterra system with kernel coefficients being decaying exponentials in [64]

is used here for comparison. The degree d = 10 and the memory length M = 7. Thus,

pM + 1 = 8. Denote the noniterative TN-based algorithm proposed in Section 4.4.1 to solve

the linear regression (4.4) as NIteTN and that proposed in Section 4.4.2 to solve the ridge

regression (4.5) as ridgeTN. As in [64], the first 700 samples of the input/output signals
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are used for system identification and the 4300 remaining data points are used for model

validation. The output signal for identification is contaminated by Gaussian white noise

with a SNR of 25dB. Denote the relative residue of the output signals as

res =
‖Y − Ŷ‖F
‖Y‖F

(4.18)

where Y and Ŷ are the practical and simulated output signals defined as in (4.3). As

suggested in Remark 9, NIteTN and ridgeTN algorithms are implemented with εu = 0.19

and ε = 0.01 to obtain a Volterra model with both good prediction performance and low

TN-ranks. In addition, the regularization coefficient for ridgeTN is set as λ = 1. Two

iterative algorithms proposed in [64], i.e., MALS and ALS algorithms, are implemented

for comparison. The TN-ranks determined by the MALS algorithm are used for the ALS

algorithm where fixed TN-ranks are required. The tolerance on the relative residual res

should be specified for both MALS and ALS algorithms to terminate the iterations. There is

a trade-off: if res is set too large, the fitting accuracy will be low; if res is set too small, it is

more likely to be overfitting since the resulting models also tend to fit the noise during system

identification. Setting the residue threshold res = 0.06 gives the best performance while

maintaining low TN-ranks for this example in our simulation. 100 Monte Carlo simulations

are performed and the results are showing in Fig. 4.2. The y-axis is the relative residue

between the true and simulated outputs. For the x-axis, the left four are for identification

data and the right four are for validation data. Table. 4.1 shows the estimated TN-ranks for

V̂1, · · · , V̂10 and the average run time for four algorithms.

The TN-ranks for all four algorithms are small, whereas they are determined in dif-

ferent ways. The training performances are all acceptable. However, the MALS and ALS
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Table 4.1: TN-ranks and run time for the SISO example.

r̂1 r̂2 r̂3 r̂4 r̂5 r̂6 r̂7 r̂8 r̂9 Run time [s]
NIteTN 6 7 7 8 9 9 9 9 8 0.095
MALS 8 8 8 8 8 8 8 8 8 0.849
ALS 8 8 8 8 8 8 8 8 8 0.075
ridgeTN 6 7 7 8 9 9 9 9 8 2.386

algorithms are not performing well during validation. One explanation is that both MALS

and ALS algorithms are fitting the data in an iterative fashion and convergence to an appro-

priate solution is not guaranteed. In contrast, the NIteTN and ridgeTN algorithms intrin-

sically give solutions in Least Squares sense where the statistical features of the noise have

been taken into account. The ridgeTN algorithm show slightly better prediction accuracy

by using the regularization. The time costs shown in Table. 4.1 illustrate that the ridgeTN

algorithm is the most time-consuming since more TN operations are involved.

NIteTN(id) MALS(id) ALS(id) ridgeTN(id) NIteTN MALS ALS ridgeTN
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Figure 4.2: The box plot of the results of 100 Monte Carlo experiments for the SISO Volterra
system identification. The symbol ‘+’ denotes the outlier.
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4.5.2 MIMO Volterra System with Sparse Kernels

Consider a 2-input 2-output Volterra system of degree d = 4

y (t) =

 y(1) (t)

y(2) (t)


where

y(1) (t) =β11u
(1) (t) + β12u

(1)(t)3 + β13u
(1)(t)4 + β14u

(2)(t− 3)4

y(2) (t) =β21u
(2) (t) + β22u

(2)(t)2 + β23u
(2) (t− 1)u(1) (t− 2) + β24u

(1)(t− 3)4

and β11 = β21 = 1, β12 = β22 = 0.1, β13 = β23 = 0.01, and β14 = β24 = 0.05. The

memory length M = 4. Note that the corresponding matrix V in (4.1) containing the kernel

coefficients is sparse. Also, pM + 1 = 9 in this example. The Gaussian white signals with

covariance matrix σ2 = I are used as input signals. The input signals are scaled to be within

[−1, 1]. The first 700 samples of the total 5000 generated input/output data are used for

system identification and the remaining 4300 samples are for validation as in Section 4.5.1.

The NIteTN, MALS, ALS, ridgeTN, and LASSO algorithms are implemented for

comparison. As suggested in Remark 9, NIteTN is implemented with εu = 0.001 and ε =

0.05. Note that smaller εu helps maintain more input excitation information whereas larger

ε emphasizes the sparsity within the kernel coefficients. Similarly, the TN-ranks determined

by the MALS algorithm are used for the ALS algorithm. The residue threshold res = 0.1

is selected, which takes into account the trade-off between the prediction accuracy and low

TN-ranks. Since the TN-ranks will increase in a square sense temporarily during running

TN-based ridge regression, one should select a larger εu to simplify the TN representation

at the beginning which incurs more approximation errors for Volterra coefficients. Thus,
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εu = 0.4 and ε = 0.05 are selected to compute the TN-based ridge solution. The l2-

norm regularization coefficient λ = 10−4 is used to penalize the Volterra coefficients. The

estimation may be biased, but the variance may also be reduced. Larger λ will smooth out

more Volterra coefficients. The LASSO regularization coefficient β = 10−6.

Figure 4.3: The estimated kernel coefficients via the NIteTN algorithm.

Figure 4.4: The estimated kernel coefficients via the MALS algorithm.

The estimated TN-ranks for V̂1, · · · , V̂4 and the run time from one simulation are
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Figure 4.5: The estimated kernel coefficients via the ALS algorithm.

Table 4.2: TN-ranks and prediction errors for the MIMO example.

r̂1 r̂2 r̂3 Run time [s] res (Train) res (Validation)
NIteTN 5 6 6 0.453 0.003 0.003
MALS 9 9 9 0.684 0.043 0.122
ALS 9 9 9 0.242 0.040 0.201
ridgeTN 6 8 10 5.211 0.017 0.023
LASSO - - - 2.450 4e-4 6e-4

shown in Table. 4.2. The LASSO algorithm shows the most accurate prediction, because

it is based on an optimization over the original data while the TN-based algorithms imply

approximations of the data matrices. Among the TN-based algorithms, the proposed NIteTN

algorithm performs best during both training and validation periods in terms of low TN-ranks

and accurate output prediction. Both MALS and ALS algorithms stabilize to relatively low

TN-ranks and produce small prediction errors for the training data. However, their validation

errors are relatively large since the iterative algorithms do not guarantee to converge to an

appropriate solution. The proposed NIteTN algorithm is noniterative and will not suffer

from such problems due to iterations. In addition, the parameter ε emphasizes the inherent
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Figure 4.6: The estimated kernel coefficients via the ridgeTN algorithm.

sparsity of the given Volterra system and results in even lower TN-ranks than both MALS

and ALS algorithms. The training and validation errors for the model from the ridgeTN

algorithm are almost at the same level since the l2-norm regularization will help reduce the

overfitting.

Fig. 4.3-4.7 illustrate the estimated kernel coefficients for different algorithms. There

are (pM + 1)d = 6561 kernel coefficients in total for each output channel and they are re-

shaped into two 81 × 81 matrices. For better illustration, each kernel coefficient is shown

using its absolute value with a positive or negative indicator. For the TN-based algorithms,

the performance of the sparse estimation of the inherent kernel coefficients is different. Al-

though both MALS and ALS algorithms result in a model with relatively low TN-ranks for

V1, · · · ,V4, its dual representation V which contains the estimated kernel coefficients is not

sparse. One can observe from Fig. 4.4 and Fig. 4.5 that the iterative algorithms suffer from

overfitting problems. The ALS algorithm encounters more overfitting since it is refining the

parameters to further reduce the prediction errors based on the initial estimation from the
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Figure 4.7: The estimated kernel coefficients via the LASSO regression.

MALS algorithm. The NIteTN algorithm not only shows low TN-rank approximation, but

also maintains the sparsity of its dual representation as shown in Fig. 4.3. The distribution

of trivial kernel coefficients is very flat around zero. The distribution of the estimated kernel

coefficients by the ridgeTN is fluctuated as shown in Fig. 4.6 since more approximation errors

are introduced by setting a large εu. However, the l2-norm regularization has helped smooth

out insignificant kernel coefficients. Keeping increasing λ will finally force the estimates of

all the kernel coefficients to zero. As expected, the LASSO algorithm produces the best

sparse estimation as shown in Fig. 4.7 and the distribution of trivial kernel coefficients is

even smoother than that in Fig. 4.3.

In terms of the storage requirement, all the kernel coefficients should be explicitly

listed in the LASSO regression, which will be likely infeasible as the degree is getting higher.

The TN-based algorithms perform all the calculations based on the TN-representation with-

out referring back to its dual matrix representation which suffers from the curse of dimen-

sionality. In addition, it is interesting to observe that the NIteTN algorithm implies a

85



symmetric kernel constraint as shown in Fig. 4.3, while the LASSO algorithm does not obey

this constraint during optimization.

It is worth noting that the sparsity of the original kernel model is not guaranteed even

though a low TN-rank model can be obtained. In other words, all four TN-based algorithms

may not regenerate the original sparse kernel coefficients in general. However, the TN-based

algorithms allow one to seek the sparsity in the sense of simple TN representation which

can still give good prediction. When the data is noise contaminated and different amount

of data points N are used, the comparison of validation errors among the four different TN-

based algorithms is shown in Fig. 4.8. All the settings are the same except that εu = 0.4 for

the NIteTN to make it more robust to noise. It is interesting to observe that the ridgeTN

algorithm can improve the prediction performance of the NIteTN algorithm when the SNR

is large. The MALS and ALS algorithms are more likely to fit the noise and result in a less

accurate model with even higher TN-ranks. For example, for a SNR of 15dB and N = 700,

the estimated TN-ranks (r̂1, r̂2, r̂3) are: NIteTN (6,8,13), MALS (9,77,18), ALS (9,77,18),

ridgeTN (6,8,13).

To illustrate the effect of different pairs of the hyperparameters (εu, ε), the esti-

mated TN-ranks and the average relative residues from the NIteTN algorithm are shown

in Table. 4.3 for a SNR of 25dB and N = 700. The tuning factor εu plays a more impor-

tant role in actively reducing the TN-ranks whereas ε will reduce the TN-ranks once the

TN-representation could be further simplified. In addition, low TN-ranks also mean low

computational complexities.
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Figure 4.8: Prediction errors for different TN-based algorithms.

Table 4.3: TN-ranks and prediction errors for different (εu, ε).

(εu, ε) r̂1 r̂2 r̂3 Run time [s] res (Train) res (Validation)
(0.001, 0.01) 9 45 18 0.369 0.047 0.246
(0.01, 0.01) 9 45 18 0.346 0.047 0.244
(0.1, 0.01) 9 41 18 0.264 0.047 0.245
(0.2, 0.01) 9 32 18 0.150 0.042 0.145
(0.4, 0.01) 6 8 13 0.031 0.023 0.029
(0.6, 0.01) 2 2 2 0.010 0.050 0.052
(0.001, 0.05) 9 45 18 0.369 0.047 0.246
(0.01, 0.05) 9 43 18 0.332 0.053 0.249
(0.1, 0.05) 9 40 18 0.265 0.051 0.249
(0.2, 0.05) 8 27 18 0.150 0.201 0.243
(0.4, 0.05) 5 7 10 0.031 0.027 0.031
(0.6, 0.05) 2 2 2 0.011 0.049 0.051
(0.001, 0.1) 9 39 18 0.344 0.075 0.252
(0.01, 0.1) 9 40 18 0.334 0.074 0.251
(0.1, 0.1) 9 41 18 0.269 0.142 0.289
(0.2, 0.1) 9 27 18 0.147 0.940 0.955
(0.4, 0.1) 5 7 10 0.031 0.037 0.040
(0.6, 0.1) 2 2 2 0.010 0.047 0.050
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4.6 Conclusion

Noniterative TN-based algorithms for either a linear or ridge regression are proposed

in this chapter to estimate kernel coefficients of a MIMO Volterra model. It is demonstrated

to have an advantage over the ALS and MALS methods by avoiding the need for iterations.

Two adjustable factors in the proposed algorithms help estimate a TN representation of the

Volterra kernel coefficients with both good prediction accuracy and low TN-ranks. The TN

technique relieves the curse of dimensionality and makes it possible to approximate compli-

cated coupled nonlinear dynamics via a high degree and even MIMO Volterra model. Note

that the TN representation is an approximation of the original kernel coefficients. The simu-

lation examples show the numerical efficiency and storage saving of the proposed noniterative

algorithms, and illustrate their potential for sparse Volterra system identification.

This chapter is based on the following paper that were submitted:

Y. Hu, L. Tan and R.A. de Callafon, “Noniterative tensor network-based estimation for

MIMO Volterra system identification,” IEEE Transactions on Automatic Control, under

review.

88



Chapter 5

Persistent Excitation Condition with

Gaussian Distributed Input Signals

This chapter gives a persistent excitation condition for the parameter estimation in

MIMO Volterra system identification in the case of zero mean, Gaussian distributed (not

necessarily white) input signals. The persistent excitation condition shows that under those

input conditions a MIMO Volterra system can be identified consistently via an appropriately

sized input signal.

5.1 Introduction

The nonlinear systems to be modelled by a MIMO Volterra structure are usually as-

sumed to be persistently excited without further discussion in most of relevant contributions.

However, this assumption does not hold if the input signals are not appropriately selected.

For example, a Pseudo-Random Binary Sequence (PRBS), which is widely used for linear
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system identification due to its similar spectrum to a white noise and easy realization, is

inappropriate for nonlinear system identification in general [74]. More precisely, PRBS is

not persistently exciting for Volterra systems of degree higher than one [75, 76]. The system

is assumed to have symmetric Volterra kernel coefficients without loss of generality.

In this chapter, a symmetric constraint on the Volterra kernel coefficients is enforced

to handle the redundancy. In fact, the proposed persistent condition still holds as long as

the redundant part is constrained. The idea of moments to cumulants conversion in [77] is

extended to the MIMO case. It is shown in this chapter that each moments equation can be

equivalently split into several cumulants equations, from which we can appropriately select

one to simplify the original least squares problem. The given persistent excitation condition

is very easy to satisfy in practice and further demonstrates the persistence of excitation of

the Gaussian input signal for the MIMO Volterra model system identification. The derived

persistent excitation condition implies that a persistently exciting Gaussian signal will not

lose this property by feeding it through a standard linear filter, whose transfer function can

only have finite number of zeros on the unit circle.

The remaining part of this chapter is organized as follows. Section 5.2 provides the

notation and necessary preliminaries on the properties of the joint cumulant. The normal

description of Volterra system is described in Section 5.3. In Section 5.4, the moments to

cumulants conversion is applied to reformulate the problem and the persistent excitation

condition with the zero mean Gaussian input is given. Section 5.5 investigates a simulation

example to demonstrate the proposed persistent excitation condition. Section 5.6 summarizes

this chapter.
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5.2 Notations and Preliminaries of Cumulant

For the reference and convenience of the readers, only the properties of cumulants

relevant to this chapter will be listed in this section. Most notations are following the

convention in [78].

5.2.1 Notations

We use {·} to represent a set. Denote P(b) as the set of partitions of a finite nonempty

set b. An element π of P(b) is collection of nonempty and disjoint subsets (i.e., blocks) of b

such that their union equals b. |b| denotes the number of all possible partitions. For example,

{{1}, {2}, {3}} is an element of P({1, 2, 3}). For every σ, π ∈P (b), σ ∨ π denotes the join

of them. Each block of σ ∨ π is the union of all the blocks of σ and π that have at least

one component in common. Thus, each component of σ ∨ π can be seen as the least upper

bound with respect to certain overlapped components of both σ and π. Note that σ ∨ π

is also an element of P(b). The trivial partition 1̂ = {b} is the maximal element of P(b).

The minimal element of P(b) is the partition 0̂, each block of which consists of exactly one

component of b.

For n ≥ 1, we denote X[n] = (X1, · · · , Xn) as a vector of real-valued random variables

such that the moments E|Xj|n < ∞,∀j = 1, · · · , n. Note that it is not necessary to be a

series generated from a single stochastic process. Without causing much ambiguity in the

following sections, two notations respectively with subscript and superscript are defined as

below:

Xb = (Xj1 , · · · , Xjk) , Xb = Xj1 · · ·Xjk
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where the set b = {j1, · · · , jk} ⊆ [n] = {1, · · · , n}, Xb is a vector, and Xb is the product of

all components.

5.2.2 Properties of Cumulant

The joint cumulant of Xb is denoted by cum (Xb) and defined as

cum (Xb) = cum (Xj1 , · · · , Xjk) = (−i)k ∂k

∂θ1 · · · ∂θk
lnE

[
exp

(
i

k∑
l=1

θlXjl

)]∣∣∣∣∣
θ1=···=θk=0

where i is the imaginary unit for a complex number. If all k random variables are the same,

then it is actually the kth ordinary cumulant.

Lemma 3. (i) The joint cumulant with one random variable equals its mean and that of

two random variables equals their covariance;

(ii) The application of Xb 7→ cum (Xb) is homogeneous:

cum (h1Xj1 , · · · , hkXjk) =

(
k∏
l=1

hl

)
cum (Xb) (5.1)

(iii) The joint cumulant is multilinear:

cum (Xj1 , · · · , Xjk , Z1 + Z2) = cum (Xj1 , · · · , Xjk , Z1) + cum (Xj1 , · · · , Xjk , Z2) (5.2)

(iv) If Y = {Yj, j ∈ N} is a Gaussian family and X[n] is a vector obtained by juxtaposing

n ≥ 3 elements of Y (with possible repetitions), then cum
(
X[n]

)
= 0.

Proof. See [78] and [79] for reference.

The following lemma presents two important relations between higher moments and

cumulants. It shows a potential way to perform certain transformations to simplify a relevant

problem.
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Lemma 4. (i) The higher moments can be expressed as the sum of products of cumulants

over all possible partitions:

E
[
Xb
]

=
∑

π={b1,··· ,bk}∈P(b)

cum (Xb1) · · · cum (Xbk) (5.3)

(ii) For any partition π = {b1, · · · , bk} ∈P (b), a relation between cumulants is

cum
(
Xb1 , · · · ,Xbk

)
=

∑
σ={t1,··· ,ts}∈P(b),

σ∨π=1̂

cum (Xt1) · · · cum (Xts) (5.4)

Proof. See Proposition 3.1 in [78].

We illustrate the results of the above Lemmas with an example.

Example 1. Consider a simple set b = {1, 2, 3, 4, 5}. If the partitions π = {{1}, {2}, {3, 4, 5}}

and σ = {{1, 3}, {2, 4}, {5}}, then σ∨π = 1̂ = {b}. If the partitions π = {{1}, {2}, {3}, {4, 5}}

and σ = {{1, 4}, {2, 5}, {3}}, then σ ∨ π = {{1, 2, 4, 5}, {3}} 6= 1̂.

These properties in Lemma 3 and Lemma 4 will be repeatedly used in the following

analysis.

5.3 The Normal Description of Volterra System

A discrete-time single-input single-output (SISO) Volterra model of degree d can be

described as

y (t) =h0 +
d∑
i=1

Mi−1∑
k1,··· ,ki=0

hi (k1, · · · , ki)
i∏

j=1

u (t− kj) + v (t) (5.5)

where {u(t), y(t)} are the scalar input and output sampling signals, v(t) is an independent

noise signal, Mi is the memory length, and hi(·) is called the ith Volterra kernel. Although
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we are investigating the persistent excitation condition for a MIMO Volterra system, it is

enough to consider a MISO one as below

y (t) = h0 +
d∑
i=1

Mi−1∑
k1,··· ,ki=0

p−1∑
α1,··· ,αi=0

hi (k1, α1; · · · ; ki, αi)
i∏

j=1

u(αi+1) (t− kj) + v (t) (5.6)

where u(α)(t) is the αth component of the vector input signal u(t) ∈ Rp. We assume that

the Volterra kernels are symmetric sequences, i.e.,

hi (k1, α1; · · · ; ki, αi) = hi
(
kρ(1), αρ(1); · · · ; kρ(i), αρ(i)

)
(5.7)

where ρ (·) is an arbitrary permutation of {1, · · · , i}. Obviously there is a redundancy in

the unknown kernel parameters due to the symmetric structure. However, this redundancy

enables us to rewrite the model into a neat linear regression form via Kronecker product as

follows:

y (t) = ΦT (t) H + v (t) (5.8)

The regressor vector Φ(t) is defined as

Φ (t) =
[
1, ϕT

1 (t) , · · · , ϕT
d (t)

]T ∈ R
1+

d∑
i=1

(pMi)
i

where

ϕi (t) = uMi
(t)⊗ · · · ⊗ uMi

(t)︸ ︷︷ ︸
i terms

∈ R(pMi)
i

uMi
(t) =

[
uT (t) , · · · ,uT (t−Mi + 1)

]T
u (t) =

[
u(1) (t) , · · · , u(p) (t)

]T
The coefficients vector H is defined as

H =
[
h0,H

T
1 , · · · ,HT

d

]T ∈ R
1+

d∑
i=1

(pMi)
i
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where

Hi= [hi (0, 0; · · · ; 0, 0) , hi (0, 0; · · · ; 0, 1) ,

· · · , hi (Mi − 1, p− 1; · · · ;Mi − 1, p− 1)]T

If the stationary stochastic signal is chosen to be the excitation (input) signal, the model in

(5.8) leads to the following equivalent expression

RΦΦH = RΦy (5.9)

where RΦΦ = E
[
Φ (t) ΦT (t)

]
and RΦy = E [Φ (t) y (t)] denote the auto- and cross-correlation

functions between the regressor and the output observation. The expression in (5.9) effec-

tively illustrates the possibility to use least squares minimization to estimate the coefficients

vector H.

Note that the noise effect is eliminated since it is independent of the input signals.

The matrix RΦΦ is singular due to the redundancy. But (5.9) can have a unique solution

if the symmetric constraint in (5.7) is taken into account. In this chapter, we are trying to

establish a condition for a unique solution H to the model (5.8) under the assumption (5.7),

i.e., the persistent excitation condition.

5.4 The Development of Persistent Excitation Condi-

tion

Redundancy in the model usually exists for a compact model description and thus

infinite solutions exist. For this reason, the persistent excitation condition is said to be

satisfied if the kernel coefficients can be uniquely determined with the redundancy being
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constrained in some way. Also, the normal description in (5.6), rather than the tensor

description, is used in this chapter since it is easier to develop the persistent excitation

condition. Without loss of generality, the symmetric constraint in (5.7) is assumed. Each

channel of the inputs is chosen to be a zero mean Gaussian signal, not necessarily independent

of each other.

5.4.1 Moments to Cumulants Conversion

Two problems make it hard to determine whether (5.9) has a unique solution:

1. RΦΦ is typically a full square matrix and will not reflect the invertibility obviously;

2. RΦΦ is singular due to the redundancy in the kernel coefficients as formulated.

For the first problem, we will transform the full matrix into a block triangular square matrix

whose invertibility can be determined by the diagonal blocks. For the second problem, the

symmetric condition (5.7) will be used to rearrange the components in the diagonal blocks

corresponding to the symmetric kernels to remove the redundancy effect and make it possible

for the linear equations to have a unique solution.

Denote the scalar term x(t) = ΦT (t) H. Then, (5.9) becomes

E [x (t)]

E [ϕ1 (t)x (t)]

...

E [ϕd (t)x (t)]


=



E [y (t)]

E [ϕ1 (t) y (t)]

...

E [ϕd (t) y (t)]


(5.10)

where the jth block row is corresponding to all the possible jth order moments of input

signals with x(t) or y(t). Each row of the block entry E [ϕi (t)x (t)] ∈ R(pM)i can be written
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in the form

E[Xib] = E[u(α1+1) (t− k1)︸ ︷︷ ︸
X1

· · ·u(αi+1) (t− ki)︸ ︷︷ ︸
Xi

x (t)︸︷︷︸
Xi+1

] (5.11)

where the indices set ib = {1, · · · , i, i+ 1}. Similarly, the corresponding row in E [ϕi (t) y (t)] ∈

R(pM)i is written as

E[Xib
′
] = E[u(α1+1) (t− k1)︸ ︷︷ ︸

X1

· · ·u(αi+1) (t− ki)︸ ︷︷ ︸
Xi

y (t)︸︷︷︸
Xi+2

] (5.12)

where the indices set ib
′ = {1, · · · , i, i+ 2}, E[Xib] = E[Xib

′
], and |ib| = |ib′|. Lemma 4

tells us that the higher moments in both E[Xib] and E[Xib
′
] can be split into the sum of

|ib| different products of cumulants terms. Then, each moments equation E[Xib] = E[Xib
′
]

produces |ib| different cumulants equations since the |ib| terms of both can be paired via one-

to-one correspondence. For each cumulants equation, the unknown coefficients H within

x(t) could be extracted by using the multilinear and homogeneous properties in Lemma 3,

which leads to a raw cumulants based linear system equivalent to (5.9):

1 Rcum
01 · · · Rcum

0d

Rcum
10 Rcum

11 · · · Rcum
1d

...
...

. . .
...

Rcum
d0 Rcum

d1 · · · Rcum
dd


︸ ︷︷ ︸

Rcum



h0

H1

...

Hd


︸ ︷︷ ︸

H

=



Qcum
0

Qcum
1

...

Qcum
d


︸ ︷︷ ︸

Qcum

. (5.13)

Denote

Nh = 1 +
d∑
i=1

(pM)i, Ncum = 1 +
d∑
i=1

|ib| (pM)i

The number of the unknown kernel coefficients is Nh. Note that there are Nh equations in

(5.9) whereas Ncum equations in (5.13). Arbitrary Nh of the Ncum linear equations in (5.13)
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that guarantees a unique solution under the symmetric constraint is sufficient to provide the

persistent excitation condition.

Example 2. Among the |ib| different cumulants equations from each E[Xib] = E[Xib
′
], the

one corresponding to a minimal partition 0̂ is

cum
(
u(α1+1) (t− k1) , · · · , u(αi+1) (t− ki) ,ΦT (t)

)
H

=cum
(
u(α1+1) (t− k1) , · · · , u(αi+1) (t− ki) , y (t)

) (5.14)

which forms one equation in (5.13).

We could possibly sift out from (5.13) those special equations that can reduce the

complexity of the problem. If we can reduce Rcum into a block triangular square matrix,

then it would be much easier to tell the invertibility by only looking at the diagonal blocks.

Another lemma is given before we show that all the Nh cumulants equations corresponding

to a minimal partition 0̂ as in (5.14) are such special equations.

Lemma 5. Let the set b = {1, · · · , i, i + 1, · · · , i + j} and Xb be a vector obtained by

juxtaposing elements of a zero mean Gaussian family (with possible repetitions). Consider a

partition

π = { {1}︸︷︷︸
b1

, · · · , {i}︸︷︷︸
bi

, {i+ 1, · · · , i+ j}︸ ︷︷ ︸
bi+1

} ∈P (b) .

If i > j or (i+ j) is odd, then

cum
(
Xb1 , · · · ,Xbi ,Xbi+1

)
= 0.

98



If i ≤ j and (i+ j) is even, then

cum
(
Xb1 , · · · ,Xbi ,Xbi+1

)
=
∑
δ

∑
ρ

∑
γ

cum
(
X1, Xρ(δ(1))

)
· · ·cum

(
Xi, Xρ(δ(i))

)
× cum

(
Xγ(δ(i+1)), Xγ(δ(i+2))

)
· · · cum

(
Xγ(δ(j−1)), Xγ(δ(j))

)
(5.15)

where the j!
i!(j−i)! possible ways to select i elements from j elements in bi+1 without putting

back are denoted as

{{δ (1) , · · · , δ (i)}︸ ︷︷ ︸
i elements

, {δ (i+ 1) , · · · , δ (j)}} ∈P(bi+1)

the i! possible permutations of {δ (1) , · · · , δ (i)} are denoted as ρ (·), and the (j−i)!
((j−i)/2)!2(j−i)/2

possible unordered ways to pair elements of {δ (i+ 1) , · · · , δ (j)} are denoted as γ(·) .

Proof. For elements from a Gaussian family, only the first and second cumulants are nonzero

via the item 4 in Lemma 3. Since it is also of zero mean, only the second cumulants remain

nonzero via the item 1 in Lemma 3. Thus, further using the item 2 in Lemma 4, we could

express cum
(
Xb1 , · · · ,Xbi ,Xbi+1

)
as the sum of products of all possible second cumulants

satisfying the given condition σ ∨ π = 1̂. If (i + j) is odd, σ can never be arranged into a

partition with only pairs and thus the sum will be zero.

Then, let’s consider the case when (i+j) is even. If i > j, one can never find a σ both

including only pairs and satisfying σ ∨ π = 1̂. See Example 1 for a simple demonstration.

If i ≤ j, the partitions being only pairs and satisfying σ ∨ π = 1̂ can only be formulated in

the following way: pair each element in {b1, · · · , bi} with a different element in {bi+1} and

the remaining (j − i) elements are paired with each other without specifying an order. This

turns out to be (5.15).
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Remark 10. Lemma 5 only assumes that each random variable is of zero mean and Gaussian

distributed. It does not require that they are from the same channel of Gaussian processes.

5.4.2 Reduction of Cumulants Equations

It has been pointed out in Section 5.4.1 that the moments to cumulants conversion

produces at most Ncum different linear equations. In fact, we only need Nh of them to

determine the unknown kernels. Theoretically speaking, we have CNh
Ncum

different choices.

But we prefer a structure that would simplify the problem of determining a unique solution.

For each original equation described as (5.12), now we only choose the cumulants

equation (5.14) from |ib| different options, which is corresponding to a minimal partition

0̂. Then, the row number of Rcum and Qcum in (5.13) will be reduced to Nh. Denote the

reduced Nh cumulants equations as

R̄cumH = Q̄cum (5.16)

where R̄cum is a square matrix of the same dimension as RΦΦ.

Lemma 5 implies that matrix R̄cum can be further reduced to a block triangular form

R̄cum =



1 0 Rcum
02 0 · · · · · ·

0 Rcum
11 0 Rcum

13 · · · · · ·

0 0 Rcum
22 0 · · · · · ·

0 0 0 Rcum
33 · · · · · ·

...
...

...
...

. . .
...

0 0 0 0 · · · Rcum
dd



(5.17)
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Note that R̄cum is still singular due to the redundancy of kernel coefficients but it is possible

to have a unique solution if the symmetric condition in (5.7) is enforced. The columns in

R̄cum corresponding to the symmetric kernel coefficients are regarded as identical and can be

rearranged to make the modified R̄cum able to be nonsingular without changing the solution

in the sense of symmetric kernel coefficients. One only needs to take care of the block

diagonal entries Rcum
ii and develop the persistent excitation condition to make the modified

block diagonal entries nonsingular.

Proposition 5. Consider the reduced cumulants equation (5.16) with Rcum being a matrix

of dimension Nh×Nh given by (5.17). If the symmetric constraint in (5.7) is assumed, then

(5.17) can be replaced, without affecting the solution H, by

R̂cum =



1 0 Rcum
02 0 · · · · · ·

0 R̂cum
11 0 Rcum

13 · · · · · ·

0 0 R̂cum
22 0 · · · · · ·

0 0 0 R̂cum
33 · · · · · ·

...
...

...
...

. . .
...

0 0 0 0 · · · R̂cum
dd



(5.18)

where the modified block diagonal entries are

R̂cum
ii

=i! cum
(
uMi

(t) uT
Mi

(t)
)
⊗ · · · ⊗ cum

(
uMi

(t) uT
Mi

(t)
)︸ ︷︷ ︸

i terms

=i!E
[
uMi

(t) uT
Mi

(t)
]
⊗ · · · ⊗ E

[
uMi

(t) uT
Mi

(t)
]︸ ︷︷ ︸

i terms

(5.19)

and uMi
(t) is defined as in (5.8).
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Proof. Let’s look at the (r, c)-th component of the matrix Rcum
ii ∈ R(pM)i×(pM)i . First, the

row index r can be written as a grouped index (k1, α1; · · · ; ki, αi) such that

r − 1 = (k1p+ α1) (pM)i−1

+ · · ·+ (ki−1p+ αi−1) (pM)1 + kip+ αi

where 0 ≤ kl ≤ M − 1, 0 ≤ αl ≤ p − 1. Similarly, the column index c can be written as a

grouped index (k̄1, ᾱ1; · · · ; k̄i, ᾱi). Then, the (r, c)-th component could be represented in the

following form:

(Rcum
ii )r,c

=cum
(
u(α1+1) (t− k1)︸ ︷︷ ︸

X1

, · · · , u(αi+1) (t− ki)︸ ︷︷ ︸
Xi

,

u(ᾱ1+1)
(
t− k̄1

)︸ ︷︷ ︸
Xi+1

· · ·u(ᾱi+1)
(
t− k̄i

)︸ ︷︷ ︸
Xi+i

)
(5.20)

Using Lemma 5 and Remark 10, one further has

(Rcum
ii )r,c =

∑
ρ

cum
(
X1, Xρ(δ(1))

)
· · · cum

(
Xi, Xρ(δ(i))

)
(5.21)

where there is only one way for the selection δ and there are no partitions introduced by γ

since j = i in this case. There are i! items, some of which are possibly identical, to add up

in (5.21). For each row r, it can be observed from (5.20) that there is a redundancy in the

columns. All the components in the column c′ satisfying

c′ − 1 =
(
k̄ρ(1)p+ ᾱρ(1)

)
(pM)i−1

+ · · ·+
(
k̄ρ(i−1)p+ ᾱρ(i−1)

)
(pM)1

+ k̄ρ(i)p+ ᾱρ(i)

are exactly with the same value as in the column c, where ρ(·) is a permutation of {1, · · · , i}.

There are at most i! possible columns with the same value if each pair (k̄l, ᾱl) is different.
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Note that there will be less than i! identical columns if some of (k̄l, ᾱl) are with the same

values. But this also implies repeated variables in {Xi+1, · · · , Xi+i} and thus will not affect

the results of the following manipulation. We can interchange the terms under summation

among these identical columns such that all the equal terms are gathered together and the

(r, c)-th component of the modified R̂cum
ii is

(
R̂cum
ii

)
r,c

=i!cum (X1, Xi+1) · · · cum (Xi, Xi+i)

=i!cum
(
u(α1+1) (t− k1) , u(ᾱ1+1)

(
t− k̄1

))
· · · cum

(
u(αi+1) (t− ki) , u(ᾱi+1)

(
t− k̄i

))
which is actually the (r, c)-th component of R̂cum

ii in (5.19), where the last step is obtained

by using the item 1 in Lemma 3. Note that cum(Xl, Xs) = cum(XlXs) for zero mean

signals.

Figure 5.1: Illustration of the moments to cumulants conversion to simplify the original
problem.

The whole procedure for moments to cumulants conversion and relevant modifications

is illustrated in Fig. 5.1.
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5.4.3 Persistent Excitation Condition

All above discussions show that the original system (5.6) is persistently excited if

R̂cumH = Qcum has a unique solution, where R̂cum is defined in (5.18).

Theorem 3. Assume that each channel of the input signal for a Volterra system (5.6) is

a zero mean Gaussian signal and not necessarily independent of the other channels. Let

M = max{M1, · · · ,Md}. The equation R̂cumH = Qcum under the symmetric condition (5.7)

has a unique solution if and only if R̂cum
ii , i = 1, · · · , d are nonsingular. A sufficient condition

is that the power spectrum matrix of the input signal u(t) is positive definite at least at M

distinct frequencies.

Proof. The unique solution implies that the matrix R̂cum should be nonsingular. Thus, the

block diagonal matrices R̂cum
ii , i = 1, · · · , d should be nonsingular. Note that the multiple

Kronecker product has the property (A1 ⊗ · · · ⊗Ai)
−1 = A−1

1 ⊗ · · · ⊗ A−1
i . So matrices

E[uMi
(t) uT

Mi
(t)], i = 1, · · · , d should be positive definite. This is equivalently requiring

that matrix E[uM (t) uT
M (t)] is positive definite since those matrices are its leading principal

minors. Select an arbitrary vector

g =
(
g01, · · · , g0p, · · · , g(M−1)1, · · · , g(M−1)p

)T

and define a matrix transfer function

G
(
q−1
)

=
[
G1

(
q−1
)
, · · · , Gp

(
q−1
)]
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where Gl (q
−1) =

M−1∑
j=0

gjlq
−1 and q−1 is a time delay operator. Then,

0 ≤ gTE
[
uM (t) uT

M (t)
]
g

= E
[(

G
(
q−1
)

u (t)
)2]

=
1

2π

∫ π

−π
G
(
e−jω

)
φuu (ω) GT

(
ejω
)
dω

where φuu (ω) is the power spectrum matrix of the input signal u(t). Since there are at most

(M−1) zeros for Gl (e
−jω), the integral must be strictly positive if φuu (ω) is positive definite

at least at M distinct frequencies.

5.5 Simulation Results

The 2-input 2-output sparse Volterra system in Section 4.5.2 is still used here for

demonstration. In this example, only the NIteTN algorithm is implemented to test if the in-

put signal is persistently exciting. The nonzero kernels will be estimated and compared with

the true ones. Note that the coefficients corresponding to the symmetric kernels should be

combined together for comparison. We set εu = 0.001 and ε = 0.001 so that all information

is maintained during system identification except machine errors. Gaussian white signals,

filtered Gaussian signals, and PRBS are used as different excitation signals. The first 1500

samples of the total 5000 generated input/output data are used for system identification

and the remaining 3500 samples are for validation. The output signals for identification are

noise-free.

The covariance matrix of the Gaussian white signals is chosen as σ2 = I. The filtered

Gaussian signals are generated by feeding the above Gaussian white signals through the
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Table 5.1: The estimated nonzero kernel coefficients.

β11 β12 β13 β14 β21 β22 β23 β24

True 1 0.1 0.01 0.05 1 0.1 0.01 0.05
White 1.000 0.100 0.010 0.050 1.000 0.100 0.010 0.050
Filtered 1.000 0.100 0.010 0.050 1.000 0.100 0.010 0.050
PRBS 0.092 0.092 -0.013 0.002 0.082 -0.044 -0.000 0.001

following low-pass filter G0 (z) = 0.75
z−0.75

. The PRBS signals for the two input channels are

generated independently such that they are randomly switching between ±1 for the first

2499 samples, ±0.9 for the range [2500, 3749], and ±1.1 for the range [3750, 5000].

The estimates of those nonzero kernel coefficients for different excitation signals are

given in Table. 5.1. The Gaussian white signals and filtered Gaussian signals are persistently

exciting as suggested. Note that the estimates of the kernel coefficients that are supposed

to be zero, are around machine precision level. The PRBS signals can not produce correct

estimates since they are never persistently exciting for Volterra systems of high degree. It

is also interesting to observe that the estimates of both β11 and β12 are the same. The

reason is that u(1)(t) and u(1)(t)3 are indistinguishable under PRBS with magnitude 1 and

thus considered as symmetric kernels during system identification. Fig. 5.2 compares the

true and simulated y(1)(t). The identified model fails to predict the output when the input

magnitude changes.
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Figure 5.2: The comparison for the first output channel. Starting from sample 2500, the
input magnitude changes to 0.9. Starting from sample 3750, the input magnitude then
changes to 1.1.

5.6 Conclusion

It is shown that the least squares solution typically solved for Volterra models can be

simplified via moments to cumulants conversion. A symmetric constraint is enforced during

the least squares estimation to handle the redundancy in the kernel coefficients and allows

for the formulation of a persistent excitation condition. It is worthwhile to note that the im-

posed constraint does not have to be symmetric, as the persistent excitation condition applies

naturally to cases where the redundant kernels are constrained in other ways. Techniques

like tensor network exploit the potential to capture complicated coupled nonlinear behaviors

via higher degree and even MIMO Volterra models. The resulting persistent excitation con-

dition in this chapter demonstrates that Gaussian distributed input signals provide sufficient

excitation to a MIMO Volterra system. Such a persistent excitation condition may not hold

for non-Gaussian distributed input signals, such as a pseudo-random binary sequence.

This chapter is based on the following papers that were published or submitted:
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system identification with Gaussian distributed input signals,” in Proceedings of IEEE 58th

Annual Conference on Decision and Control (CDC), Nice, France, Dec. 11–13, 2019, pp.

1752–1757.

Y. Hu, L. Tan and R.A. de Callafon, “Noniterative tensor network-based estimation for

MIMO Volterra system identification,” IEEE Transactions on Automatic Control, under

review.
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Part III

Applications to Energy Systems
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Chapter 6

Estimation of Microgrid Power Flow

Dynamics via CoBRA

This chapter considers the application of the Covariance Based Realization Algo-

rithm (CoBRA) to microgrid dynamic modeling. More specifically, we propose a data-driven

approach to modeling Distributed Energy Resources (DERs) power flow dynamics within

a microgrid by using the discrete-time dependent covariance between active and reactive

power flow. The microgrid network with its DERs is regarded as a multi-input multi-output

(MIMO) linear dynamic system concatenated by a static nonlinear part to model power loss

within the microgrid. The linear part is identified by the CoBRA that can handle noisy

power flow data and focus on identifying a low-order dynamic model, where a static gain of

the model can be enforced during the estimation. The nonlinear part is formulated by the

estimation of the admittance matrix of the microgrid network. The proposed model struc-

ture takes the physical characteristics of the microgrid into account and will be suitable for

a relatively wide range of operating conditions even if the parameter estimation is performed
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from surrounding one local equilibrium. It is shown via a simulation and an experimental

study that simulated and measured power flow transient effects can be matched with high

accuracy.

6.1 Introduction

Microgrids typically consist of a set of power producing DERs interconnected with

multiple power consuming loads such as lighting, HVAC system, Electric Vehicles (EV),

etc. The DERs may include fossil fuel generation, sustainable energy generation (e.g., wind,

solar, etc.), and energy storage system (e.g., battery powered inverters). The micrigrid can be

working in either grid-connected mode or islanded mode when the microgrid is disconnected

from the main grid [80]. This flexibility allows autonomous operation of the microgrid

during main grid faults possibly due to events such as extreme weather, blackouts, and

attacks on the power infrastructure and thus increases the resiliency of the whole power

systems [81, 82, 83]. In addition, DERs created by modern inverters with fast transient

dynamics can balance and reduce fluctuations in power flow within the microgrid in real-

time by absorbing and providing energy [84, 85, 86]. This further mitigates the need for

volatile modulations of any fossil fuel powered generators to improve efficiency.

The ability to control power flow within a microgrid becomes a very important task

in order to stably and optimally operate the microgrid [87]. Real-time feedback control of

both active and reactive bi-directional power flow between the main grid and local microgrid

allows seamless mode transition between grid-connected and islanded modes [88]. For such

feedback power control, a dynamic model describing the power flow from DERs to the
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point of common coupling (PCC) is desired to design control algorithms with guaranteed

stability or robustness margins. Although component- and physics-based modeling may

provide a dynamic model of the microgrid, uncertainty in component specifications and

model complexity may render the resulting model unsuitable for actual feedback control

design. In contrast, a data-driven approach tailored to learn or estimate DER and microgrid

dynamics provides an alternative to both identify a low-order model and capture the relevant

dynamics for control [2, 3].

Synchronized phasor data (voltage, current, and frequency) obtained via Phasor Mea-

surement Units (PMUs) [89] can be exploited in a data-driven approach for microgrid dy-

namic modeling. For example, in [90], it has been demonstrated that dynamic system

identification can be used to identify the model of the power dynamics around a working

equilibrium. In [88], a synchrophasor based model estimation is implemented to design the

controller for seamless mode switching, whereas the model can be updated for auto-tuning

controller parameters. The work in this chapter builds on these observations, but the ob-

jective is to develop a data-driven approach that support modeling of microgrid dynamics

with a multitude of DERs operating simultaneously and incorporate power loss though the

microgrid. The end result is a MIMO microgrid dynamic model that consists of a linear dy-

namic part and a static nonlinear mapping that is suitable for (distributed) feedback control

design. It will be shown that the proposed microgrid dynamic model will capture power flow

dynamics in the microgrid for a large range of operating conditions.

MIMO system identification methods are instrumental for the development of micro-

grid dynamic model when DERs are operating simultaneously. Within the class of MIMO

methods, subspace methods are popular due to the computational robustness and noniter-
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ative feature compared to the prediction error methods (PEM) [11, 10]. Among different

subspace methods, the CoBRA has been demonstrated to be quite efficient in estimating

the inherent low-order deterministic model of the given system and handling a large amount

of input/output data heavily contaminated by noise with unknown and possibly high-order

spectral characteristics [28, 35, 29]. An optimal implementation for the CoBRA is pro-

posed in [46, 72] and shows the best performance among different subspace methods under

closed-loop settings as illustrated in Chapter 3.

The remaining part of the chapter is organized as follows. In Section 6.2, the problem

of microgrid dynamic modeling is formulated and a novel model structure is proposed. In

Section 6.3, we apply the CoBRA to estimate the linear part of the proposed model. Some

practical issues during application of the CoBRA are discussed in Section 6.4. Section 6.5

presents the estimation of the nonlinear part of the proposed model. A simulation example

is illustrated in Section 6.6 and a practical experiment is investigated in Section 6.7. Finally,

a conclusion is drawn in Section 6.8.

6.2 Problem Formulation

6.2.1 Framework of Microgrid Network

To formalize the data-driven approach for microgrid dynamic modeling, consider a

microgrid with a network structure as shown in Fig. 6.1. The figure illustrates that the

microgrid can be either connected or disconnected (islanded) from the main grid through the

PCC and consists of a hybrid collection of DERs interconnected with loads. The multitude

113



of DERs in the microgrid may include: (a) A battery energy storage system (BESS) with

a source switchable battery/inverter structure which can operate either in grid following

(current source) or grid forming (voltage source) mode [91]; (b) An emergency synchronous

diesel generator to support the microgrid when working in the islanded mode [92]; (c) Photo

Voltaic (PV) or solar inverter that outputs AC power from DC solar power [93]. The loads

include day-to-day residential or industrial appliances that could be modeled as resistive and

inductive (R-L) elements.

Figure 6.1: The microgrid framework with a multitude of DERs.

DERs and loads within the microgrid are assumed to be tied to individual buses,

which are further connected to the main bus at the PCC through distribution lines with

certain values of admittance to model power loss. As mentioned in [88], fast switching

between islanding and grid connection is a strict requirement for the microgrid to survive

under main grid or microgrid faults [94]. In addition, a model based controller design can be

used for quick and smooth transition from grid-connected mode to islanded mode without the

need for load shedding. The islanded to grid-connected transition can be smoothly realized
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by referring to phase angle control [95]. Clearly, modeling the dynamics of power flow is

instrumental in understanding grid-connected to islanded power flow transitions.

6.2.2 Identification Problem

Given a simultaneous operation of DERs and PMU-based measurements of the flow

of active power P and reactive power Q within the microgrid, the objective is to model

the dynamics of the power flow from the DERs to the PCC, while taking into account

nonlinearities associated with power loss within the microgrid. This problem formulation can

be stated as MIMO system identification or estimation problem, which will then be solved

by the CoBRA. Note that PMUs typically measure the pair of complex-valued (positive

sequence) current I and voltage V phasors and the corresponding pair of active power P

and reactive power Q represent the same information via P = Re{S}, Q = Im{S}, where

S = VI∗. The identification problem can then be stated as: given the requested DER active

and reactive power set points u0(t) and PMU-based measurements of the DER active and

reactive power output y(t) in the microgrid, identify a model of the active power PPCC(t)

and reactive power QPCC(t) flow at the PCC.

Referring back to Fig. 6.1, the input signal u0(t) is a vector of DERs set points, while
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y(t) is a vector of the PMU measurements of the DERs output power flow according to

u0(t) =



Pin
b (t)

Qin
b (t)

Pin
d (t)

Qin
d (t)

Pin
s (t)

Qin
s (t)



,y(t) =



Pout
b (t)

Qout
b (t)

Pout
d (t)

Qout
d (t)

Pout
s (t)

Qout
s (t)



(6.1)

The discrete-time nature of the signals is represented by t = k∆T, k ∈ N with ∆T being

the sampling time, and Pb/Qb, Pd/Qd, and Ps/Qs represent active/reactive power flow for

inverter based battery system, diesel generator, and solar inverter, respectively. The corre-

sponding PMU measurements of active and reactive power flow at PCC are PPCC(t) and

QPCC(t).

6.2.3 Proposed Model Structure

It is worth recognizing that DERs may have imposed power ramp constraints to limit

requested power flow fluctuations. In addition, different DERs may have different transient

dynamics and the outputs may not reach the set points immediately. Last, but not least,

transmission lines with complex admittance within a microgrid may impose coupling between

active and reactive power, along with power loss at the PCC. These effects can be modeled

in a data-driven approach by a careful selection of dynamic and static components in the

microgrid model as summarized in Fig. 6.2.

Consistent with the definition of signal in (6.1), the input u0(t) is a vector of DERs

set points, but u(t) is an intermediate signal after the multi-input rate limiter. The different
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Figure 6.2: Model structure for dynamic microgrid network model.

transient dynamics observed in the the PMU measurements of the DERs power outputs

y(t) are modeled by the MIMO linear coupled DER dynamics. Finally, the possible static

nonlinear coupling and power loss effects due to transmission lines within a microgrid are

modelled by the static network nonlinearity included in the model structure of Fig. 6.2. The

effect of the power loss is inherently nonlinear, since it is proportional to the current squared.

6.3 Linear Dynamic Model Estimation

6.3.1 Formulation of Covariance Data Equation

In order to obtain the input/output data depicted in Fig. 6.2, the DERs should be per-

turbed around their working equilibrium by small power excitation signals without affecting

the stability of the microgrid. Simultaneous excitation of all DERs to reduce experimenta-

tion time is allowed, but to guarantee indentifiability of the linear MIMO dynamic model

part, the DER power perturbations should ideally be uncorrelated. Since typically only small

power perturbations are allowed, the signal-to-noise ratio (SNR) of the measurement data

may be relatively low due to existence of measurement noise and/or possible random load

changes. The CoBRA serves as a powerful tool to extract a low-order deterministic model

from noise contaminated data by first averaging the time-dependent covariance between the
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data.

Let the dynamic relation between the input/output signals u(t) and y(t) in Fig. 6.2

be described by a MIMO linear time-invariant minimal system G(q−1) with the following

state-space form: 
x (t+ 1)= Ax (t) +Bu (t)

y (t)= Cx (t) +Du (t) + v (t)

(6.2)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×p and v(t) is a stochastic noise signal of zero

mean, with unknown spectral properties, and uncorrelated with the input u(t). The objective

is to estimate the model parameters {A,B,C,D} (up to a similarity transformation) as a

low-order deterministic dynamic model for the sampled input/output data {u(t),y(t)}.

As described in Section 3.2.2 from Chapter 3, one can introduce an instrumental vari-

able (IV) ξ(t) ∈ Rp×1 satisfying certain conditions to perform the covariance pre-processing

for the CoBRA. Note that ξ(t) can also be of the dimension higher than p. However, one can

simply select ξ(t) = u(t) in practice. Then, we can come up with the following equations

using sample expectation defined in (3.4):
R̂xξ (τ + 1)= AR̂xξ (τ) +BR̂uξ (τ)

R̂yξ (τ)= CR̂xξ (τ) +DR̂uξ (τ) + R̂vξ (τ)

(6.3)

One can finally formulate the following covariance data equation:

R̂yξ = OrR̂xξ + ΨR̂uξ + R̂vξ (6.4)
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where

Or =

[
CT (CA)T · · · (CAr−1)

T

]T

R̂xξ = Hankel
(
R̂xξ (τ) , 1, τ1, τ2 − r + 1

)
R̂fξ = Hankel

(
R̂fξ (τ) , r, τ1, τ2

)
, f ∈ {y, u, v}

Hankel (h (τ) , τ0, τ1, τ2) =



h (τ1) h (τ1 + 1) · · · h (τ2 − τ0 + 1)

h (τ1 + 1) h (τ1 + 2) · · · h (τ2 − τ0 + 2)

...
...

...

h (τ1 + τ0 − 1) h (τ1 + τ0) · · · h (τ2)


and the Toeplitz matrix Ψ is including the unknown Markov parameters to be identified.

Note that the extended observability matrix Or consists of the information of the system

matrices {A,C}.

6.3.2 Estimation of Matrices A and C via Covariance Data

As mentioned in Chapter 3, the noise effect R̂vξ will be asymptotically eliminated.

In addition, one can easily obtain a shifted version of the covariance data equation in (6.4).

The two modified equations are rewritten as follows:

R̂yξ = OrR̂xξ + ΨR̂uξ (6.5)

R̂→yξ = OrAR̂xξ + ~ΨR̂uξ (6.6)

where R̂→yξ = Hankel
(
R̂yξ (τ) , r, τ1 + 1, τ2 + 1

)
is the one-step time-shifted version of R̂yξ

and ~Ψ is the corresponding shifted Toeplitz matrix. As will be illustrated in the following

derivation, there is no need to pay much attention to the detailed structures of both Ψ and

~Ψ.
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An orthogonal projection

Π⊥
R̂T
uξ

= I− R̂T
uξ

[
R̂uξR̂

T
uξ

]−1

R̂uξ (6.7)

is introduced to remove the part containing the information Ψ and ~Ψ. Thus, (6.5) and (6.6)

can be further reduced to

R̂yξΠ
⊥
R̂T
uξ

= OrR̂xξΠ
⊥
R̂T
uξ

(6.8)

R̂→yξΠ
⊥
R̂T
uξ

= OrAR̂xξΠ
⊥
R̂T
uξ

(6.9)

The matrix A can be approximated by solving the optimization problem

min
A

∥∥∥OrAR̂xξΠ
⊥
R̂T
uξ
− R̂→yξΠ

⊥
R̂T
uξ

∥∥∥
F

(6.10)

where an estimation of Or and R̂xξΠ
⊥
R̂T
uξ

are required. Directly solving (6.10) is typi-

cally impossible. However, as mentioned in Section 6.3.1, the estimated model parame-

ters {Â, B̂, Ĉ, D̂} are just required to be equivalent to the true ones in the sense of being

within a similarity transformation. The reason is that both of them are equivalent from the

perspective of the input-output description. Their mathematical relation is

A = MÂM−1, B = MB̂,C = ĈM−1, D = D

where M is a certain nonsingular matrix. Thus, it is sufficient to solve the following relaxed

version of (6.10) instead

min
Â

∥∥∥ÔrÂR̂x̂ξΠ
⊥
R̂T
uξ
− R̂→yξΠ

⊥
R̂T
uξ

∥∥∥
F

(6.11)

where Ôr = OrM and x̂ (t) = M−1x (t). One appropriate selection of the pair
{

Ôr, R̂x̂ξΠ
⊥
R̂T
uξ

}
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is obtained through the singular value decomposition of (6.8)

R̂yξΠ
⊥
R̂T
uξ

= [U1, U2]

Σ1 0

0 Σ2


V T

1

V T
2


≈ U1Σ

1/2
1︸ ︷︷ ︸

Ôr

Σ
1/2
1 V T

1︸ ︷︷ ︸
R̂x̂ξΠ

⊥
R̂T
uξ

(6.12)

where Σ1 ∈ Rn×n contains the n dominant singular values and thus can be used to determine

the system order n. The matrix Â can be computed by solving (6.11) and the matrix Ĉ is

directly given as the first m rows of Ôr.

Even if the actual dynamic system is stable, the estimated matrix A may be unstable

due to poor SNR conditions of the experimental data. A stable approximation of matrix A

can be guaranteed by solving a modified version of (6.11) with the pole location constraints

min
Q,P

∥∥∥∥∥ÔrQ− R̂→yξΠ
⊥
R̂T
uξ

(
R̂x̂ξΠ

⊥
R̂T
uξ

)†
P

∥∥∥∥∥
F

s.t. a⊗ P + b⊗Q+ bT ⊗QT ≥ 0

P = PT > 0

Tr (P ) = n

(6.13)

where a = 1−δ, δ ∈ [0, 1], b =

[
0 1

0 0

]
, and (·)† represents the right pseudo-inverse. Denote

the optimum of (6.13) as {Q∗, P ∗}. Then, matrix Â is estimated by A = Q∗P ∗−1 and the

eigenvalues of Â are enforced to be within the disk with radius (1− δ) in the complex plain.

One can find other different pole location constraints in [32].
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6.3.3 Estimation of Matrices B and D

Once the matrices A and C have been estimated through the extended observability

matrix, the estimation of B and D is about solving a linear regression optimization based

on either the covariance data {R̂uξ(τ), R̂yξ(τ)} or the time-domain data {u(t), y(t)}. In

addition, the identified model is expected to be applicable for a wide range of working power

levels although the data for identification is obtained by exciting the system with small

perturbations around a given equilibrium. Thus, a priori information of the system should

be taken into account to guarantee a reliable model structure.

From the physical perspective, the DERs have unit static gains since the output active

and reactive power will always be adjusted to be equal to the set points. For this reason, the

unit static gain will be enforced during the estimation of B and D. On the other hand, the

mean values will usually be removed beforehand from the covariance data {R̂uξ(τ), R̂yξ(τ)}

to focus on the dynamics. Thus, the raw data {u(t), y(t)} will be a better choice for the

optimization with a gain constraint. The constrained optimization to be solved is then given

as follows

min
x0,B,D

∥∥∥∥∥∥∥∥∥∥∥∥
Y −X


vec (x0)

vec (B)

vec (D)



∥∥∥∥∥∥∥∥∥∥∥∥
2

s.t. [Ĉ(In − Â)
−1
B +D](kr,kc) = Gain(kr,kc)

(6.14)

where (kr, kc) represents the index of a matrix element in row kr and column kc, Gain(kr,kc)

is the corresponding predetermined static gain from the kcth input to the krth output, Â
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and Ĉ are estimated from Section 6.3.2, and

Y =



y (0)

y (1)

...

y (N − 1)


,X =



ϕ (0)

ϕ (1)

...

ϕ (N − 1)


ϕ (k) =

[
ĈÂk

k−1∑
i=0

u(i)T ⊗ ĈÂk−i−1 u(k)T ⊗ Im

]
Note that there is no need to specify the static gains for all the subsystems. In our case,

only the six diagonal elements of the transfer function matrix is required to be constrained,

i.e.,

Gain(j,j) = 1, j ∈ {1, 2, · · · , 6} (6.15)

6.4 Issues Related to Application of CoBRA

6.4.1 Persistent Excitation

As one important part in system identification, input signal design should be carefully

considered to meet persistent excitation requirement. For the traditional subspace methods

using (6.2), the persistent excitation is defined as follows [10]:

Definition 6. [PE for (6.2)]. Denote the input signal as u(t) for t ∈ [0, N − 1] and build a

Hankel matrix as below:

Ur,l = Hankel (u (t) , r, 0, N − 1) , (6.16)

where r and l = N − r + 1 = O(N) are the numbers of block rows and columns respectively.

Then, input signal u(t) is persistently exciting of order r if the following r × r block matrix
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has full rank pr:

PE1 =
1

l
Ur,lU

T
r,l (6.17)

If u(t) is a stochastic signal, column number l in the above definition should go to

infinity or be sufficiently large. In addition, the dimension of Ur,l in (6.16) will become

extremely large as the data length N goes to infinity. This is quite challenging for limited

memory storage.

However, the CoBRA will have much less storage trouble. Although only the values

of sample covariance functions {R̂uξ (τ) , R̂yξ (τ)} for bounded τ are used to construct the

Hankel matrices, all the information up to t = N − 1 is compressed into the covariance

functions. The dimensions of Hankel data matrices are pre-determined and will not increase

as the data length N goes to infinity. It would be interesting to get an insight into the

persistent excitation condition for the CoBRA.

Definition 7. [PE for (6.3)]. Denote the input signal as u(t) for t ∈ [0, N − 1] and the

instrumental variable as ξ(t) with the same dimension, and build a Hankel matrix as below:

R̂uξ = Hankel
(
R̂uξ (τ) , r, τ1, τ2

)
(6.18)

where R̂uξ (τ) is defined as in (3.4), and −τ̄ < τ1 < τ2 < τ̄ . Note that matrix R̂uξ has r

block rows and lc = τ2− (τ1 + r− 2) = O(1) block columns. Then, {u(t), ξ(t)} is persistently

exciting of order r if the following r × r block matrix has full rank pr:

PE2 = R̂uξR̂
T
uξ (6.19)

Note that the dimension of R̂uξ is fixed as long as r, τ1, τ2 are chosen, regardless of

the data length N .
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An intuitive idea is to apply the excitation signals for traditional subspace methods

to the CoBRA. One of the most popular options is the white noise input u (t) ∼ N (0, σ2I).

To make ξ(t) be correlated with u(t), we simply choose ξ(t) = u(t). Then, we have

Ruξ (τ) = σ2Iδ (τ). Since the stochastic signals are considered, PE1 and PE2 should take

their asymptotic version as N goes to infinity. It is well known that PE1 must be of full

rank since it becomes an identity matrix multiplied by σ2. As to PE2 for the CoBRA, τ1, τ2

should then be carefully chosen to make Ruξ take the form:

Ruξ =



· · · 0 0 0 0 Ruξ (0) 0 · · ·

· · · 0 0 0 Ruξ (0) 0 0 · · ·

...
... . . .

...
...

· · · 0 Ruξ (0) 0 0 0 0 · · ·


(6.20)

where the positive definite component Ruξ (0) = σ2I should appear in every block row.

6.4.2 Arbitrary Data Segments

As mentioned in Section 6.4.1, white noise input can serve as a good excitation signal

if the Hankel data matrices are appropriately constructed. In some cases, a long period of

excitation signal is not available. For example, in some working conditions, it is possible that

the system shows dynamics for some time segments where the input suddenly changes, but

stays around a steady state for most of the time. It will be suitable to use those unsteady

segments for system identification. Similar as the idea in [96], we come up with a modified

CoBRA which can handle arbitrary data segments. In the following discussions, we assume

that data series in each segments are sequential and with relatively large length.
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Denote the chosen time segments where the system shows dynamics as [ti, ti + Li) ∈

[0, N − 1], where Li is the length of the ith segments. Using the definition of sample expec-

tation in (3.4) and the ith data segments, one can obtain the following equations similar as

(6.3): 
R̂i
xξ (τ + 1)= AR̂i

xξ (τ) +BR̂i
uξ (τ)

R̂i
yξ (τ)= CR̂i

xξ (τ) +DR̂i
uξ (τ) + R̂i

vξ (τ)

(6.21)

Then, the above equations for different segments can be combined together into one form:

∑
i

R̂ixξ (τ + 1)︸ ︷︷ ︸
R̂xξ(τ+1)

= A
∑
i

R̂ixξ (τ)︸ ︷︷ ︸
R̂xξ(τ)

+B
∑
i

R̂iuξ (τ)︸ ︷︷ ︸
R̂uξ(τ)∑

i

R̂iyξ (τ)︸ ︷︷ ︸
R̂yξ(τ)

= C
∑
i

R̂ixξ (τ)︸ ︷︷ ︸
R̂xξ(τ)

+D
∑
i

R̂iuξ (τ)︸ ︷︷ ︸
R̂uξ(τ)

+
∑
i

R̂ivξ (τ)︸ ︷︷ ︸
R̂vξ(τ)

(6.22)

where
∑
i

R̂i
vξ (τ) can still be regarded as small in practice and the same notations of (6.3)

are used here to unify the equations. Note that there is no need for different segments to

be overlapped as in [96]. The reason is that the overlapped data are duplicate information

when using the sample covariance functions calculated as (3.4).

6.4.3 Sample Approximation and Imperfect Data

In practice, we may not produce ideal white noise with infinite length. Instead,

some other signals with approximately the same spectra of white noise can be used. For

example, the finite pseudo-random signals or pseudo-random binary sequences (PRBS) can

approximate the white noise quite well. In a worse case, only signals within a given frequency

band may be available. Also, the covariance functions in the CoBRA are computed for the

finite data using the sample approximation given in (3.4). All these cases will cause the
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Figure 6.3: The values of covariance functions when using ideal white noise and PRBS as
input respectively. Due to sample approximation and imperfect data, those nonzero values
indicated in the figure show up in practice.

components, which are zero in ideal case, to be nonzero. For example, those zero components

of Ruξ in (6.20) may also become nonzero. See Fig. 6.3 for an illustration of a single-input-

single-out system. However, the equality relations in (6.3) hold rigorously since the sample

calculation in (6.3) can be interpreted as a computation of weighting and sum on (6.2). This

also means that we don’t care about the real covariance values for a possibly stochastic input.

Thus, it should be noted that those nonzero data are not approximation errors. Rather,

they are containing parts of system dynamics and can be used for parameter estimation

in the CoBRA. In addition, power spectrum of a stochastic signal is not used here, so the

overlapping technique to reduce the estimation variance in Welch method [97] is not needed.

This also implies that data segments overlapping is not needed as mentioned in Section 6.4.2.
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6.5 Modeling of the static nonlinearity

6.5.1 Admittance Matrix of the Microgrid Network

Following the conventional definition of the (positive sequence) voltage phasor V =

V rmsejφ
v

and current phasor I = Irmsejφ
i
, along with the (positive sequence) apparent power

S = VI∗ = V rmsIrmsej(φ
v−φi) = P + jQ (6.23)

where rms denotes the root mean square of a signal and is omitted in the following discussions

for notational simplicity. The static coupling between phasors and power loss at the PCC

can be characterized by the admittance matrix of the microgrid network. In particular for

the microgrid framework of Fig. 6.2, the relation between the phasors is given by

M



Vb

Vd

Vs

VPCC


=



Ib

Id

Is

IPCC


(6.24)

where Ib, Id, and Is are the currents going through the BESS, diesel, and solar/PV respec-

tively, IPCC = −Ib − Id − Is. The admittance matrix M in (6.24) is defined by

M =



Yb 0 0 −Yb

0 Yd 0 −Yd

0 0 Ys −Ys

−Yb −Yd −Ys Yb + Yd + Ys


(6.25)

and it should be noted that only the power flows between the main grid and DERs are

considered since we are only interested in the dynamic modeling from the DERs to the
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PCC. The load is regarded as either known or constant during a relatively short period for

system identification. Any slight change of the power flow through the load can be regarded

as the disturbance.

The admittance matrix M of the network is dependent on the structure of the local

transmission lines and can be approximated by using (6.24). Only the admittance between

PCC and each DER is taken into account here. A more general case is also considering

the admittance between the DERs, which results in a similar admittance matrix. However,

for the structure (6.25) used in this chapter, each line admittance can be simply estimated

separately instead of computing the whole admittance matrix as

Yk =
Ik

Vk − VPCC

, k = b, d, s (6.26)

6.5.2 Estimation of the Power Loss

The transmission line with admittance Yk (k = b, d, s) is modelled as a serial con-

nection of a resistor Rk and an inductor Lk, where Yk = 1
Rk+jLk

. The total power loss is

computed as I2
k(Rk + jLk), which is proportional to the through current squared. Since the

main grid is working as the voltage source while in grid-connected mode, one can denote the

nominal voltage at the PCC as

VPCC = VPCCe
jφvPCC = V re

PCC + jV im
PCC (6.27)
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Similar notations can be defined for Yk, Vk, k = b, d, s. Then, the following nonlinear equa-

tions can be obtained by combining (6.23), (6.24), (6.26), and (6.27)

Y re
k (V re

k )2 − (Y re
k V re

PCC − Y im
k V im

PCC)V re
k

+Y re
k (V im

k )
2 − (Y re

k V im
PCC + Y im

k V re
PCC)V im

k = Pk

−Y im
k (V re

k )2 + (Y re
k V im

PCC + Y im
k V re

PCC)V re
k

−Y im
k (V im

k )
2 − (Y re

k V re
PCC − Y im

k V im
PCC)V im

k = Qk

(6.28)

where k = b, d, s to represent the battery, diesel, and solar channel respectively. Thus, there

are actually 3 pairs of nonlinear equations in total to solve Vk = V re
k + jV im

k , k = b, d, s. The

practical solution can be obtained directly by solving (6.28) via nonlinear optimization with

the initial value as (V re
PCC , V

im
PCC). The values of Pk, Qk can be obtained from the outputs of

the linear DERs system identified using the techniques in Section 6.3. In terms of Fig. 6.2,

Pb = Pout
b , Qb = Qout

b

Pd = Pout
d , Qd = Qout

d

Ps = Pout
s , Qs = Qout

s

(6.29)

It is worthwhile to mention that the problem can be further simplified by ignoring

the wire inductance if it is much smaller compared to the resistance. Thus, Yk ≈ 1
Rk

by

neglecting the imaginary part and (6.28) can be further reduced to
(V re

k )2 − V re
k V re

PCC + (V im
k )

2 − V im
k V im

PCC = RkPk

V re
k V im

PCC − V im
k V re

PCC = RkQk

(6.30)

The corresponding currents Ik = Irek + jI imk can be computed from (6.24) once (V re
k , V im

k ) is

obtained. The active power loss going through each power channel is then P loss
k = [(Irek )2 +
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(I imk )2]Rk. The reactive power loss is Qloss
k = [(Irek )2 + (I imk )2]Lk. Note that Qloss

k can be

neglected for the case of small inductance in the transmission lines and then Qloss
k = 0. The

total active power loss reflected at the PCC is Ploss
PCC =

∑
k P

loss
k while the total reactive

power loss Qloss
PCC =

∑
kQ

loss
k (= 0).

Denote the initial active and reactive power levels at the PCC as Pinit
PCC and Qinit

PCC

when the three channels are neither producing or consuming power. Then, the active and

reactive power at the PCC shown in Fig. 6.2 considering the power loss are estimated by

PPCC = Pinit
PCC −

∑
k

Pk + Ploss
PCC (6.31)

QPCC = Qinit
PCC −

∑
k

Qk + Qloss
PCC (6.32)

6.6 Simulation Examples

In this chapter, a microgrid that is connected to the main grid and consists of a

hybrid collection of DERs interconnected with transmission lines and loads as shown in

Fig. 6.1 is considered. The detailed component microgrid model is constructed using the

toolbox Simscape Power SystemsTM in MATLAB/Simulink. Simscape simulator allows one

to produce simulation data under realistic conditions and validate identification and control

techniques under practical scenarios.

The transmission lines are all modelled as a serial concatenation of a 1 Ω resistor and

10e−5 H inductor. The corresponding impedance can be approximated as 1 Ω by neglecting

the inductance. Thus, the admittance Yk ≈ 1 S for k = b, d, s, load and the reduced version

(6.30) can be used. Note that Qloss
PCC = 0 in the simplified case. The nominal voltage at the

PCC with the phasor form in (6.27) is set as VPCC = 480 V and φvPCC = 10 degree with
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nominal frequency 60 Hz. Note that, in practice, the frequency within the microgrid will

not be constant but oscillating around the nominal value regulated by the voltage source.

The magnitude and angle of the PCC voltage also show a similar behavior. We will still use

the nominal PCC values to solve (6.30) and the estimation result will show that the small

oscillation is not a problem. The load is modelled as the parallel RLC load with 20 kW

nominal active power, 4 kVAR nominal inductive reactive power, and −100 VAR nominal

capacitive reactive power. In addition, the rate limiter is not considered in the simulation

example for easy discussion. However, the rate limiter will be taken into account in the next

section where the practical data is used.

Five working scenarios, with 100 seconds total simulation time and corresponding to

different power levels, are considered and described in Table. 6.1. The initial power levels at

the PCC are Pinit
PCC = 18.3 kW and Qinit

PCC = 3.45 kVAR. The nominal power set points of the

solar inverter are assumed to be constant during the whole simulation. There will be only

one DER power level step change between two scenarios. For example, the nominal active

power level of the battery inverter system will drop down to −20 kW from 0 kW at t = 60s

while the other set points are not changed.

Table 6.1: Nominal values for five scenarios.
Input Initial 1 (0-60s) 2 (60-70s) 3 (70-80s) 4 (80-90s) 5 (90-100s)
Pin

b 0 kW 0 kW –20 kW –20 kW –20 kW –20 kW
Qin

b 0 kVAR 0 kVAR 0 kVAR –5 kVAR –5 kVAR –5 kVAR
Pin

d 0 kW 0 kW 0 kW 0 kW 40 kW 40 kW
Qin

d 0 kVAR 0 kVAR 0 kVAR 0 kVAR 0 kVAR 10 kVAR
Pin

s 0 kW 30 kW 30 kW 30 kW 30 kW 30 kW
Qin

s 0 kVAR 0 kVAR 0 kVAR 0 kVAR 0 kVAR 0 kVAR
Output Initial
PPCC 18.3 kW
QPCC 3.45 kVAR

Six independent PRBS signals with magnitude 3 kW/kVAR are added around the
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nominal set points to excite the system. The data of the first 50 seconds under the scenario

1 is used for identification by using the techniques proposed in Section 6.3 and 6.5. The

remaining data including all five scenarios is used for validation. The measurements are

sampled at 60 Hz and contaminated by Gaussian white noise with SNR=25 dB.

For the sake of comparison, we also use the CoBRA method to directly identify a linear

model from the DER set points to the output power PPCC and QPCC without compensating

the transmission line loss. The corresponding results are shown in Fig. 6.4. The model

output is not precisely matching but acceptable for scenario 1 as expected since the model

is identified by using scenario 1 data. However, the model is getting off when the microgrid

system is moving to other working power levels. Thus, one can use a single linear model

without considering the power loss if the microgrid system is working within a relatively

small range of power levels. Otherwise, the nonlinearity caused by the power loss due to the

transmission line impedance should be taken into account.

For the proposed method in this chapter, the parameters in the covariance data

equation (6.4) are chosen as r = 30, τ1 = 0, τ2 = 150. The linear DERs system is identified

as a 14th order model. The final active and reactive power at PCC are estimated as in (6.31)

and (6.32), where the power loss due to transmission lines is compensated. The estimation

results are illustrated in Fig. 6.5. The identified model by using the proposed method shows

high accuracy under not only scenario 1 but also the other scenarios. This is desirable in

practice since one would like the model identified around one working power level to be

applicable for other levels.

133



50 55 60 65 70 75 80 85 90 95 100

Time (second)

-4

-3

-2

-1

0

1

2

3

P
o
w

e
r 

(W
/V

A
R

)

10
4 Uncompensated model outputs of PCC

Uncompensated P
sim

PCC

True P
PCC

Uncompensated Q
sim

PCC

True Q
PCC

Figure 6.4: The estimation results of direct identification from the input set points to the
output power at the PCC without compensating the line loss. The vertical black dashed line
separates the time window into the five scenarios given in Table. 6.1.
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Figure 6.5: The estimation results of the proposed method using (6.31) and (6.32). The
vertical black dashed line separates the time window into the five scenarios given in Table. 6.1.

6.7 Experimental Results

The proposed algorithm is also applied to data obtained from a local area distribution

network (LADN), operating as a grid-connected microgrid where DERs are placed behind
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local distribution transformer. A schematic overview of the LADN with its Point of Inter-

connect (POI) or PCC is shown in Fig 6.6, illustrating the presence of a BESS DER and a

PV DER each behind their own distribution transformers. In addition, a non-controllable

but measurable load is present in the LADN behind a distribution transformer. The data

of this LADN is chosen to illustrate that presence of local distribution transformer can be

taken into account in the microgrid dynamic model by estimating the dynamics and power

loss as part of the dynamic model.

Figure 6.6: Schematic overview of Local Area Distribution Network.

The BESS DER is rated at 250 kW and the PV DER at 500 kW. The BESS DER is

excited by random step perturbations on the active and reactive power, while the PV DER

is excited with slowly changing random power variations, curtailing solar power production.

In terms of notation, these excitation signals correspond to Pin
b , Qin

b , Pin
s , Qin

s as discussed

earlier, while there is no diesel generator in the system under test. The network is connected

to a main load that can be up to 1.5 MW. The BESS, PV, and load power outputs are

measured on bus 2,3,4 respectively and can be denoted as Pout
b , Qout

b , Pout
s , Qout

s , Pout
load, and
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Qout
load accordingly. The admittance of the transmission line between bus 1 and bus 2,3,4 is

then denoted as Yb, Ys, and Yload.

The nominal VPOI = 12 kV in the voltage phasor VPOI = VPOIe
jφvPOI at the POI

similar to (6.27). It is worthwhile to note that the positive sequence voltage angle φvPOI at

the POI is not constant due to the time variations in the AC grid frequency to which the

LADN is connected via the POI. However, since the active and reactive power components

of the apparent power S in (6.23) are used, only cos(·) and sin(·) of the angle difference

φvPOI − φiPOI are relevant. All PMU data is sampled at 30 Hz and data is collected over a

time window of 1 hour long. For estimation and modeling purposes, only the first 11 minutes

are used as training data and the rest for validation.

It is obvious that the network under test is similar to the one in Fig. 6.1 and the

proposed method can be implemented. Similar to (6.1), the input/output signals for system

identification is modified as

u0(t) =



Pin
b (t)

Qin
b (t)

Pin
s (t)

Qin
s (t)


,y(t) =



Pout
b (t)

Qout
b (t)

Pout
s (t)

Qout
s (t)


(6.33)

The initial active and reactive power at the POI are computed as Pinit
POI = −Pout

load and Qinit
POI =

−Qout
load. The admittance Yb, Ys, and Yload can be determined by (6.24). As shown in Fig. 6.7,

the rate limiter for BESS and PV DERs can be determined from the slope of two selected

points in the power output when there is a high rate input change. The intermediate signal

u(t) illustrated in Fig. 6.2 can be then computed. An 11th order linear state-space model

from u(t) to y(t) is identified by the CoBRA. This model can be used to predict y(t) given
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Figure 6.7: Determine the rate limiter from the input/output data by calculating the slope
between the two selected points denoted by ‘+’.

any u(t) without using PMUs. The active and reactive power losses, denoted as Ploss
POI and

Qloss
POI, are calculated as Ploss

POI =
∑

k P
loss
k ,Qloss

POI =
∑

kQ
loss
k , where k = b, s, load for this test

and (6.28) will be solved in the process. Similar to (6.31) and (6.32), the active and reactive

power at the POI can be estimated as

PPOI = Pinit
POI − (Pout

b + Pout
s ) + Ploss

POI (6.34)

QPOI = Qinit
POI − (Qout

b + Qout
s ) + Qloss

POI (6.35)

The comparison between the model prediction from simulation and the true power

output at the POI is illustrated in Fig. 6.8. The model prediction considering the power

loss in the transmission line is more accurate, as also demonstrated in the earlier simulation
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Figure 6.8: The comparison between the model prediction and the true power output at the
POI. Compensating the power loss in the model leads to a more accurate prediction.

example. It is worth noting that the CoBRA can accurately capture the coupling between

different channels as shown in Fig. 6.9.
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Figure 6.9: The identified model by the CoBRA is able to capture the coupling between Pout
b

and Qout
b .

6.8 Conclusion

A model structure combining a linear dynamic system and static nonlinearity due to

the power loss is proposed to model the power flow dynamics of a microgrid with multiple

DERs. The linear part is identified via the CoBRA while the nonlinear part is formulated

by the estimation of the admittance matrix of the network of the microgrid. The model

parameters are estimated by using power flow input/output data obtained via PMUs using

small perturbations of power flow around an operating condition of the microgrid. The

simulation and experimental results demonstrate that the resulting model is suitable for
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not only the current working power levels but also the other operating conditions. This

is desirable in practice since we would like a model identified around an equilibrium to be

applicable when the system is moving to another equilibrium. Ignoring the nonlinear part

results in a model that can not capture the nonlinear feature due to the line loss and is

only acceptable within a small range around the current operating level. Once the proposed

model is formulated, one can carry out the model based controller design to manipulate the

set point values of DERs to achieve the desired objective and dynamic performance at the

PCC while taking the power loss at transmission lines into account.

This chapter is based on the following papers that were published or submitted:

Y. Hu, S.A.R. Konakalla and R.A. de Callafon, “Covariance based estimation for reduced

order models of microgrid power flow dynamics,” in Proceedings of IFAC 18th Symposium

on System Identification (SYSID 2018), Stockholm, Sweden, Jul. 9–11, 2018, pp. 903–908.

Y. Hu and R.A. de Callafon, “Microgrid dynamic modeling with power flow covariance data,”

IEEE Transactions on Power Systems, under review.
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Chapter 7

Tensor Network Based MIMO

Volterra Model for Lithium-ion

Batteries

In this chapter, we develop a Tensor Network (TN) based Volterra double-capacitor

(VDC) model for lithium-ion batteries to improve the prediction performance of the nonlinear

double-capacitor (NDC) model. It is shown that the VDC model maintains the advantages

of the NDC model to account for the rate capacity effect and the voltage recovery effect.

In addition, the VDC model is capable of predicting both static and dynamic nonlinearities

simultaneously in a more accurate way.
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7.1 Introduction

Rechargeable batteries have become a major driver for applications ranging from

portable consumer electronics to electric vehicles and microgrid applications. Among them,

lithium-ion batteries (LiBs), having a high power/energy density, a long life span, high energy

storage efficiency, and environment friendliness, are attracting more and more attention in

both research and application fields [98, 99, 100, 101, 102]. There are roughly two major

developed efforts in LiBs: one is focusing on the battery cell design, materials selection for

electrodes and electrolytes, pack structure optimization etc., to develop high-performance

batteries; the other one is implementing advanced battery management systems (BMS) to

maximize the utilization efficiency and safety for given types of batteries generally based on

estimation of the State-of-Charge (SoC), State-of-Power (SoP), and State-of-Health (SoH).

Algorithms for BMS generally require mathematical models that describe battery

physics and dynamics. Two main types of battery models have been intensively investigated:

physical models based on electrochemical principles and equivalent circuit models (ECMs)

by referring to electric circuit theory and system theory [103, 104, 105, 106, 99, 107, 108,

109, 110, 111, 112, 113, 114, 115, 116, 117]. A brief comparison between the two models can

be found in [115], where the NDC model was proposed to bridge the gap between physical

models and ECM. The NDC model is a modification of a linear double-capacitor model

[118] while maintaining feature to account for rate capacity effects and energy recovery

effects. The nonlinear mapping introduced in the NDC model is based on the observation

of the nonlinear SoC-OCV (Open Circuit Voltage) curve. However, the SoC-OCV curve is

a static feature for the LiBs fully at rest and does not reflect the full nonlinearity when the
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batteries are used dynamically. As shown in the validation experiment for identification 2.0

in [115], the resulting SoC-OCV curve identified by the NDC model does not fully match the

measured curve when the training process was trying to capture both the static and dynamic

nonlinearities. Despite the less accurate static prediction, the dynamic prediction was still

improved by using the NDC model. This observation provided the motivation for this chapter

to propose a new model to account for the two types of nonlinearities simultaneously.

Both electrochemical models and ECMs have physical explanations for the under-

lying processes happening inside of the battery during charging/discharging. However,

due to the limited knowledge about the complicated dynamic processes involved in charg-

ing/discharging, they are impossible to model all the processes. Pure data-driven model-

ing approaches such as system identification or machine learning provide an alternative to

first-principles modeling [2, 3, 119, 46, 72]. Instead of figuring out the detailed electro-

chemical and physical processes, data-driven modeling uncovers the underlying relationship

between the historical input/output data from the perspectives of statistics and optimization.

These techniques have been demonstrated effective in different battery modeling applications

[120, 90, 121, 122, 123, 124, 125]. However, a large amount of data is generally required to

guarantee such an effective model, and the resulting model can easily suffer overfitting prob-

lems.

In this chapter, a hybrid combination of an ECM and TN-based supervised learning

is used for battery modeling to enable physics-informed data-driven learning of the unknown

nonlinear dynamics inherent to batteries. For the ECM part, the linear double-capacitor

model is used to extract the voltage and SoC features within the battery. These features

are then fed into a supervised learning framework as shown in [126] to learn the nonlinear
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dynamics between the raw input features and output terminal voltage. However, compared

to [126], this chapter introduces a new modification that the input features are further

encoded into a feature map described by a Volterra model which can also be equivalently

written into a TN representation for better computational efficiency. The reason for using TN

representation is that it can mitigate the curse of dimensionality encounterd by a normal

Volterra model with a large memory length and a high model degree [64]. Thus, a TN

representation allows the Volterra model to capture complex coupled nonlinear dynamics

from the numerical perspective. In addition, we propose the bond core sweeping algorithm,

which uses the ε-truncated singular value decomposition (SVD) [68], to ignore less significant

modes and seek the low-rank property intrinsic to data to avoid overfitting.

The contributions of this chapter can be summarized as follows.

First, a novel TN-based VDC model is developed. A linear double-capacitor model

proposed in [118] with the currents as the input signals is used as an initial feature extrac-

tor. The raw features produced by the linear double-capacitor model are then fed into a

supervised learning structure described by a TN-based Volterra model to predict the output

terminal voltages. The proposed VDC model maintains some advantages of the linear double-

capacitor model such as capturing the rate capacity effect and the voltage recovery effect.

On the other hand, there are different sources of the dynamic nonlinearities including the

hysteresis for charging/discharging, unmodelled dynamics, etc. The linear double-capacitor

model or the NDC model, as an approximation of the true dynamics inherent to a LiB,

involves model mismatch inevitably. The proposed VDC model then has an advantage over

the NDC model proposed in [115] in terms of accounting for both static and dynamic non-

linearities simultaneously in a more accurate way by incorporating a data-driven technique.
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To our best knowledge, this study is the first to apply TN-based Volterra techniques in the

application of battery modeling.

Second, a bond core sweeping algorithm is developed to estimate the TN-cores of

the proposed VDC model. The proposed algorithm is developed by modifying the sweeping

optimization algorithm in [126]. The first major difference is that a least squares technique

is used to estimate each bond core instead of using gradient descent algorithm. The reason

is that the convergence of the gradient descent algorithm can be rather slow for a problem

in which the gradient is rank deficient. This problem is encountered in our application. The

second major difference is that an ε-truncated singular value decomposition is used when

splitting the bond core into two individual TN-cores. The advantage is that the model

complexity can be adjusted and simplified by emphasizing the low-rank estimation. Seeking

a low-rank approximation is important to avoid overfitting.

Third, experimental validation is performed to assess the performance of the proposed

VDC model. The approach to generating the training data for a nonlinear dynamic battery

modeling is presented. The effect of the range of current magnitudes and SoC values swept

by the training data on the model prediction is also investigated. A comparison of the VDC

model with the NDC model is also given to show the efficacy of the proposed VDC model.

The remaining part of this chapter is organized as follows. Section 7.2 reviews the

TN representation of a MIMO Volterra model. Section 7.3 presents the modeling and pa-

rameter estimation of a LiB. We propose the bond core sweeping algorithm to estimate the

parameters in the VDC model. The formulation of training data is also discussed to facil-

itate the parameter estimation. An experimental validation is investigated in Section 7.4.

We summarize the chapter in Section 7.5.
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7.2 MIMO Volterra Model in the TN Representation

In this section, the TN representation of a MIMO Volterra model is recalled. Denote

the output signal as y(t) ∈ Rm and the input signal u(t) ∈ Rp. The αth element of a vector

x(t) is written as x(α)(t). Assume that there is a nonlinear relationship between u(t) and

y(t) that can be described by a MIMO Volterra model.

A normal description of a discrete-time p-input m-output Volterra system of degree

d can be described as

y (t) = h0 +
d∑
i=1

M−1∑
k1,··· ,ki=0

p−1∑
α1,··· ,αi=0

hk,α1:i φ
k,α
1:i (u (t)) (7.1)

where M is the memory length, φk,α1:i (u(t)) ∈ R and hk,α1:i ∈ Rm are the ith Volterra kernel

function and corresponding kernel coefficient. Specifically, φk,α1:i and hk,α1:i are the abbreviations

of functions of {k1, α1; k2, α2; · · · ; ki, αi} such that

φk,α1:i (u (t)) =
i∏

j=1

u(αj+1) (t− kj) (7.2)

hk,α1:i = hi (k1, α1; k2, α2; · · · ; ki, αi) (7.3)

The kernel function φk,α1:i (·) is a multiplication of different degrees among the possibly different

input components at possibly different time instants. This allows one to capture high order

nonlinearity and even coupled dynamics among different input channels and past states.

Thus, this model structure has great potential for nonlinear system identification.

However, it should be noted that the number of all the kernel coefficients is 1 +∑d
i=1 (pM)i and suffers from the curse of dimensionality as the degree d goes up. Avoiding

the choice of a large d prevents an overburdened storage requirement for a computer, but

limits the model’s capability of capturing complex and even coupled dynamics. On the
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other hand, even if the storage demand is not a problem, recording every detailed kernel

coefficient may be unnecessary since not every kernel will be dominantly active in practice,

which motivates us to seek a low-rank representation of (7.1).

TN representation can be used to address this issue. Following the discussion and

formulation in [64], one can incorporate all the kernel coefficients into a (d+ 1)-way Volterra

tensor V ∈ R(pM+1)×···×(pM+1)×m such that

yT (t) = V×1 uT
t ×2 uT

t · · · ×d uT
t

= (V1×2 uT
t )(V2×2 uT

t ) · · · (Vd×2 uT
t )

(7.4)

where

ut =
[
1,uT (t) ,uT (t− 1) , · · · ,uT (t−M + 1)

]T ∈ RpM+1

and {V1, · · · ,Vd} are the TN-cores of the Volterra tensor V . Note that the last core Vd ∈

Rrd−1×(pM+1)×m and the remaining Vi ∈ Rri−1×(pM+1)×ri with r0 = 1. In fact, the TN-

representation used here is a generalization of the TT-decomposition with rd = m. Once the

TN-cores are obtained, one can simulate the system using the second row of (7.4) without

referring back to its dual representation V , which suffers from the curse of dimensionality.

The number of stored elements in the TN representation {V1, · · · ,Vd} is at a magni-

tude of O((d−1)r2(pM+1)+mr(pM+1)), which will greatly reduce the storage requirement

if the maximal TN-rank r = max{r1, · · · , rd} is sufficiently small. Fortunately, a low value

for the maximal TN-rank r is very common in practical applications, as is the case with

battery modeling. Thus, (7.4) computed with the TN representation {V1, · · · ,Vd} serves

as a low-rank representation of (7.1). The corresponding computational complexity of using

(7.4) is approximately O(d(pM + 1)r2).
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7.3 Battery Modeling and Parameter Estimation

7.3.1 Linear and Nonlinear Double-Capacitor Model

The original linear double-capacitor model for a battery was proposed in [118] and

consists of two serial Resistor-Capacitor circuits in parallel (i.e., Rb-Cb and Rs-Cs) and a

resistor R0, as shown in Fig. 7.1(a). The resistor R0 represents the collected instantaneous

ohmic resistance. The Rs-Cs circuit corresponds to the electrode surface region exposed to

the electrolyte, while the Rb-Cb to the bulk inner part of the electrode. The double-capacitor

structure can capture both the rate capacity effect and the voltage recovery effect since it

is modeling the charge migration between the near-surface and bulk inner domains of an

electrode from the perspective of a single-particle model (SPM) [127, 128, 110].

However, the linear double-capacitor model is unable to describe a defining charac-

teristic of batteries, for instance, the nonlinear SoC-OCV curve. Thus, the linear double-

capacitor model is working well only around a certain SoC range so that the linear ap-

proximation is reasonable. In order to resolve this issue, the NDC model was proposed

in [115], where a nonlinear mapping of Vs was introduced to approximate the SoC-OCV

curve. A parallel RC circuit R1-C1 was also introduced there to account for the voltage

transients related to the charge transfer on the electrode/electrolyte interface and the ion

mass diffusion in the battery [129]. The NDC model is shown in Fig. 7.1(b). Two scenarios

can be considered for the parameter estimation of the NDC model: constant-current charg-

ing/discharging; variable-current charging/discharging. Experiment validation illustrated

that the NDC model can have higher accuracy than other different ECMs under compari-

son. Also, the basic NDC model without the R1-C1 part is almost comparable to the full
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(a) The original linear double-capacitor

model.

(b) The NDC model.

(c) The VDC model.

Figure 7.1: Illustration of different double-capacitor models. The components within the
rectangle are treated as a whole. In (b), h(·) is a nonlinear function. In (c), GSoC(s) is a
linear filter and y is the voltage prediction of the part within the rectangle.

model, especially if the product R1C1 is small.

7.3.2 Hybrid Double-Capacitor Model Development

Despite the advantages of the NDC model, the validation results in [115] indicate a

space for further improvements: the validation data show current-dependence of the param-

eters, which is not considered by the model; the NDC model is estimated independently for
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constant and variable current scenarios, and the model estimated for one scenario offers less

predictive accuracy for the other; the SoC-OCV curve identification for the scenario of vari-

able current matches the true one with relatively limited accuracy since the identifiability

of this defining characteristic becomes less with many parameters to be estimated therein.

As a final remark, the SoC-OCV curve is a static feature for batteries when they are fully

at rest. Thus, the simple nonlinear mapping introduced in the NDC model may not fully

account for the nonlinear transient dynamics. Also, when the battery stops discharging, the

true terminal voltage transient takes a long time to reach the full rest state whereas the

predicted one by the NDC model arrives at the steady state almost instantaneously. This

phenomenon implies that additional dynamics can be modelled within the battery after the

discharging is stopped and before it achieves the fully steady state.

To improve the above mentioned points of the NDC model, a hybrid double-capacitor

model is proposed in this chapter as shown in Fig. 7.1(c). A linear double-capacitor is used to

extract meaningful features of the batteries and a multi-input single-output (MISO) Volterra

system is followed to synthesize all important features to predict the voltage. The proposed

model is referred to as the VDC model in the following discussion.

The state-space equation of the linear part in Fig. 7.1(b) or Fig. 7.1(c), which corre-

sponds to a modified version of the linear double-capacitor model appended with one R-C

component, is given by 
V̇b (t)

V̇s (t)

V̇1 (t)

 = A


Vb (t)

Vs (t)

V1 (t)

+BI (t) (7.5)
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similar to [115], where

A =


−1

Cb(Rb+Rs)
1

Cb(Rb+Rs)
0

1
Cs(Rb+Rs)

−1
Cs(Rb+Rs)

0

0 0 −1
R1C1

 , B =


Rs

Cb(Rb+Rs)

Rb
Cs(Rb+Rs)

1
C1


Note that I > 0 for charging, I < 0 for discharging, Vb = Vs = 1 V for SoC = 1, Vb = Vs = 0 V

for SoC = 0, and SoC is computed as

SoC =
CbVb + CsVs
Cb + Cs

(7.6)

Additional dynamics, which is not captured by the NDC model, can be attributed to

the slow charge diffusion process inside the battery. The battery becomes fully at rest when

the the process reaches its equilibrium. The additional and slow dynamics is not obvious by

using the cycling data with a high switching frequency. This phenomenon can be modeled

as SoC dynamics formulated as a first-order model

GSoC(s) =
1

αs+ 1
(7.7)

shown in Fig. 7.1(c). The static gain of the first-order model is normalized to 1, since the

SoC as a whole within the battery remains the same whereas it takes some time for all the

charges to diffuse toward a steady state. From the electrochemical perspective, it describes

the dynamics of the lithium concentration at the surface of the particle around the average

lithium concentration in the solid. The time constant α would change in practice and thus

requires to be adjusted during the parameter estimation. Denote the output of GSoC(s) in

(7.7) as SoCf (t) at the time instant t.

The battery impedance is typically a function of SoC [130]. However, one can break

it down into a constant part R0 due to the materials of current collectors and the inside
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impedance which is related to the SoC. The inside impedance can be attributed to the SoC

status.

The Vs is the reflection of the surface charge and related to the major part of the

terminal voltage. Different current profile will affect the dynamic changing of Vs and SoCf .

Thus, the current dependence of the model parameters mentioned in the experimental vali-

dation in [115] can be described by the nonlinear interaction between Vs and SoCf .

Finally, the voltage Vs and SoC dynamics SoCf are selected as the input features for

the nonlinear mapping described by the Volterra system. The transient voltage V1 due to

charge transfer and the constant resistance R0 are separated from the nonlinear mapping.

The input vector u(t) of the Volterra system is given as

u (t) = [SoCf (t) , Vs (t)]T (7.8)

One should be careful about the initial state when simulating SoCf (t) using the filter GSoC(s).

For example, for a fully charged battery, the initial SoC(0) = 1 and it should be set as the

initial state of GSoC(s). The other approach is to filter the signal SoC(t) − 1 instead for a

fully charged battery if the initial state of GSoC(s) is set as zero.

Note that the VDC model consists of a linear double-capacitor model and a Volterra

system. The linear part can be determined separately by parameter estimation, where R0

along with other parameters within the linear model will be determined. Then, the Volterra

system serves as a nonlinear correction to improve the voltage prediction.

The terminal voltage V (t) consists of V1(t), I(t)R0, and the output y(t) of the non-

linear mapping described by the Volterra system, i.e.,

y(t) = V (t)− I(t)R0 − V1(t) (7.9)
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The Volterra model is capable of grasping the nonlinearity and complex coupling among the

input features. TN-based representation makes it possible to capture nonlinearity of high

degree while seeking the low rank to simplify the parameterization and prevent overfitting.

Moreover, a Volterra system is always bounded-input bounded-output stable, allowing a

reliable learning of parameters in battery applications.

7.3.3 The Bond Core Sweeping Algorithm

Given the input features u(t) and the output prediction y(t), the next is to estimate

the TN-cores {V1, · · · ,Vd} in (4.2). Although a MISO Volterra system identification is

required for our application, the estimation algorithm will be presented in terms of a MIMO

one for general purpose. The idea of sweeping optimization proposed in [126] is used in this

chapter. However, the inherent ill-condition feature of the Volterra structure in this chapter

will result in a very slow convergence rate for the gradient method, which is used during

sweeping in [126]. Thus, the local optimization during sweeping will be modified to handle

the ill-condition problem.

Note that the dual representation V , which suffers from the curse of dimensionality,

will not be referred to during the whole estimation process. Instead, the TN-cores are opti-

mized directly, and the TN-ranks grow and shrink adaptively during training to concentrate

resources on the most useful correlations within the data for learning.

The cost function to be minimized is

J =
1

2

N∑
t=1

m∑
l=1

(
f (l) (u (t))− y(l) (t)

)2
(7.10)

where f (l)(u(t)) := ŷ(l)(t) is the lth prediction output ŷ(t) of the proposed Volterra model
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in (4.2). The outline of the bond core sweeping algorithm is illustrated in Fig. 7.2. In order

to adaptively estimate the internal TN-ranks, two neighboring TN-cores are merged into a

bond core during each local optimization whereas the other TN-cores are fixed. The local

optimization will sweep left and right to iteratively minimize the cost function. The output

branch will be moving along with the bond core so that the parameters can be adjusted

regarding different outputs during each local optimization.

The original representation of TN-cores are shown in Fig. 7.2(a). The sweeping

algorithm starts from the rightmost. Thus, the rightmost TN-core is firstly modified by

adding one more dimension and isolating the output branch as shown in Fig. 7.2(b). Then,

the rightmost two TN-cores {Vd−1,Vd} are merged to formulate a bond core Bd−1 as shown

in Fig. 7.2(c). The bond core parameters are estimated by minimizing the cost function

(7.10) while fixing the other TN-cores. The estimated bond core should be split up back

into two updated TN-cores. Similar steps are then implemented for the next two TN-cores

{Vd−2,Vd−1}. When the bond core sweeping reaches the leftmost, the sweeping continues

by changing to a right direction. The sweeping procedures go left and right for several

iterations of local optimizations until the estimation error is below a given threshold. In

order to maintain the original TN structure shown in Fig. 7.2(a), the sweeping algorithm

should also stop at the rightmost finally.

For simplicity of notations, denote pu = pM + 1. In terms of an intermediate it-

eration shown in Fig. 7.2(d) where the TN-cores {Vk,Vk+1} form the bond tensor Bk ∈

Rrk−1×pu×m×pu×rk+1 , the output prediction ŷ(t) can be computed as

ŷT (t) = Bk ×1 w1(t)×2 wT
2 (t)×4 wT

3 (t)×5 wT
4 (t) (7.11)
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(a) The original Volterra TN structure.

(b) Isolate the output branch for the final TN-core.

(c) Combine the TN-cores {Vd−1,Vd} into a bond core Bd−1.

(d) Four fixed parts {w1(t),w2(t),w3(t),w4(t)} during the local optimization to estimate an

intermediate bond core Bk. Note that the output branch is shifting along with Bk.

Figure 7.2: Illustration of estimating the bond cores.
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where

w1 (t) =
(
V1 ×2 uT

t

)
· · ·
(
Vk−1 ×2 uT

t

)
w2 (t) = w3 (t) = ut

w4 (t) =
(
Vk+2 ×2 uT

t

)
· · ·
(
Ṽd ×2 uT

t

) (7.12)

and Ṽd ∈ Rrd−1×pu×1 is a modified final TN-core with the output branch on Vd ∈ Rrd−1×pu×m

shifted to the bond core Bk.

The local optimization is to fix the other TN-cores {V1, · · · ,Vk−1,Vk+2, · · · ,Vd} and

estimate the bond core Bk from (7.11). Due to the ill-condition feature of the Volterra model,

the gradient method as in [126] is not used here. Instead, one can solve the local optimization

via least squares. Similar ideas were also used in [64]. Denote B(l)
k ∈ Rrk−1×pu×1×pu×rk+1 as

the lth sub-tensor of Bk corresponding to the lth output, where l = 1, 2, · · · ,m. Also, denote

the pseudo-inverse operator as pinv(·). Then, Bk can be estimated as

Bk (:, :, l, :, :) = B(l)
k

(7.13)
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where

B(l)
k = reshape(vec(B(l)

k ), [rk−1, pu, 1, pu, rk+1])

vec(B(l)
k ) = pinv (W) Yl

W =



wT
4 (1)⊗wT

3 (1)⊗wT
2 (1)⊗w1 (1)

wT
4 (2)⊗wT

3 (2)⊗wT
2 (2)⊗w1 (2)

...

wT
4 (N)⊗wT

3 (N)⊗wT
2 (N)⊗w1 (N)



Yl =



y(l) (1)

y(l) (2)

...

y(l) (N)



(7.14)

and N is the number of available training data points. Note that W only needs to be

computed for once during each iteration.

Once the bond core Bk has been updated, one can split it up into two new TN-

cores and move the output branch to the next TN-core. The singular value decomposition

(SVD) is used to collapse the bond core while the TN-rank rk is updated by observing the

number of dominant singular values. In order to determine the dominant singular values, an

ε-truncated SVD [68], presented in Algorithm 6 following a MATLAB fashion, is performed

with the sum of squares of the truncated singular values not being greater than a percentage

of ε2 of the total one. The next step is then to update the bond core Bk−1 if sweeping left or

Bk+1 if sweeping right. The implementation of splitting up the bond core and shifting the

output branch for both left and right sweeping is illustrated in Fig. 7.3, and the complete
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(a) Sweeping from right to left.

(b) Sweeping from left to right.

Figure 7.3: Illustration of shifting the output branch during bond core sweeping. The
rectangular box drawn with dashed lines is showing the pair of TN-cores to be merged into
a bond core.

algorithm in a MATLAB fashion is summarized in Algorithm 7. In the figure, a tilde sign

will be added over the notation of the TN-core whose dimension is different from its original
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one. Since the algorithm is set to stop sweeping at the rightmost TN-core, Vd should be

permuted back to the original three-way tensor with TN-rank rd = m in the final step.

Algorithm 6: ε-Truncated SVD

Input: Matrix B, expected amount ε in percentage to be truncated
Output: Estimated rank r; truncated {L1,S1,Z1} via SVD

1 [L,S,Z]← SVD(B,‘econ’)
2 r ← numerical rank determined by removing at most ε portion of insignificant

singular values in S such that their sum of squares is not greater than ε2‖S‖2
F

3 L1 ← L(:, 1 : r)
4 S1 ← S(1 : r, 1 : r)
5 Z1 ← Z(:, 1 : r)

7.3.4 Acquisition of Training Data

We have proposed a VDC battery model to capture the complex and coupled dy-

namics and the bond core sweeping algorithm to estimate its parameters. In addition, the

experiments to acquire the training data should be carefully designed to excite the major

dynamics within the battery. An accurate prediction of the static SoC-OCV characteristic is

also desired for the proposed model since the batteries are usually in a storage state for most

of its life time in practice. Thus, we would like to train a model with both good dynamic

and static predictions.

In order to achieve an accurate dynamic prediction, the model should be fed with

data containing rich modes. This requirement is also known as persistent excitation in the

field of system identification [2, 69]. A white excitation input signal sweeping the whole

working range is desired but not practical in many applications. Instead, a relatively small

data set with several different variable-current profiles are sufficient for the proposed VDC

model. Denote this part of training data as Dynamic Training Data (DTD).
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The proposed VDC model is a hybrid model with both physically meaningful modeling

and complexity-adjustable nonlinear mapping. One advantage of the Volterra structure is

that the nonlinear mapping is always stable, and thus there is no need to worry about

a divergent prediction during validation or in real-time battery monitoring. The adaptive

adjustment of the TN-ranks of the proposed model during training also reduces the overfitting

problem since the low-rank feature within the data is explored. Thus, it is unnecessary to

use a very large data set as in training pure black-box models such as deep neural networks.

In order to capture the static feature, the SoC-OCV information should also be fed

into the VDC model. Thus, a characterization experiment should be performed to obtain

the SoC-OCV curve, denoted as OCV = h(SoC). Let {SoCi, OCVi}, i = 1, · · · , Nd be the

Nd sampled points of the SoC-OCV curve. Then, the corresponding training data for the

static feature can be constructed such that, for each pair {SoCi, OCVi}, the input/output

data {u(t),y(t)} in (7.8) and (7.9) is formulated as

Vs (t) = SoCf (t) = SoCi

y (t) = h (SoCi)

(7.15)

for a time interval with certain duration, i.e., t ∈ [Li, Ri]. The duration depends on how

much emphasis we would like to put on the static feature during training. Since there are

Nd pairs of {SoCi, OCVi}, there will be Nd such individual subintervals for (7.15). Denote

this part of training data as Static Training Data (STD).

The reason why (7.15) reflects the static relation between the SoC and OCV is that the

proposed VDC model is capable of describing the state of the battery when it is fully at rest.

The battery will be at equilibrium when it is fully at rest after stopping charging/discharging.

Thus, the current I(t) and the transient voltage V1(t) will become zero and the other inner
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states Vs(t), SoC(t), and SoCf (t) will become the same. This inherent property makes the

VDC model more powerful in simultaneously capturing both dynamic and static features of

the battery.

In sum, two types of training data are required: DTD and STD. The first part focuses

on the dynamics and the second part focuses on the static feature. The STD is constructed

based on the SOC-OCV curve and its duration can be selected based on how much weight

to put on the static feature.
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Algorithm 7: Bond Core Sweeping Algorithm

Input: N input/output sampled data {u(t),y(t)} in (7.8) and (7.9), memory
length M , degree d, expected accuracy ε in percentage

Output: TN-cores {V1, · · · ,Vd} in (4.2) minimizing (7.10)
1 Initialization: Construct ut in (4.2); r0 ← 1, rd ← m; initialize left orthogonal

TN-cores {V1, · · · ,Vd} of ranks 1, i.e., ri ← 1, i = 1, 2, · · · , d− 1; the starting
index k ← d− 1; sweeping direction R2L ← ‘left’

2 Vd ← reshape(Vd, [rd−1, pu,m, 1])
3 rd ← 1
4 while the termination criterion is not satisfied do

Compute {w1(t),w2(t),w3(t),w4(t)} in (7.12)
for l = 1, · · · ,m do

Bk(:, :, l, :, :)← B(l)
k as in (7.13)

if R2L is ‘left’ then
Bk ← reshape(Bk, [rk−1pum, purk+1])
{r,L1,S1,Z1} ← ε-truncated SVD on Bk

rk ← r
Split Bk while keeping left orthogonal:
Vk ← reshape(L1S1, [rk−1, pu,m, rk])
Vk+1 ← reshape(ZT

1 , [rk, pu, rk+1])
if k > 1 then

k ← k − 1
else

R2L←‘right’

else
Bk ← reshape(Bk, [rk−1pu,mpurk+1])
{r,L1,S1,Z1} ← ε-truncated SVD on Bk

rk ← r
Split Bk while keeping right orthogonal:
Vk ← reshape(L1, [rk−1, pu, rk])
Vk+1 ← reshape(S1Z

T
1 , [rk,m, pu, rk+1])

if k < d− 1 then
k ← k + 1

else
R2L←‘left’

5 Vd ← permute(Vd, [1, 3, 2, 4])
6 rd ← m
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7.4 Experimental Validation

This section presents the experimental validation of the proposed TN-based VDC

model and the comparison with the other relevant methods. All the experiments in this sec-

tion were conducted on a PEC SBT4050 battery tester. It can support charging/discharging

with arbitrary current-, voltage-, or power- based loads up to 40 V and 50 A. A dedicated

server prepares and configures a test offline and collects sampled experimental data online via

the associated software, LifeTest. Charging/discharging tests were performed on a Panasonic

NCR18650B lithium-ion battery cell, which was also used in [115], to generate experimental

data. Note that the battery cell was set to operate between 3.2 V (fully discharged) and 4.2

V (fully charged). In this section, only the discharging case is considered.

Two perspectives of validation are performed in the rest of this section. The first one

shows the arrangement of training and validation data, the parameter estimation of TN-cores

via the bond core sweeping algorithm, and the prediction accuracy of the estimated VDC

model. The second one shows the requirements about training data to ensure the success of

the identification algorithm, serving as a note for practitioners.

7.4.1 Training and Validation Results

The proposed hybrid VDC model consists of a linear double-capacitor model and a

Volterra model. The parameters of the linear double-capacitor can be directly identified or

using the linear part extracted from the identified NDC model in [115]. Note that the linear

double-capacitor model here serves as a feature extractor to produce useful features that

are fed into the Volterra system. Thus, slight distortion of using a different identified linear
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model is not a problem and will be accounted for during training of the Volterra model. As

presented in Section 7.3.4, two types of training data, i.e., DTD and STD, are required.

In order to persistently excite the VDC model, the dynamic modes in the training

data should be sufficiently rich. Thus, variable-current discharging data should be included.

Since the VDC model describes the nonlinear dynamics among the current I(t), the voltage

Vs(t), and SoC dynamics SoCf (t), the training data should sweep across the preset working

range of current and SoC. Otherwise, the prediction of the nonlinear model outside the

uncovered working range will show unexpected behaviors due to unmodeled dynamics. This

phenomenon will be illustrated in Section 7.4.2.

In order to maintain the static SoC-OCV feature of the lithium-ion battery, additional

training data described in (7.15) should also be included. This portion of training data will

guarantee that the voltage prediction of the VDC model arrives at the corresponding value

according to the SoC-OCV curve when the battery is fully at rest.

In order to better describe the low-frequency dynamics, at least one constant-current

discharging data set should be included in the training data. The reason is that the variable-

current discharging data focuses on the high frequency dynamics due to fast switching and

thus contains little information about the modes lying in the low-frequency band.

Finally, the training data should include three parts: DTD1 (variable-current profile

for high frequency dynamics), STD (SoC-OCV characteristics for static features), and DTD2

(constant-current profile for low frequency dynamics).

In our experiment, DTD1 consists of two variable-current profiles (0∼3 A and 0∼6

A) shown in Fig. 8 and Fig. 9 in [115]. Note that the second one sweeps mainly across about

2∼6A. Thus, the two profiles allow the nonlinear dynamic modeling for working range 0∼6 A.
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STD describing the static features is formulated as in (7.15) with {SoCi, OCVi}, i = 1, · · · , 21

being the 21 equidistantly data points sampled every 5% SoC from the SoC-OCV curve and

the duration Ri − Li = 500 seconds. DTD2 consists of one constant-current profile (3.5 A).

The resulting physical parameters were estimated by the 2.0 identification approach

in [115] and are given as follows: Cb = 10, 031 F, Cs = 979 F, Rb = 0.063 Ω, Rs = 0 Ω,

R1 = 0.003 Ω, C1 = 2, 449 F, and R0 = 0.069 Ω. These parameters determine the feature

extractor described by the linear double-capacitor model in (7.5). Then, the TN-based

Volterra model with input/output {u(t),y(t)} defined in (7.8) and (7.9) was estimated using

the bond core sweeping algorithm proposed in Section 7.3.3 with memory length M = 3,

degree d = 5, filter time constant α = 1/0.003, and ε = 0.4. Note that the truncation factor

ε is adjusted to seek the low-rank estimation as much as possible while maintaining the

prediction accuracy. This procedure will prevent the resulting model from being overfitted.

In practice, one should increase ε if the available dynamic modes are getting richer with

increasing model complexity. The estimated TN-ranks are illustrated in Table 7.1. The

training algorithm takes about 23 seconds on an Intel Core i5-10210U CPU with 16 GB

RAM. The training results are shown in Fig. 7.4, Fig. 7.5, Fig. 7.6, and Fig. 7.7.

Table 7.1: Estimated TN-ranks for {V1, · · · ,V5}.
TN-rank r̂1 r̂2 r̂3 r̂4

value 4 7 6 7

For variable-current profiles, the VDC model produces the best voltage prediction

both during cycling and resting. The NDC model uses a static nonlinear mapping estimated

to balance the trade-off between the nonlinear dynamics and static SoC-OCV relationship.

Despite the improvement in the dynamic prediction, the trade-off is obvious: the NDC model
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(a) The voltage prediction for the variable-current profile 0∼6 A.
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Figure 7.4: Illustration of the voltage prediction by the proposed model for the variable-
current profile 0∼6 A in the training data set DTD1.

cannot fit the dynamics and static feature simultaneously. Thus, the NDC model shows

better prediction accuracy than the Thevenin model during discharging, whereas the voltage

prediction of the NDC model is less accurate when at rest. Fig. 7.6 shows the prediction

of SoC-OCV relationship using VDC model. It illustrates that the VDC model can be

used to produce a more accurate dynamic voltage prediction without deteriorating the static

prediction of the SoC-OCV feature. For the constant-current profile (3.5 A), one can observe

that the Thevenin model is doing its best to minimize the error during discharging but is

limited due to the lack of model fidelity. The VDC model is the best and can accurately

166



0 2000 4000 6000 8000 10000 12000

Time (s)

3.2

3.4

3.6

3.8

4

4.2
V

o
lt
a
g
e
 (

V
)

True

Thevenin

NDC

VDC

(a) The voltage prediction for the variable-current profile 0∼3 A.

0 2000 4000 6000 8000 10000 12000

Time (s)

0

1

2

3

4

E
rr

o
r 

(%
)

Thevenin

NDC

VDC

(b) Fitting error in percentage.

Figure 7.5: Illustration of the voltage prediction of the proposed model for the variable-
current profile 0∼3 A in the training data set DTD1.

capture the diffusion dynamics during the idling period.

The validation data consists of four constant-current profiles (1 A, 1.5 A, 2 A, 2.5

A) and one variable-current profile (1.5∼2.5 A). The prediction accuracy for the validation

data is shown in Fig. 7.8 and Fig. 7.9.

For the constant-current profile in the validation data, the VDC model is showing

the best voltage prediction for all four cases in the following aspects as shown in Fig. 7.8:

the dynamic nonlinearities are being accurately predicted during discharging; the transient

diffusion dynamics are being accurately tracked during the idling period; the errors of static
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Figure 7.6: The model prediction of SoC-OCV relationship for the training data set STD.

0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

3.2

3.4

3.6

3.8

4

4.2

V
o
lt
a
g
e
 (

V
)

True

Thevenin

NDC

VDC

Figure 7.7: The voltage prediction for the constant-current profile (3.5 A) in the training
data set DTD2.
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Figure 7.8: The voltage prediction for the constant-current profiles (1 A, 1.5A, 2 A, 2.5A)
in the validation data set.

voltage predictions when at rest are small. As expected, the NDC model is showing the

largest bias in the voltage prediction when at rest. The Thevenin model is struggling to

predict the true dynamics. For the variable-current profile in the validation data, the VDC

model performs the best during both the discharging period and idling period. Similar to

the training result, the NDC model is better in dynamic prediction than the Thevenin model

whereas it produces still relatively large bias during resting.

7.4.2 The Effect of Training Data Range

Section 7.4.1 has demonstrated the efficacy of the proposed method. Since nonlinear

dynamics is modelled, it should be mentioned that the VDC model, due to its data-driven

nature, will only capture the nonlinearity within the observed range of input current magni-
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Figure 7.9: Illustration of the voltage prediction of the proposed model for the variable-
current profile 1.5∼2.5 A in the validation data set.

tudes and SoC values. Thus, it is necessary to select the training data sweeping across the

normal working range. The nonlinearity is directly related to the input current magnitude

and the battery dynamics keeps changing along with the SoC. For this reason, the current

profiles should cover those common magnitudes in practice, and the training data should

spread from full SoC to almost empty.

In order to demonstrate the effect of training data range, the investigation of pa-

rameter estimation was performed on the two variable-current profiles in DTD1. The 0∼3

A variable-current profile spreads from SoC = 100% to SoC = 14% (almost empty). The
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Figure 7.10: Illustration of the effect of training data range on the model fitting. The training
data includes STD and a variable-current profile 0∼6 A with the SoC spreading from 100%
to 47%.

0∼6 A variable-current profile spreads from SoC = 100% to SoC = 47%. The STD and

the experimental data corresponding to 0∼6 A were used to train the TN Volterra model.

The other one (0∼3 A) was used for validation. The results are shown in Fig. 7.10. The

figure shows the voltage prediction on the validation data and the black vertical dashed line

indicates the time instant where SoC = 47%.

For the stage when the SoC is above 47%, the voltage prediction is good. However,

when the SoC is dropping below 47%, the voltage prediction is getting worse. The reason

is that no training data is sweeping below SoC = 47%. Thus, the VDC model is not

persistently excited in the SoC range below 47%. This observation indicates a common and

important need when performing nonlinear modeling: the training data should cover the

normal working range of the batteries.
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7.5 Conclusion

This chapter proposes a novel TN-based VDC model. The VDC model consists of two

parts: a linear double-capacitor model and a TN-based Volterra model to capture nonlinear

dynamics. The proposed VDC model has the advantage to model both static and dynamic

nonlinearities simultaneously in a more accurate way. It is by nature an SoC-dependent

model, which will capture the changes in the battery dynamics as the SoC is varying. Pa-

rameters of the VDC model are estimated via the bond core sweeping algorithm. It allows

the Volterra model to seek a low-rank representation during training which also reduces the

overfitting problem. The experimental results show that the VDC model produces a much

more accurate voltage prediction than the Thevenin model and NDC model. The prediction

error of the proposed model can be less than 0.5% as shown in the experimental validation.

It is illustrated that the TN-based VDC model can serve as a powerful tool in modeling

unknown and complex nonlinearities within the batteries using a data-driven model.

This chapter is based on the following paper that was submitted:

Y. Hu, R.A. de Callafon, N. Tian and H. Fang, “Tensor network based MIMO Volterra

model for lithium-ion batteries,” IEEE Transactions on Control Systems Technology, under

review.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This dissertation presents both theoretical and applied research on low-rank approx-

imations for estimation of multivariable dynamics by using MIMO system identification

techniques. Regarding MIMO linear systems, an in-depth study on the CoBRA, a branch of

subspace methods, is conducted and the CoBRA is implemented in microgrid dynamic mod-

eling. Regarding MIMO nonlinear systems, TN-based algorithms on MIMO Volterra systems

are investigated and applied in battery modeling. Throughout the work in this dissertation,

the SVD tool plays an important role in low-rank approximations, which result in low-order

models or simplified parameterization, during estimation of multivariable dynamics.

The CoBRA has been demonstrated to be effective in obtaining low-order models

in practice using input/output data heavily contaminated by noise with unknown spectrum

characteristics in previous work. Noting the advantages of the CoBRA in handling a large

amount of noise-contaminated data and focusing on low-order model estimation, we did
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several further research in the CoBRA. First, we incorporated the CoBRA into LTP sys-

tem identification and accurately captured the periodic dynamics from data. This research

expands the scope of application of the CoBRA. Second, we carried out a comprehensive

statistical analysis on the CoBRA and illustrated how the noise effects were reduced by in-

troducing covariance functions and the instrumental variable. An optimal implementation of

the CoBRA by using weighting matrices based on these results was then developed therein.

It was shown in a closed-loop setting that the optimal CoBRA shows higher accuracy in pa-

rameter estimation than other competitive subspace methods. Finally, we used the CoBRA

to estimate a linear dynamic model in the application of microgrid power flow estimation

and further demonstrated the efficacy of the CoBRA in practice.

A MIMO Volterra model is attractive in nonlinear system identification due to its ca-

pability to describe complex coupled nonlinear dynamics. In addition, it is always bounded-

input bounded-output stable, which makes it a good model candidate for many real-world

applications. Noting that the TN representation proposed in previous work enables us to

exploit a more powerful Volterra model of high degree and long memory length, we did

several studies in the TN-based algorithms and input excitation signal selection for MIMO

Volterra system identification. First, we modified the existing iterative TN-based algorithms

and proposed noniterative implementations. The noniterative TN-based algorithms are ad-

vantageous over the iterative ones such as the ALS and MALS which require an initialization

and do not guarantee the convergence to an appropriate solution. In addition, the proposed

noniterative algorithms actively remove less significant modes and emphasize low-rank ap-

proximations. Second, we derived a persistent excitation condition in the case of zero mean,

Gaussian distributed (not necessarily white) input signals and illustrated it in a simulation
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example. Finally, we used the TN representation of a Volterra model to learn a nonlinear

mapping in the application of modeling a lithium-ion battery and showed improved pre-

diction accuracy compared with other competitive methods. This provides insights into

applying TN-based MIMO Volterra model to other applications where nonlinear mappings

may need to be estimated.

8.2 Recommendations for Future Work

This dissertation derives several useful results for system identification and demon-

strates the efficacy by two interesting applications. However, there are still potential direc-

tions for future research.

First, it would be interesting to investigate the implementation of the CoBRA for a

linear parameter-varying (LPV) system and a more general nonlinear model. This motivation

is obvious since most systems in practice are nonlinear by nature although they can be

approximated by a linear model around an equilibrium. In addition, it is worth studying the

CoBRA in the frequency domain since the covariance data can be equivalently transformed

into power spectrum.

Second, the TN representation can be incorporated in other different system identi-

fication problems, where either a large-scale data matrix or a large-scale parameter vector

needs to be formulated. This attempt will further exploit the potential of certain model

structures to describe complex behaviors in the data. This is promising especially nowadays

since more and more data is available and all kinds of complicated phenomena are being

modeled.
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Finally, it is interesting to look at more control relevant applications such as au-

tonomous driving, aircraft flight control, robotic control, etc, where a good model is typically

required for an effective controller design. System identification will play an important role

in the modeling process and facilitate the feedback controller design thereafter. Exploring

specific applications will bring up important inherent modeling problems in practice and

push forward the development of system identification.
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