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ABSTRACT OF THE DISSERTATION

Precoding-Based Techniques for Multiple Unicasts in Wired and Wireless Networks

By

Abinesh Ramakrishnan

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2015

Professor Athina Markopoulou, Chair

In this thesis, we study intersession coding for multiple unicasts in wired and wireless network

settings. In particular, we apply alignment techniques and investigate the effect of structure

of the transfer matrix to their performance. In addition, we also look at the coded caching

problem and we propose an efficient delivery scheme that outperforms state-of-the-art.

The thesis is divided into three parts. In the first part, we consider the problem of network

coding across three unicast sessions over a directed acyclic graph, where each unicast session

has a min-cut of 1. We consider a network model in which the middle of the network can

only perform random linear network coding. We adapt interference alignment technique,

originally developed for the wireless interference channel, to construct a precoding-based

linear scheme, which we refer to as precoding-based network alignment (PBNA). The primary

difference between this setting and the wireless interference channel is that the network

topology can introduce dependencies among the elements of the transfer matrix and can

potentially affect the achievable rate of PBNA. We identify all these dependencies and we

interpret them in terms of network topology. We also show that, depending on these network

topologies, the optimal symmetric rate achieved by any precoding-based linear scheme can

take only three possible values, all of which can be achieved by PBNA.

In the second part, we consider the interference channel with K transmitters and K receivers

xi



all having a single antenna, wherein the K×K transfer matrix representing this channel has

rank D (less than K). The degrees of freedom of such channels are not known as the rank-

deficient transfer matrix creates algebraic dependencies between the channel coefficients.

We present a modified version of the alignment scheme, to handle these dependencies while

aligning interference, and derive the sufficient conditions for achieving half rate per user

using this scheme. We show the difficulties in proving these sufficient condition for K = 4

and K = 5 and we also show that these sufficient conditions are not satisfied for K ≥ 6.

Finally, we study the coded caching problem: a network with several users trying to access

a database of files stored at a server through a shared bottleneck link is considered. Each

user is equipped with a cache, where files can be prefetched according to a caching policy,

which is mainly based on the popularities of the files. Coded caching tries to exploit coding

opportunities created by cooperative caching and has been shown to significantly reduce the

load on the shared link. Most prior work focused on optimizing the caching policy so as to

minimize this expected load. Given the caching policy and the user demands, the problem

of minimizing the load over the shared link is essentially an index coding problem. In this

part of the thesis, we design a novel delivery scheme, Heterogeneous Coded Delivery (HCD),

that builds on a prior scheme for the uniform demand case, but performs better in the

non-uniform demand case. We evaluate this delivery scheme for different caching policies.

xii



Chapter 1

Introduction

1.1 Network Coding

Today’s networks are all based on the fundamental principle that the network forwards data

but the information itself is processed only at the end-nodes. Network coding was introduced

over a decade ago and promised to revolutionize the way we think and operate networks.

The main idea of network coding was that if intermediate nodes are allowed not only to for-

ward, but also to process and combine packets, then we can increase throughput by allowing

each flow to use the full capacity of shared links [1] and facilitate distributed operation of

networks via random network coding [2]. The concept of network coding builds upon the fun-

damental observation that even in error-free communication networks, compared to routing

only approaches, applying coding operations at intermediate nodes as well as at the terminal

nodes introduces extra flexibilities and new possibilities, which leads to new understandings

in achieving low-cost, high-rate, or fault-tolerant data transmission. Maximizing information

exchange over communication networks has been a major subject among both the informa-

tion theory and the networking communities, and this breakthrough idea generated interest

1



in these communities, especially since it showed promise to revolutionize the way we think

and operate networks.

Despite the promise and significant amount of research activity generated over the last

decade, network coding has not yet realized its full potential. For example, there have been

relatively few practical implementations of network coded systems today, the best known

of which are in peer-to-peer networks [3, 4] and COPE [5] in wireless multihop networks.

Given that most Internet traffic today is carried over unicast connections, understanding

how to perform network coding across multiple unicasts is crucial for making the case for

(or against) the deployment of network coding.

Multi-commodity Flows and the Benefit of Network Coding. Without network coding, the

multiple unicast routing problem becomes the multi-commodity flow problem (MCF). The

fractional multi-commodity flow problem can be solved using linear optimization. But the

integer MCF is a generalization of the edge disjoint path problem. The goal in the edge

disjoint path problem is to connect as many pairs (si, ti) as possible using non edge inter-

secting paths, which is closely related to the integer MCF problem. The edge-disjoint path

problem is a well-known NP-hard problem in both directed and undirected settings. The

concepts of integral routing and fractional routing are analogous to the coding and transfer

of scalars and vectors respectively. In directed networks, the throughput improvement due

to network coding is unbounded, and may increase at the speed of Θ (|V |) as the network

size grows [6, 7].

Fig. 1.1(a) shows the famous “butterfly” example, where two unicast sessions are to be set

up in a directed network, with throughput requirement (1, 1), this is widely known as the

butterfly network. Fig. 1.1(b) shows a coded transmission scheme that realizes both sessions

without violating link capacity bounds or link directions. With routing only, the rate vector

(1, 1) is infeasible. Note that there is only one path connecting S1 to R1, S1 → A→ B → R1,

and there is only one path connecting S2 to R2, S2 → A→ B → R2. These two paths share

2



(a) Two unicast sessions in a directed
network, each with throughput require-
ment 1.

(b) A coded transmission scheme that
realizes these two unicast sessions

Figure 1.1: Butterfly with unicasts [8].

the unit capacity link A→ B, which becomes a bottleneck. The example in Fig. 1.1 contains

two unicast sessions, and shows a coding advantage of 2.

Networks with larger number of sessions can be constructed according to a similar pattern,

such that larger coding advantages are exhibited [6,9]. A pattern of directed multiple unicasts

that favors network coding. Each Si is connected to A and all receivers except Ri; each Ri is

connected from B and all senders except Si. As shown in Fig. 1.2, a directed network of the

pattern has 2n unicast terminals, and two relay nodes A and B. Every sender is connected to

A, every receiver is connected from B, and A is connected to B. Furthermore, every sender

Si is connected to all receivers except the matching one, Ri (which implies every receiver

Ri is connected from all senders except the matching one, Si). With network coding, each

receiver can send one bit information to A, at which point it is encoded with bits from other

senders, and further relayed to B and then each receiver. Besides, every sender will also

send the same information to the n − 1 receivers it is directly connected to. As a result,

every receiver Ri is able to recover the 1 bit information from Si. Without network coding,

the total throughput of all the k sessions is bounded by 1 bit. This can be verified by the

fact that, removing the single link from A to B disconnects every sender-receiver pair in the

network. In networks conforming to this pattern, network size |V | is 2n+2, total throughput
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Figure 1.2: A pattern of directed multiple unicasts that favors network coding. Each Si is
connected to A and all receivers except Ri; each Ri is connected from B and all senders
except Ri [6, 9].

with coding is n, and total throughput with routing only is bounded by 1. This shows that

the coding advantage grows proportionally as Θ (|V |) in this case, with either integral or

fractional routing [10].

The adoption of network coding ideas into practical networked systems has been hindered,

so far, due to the fundamental challenge: Network Coding across different sessions is hard.

In the single session case, the achievable coded throughput can be nicely characterized. A

throughput demand r is feasible if and only if a directed flow of rate r can be set up from

the sender to each receiver. Intra-session network coding (i.e., coding within a single unicast

or multicast session) is well-understood today: the achievable rates are known (i.e., the

minimum source-receiver min-cut) and coding schemes (deterministic or random) have been

designed to achieve those rates. In contrast, finding the optimal network coding strategy

in the inter-session scenario (i.e., where there are more than one sessions, and receivers are

interested in different sets of information) is arguably the most important open research

problem in the network coding community.
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1.2 Interference Alignment

The recent emergence of the idea of interference alignment for wireless networks has shown

that the throughput potential of wireless networks can be orders of magnitude higher than

previously believed [11]. The canonical example of interference alignment is a communication

scenario where, regardless of the number of interferers, every user is able to access one half

of the spectrum free from interference from other users. The key to interference alignment

is the realization that the alignment of signal spaces (in time, frequency, space and codes) is

relative to the observer (receiver). Since every receiver sees a different picture, signals may be

constructed to cast overlapping shadows at the receivers where they constitute interference

while they remain distinguishable at the receivers where they are desired. This work has

generated a large amount of follow-up work and has revolutionized the information theoretic

study of wireless networks.

The basic intuition behind the idea of interference alignment is illustrated in Fig. 1.3 in the

context of the K user interference channel. Multiple users (transmitter-receiver pairs of the

same color) wish to communicate over the same wireless channel. With vector representation

for signals, the bandwidth is simply the number of signaling dimensions. In the figure we have

a total of two dimensions, i.e., a normalized bandwidth of 2. Thus, each user would be able

to access two signaling dimensions if he had the channel all to himself. With K competing

users, conventional medium-access schemes such as TDMA/FDMA/CDMA would share the

bandwidth among the users so that each user would have access to 2/K signaling dimensions.

However, with interference alignment each user is able to access 1 signaling dimension in the

null space of the interference, thus resulting in an improvement in the overall available

bandwidth by a factor of K/2. This is possible because all interference is aligned into a

one-dimensional subspace while the desired signal at each receiver “stands apart” from the

interference.
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Figure 1.3: Interference Alignment Concept in the K-User Wireless Interference Channel. In
a two dimensional signal vector space, all undesired signals at each receiver align within one
dimension leaving the other dimension interference free for the desired signal which is not
aligned with the interference [11].

Network Alignment (NA). In this dissertation, we apply interference alignment tech-

niques (originally developed for the wireless interference channel) to network coding across

different sessions (with emphasis on unicast) over directed acyclic graphs. We refer to this

new approach that combines network coding and interference alignment as Network Align-

ment (NA).

For example, consider several unicast sessions over a wireline network; this can be thought of

as equivalent to supporting the same unicast sessions over a wireless interference channel with

the same transfer function. This analogy is depicted in Fig.1.4. Multicast at intermediate

nodes of a graph emulates broadcast in the wireless channel. Network coding across sessions

at intermediate nodes emulates superposition in the wireless channel. Essentially, the entire
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(a) Interference channel (b) Multiple unicast network

Figure 1.4: Analogy between a wireless interference channel and a graph with network coding.
3 unicast sessions are established on top of either network. Both systems can be represented
by a linear transfer function and are amenable to alignment techniques.

graph can be viewed as a channel, albeit a channel that is not given by nature, as it is the case

in wireless, but determined by our routing and coding decisions. This has the advantage that

it allows us to control the channel; however it also has the disadvantage that it introduces

spatial-correlation between end-to-end paths, which is not the case, with high probability in

wireless channels. Inter-session network coding across unicast sessions introduces interference

that prevents receivers from decoding the packets of the session they are really interested in.

Interference alignment techniques can then be applied to guarantee (at least) half the rate of

each session, for any number of sessions transmitted over that network, subject to feasibility

conditions. However, traditional IA techniques cannot be applied directly. The main novel

challenge faced by alignment over networks is the aforementioned spatial correlation between

end-to-end paths which with high probability is not present in wireless interference channels;

this correlation stems from the properties of the graph structure and affects the feasibility

and optimality of alignment techniques. Another difference is the operations over finite fields

rather than real numbers.
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1.3 Related Work

Intra-session network coding. Network coding was introduced a decade ago in the

seminal paper [1] which characterized the achievable rates for multicast communication over

graphs. It was followed soon after by papers that developed linear [12], algebraic [2] and

other frameworks. The original work spurred a significant amount of research activity, some

of which is summarized in [13, 14]. Today, intra-session network coding (for multicast or

unicast) is fully understood: the throughput limits as well as efficient, deterministic and

randomized, algorithms are known.

Inter-session network coding. There has been hope that the framework can be ex-

tended to solve a wider array of network capacity problems, namely inter-session network

coding, which includes the practical case of multiple unicasts. inter-session network cod-

ing has demonstrated significant throughput advantage over routing algorithms [1,6,10,12].

A sufficient condition for optimality of linear inter-session network coding was developed

in [2]. However, scalar or even vector linear network coding [15–17] alone has been shown

to be insufficient for optimal inter-session network coding [18], which includes the multiple

unicast setup. In comparison to the single session scenario, the capacity region of multi-

session network coding [10] has been less understood, and only for very special graphs can

we characterize the capacity region, such as directed cycles [7], degree-2 three-layer directed

acyclic networks [19], and special bipartite undirected graphs [7]. Even the inner/outer

bounds of the rate region cannot be computed in practice [20, 21]. In short, the problem

of a unifying characterization of inter-session network coding remains largely open. Only

heuristic/suboptimal approaches are considered in practice, often without even performance

guarantees. The lack of progress on intersession network coding is mainly attributed to its

intrinsic hardness. For example, checking the existence of intersession network coding so-

lutions is an NP-complete problem [22], its information-theoretic characterization is tightly
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intertwined with the fundamental regions of the entropy function [20], and linear coding is

insufficient to achieve the intersession coding capacity [18]. Even when restricting our focus

to only linear codes on directed acyclic networks, it is shown [23], [24] that the feasibility

of linear intersession network coding is alphabet GF(q) dependent, and the complexity of

determining the feasibility of linear intersession network coding is similar to that of the

long standing problems of finding solutions of multi-variate polynomials. In the algebraic

framework [2]: solving an intra-session linear network coding problem reduces to finding an

assignment of coefficients that makes a polynomial non-zero; solving the inter-session linear

network coding problem reduces to finding coefficients that make the diagonal terms of the

transfer function (i.e., direct paths mii) non-zero and the off-diagonal terms mij (i.e., the

interfering paths) zero. The latter results in solving a system of polynomial equations, with

exponential number of variables [24]. With a fixed number of N coexisting sessions and a

fixed alphabet size GF(q), finding a network coding solution is a polynomial time task with

respect to the network size [25]. However, the complexity grows exponentially with respect

to N and b = log2(q), the number of bits representing each alphabet. A good survey on

the hardness of inter-session network coding can be found in [26–28]. To better understand

the capacity of intersession network coding, many ongoing works focus on more tractable

outer/inner bounds analysis for networks of general topology.

Capacity outer bounds have been proposed based on the generalized edge cut condition of the

underlying graph and the associated information-theoretic arguments, including fundamen-

tal regions in the entropy space [20], entropy calculus [29], the network-sharing bound [19],

the information dominance condition [7], and the edge-cut bounds [30]. The achievabil-

ity results, i.e., the inner bound of the capacity region, is generally determined by linear

programming in a similar fashion to that of solving fractional multi-commodity flow, includ-

ing the butterfly-based construction, where the original network is decomposed into many

butterfly substructures [8] and then linear programming is used for finding the correspond-

ing network resource allocation [31], and the pollution-treatment with powerset-based flow
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division [32]. The capacity region of a special conservative requirement is studied in [33].

Another type of approach classifies the coded traffic by the participating sessions. The traffic

flow that is a mixture of N unicast sessions can then be treated as generated from a single

multicast session with N symbols, to which one can apply the min-cut/max-flow (mcMF)

theorem [34], [32]. Recently, a new characterization has been discovered for pairwise inter-

session network coding, which mixes only two symbols of two coexisting unicast/multicast

sessions [28]. When combined with the superposition principle, the pairwise coding results

are used to derive new achievable rates for N coexisting sessions [35]. A nice survey of the

prior works on the inner and outer bounds of the capacity region can be found in [26,28].

To make the problem tractable, some heuristic approaches consider only very restrictive

classes of codes, either in terms of coding operations allowed (e.g., XOR operations) and/or

in terms of coding subgraph (e.g., all packets are coded/decoded hop-by-hop in [5]; butterfly

structures consider two hops [36]; tiling of patterns is considered in [37]). The most restrictive

case is XOR coding between pairs of flows: this allows for a network flow formulation of the

problem [8] known as butterfly packing, but was shown to bring only moderate improvement

compared to traditional routing, depending on the network topology.

Interference alignment in wireless networks. Interference alignment was first intro-

duced in [38] as a coding technique for the two-user Multiple-Input MultipleOutput (MIMO)

X channel. Subsequently, the same principle was applied to the interference channel in [11].

In particular [11] showed interference alignment achieves the maximum degrees of freedom

of the interference channel. Currently, IA schemes have been found for a variety of networks,

these schemes include linear alignment schemes over signal spaces [38], asymptotic alignment

schemes over a large number of dimensions [11], asymmetric complex signaling schemes [39],

interference alignment and cancelation schemes [40] and ergodic alignment schemes [41]. [42]

has a nice review of the fundamental concepts of interference alignment presented in [11].
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(a) Constructive and systematic ap-
proach: Intelligent design of codes at
the intermediate nodes to achieve de-
sired rate.

(b) Distributed and random approach
: Coding coefficient takes random val-
ues and the sources are responsible for
coding their symbols to achieve desired
rate.

Figure 1.5: Network Coding Approaches.

1.4 Motivation

The process of mixing information in the intermediate nodes of a network, as shown in

Fig. 1.5, can be done in two ways: (i) Centralized and systematic approach, where we design

the coding coefficient at the node by carefully selecting the subsets of the flow to combine

and the locations in the graph where coding should be performed; and (ii) Distributed and

random approach, where the coding coefficient take random values.

The first approach is hard because of the combinatorial nature of the problem: one needs to

enumerate and select from all possible subsets of the flows that can be the combined together

(code construction) and from all possible locations in the graph where coding/decoding

should be performed (coding subgraph); unlike the intra-session case, these two problems

also need to be solved jointly. An alternative way to think about the hardness of the problem

is in the algebraic framework [2]: solving an intra-session linear network coding problem

reduces to finding an assignment of coefficients that makes a polynomial non-zero; solving

the inter-session linear network coding problem reduces to finding coefficients that make

the diagonal terms of the transfer function (i.e., direct paths mii) non-zero and the off-
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diagonal terms mij (i.e., the interfering paths) zero. The latter results in solving a system

of polynomial equations, with exponential number of variables [24].

The second approach of using random coding coefficients is easily implementable and is also

useful in scenarios where we don’t have intelligence in the intermediate nodes of the network.

However, the achievable rates are restricted and the schemes for achieving these rates have

to be applied at the source or sink nodes. This is the primary motivation for looking into

precoding-based techniques. Network structure plays a central role in determining the rate

region for both the approaches discussed above as it directly affects the way the flows are

combined together. So it is important to understand how the network structure affects the

achievable rates especially in the precoding based approach.

1.5 Outline

The rest of the thesis is organized into three chapters. In Chapter 2, we start by looking

at the simple, yet non-trivial case of three unicast sessions (K = 3) in a network with min-

cut of 1 per session. In this chapter, we apply an interference alignment techniques called

Precoding-Based Network Alignment (PBNA) and present the minimal set of necessary and

sufficient conditions for the feasibility of the alignment scheme. We will also present a graph

theoretic characterization of these conditions and derive the optimal rates achievable by

any precoding based linear scheme. We will also show that these optimal rates are indeed

achievable using PBNA scheme (with slight modifications in some cases).

After thoroughly analyzing and successfully characterizing the precoding-based linear rates

for the networks with three session, we move on to more than three sessions (K > 3).

Alignment techniques becomes more complex as we increase the number of session. In

Chapter 3, we focus on certain sub-classes of network topologies, namely we look at wireless

12



interference channels with a rank deficient transfer matrix. We present a modified alignment

scheme to deal with the algebraic dependencies introduced by the rank deficiency and analyze

the challenges faced in characterizing the rate regions for these networks as we increase the

number of sessions.

In Chapter 4, we look at the content distribution networks with caches at the end user. The

side information provided by the content of the cache induces index coding instances, which

is a very interesting multiple unicast problem with more than three sessions. We propose

an efficient delivery scheme called the heterogeneous Coded Caching, HCD for short and

evaluate the performance of this scheme.
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Chapter 2

Network Alignment

2.1 Introduction

In this chapter, we are interested in developing a systematic alignment approach for network

coding across multiple unicasts. We are also interested in understanding how the feasibility

and performance vary based on on the network structure. We focus on a useful special case:

network coding for three unicast sessions, which is the smallest, yet non-trivial, instance of

the problem and which can be used as a building block for network coding across multiple

unicasts. The two unicast session case has already been analyzed extensively and we have

approaches and algorithms which can take full advantage of this case. Also, the concept

of interference alignment would become pointless when the number of users are less than

2. So we focus on three unicast session case with hopes that a thorough understanding of

this case would lead to the development of a more general method that could be extended

to more the three session cases. We consider a network model, in which the middle of

the network only performs random linear network coding, and restrict our approaches to

precoding-based linear schemes, where the senders use precoding matrices to encode source
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symbols. We start by taking a look at two widely used approaches to achieve interference

alignment and we show how a particular closed form method (Eigenvector method) of the

precoding-based approach can be applied to the our case of wired network with three unicast

sessions employing inter-session network coding. More importantly, we also analyze the main

precoding-based method which uses asymptotic symbol extension. We derive the condition

for the feasibility of alignment in both of above mentioned methods and try to provide a

better understanding of their relation to the network structure. We analyze the three session

network in further depth and show that even though alignment techniques may provide a

systematic way to achieve half the min-cut, they are not strictly beneficial, as alternative

approaches from current literature can also achieve the same rate. However, this holds only

for the unicast network with three sessions. Towards the end of this chapter we present

examples with more than three sessions or more than unit min-cut per session, where it is

necessary to employ alignment strategies to achieve better rates.

2.2 Problem Formulation

2.2.1 Notation

The following notations are used as a standard throughout this text. The bold faced notation

A is used typically to represent a matrix, we use span(A) to denote the span of its columns

and rank(A) to denote its rank. Fp is used to denote the finite fied 0, 1, . . . , p− 1, where p is

a prime /prime power. G = (V,E), represents a finite, directed, acyclic graph, where V is the

set of nodes and E is the set of directed links (edges). An edge e = (u, v) ∈ E is an ordered

pair of nodes, for which u and v are termed as the tail and the head of e respectively. A path

P from node u to v is defined as an ordered set of edges {(u,w1), (w1, w2), . . . , (wn, v)} ⊆ E

such that the head of the previous edge. P represents a collection of some paths P (n)’s. The
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superscript n implies the nth path.

2.2.2 System Model

Consider a network represented by a finite, directed acyclic graph G = (V,E) . We assume

that every directed link between a pair of nodes represents an error-free channel, and that

the transmissions across different links do not interfere with each other in any way. There

are K source nodes, S1, S2, . . . , S3, and K destination nodes, D1, D2, . . . , D3 and each Si

communicates only with Di. The messages transmitted by different sources are assumed

to be independent of each other. These messages are encoded and transmitted in form of

symbols from finite field Fp. For the sake of simplicity, we assume that every link in E has

a capacity of one symbol (from Fp) per channel use.

We use linear network coding at every node in G. The coefficients for linear combination

of symbols at each node come from Fp. We consider these coefficients to be variables, say

{ξ1, ξ2, . . . , ξs} (s is a parameter dependent on the network topology), and define the vector

ξ , [ξ1 ξ2 · · · ξs]. A network coding scheme refers to choosing a suitable assignment for ξ,

from Fsp.

Suppose the mincut between Si and Di is ci ∈ N. Let the channel uses be indexed as

t = 1, 2, . . .. Then

yi(t) =
3∑
j=1

Mij(ξ)xj(t), i = 1, 2, . . . , K (2.1)

where xi(t) ∈ Fci×1
p is the input vector at Si during the tth channel use, yi(t) is the ci × 1

output vector at Di during the tth channel use and Mij(ξ) is the ci × cj transfer matrix

between Sj and Di. Note that the entries of yi(t) and Mij(ξ) are multivariate polynomials

from the polynomial ring Fp[ξ] for all i, j. Since Di needs to decode only xi(t) from yi(t), the
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presence of transfer matrices Mij(ξ), i 6= j, hinders the decodability (act as “interference”)

at every destination. We refer to these as “interference transfer matrices”.

By the Max-flow-min-cut Theorem, Si can transmit at most ci symbols to Di per channel

use (here channel use refers to usage of one assignment of ξ from Fsp). The generalized

Max-flow-min-cut Theorem, studied in [2], states that multiple unicast connections in G can

achieve a maximum throughout of ci for every source-destination pair (Si, Di), iff there exists

an assignment of ξ in Fsp, say ξ
0
, such that Mij(ξ0

) = 0 for i 6= j and Mii(ξ0
) is a full-rank

matrix. However, there exists a broad class of networks for which such an assignment of ξ

does not exist, thereby making multiple unicast at maximum throughput infeasible.

2.3 Three Session Unicast With Unit Min-Cut

In this work, we focus on a special case of the above model, namely a three-user multiple

unicast network (K = 3) with unit mincut (ci = 1) for every source-destination pair, i.e.,

network G has 3 source nodes S1, S2, S3 and 3 destination nodes D1, D2, D3 and the three

input-output relations in (2.1) can be rewritten as:

y1(t) = m11(ξ)x1(t) +m12(ξ)x2(t) +m13(ξ)x3(t),

y2(t) = m21(ξ)x1(t) +m22(ξ)x2(t) +m23(ξ)x3(t),

y3(t) = m31(ξ)x1(t) +m32(ξ)x2(t) +m33(ξ)x3(t),

where xi(t), yi(t) and mij(ξ) are the scalar equivalents of xi(t),yi(t) and Mij(ξ) respec-

tively. Moreover, we have xi(t) ∈ Fp and yi(t),mij(t) ∈ Fp[ξ] for i, j = 1, 2, 3. Note that

mii(ξ), i = 1, 2, 3, are non-trivial polynomials. Also by construction, mii(ξ) cannot be a

non-zero constant and mii(ξ) 6≡ cmij(ξ), where c ∈ Fp. Thus, these non-trivial polynomials
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are exclusive functions of ξ. We refer to mij(ξ), i, j = 1, 2, 3, as channel transfer functions.

We also refer to polynomials mii(ξ), i = 1, 2, 3, as “direct paths” and polynomials mij(ξ),

i 6= j, as interference paths.

2.4 Network Alignment Approaches

Various approaches have been pursued to achieve interference alignment in wireless net-

works. In particular, within the linear framework, two distinct approaches have been used

extensively. The first is the asymptotic IA (also known as “symbol-extension”) approach,

originally introduced in [11], where IA is achieved in the limit of large number of signal-

ing dimensions. The second approach known as ergodic IA, first introduced in [41], has

an opportunistic flavor. While the asymptotic approach is known to be much more widely

applicable, the ergodic IA approach is also applicable to a fairly broad class of commonly

studied wireless networks and is in general much more efficient – in many cases achieving

theoretical capacity region as shown in [43].

In this work, we are interested in applying and adapting these methods from wireless channels

to network coding over DAGs. Fig. 2.1 depicts at high-level the two general approaches

for network alignment: coding at the edge of the network (e.g., using the eigen vector

method [11], or using the asymptotic scheme in [11, 44]) or coding in the middle of the

network (e.g., using an ergodic scheme similar to [41]). We discuss both of these approaches

in more detail.
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(a) Alignment by coding in the
middle of the network. Here, inter-
mediate nodes perform linear net-
work coding so as to guarantee
alignment at the receivers.

(b) Alignment by coding at the
edge of the network. Here, in-
termediate nodes perform random
linear network coding, and the
sources are responsible for coding
their symbols so as to guarantee
alignment.

Figure 2.1: Network alignment approaches.

2.5 Coding at the edge of the network

This approach is closer to the wireless paradigm. It uses only random linear network coding

at the intermediate nodes and essentially creates a random linear channel between the sources

and destination nodes. The intelligence and the processing burden is pushed to the edge,

much like the wireless setting where the channel is decided by nature and all the coding/signal

processing algorithms are applied only at the source and destination nodes. But unlike the

wireless setting, the channels here are not necessarily independent of one another, they might

have spatial correlation depending on the network structure. The downside to this approach

is that it has a significant computational overhead at the end nodes and the more general
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method of this approach usually requires a very large amount of data due to its asymptotic

nature.

2.5.1 Perfect Alignment - Eigenvector Method

The literature on interference alignment [11], describes a closed form scheme which uses

eigenvectors of certain matrices to achieve perfect alignment of interferences in the 3 user

interference channel setup. Since we are focusing on the 3 user case of the multiple unicast

problem, we apply the above method to our model. In order to be able to make use of this

method, we must employ vector network coding scheme in our model. In vector network

coding, the source transmits vectors of length L, while the intermediate nodes process and

combine their incoming packets by multiplying them with L×L coding matrices. The coding

matrices play a similar role as coding coefficients in scalar coding. In our case, we consider

that the source transmits vectors of length L = 2 and correspondingly the coding matrices

are of size 2× 2. Let Ξi represent the coding matrix corresponding to a coding coefficient ξi.

The input-output relations in G can be written as

y1(b) = M11(b)x1(b) + M12(b)x2(b) + M13(b)x3(b), (2.2)

y2(b) = M21(b)x1(b) + M22(b)x2(b) + M23(b)x3(b), (2.3)

y3(b) = M31(b)x1(b) + M32(b)x2(b) + M33(b)x3(b), (2.4)

xi is the a 2× 1 vector version of xi and is defined as

xi(b) =

 xi(2t− 1)

xi(2t)

 (2.5)
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where t represents the symbol-time index and b represents the block-vector-time index. Sim-

ilarly, yi is a 2 × 1 vector version of yi. Mij(b) is a 2 diagonal matrix. We introduce

“precoding” matrices V1(b),V2(b),V3(b) for S1, S2, S3 respectively, used to encode the mes-

sage vectors into 2-length symbol vectors to be transmitted during the bth block. Moreover,

the following relations hold:

xi(b) = Vi(b)zi(b), i = 1, 2, 3. (2.6)

where zi is a message of user i. Note that Vi(b) is dependent only on the coding matrices

chosen in the bth block. Hence, Vi(b) can potentially vary across blocks. Alternatively, we

can think of this model as a system where the sources transmit the same message over two

successive channel uses and the coding at the intermediate nodes are performed with in these

two channel uses.

Since the system is memoryless across blocks, we focus our attention only on the bth symbol-

extension. For notational convenience, we drop the symbol-extension index b. This gives the

following modified input-output relations:

y1 = M11V1z1 + M12V2z2 + M13V3z3, (2.7)

y2 = M21V1z1 + M22V2z2 + M23V3z3, (2.8)

y3 = M31V1z1 + M32V2z2 + M33V3z3, (2.9)

Now let’s look at the coding matrices, if all these matrices have a diagonal structure, then it

would become impossible to use eigenvector method as any matrix resulting from any linear

operation of these coding matrix will again have a diagonal structure and the eigenvector
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of such a matrix will always be

 0

1

 or

 1

0

. So we conclude that the coding matrices

must not have a diagonal structure.

Challenges:On the other hand, if we consider all the entries of the coding matrices to be

some random values from a finite field, then the eigenvalues and eigenvectors of any matrix,

resulting from the linear operation of the coding matrices, might not belong to the finite

field. Thus, we will assign a triangular structure to the coding matrices in order to overcome

the hurdles stated above.

Ξi =

 ξ
(1)
i 0

ξ
(3)
i ξ

(2)
i

 (2.10)

The eigenvalues of a triangular matrix are the diagonal entries of the matrix, which obviously

belong to the finite field as all the entries come from a finite field and correspondingly we

can also conclude the eigenvectors also belong to the same finite field.

Now, similar to [11], we perform “interference alignment” by imposing the following con-

straints on the precoding matrices for alignment and exact recovery of messages:

D1 : span(M12V2) = span(M13V3) (2.11)

rank [M11V1 M12V2] = 2 (2.12)

D2 : span(M23V3) = span(M21V1) (2.13)

rank [M22V2 M21V1] = 2 (2.14)

D3 : span(M32V2) = span(M31V1) (2.15)

rank [M33V3 M31V1] = 2 (2.16)
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since the resulting vectors are are 2× 1 the span operation just indicates that they are not

a scaled version of one another.

Consider conditions (2.11), (2.13) and (2.15), these result in a cycle of conditions as shown

below,

span(V1) = span(M−1
31 M32V2) (2.17)

span(V2) = span(M−1
12 M13V3) (2.18)

span(V3) = span(M−1
23 M21V1) (2.19)

which results in,

span(V1) = span((M−1
31 M32M

−1
12 M13M

−1
23 M21)V1) (2.20)

We define T = M−1
31 M32M

−1
12 M13M

−1
23 M21. These will hold only if the Mij’s are invertible.

We can think of the diagonal entries of Mij’s as different realizations of the scalar polynomial

mij,

Mij =

 m
(1)
ij 0

m̃ij m
(2)
ij

 (2.21)

where m̃ij is a polynomial in

[
ξ(1) ξ(2) ξ(3)

]
and is different from mij, no proper relation

could be determined between the two. . So saying that the matrix Mij is invertible is the

same as saying that the two instances of the polynomial mij is non-zero. By Schwartz-Zippel

lemma (see Appendix A.1) we know that the non-trivial polynomial will have a non-zero

realization almost surely. Schwartz-Zippel lemma also ensures that the polynomial m̃ij also

has a non-zero realization, so that the triangular structure of the matrix is not affected.
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Choosing the precoding vector V1 as the eigenvector of the matrix T. This choice of the

vector V1 ensures that the condition (2.20) is satisfied. It is important to note that we

consider the eigenvector corresponding to the eigenvalue λ1 = T(1, 1) (i.e., the 1st diagonal

entry of T),

V1 =

 1

ψ/(λ1 − λ2)

 (2.22)

where ψ = T(2, 1). The other eigenvector would be

 0

1

 (corresponding to eigenvalue

λ2 = T(2, 2)) and this would not work for achieving alignment.

The other precoding matrices can be obtained from V1 using the following relation,

V2 = M−1
32 M31V1 (2.23)

V3 = M−1
23 M21V1 (2.24)

This choice of the precoding vectors ensures that the interferences are aligned at the desti-

nation. In addition to this, the conditions (2.12), (2.14) and (2.16) also need to be satisfied.

Let’s focus on the requirements for the condition (2.14) to hold, the other two can be derived

in a similar fashion.

[M11V1 M12V2] is a 2×2 square matrix, it is full rank iff its determinant is non-zero. M11

is the transfer function matrix for the direct path from S1 to D1, so it has non-zero diagonal
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elements which in turn implies that M11 is full rank. We have,

[M11V1 M12V2] =
[
M11V1 M12M

−1
32 M31V1

]
(2.25)

The above matrix will have a zero determinant iff the following condition holds,

cM11V1 = M12M
−1
32 M31V1 (2.26)

cV1 = (M−1
11 M12M

−1
32 M31)V1 (2.27)

where c is some arbitrary constant. If we define U = M−1
11 M12M

−1
32 M31, then (2.27) can

be true iff c and V1 are respectively one of the eigenvalues and eigenvectors of U. Even

though the matrix multiplication of the 2 × 2 triangular matrices is not commutative, it is

interesting to note that the diagonal entires alone still seem to remain commutative, i.e., if

A,B are two 2× 2 lower triangular matrices, then even though AB 6= BA, we can see that

the diagonal entries of AB and BA are the same. The condition (2.27) can be written as,

 u(1, 1) 0

u(2, 1) u(2, 2)


 1

ψ/(λ1 − λ2)

 = c

 1

ψ/(λ1 − λ2)

 (2.28)
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
m

(1)
12 m

(1)
31

m
(1)
11 m

(1)
32

0

u(2, 1)
m

(2)
12 m

(2)
31

m
(2)
11 m

(2)
32


 1

ψ/(λ1 − λ2)

 = c

 1

ψ/(λ1 − λ2)

 (2.29)

inspecting the above equation row wise, we can see that (2.29) can be simplified into the

following two conditions

m
(1)
12 m

(1)
31

m
(1)
11 m

(1)
32

= c (2.30)

ψ

(
c− m

(2)
12 m

(2)
31

m
(2)
11 m

(2)
32

)
= u(2, 1)(λ1 − λ2) (2.31)

(2.30) implies that the eigenvalue U is α1 =
m

(1)
12 m

(1)
31

m
(1)
11 m

(1)
32

= c. We know that the other eigenvalue

is α2 =
m

(2)
12 m

(2)
31

m
(2)
11 m

(2)
32

.

ψ (α1 − α2) = u(2, 1)(λ1 − λ2) (2.32)

Understanding the conditions. These conditions are quite complex and it is not clear how to

derive the requirements for the sufficiency of alignment in terms of network structure from

them. But from (2.27), it is evident that the condition M11 6= M12M
−1
32 M31 is necessary to

use the interference alignment approach. In terms of the network structure this condition

can be simply stated as m11

(
ξ
)
6= m12(ξ)m31(ξ)

m32(ξ)
.

In order to under stand the requirements of the network for the necessary and sufficient

conditions of alignment, we shift our focus to the asymptotic alignment scheme where we
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deal with diagonal matrices. The asymptotic case is also interesting because it has the

potential to be extended and applied to the cases with more than 3 users.

2.5.2 Precoding-Based Network Alignment

The asymptotic alignment scheme with symbol extension was introduced for wireless inter-

ference channels in [11] and later applied to multiple unicast network with network coding

inn [44]. The scheme achieves asymptotic alignment ,i.e., for large number of symbols, by

pre-coding only at the sources of a network, while the rest of the network performs random

linear network coding. The pre-coding matrices depend on the network transfer functions

mij(ξ)’s. It is worth noting that the dependencies between mij(ξ)’s due to the network struc-

ture impose some conditions for symbol-extended alignment to be feasible. This is unlike the

wireless setting, where mij(ξ)’s are channel gains and typically assumed to be independent.

Consider the symbol-extension resulting from (2n + 1) successive channel uses. The choice

of ξ from Fsp can possibly vary with each channel use, and this choice is denoted as ξ(k) for

the kth channel use. The symbol-extended version of the input-output relations in G can be

written as

y1(b) = M11(b)x1(b) + M12(b)x2(b) + M13(b)x3(b), (2.33)

y2(b) = M21(b)x1(b) + M22(b)x2(b) + M23(b)x3(b), (2.34)

y3(b) = M31(b)x1(b) + M32(b)x2(b) + M33(b)x3(b), (2.35)

which is similar to the i/o relations in section 2.5.1, except here xi is a (2n + 1)× 1 vector
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representing the (2n+ 1)-length symbol-extended version of xi and is defined as

xi(b) =



xi((2n+ 1)(t− 1) + 1)

xi((2n+ 1)(t− 1) + 2)

...

xi((2n+ 1)t)


(2.36)

where t represents the symbol-time index and b represents the block-vector-time index for

the entire (2n+1)-length symbol-extension. Similarly, yi is a (2n+1)×1 vector representing

the (2n+ 1) symbol extended version of yi. Mij(b) is a (2n+ 1)× (2n+ 1) diagonal matrix

with the the (k, k)th entry as mij(ξ
((2n+1)(t−1)+k)) for k = 1, 2, . . . , (2n + 1). In [11, 44],

precoding matrices V1(b),V2(b),V3(b) were introduced for S1, S2, S3 respectively, these are

used to encode the message vectors into (2n + 1)-length symbol vectors to be transmitted

during the bth symbol-extension. This means that V1(b) is a (2n + 1) × (n + 1) matrix.

Moreover, the following relations hold:

xi(b) = Vi(b)zi(b), i = 1, 2, 3. (2.37)

Note that Vi(b) is dependent only on the linear coding coefficients chosen in the bth symbol-

extension. Hence, Vi(b) can potentially vary across symbol-extensions.

Here again, since the system is memoryless across blocks, it is fine to focus only on the

bth symbol-extension. So the modified input-output relations is obtained by dropping the

symbol-extension index b, and it is similar to (2.7)-(2.9). Then similar to [11], [44] performed

“interference alignment” by imposing the following constraints on the precoding matrices for
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alignment and exact recovery of messages:

D1 : span(M12V2) = span(M13V3) (2.38)

rank [M11V1 M12V2] = (2n+ 1) (2.39)

D2 : span(M23V3) ⊆ span(M21V1) (2.40)

rank [M22V2 M21V1] = (2n+ 1) (2.41)

D3 : span(M32V2) ⊆ span(M31V1) (2.42)

rank [M33V3 M31V1] = (2n+ 1) (2.43)

Note that within each symbol-extension block there are (2n + 1) realizations of ξ. [44] uses

the same framework as in [11], to choose the precoding matrices V1,V2,V3 as follows:

V1 =
[
w Tw T2w . . .Tnw

]
, (2.44)

V2 =
[
Rw RTw . . .RTn−1w

]
, (2.45)

V3 =
[
STw ST2w . . .STnw

]
, (2.46)

where w = [ 1 1 . . . 1 ]T is a (2n + 1) × 1 vector of ones, T = M12M23M31M
−1
13 M−1

32 M−1
21 ,

R = M31M
−1
32 and S = M21M

−1
23 .

The equation (2.38)-(2.43) provide a necessary and sufficient condition for alignment. Let’s

focus on (2.38) for the moment, [M11V1 M12V2] is a (2n+ 1)× (2n+ 1) square matrix, so
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it is full rank iff its determinant is non-zero. We have

[M11V1 M12V2] = M11

[
V1 M−1

11 M12RV1A
]

(2.47)

= M11

[
V1 M−1

11 M12M31M
−1
32 V1A

]
(2.48)

where A is a (n + 1) × n compromising of the first n columns of the (n + 1) × (n + 1)

identity matrix. The matrix [M11V1 M12V2]. M11 is an invertible diagonal matrix, so if[
V1 M−1

11 M12M31M
−1
32 V1A

]
is of full rank, then [M11V1 M12V2] is also of full rank. In

other words this matrix should have (2n + 1) linearly independent columns, i.e., none of

its columns can be written as a linear combination of other columns. Mathematically this

condition is stated as follows,

n∑
i=0

piM
−1
11 M12M31M

−1
32 Ti 6=

n∑
j=0

qjT
j (2.49)

⇒M−1
11 M12M31M

−1
32

n∑
i=0

piT
i 6=

n∑
j=0

qjT
j (2.50)

⇒M11 6= M12M31M
−1
32

n∑
i=0

piT
i

(
n∑
j=0

qjT
j

)−1

(2.51)

∀n and ∀ pi, qj ∈ Fp. Note that condition (2.51) is made only of Mij’s and essentially Mij is

a matrix with (2n+ 1) realizations of the global coefficient polynomial mij (network transfer

function). Mij’s being diagonal matrices, it is quite easy to translate the condition (2.51)
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into a condition involving the mij’s shown below.

m11(ξ) 6≡
m12(ξ)m31(ξ)

m32(ξ)

n∑
i=0

pi
(
m12(ξ)m23(ξ)m31(ξ)

/
m21(ξ)m13(ξ)m32(ξ)

)i
n∑
j=0

qj
(
m12(ξ)m23(ξ)m31(ξ)

/
m21(ξ)m13(ξ)m32(ξ)

)j , (2.52)

In a similar fashion it is possible to derive the feasibility condition for m22 and m33. We

define the polynomials a(ξ) and b(ξ) as

a
(
ξ
)

= m12

(
ξ
)
m23

(
ξ
)
m31

(
ξ
)
, (2.53)

b
(
ξ
)

= m21

(
ξ
)
m13

(
ξ
)
m32

(
ξ
)
. (2.54)

Assuming the polynomials mij(ξ)’s to be non-trivial, we can say that the following conditions

should hold for alignment to be feasible:

m11

(
ξ
)
6≡
m12

(
ξ
)
m31

(
ξ
)

m32

(
ξ
)

n∑
i=0

pi
(
a
(
ξ
)/
b
(
ξ
))i

n∑
j=0

qj
(
a
(
ξ
)/
b
(
ξ
))j , (2.55)

m22

(
ξ
)
6≡
m21

(
ξ
)
m32

(
ξ
)

m31

(
ξ
)

n∑
i=0

pi
(
a
(
ξ
)/
b
(
ξ
))i

n∑
j=0

qj
(
a
(
ξ
)/
b
(
ξ
))j , (2.56)

m33

(
ξ
)
6≡
m23

(
ξ
)
m31

(
ξ
)

m21

(
ξ
)

n∑
i=0

pi
(
a
(
ξ
)/
b
(
ξ
))i

n∑
j=0

qj
(
a
(
ξ
)/
b
(
ξ
))j . (2.57)

∀n and ∀pi, qj ∈ Fp. Whenever the above conditions are satisfied, we can rearrange them into
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a non-zero polynomial, and by Schwartz-Zippel Lemma (Appendix A.1) a random realization

of the coefficients would satisfy the conditions (2.38), (2.40) and (2.42) almost surely.

2.5.3 Understanding the Channel Transfer Functions

The channel transfer functions, mij’s, are the polynomial representation of the global coding

coefficient for any message from source Sj to destination Di., i.e., the destination Di will see

any message originating from source Sj scaled by the coefficient mij. In a DAG, there might

be several paths connecting Sj to Di, if we consider one such path, then the coding coefficient

for this path is just an accumulation (product) of all the local coding coefficients (ξi’s)

corresponding to the edges and nodes that the path follows. The final mij is a summation

of the coding coefficient of all possible paths connect that source Sj to destination Di. We

observe few important characteristics of this network transfer function which might help us

later with interpreting the conditions we have.

• The maximum degree of any local coefficient in any mij is 1. This is evident from the

fact that there are no cycle present in a DAG and the local coefficient ξi is distinct for

every node and edge.

• The mij as explained earlier is a sum of coefficients of all possible individual paths

connecting the Sj to Di, so we can see the final polynomial to be of sum-of-products.

If the structure of the network permits it is also possible to rewrite the same polynomial

as a product of its factors. This is analogous to seeing the network as a line graph.

The polynomial is irreducible if there is no single edge common to all possible paths

that belong to mij. If there exists an edge which is common to all paths forming

the mij, then it is possible to write the polynomial as a product of two factors, one

corresponding to the part before this edge and the other corresponding to the part

after this edge.
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• Any two distinct mij’s can have a common factor only if all possible path corresponding

to both the mij’s have at least one common bottleneck edge.

• If two polynomial mij and mkj have common factors, then the common factors are the

polynomial representation of the network from the source Sj up to the final edge where

all paths of Sj−Di and Sj−Dk overlap. In other, Sj−Di and Sj−Dk share the same

set of paths from Sj to the final overlapping edge.

• If two polynomial mij and mik have common factors, then the common factors are the

polynomial representation of the network from the first edge where all paths of Sj−Di

and Sk −Di overlap up to the sink Di . In other, Sj −Di and Sk −Di share the same

set of paths from the first overlapping edge to Di.

• If two polynomial mij and mkl have common factor, the the common factors are the

polynomial representation of the network from the first edge where all paths of Sj−Di

and Sl−Dk overlap up to the final edge where all paths of Sj−Di and Sl−Dk overlap.

In other, Sj −Di and Sl −Dk share the same set of paths from the first overlapping

edge up to the final overlapping edge.

2.5.4 The Initial Conjecture

In order to get a better intuition about the relation between these conditions and the network

structure, let us consider a subset of these conditions that is obtained by considering some

special, small values of the constants pi, qj. In particular, the conditions at the left are

obtained for p0 = 1, q0 = 1, and the conditions at the right are obtained for p0 = 1, q1 = 1

or p1 = 1, q0 = 1; the rest pi’s, qj’s are set to zero:

m11

(
ξ
)
6=
m12

(
ξ
)
m31

(
ξ
)

m32

(
ξ
) , m11

(
ξ
)
6=
m21

(
ξ
)
m13

(
ξ
)

m23

(
ξ
) , (2.58)
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m22

(
ξ
)
6=
m21

(
ξ
)
m32

(
ξ
)

m31

(
ξ
) , m22

(
ξ
)
6=
m12

(
ξ
)
m23

(
ξ
)

m13

(
ξ
) , (2.59)

m33

(
ξ
)
6=
m23

(
ξ
)
m31

(
ξ
)

m21

(
ξ
) , m33

(
ξ
)
6=
m32

(
ξ
)
m13

(
ξ
)

m12

(
ξ
) . (2.60)

The above six conditions require that the co-factor of any off-diagonal term of the 3 × 3

network transfer matrix M =
[
mij

(
ξ
)]

is not a zero polynomial. Let us consider one such

off-diagonal term, e.g., m23

(
ξ
)

with its cofactor:

det

m11

(
ξ
)

m12

(
ξ
)

m31

(
ξ
)

m32

(
ξ
)
 = m11

(
ξ
)
m32

(
ξ
)
−m12

(
ξ
)
m31

(
ξ
)
. (2.61)

The condition m11

(
ξ
)
m32

(
ξ
)
−m12

(
ξ
)
m31

(
ξ
)
6≡ 0 essentially states that aligning interfer-

ence at one receiver (in this case, interference m31

(
ξ
)
,m32

(
ξ
)

from S1, S2 at D3) should not

have the undesired side-effect of aligning the signal with the interference at other receivers

(in this case, interference m12

(
ξ
)

and signal m11

(
ξ
)

at D2).

Consider a network with the structure shown in Fig. 2.2a, in this network all paths of the

four commodities involved (from S1 to D1, S2 to D1, S1 to D3, and S2 to D3) go through a

single bottleneck edge. This common edge causes the mij’s of the four involved commodities

to have a common factor. The common factors produces a relation between the mij’s of the

four commodities such that m11

(
ξ
)
m32

(
ξ
)
−m12

(
ξ
)
m31

(
ξ
)

= 0. In general, if all paths,

of the any four commodities of any one of the six condition stated above, go through a

bottleneck edge then the corresponding condition will bear an equality. In other words, the

conditions state that not all paths for the four commodities involved in a condition should go
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(a) Structure with bottleneck

(b) Bypassing the bottleneck (c) No bottleneck

Figure 2.2: Feasible and Infeasible structure: (a) shows a structure where interference align-
ment is not feasible because of the the bottleneck edge. (b) shows a structure where there is
a path for at least one commodity that doesn’t go through the bottle neck edge, interference
alignment is feasible in this scenario. (c) shows a structure where there is no bottleneck
edge, thereby reducing the spatial dependency, interference alignment is feasible here.

through the same bottleneck edge. Fig. 2.2b shows an example structure where the condition

holds true, here one of the commodities (S2 to D3) has a path that doesn’t go through the

bottleneck edge. Fig. 2.2c shows another such structure where the condition holds true, but

here the paths are almost independent of each other. Interestingly, the conditions about

the non-zero off-diagonal co-factors coincide with the necessary conditions for achieving a

rate more than 1/3 per user through any achievable scheme, as shown previously in [45]

based on Shannon theoretic arguments for the 3-user wireless interference network setting.

It is also observed in simulations that these conditions seem to hold whenever interference

alignment is possible. This led us to the conjecture [46] that the complex looking conditions

in (2.55)-(2.57) can be reduced to the simple conditions given by (2.58)-(2.60), which can

be easily interpreted in terms of the network structure. It is also important to note that

although these conditions are always met (with high probability) in wireless channels, they
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Figure 2.3: Network structure corresponding to a linear combination of the two conditions
from the conjecture. Alignment is not feasible in this case too.

may not hold for all DAGs. In general, not all networks can be aligned. Therefore, it is

interesting to characterize the feasibility and performance of alignment and their relation to

network structure.

2.5.5 Extending the Conjecture

After proposing the conjecture in [46], we observed another class of network structures

not covered by the conditions in our conjectures, where network alignment is not feasible.

Figure 2.3 illustrates this additional network structure. We observed that this structure

corresponds to the condition shown below,

m11

(
ξ
)

=
m12

(
ξ
)
m31

(
ξ
)

m32

(
ξ
) +

m21

(
ξ
)
m13

(
ξ
)

m23

(
ξ
) (2.62)

It is easy to see that this condition is a linear combination of the two simple conditions

m11

(
ξ
)

=
m12(ξ)m31(ξ)

m32(ξ)
and m11

(
ξ
)

=
m21(ξ)m13(ξ)

m23(ξ)
which corresponds to the structures with
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bottleneck like the one shown in Figure 2.2a. In the structure, we can see that there are two

distinct paths leading from S1 to D1, shown with blue and green edges. Each of these paths,

independently form a bottleneck structure similar to the one shown in Figure 2.2a.

2.5.6 Proving the Conjecture

In [47, 48], we were able to rigorously prove that the extended conjecture was indeed true.

So the necessary and sufficient feasibility condition for precoding-based network alignment

can be reduced to the a few sets of conditions as shown in the theorem below,

Theorem 2.1 (The Main Theorem). Assume that all the senders are connected to all the

receivers via directed paths. The three unicast sessions can asymptotically achieve the rate

tuple (1
2
, 1

2
, 1

2
) through PBNA if and only if the following conditions are satisfied:

m11

(
ξ
)
6=
m13

(
ξ
)
m21

(
ξ
)

m23

(
ξ
) ,

m12

(
ξ
)
m31

(
ξ
)

m32

(
ξ
) ,

m13

(
ξ
)
m21

(
ξ
)

m23

(
ξ
) +

m12

(
ξ
)
m31

(
ξ
)

m32

(
ξ
) (2.63)

m22

(
ξ
)
6=
m12

(
ξ
)
m23

(
ξ
)

m13

(
ξ
) ,

m32

(
ξ
)
m21

(
ξ
)

m31

(
ξ
) ,

m12

(
ξ
)
m23

(
ξ
)

m13

(
ξ
) +

m32

(
ξ
)
m21

(
ξ
)

m31

(
ξ
) (2.64)

m33

(
ξ
)
6=
m23

(
ξ
)
m31

(
ξ
)

m21

(
ξ
) ,

m13

(
ξ
)
m32

(
ξ
)

m12

(
ξ
) ,

m23

(
ξ
)
m31

(
ξ
)

m21

(
ξ
) +

m13

(
ξ
)
m32

(
ξ
)

m12

(
ξ
) (2.65)
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2.5.7 Graph Theoretic Formulation of the Feasibility Conditions

Given two subsets of edges, S and D, a cut-set C between S and D is a subset of edges, the

removal of which will disconnect every directed path from S to D. The capacity of cut-set

C is defined as the summation of the capacities of the edges contained in C. The minimum

cut between S and D is the minimum capacity of all cut-sets between S and D.

Theorem 2.2. mii

(
ξ
)

=
mij(ξ)mki(ξ)

mkj(ξ)
if and only if the minimum cut between {Si, Sj} and

{Di, Dj} equals one.

Proof. The transfer matrix between the sources Si, Sj to the sinks Di, Dk for the the given

network can be written as the 2× 2 matrix

mii

(
ξ
)

mij

(
ξ
)

mki

(
ξ
)

mkj

(
ξ
)


The determinant of this transfer matrix is given as mii

(
ξ
)
mkj

(
ξ
)
−mij

(
ξ
)
mki

(
ξ
)
. If the

min-cut between {Si, Sj} and {Di, Dj} equals one, then the rank of the transfer matrix is

one and so the determinant is zero, i.e.,

mii

(
ξ
)

=
mij

(
ξ
)
mki

(
ξ
)

mkj

(
ξ
)

If the min-cut between {Si, Sj} and {Di, Dj} is greater than one, then the transfer matrix

has full rank. This implies that the determinant polynomial of the transfer matrix is a

non-zero polynomial and thus proving the converse.

For instance, in Figure 2.2a , the cut-set between {S1, S2} and {D1, D3} contains only one

edge and thus m11

(
ξ
)

=
m12(ξ)m31(ξ)

m32(ξ)
.
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𝑆1 𝑆2

𝐷1 𝐷3

𝛼213

𝛽213

(a) α213 and β213

𝑆1 𝑆3

𝐷1 𝐷2

𝛼312

𝛽312

(b) α312 and β312

Figure 2.4: A graphical illustration of the four edges, α213, β213, α312, and β312.

Let αijk denote the last bottleneck between Si and {Dj, Dk} in this topological ordering, and

βijk the first bottleneck between {Si, Sj} and Dk. Let η
(
ξ
)

=
m12(ξ)m31(ξ)m23(ξ)
m32(ξ)m21(ξ)m13(ξ)

. As shown

below, the four edges, α213, β213, α312, and β312, are important in defining the networks that

realize η
(
ξ
)

= 1. A graphical illustration of the four edges is shown in Fig. 2.4.

Theorem 2.3. η
(
ξ
)

= 1 if and only if α213 = α312 and β213 = β312.

In [49], the authors proved the above theorem giving a graph theoretic representation of the

condition η
(
ξ
)

= 1.

Given two edges e1 and e2, we say that they are parallel with each other if there is no directed

paths from e1 to e2, or from e2 to e1.

Theorem 2.4. mii

(
ξ
)

=
mij(ξ)mki(ξ)

mkj(ξ)
+

mji(ξ)mik(ξ)
mjk(ξ)

if and only if the following conditions

are satisfied

1. αkij is a bottleneck between Si and Dj.

2. αjik is a bottleneck between Si and Dk.

3. αkij is parallel to αjik.

4. {αjik, αkij} forms a cut-set between Si and Di.
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Proof. Refer Appendix A.2 for the proof.

2.6 Optimal Symmetric Rates for Precoding-Based Lin-

ear Schemes

For SISO scenarios where all senders are connected to all receivers, there are only three

possible rates achievable through any precoding-based network coding schemes.

Definition 2.1. We classify the networks based on the coupling relations present in the

network as follows:

• Type I : Networks in which a condition of the form mii

(
ξ
)

=
mij(ξ)mki(ξ)

mkj(ξ)
is present.

• Type II : Networks in which mii

(
ξ
)
6= mij(ξ)mki(ξ)

mkj(ξ)
, but one of the three mutually

exclusive conditions of the form mii

(
ξ
)

=
mij(ξ)mki(ξ)

mkj(ξ)
+

mji(ξ)mik(ξ)
mjk(ξ)

is present

• Type III : Networks in which none of the above conditions are present.

In this section, we prove that for SISO scenarios where all the senders are connected to all

the receivers via directed paths, there are only three possible symmetric rates achieved by

any precoding-based linear schemes. We’ll also show that these optimal symmetric rates for

Precoding-based linear schemes can be achieved by slightly modifying the PBNA scheme.

In order to show this, we first prove that for the networks that violate one of the following

three conditions of the form mii

(
ξ
)

=
mij(ξ)mki(ξ)

mkj(ξ)
+

mji(ξ)mik(ξ)
mjk(ξ)

, it is not possible to achieve

a symmetric rate of more than 2/5 per user, through any precoding-based scheme (the proof

follows from [39]). We also show that this outer bound of 2/5 is achievable through our

PBNA scheme and thus it is tight.
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Consider any precoding-based linear scheme over N channel uses. Let ṽ1, ṽ2, ṽ3 be vectors

from the spaces span(V1), span(V2), and span(V3), respectively. Consider a Type II net-

work, without loss of generality , we assume that the network realizes m11

(
ξ
)

=
m12(ξ)m31(ξ)

m32(ξ)

+
m21(ξ)m13(ξ)

m23(ξ)
. This relation can be equivalently represented in matrix form as

M11 = M31M32
−1M12 + M21M23

−1M13 (2.66)

Lemma 2.5. If ṽ1 aligns with ṽ3 at d2 and with ṽ2 at d3, then ṽ1 must align in the space

spanned by ṽ2 and ṽ3 at d1.

Proof. Since ṽ1 aligns with ṽ3 at d2 and with ṽ2 at d3, it follows that,

d2 : M12ṽ1 = a M32ṽ3 (2.67)

d3 : M13ṽ1 = b M23ṽ3 (2.68)

where a, b are scalars. At d1, we see the vector M11ṽ1. Using (2.66), (2.67) and (2.68) we

get,

M11ṽ1 = M31M32
−1M12ṽ1 + M21M23

−1M13ṽ1

= a M31ṽ2 + b M21ṽ2

This shows that the desired vector at d1 aligns with the space spanned by the interference.

Theorem 2.6. For a Type II network the symmetric rate achievable per user through any

precoding-based scheme cannot be more than 2/5.

Proof. Suppose every sender sends d symbols over n dimensions, through any linear pre-

coding scheme. Consider ω1 , lets use l12 and l13 to represent the number of dimensions

of signal space of d1 that align with ω2 at d3 and ω3 at d2 respectively, and V12 and V13
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to represent their corresponding spaces. From Lemma 2.5, we know that V12 and V13 must

have no intersection, otherwise the intersection part will contain vectors that will align with

interference at d1. Therefore, we must have l12 + l13 ≤ d. Now consider ω2, we already know

that there is a l13 dimensional space where interference from ω1 and ω3 are aligned. So the

number of interference dimension is given as (d+ d− l13) = 2d− l13. The number of desired

dimensions at d2 is d, and this d dimensional desired signal space should remain resolvable

from the interference space, so we we have 3d− l13 ≤ n. Similarly, consider User 3 to obtain

another inequality : 3d− l12 ≤ n. Combining these inequalities we get 6d− (l13 + l12) ≤ n.

But we know l12 + l13 ≤ d, so 6d− d ≤ 2n ⇒ d/n ≤ 2/5, which implies it is not possible to

achieve a symmetric rate more than 2/5 per user.

Corollary 2.7. For Type II networks, it is possible to achieve a rate of 2/5 per user through

through a finite time-slot precoding based network alignment scheme, i.e., the outer bound is

tight.

Proof. Without loss of generality, assume the Type II networks has a coupling relation

m11

(
ξ
)

=
m12(ξ)m31(ξ)

m32(ξ)
+

m21(ξ)m13(ξ)
m23(ξ)

. This scheme can be easily modified to fit the other

coupling relations too. Suppose we use a 2n + 1 = 5 symbol extension, then according to

the PBNA scheme we have precoding vectors V1 = (w Tw T2w), V2 = (w Tw) and

V3 = (Tw T2w). The given coupling relation only affects User 1, so the rates at Receiver

2 and 3 will remain unaffected. The matrix equivalent of the coupling relation is given in

(2.66), which can be rewritten as,

M11 = M31M32
−1M12 + M31M32

−1M12T (2.69)

At Receiver 1, the desired signal space is given M11V1 and the interference space is given

by M31V3 ( Note: The interference from transmitter 2 and 3 are aligned, i.e., M21V2 =
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M31V3). Substituting the alignment equation from Receiver 2 for V3 we get,

M31V3 = M31M32
−1M12(Tw T2w) (2.70)

From (2.69) and (2.70), it can be seen that the second column of the desired signal space

(M11V1) can be written as a linear combination of the two columns of the interference

space. The other two columns of the desired space are linearly independent of the column

of interference space. User 1 could use these two dimension to send its signal without

interference. In other words, each user would be able to achieve a rate of 2/5

Theorem 2.8. Assume that all the senders are connected to all the receivers via directed

paths. The following statements hold:

1. The optimal symmetric rate achieved by precoding-based linear schemes for Type I

networks is 1/3 per unicast session.

2. The optimal symmetric rate achieved by precoding-based linear schemes for Type II

networks is 2/5 per unicast session.

3. The optimal symmetric rate achieved by precoding-based linear schemes for Type III

networks is 1/2 per unicast session.

Moreover, all of the above optimal symmetric rate is achievable through PBNA schemes.

Proof. Type I networks fail to satisfy certain conditions which are information theoretically

necessary to achieve any rate more than 1/3 user per session, this was explained in Sec-

tion 2.5.4. The outer bound for Type II networks was derived in Theorem 2.6 and the

achievability was shown in Corollary 2.7. Type III networks are our main focus , previous

sections discussed in detail about schemes and their feasibility for achieving 1/2 rate per
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user in detail and it is a well known fact that it is not possible to achieve more than 1/2 per

user for SISO scenarios in fully connected networks [11].

2.7 Coding in the middle of the network

This approach is depicted on the left side of Fig. 2.1 and can include several algorithms.

The main idea behind this approach is to choose the coding coefficients at the intermediate

nodes such that, the ratios m12/m13, m12/m13 and m12/m13 are constants, whereas the ratio

of the coefficient of the direct channel to the interfering channel is not a constant . One

such algorithm is ergodic alignment, originally developed for wireless channels in [41] and

proposed for network coding over graphs in [50]. A general approach for coding in the

network, is outside the scope of this thesis. However, in Chapter 2.8, where we compare any

NA approach to baselines (other known schemes that can achieve 1/2 the rate per session),

we provide examples of network alignment where coding is performed in the middle.

This approach is particularly attractive in the network coding setting because it operates in

two time slots and thus can lead to practical solutions in terms of the required field size and

number of symbols. Moreover, unlike the wireless setting, in the network coding setting the

channel conditions are determined by the operations at the intermediate nodes and hence can

be controlled. This simplicity comes at the cost of introducing intelligence in the network,

and depending on the size of the network this optimization may be difficult.

2.8 Benefit Analysis

In this chapter, we try to understand in which classes of networks alignment is necessary and

in which classes it is not (i.e., existing approaches achieve 1/2 rate without alignment). To

44



Figure 2.5: Examples for 3 unicast sessions, min-cut 1 where all 3 sessions go through a
single bottleneck. The extended butterfly: routing achieves 1/3, alignment achieves 1/2,
and network coding achieves rate 1 per session.

this end, we first consider some illustrative examples, and then we generalize our observations

into any network satisfying certain conditions.

2.8.1 K = 3 and Min-Cut = 1

Let us first discuss some illustrative examples. Consider the canonical example of the ex-

tended butterfly, shown in Figure 2.5. In this case, routing can achieve rate of 1/3 since all

flows go through the bottleneck link. Network coding achieves rate of 1 per flow if all side

links (defined as links between Si and Rj, i 6= j) are available. Let us consider the same

example (all flows still go through a bottleneck link) but now only a subset of the side links

is present. If only one receiver has side links, then two of the receivers have the same view,

and alignment becomes impossible. If two or three receivers have side links, then depending

on which links those are, network alignment may be possible. The question we are interested

in is: can other approaches also achieve rate of half ?
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(a) Alignment is not feasible

(b) Alignment is feasible but a butterfly is also present

Figure 2.6: Examples for 3 unicast sessions (cont.)

Figure 2.6a illustrates a case where two receivers have a side link each, but alignment is

not possible; e.g., one can check that the “small” conditions (Eq.(2.58)-(2.60)) are violated.

Figure 2.6b illustrates another case where two receivers have a side link each. Notice that

compared to the previous example, receivers 2 and 3 have switched place. Alignment is

possible in this case and can achieve half the min-cut per session. However, the side links

now form a butterfly substructure (between session 1 and 3). Therefore, it is possible to

achieve the same rate by time-sharing between the butterfly and session 2. Figure 2.7

illustrates a case where all three receivers have a side link and there is no butterfly (for any
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Figure 2.7: Examples for 3 unicast sessions (cont.): Alignment is feasible but coding without
alignment can also achieve half the min-cut.

2 sessions) present in the network. Alignment can achieve half the min-cut, which is optimal

in this case. However, it is also possible to achieve half the min-cut per session by carefully

choosing the coefficients at the nodes 1′, 2′ and 3′, so as to cancel out one component of the

interference for each session. For example, node 1′ can pick q = −cp so as to cancel z and

allow receiver 1 to only see equations in two unknowns (x, y), thus making it possible to

solve for its own message x over two time slots.

The above intuition generalizes to a more general statement.

Theorem 2.9. Consider a DAG with three unicast sessions, each with min-cut of 1. When-

ever network alignment can achieve rate of 1/2 per session, there exists an alternative ap-

proach that can also achieve rate of 1/2 per session.

The alternative approaches include: routing, packing butterflies, random linear network

coding, or other network coding strategies that do not require the alignment strategy.1

1Notice that alignment may be achieved by coding in the middle or at the edge of the network. What
distinguishes “alignment” from “non-alignment” approaches is that alignment provides the receivers with
lesser number of equations than unknowns, but with aligned interference.
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Proof. The common routing rate r that can be guaranteed per flow is upper bounded by the

sparsity bound S. We consider two cases: S ≤ 1/2 and S > 1/2. Notice that the sparsity

bound S in this setup can only take one of the following values {1/3, 1/2, 2/3, 1}, provided

that each session demands a rate equal to its corresponding min-cut (= 1).

Case I: Let us consider networks where S = 1/3 < 1/2. In these networks, we have r ≤

S = 1/3. Therefore, routing cannot achieve half the min-cut and alignment needs only be

compared against coding alternatives. S = 1/3 in this setup means that all paths of the three

commodities traverse the same bottleneck edge. The intuition of the examples we discussed

earlier still applies with the difference that links should be interpreted as paths from/to the

sources/receivers.

In general, a network transfer function mij(ξ) is just a sum of several monomials, where each

monomial represents a path from source j to sink i. It is possible to express mij(ξ) = dij(ξ)+

cij(ξ), where dij(ξ) is the polynomial resulting from the sub graph G′ formed by removing

any edge that doesn’t belong to a direct path connecting source j to its corresponding sink j

(∀j = 1, 2, 3) in G; cij(ξ) is the polynomial resulting from all the paths that traverse through

those edges that were neglected in G′; we refer to the corresponding paths as cross or side

paths. Note that dii(ξ) 6= 0 and cii(ξ) = 0, i = 1, 2, 3. Consider the matrices D(ξ) = [dij(ξ)]

and C(ξ) = [cij(ξ)], and note that M(ξ) = [mij(ξ)] = D(ξ) + C(ξ).

Because of the single bottleneck link between all direct paths in this case, rank[D(ξ)] = 1

and the rate achievable by routing is 1/3 per session. Also, note that the routing rate

doesn’t depend on any of the cij(ξ)’s, but the side paths cij(ξ)’s do determine the feasibility

of alignment. It is quite obvious that if more than one row of C(ξ) is all zeros, then two

or more sinks will be seeing the same perspective and it would be impossible to achieve a

rate of more than 1/3 per session. If one of the rows (say row i′) alone is made of all zero

elements, then we need to have ci′j(ξ) 6≡ 0 and ci′k(ξ) 6≡ 0 in order to satisfy the feasibility
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conditions (Eq.(2.58)-(2.60))

mjj

(
ξ
)
6≡
mkj

(
ξ
)
mji′

(
ξ
)

mi′k

(
ξ
) ∀ j 6= k 6= i′,

and this results in forming a butterfly structure between sessions j and k. An example

was shown in Fig. 2.6(c): alignment is feasible but there is also a butterfly structure.

In Fig. 2.6(b), the side paths do not form a butterfly but they do not satisfy the align-

ment feasibility conditions either: i.e., m11(ξ) ≡ (m12(ξ)m31(ξ))/m32(ξ) and m22(ξ) ≡

(m21(ξ)m32(ξ))/m31(ξ). If C(ξ) has a non-zero entry in every row, as in Fig.2.6(d), it is

possible to achieve half the min-cut, without alignment, by carefully choosing the coeffi-

cients at the node where paths corresponding to the non zero cij(ξ)’s join with the path

corresponding to dij(ξ)’s.

Case II: Let us consider networks where S ≥ 1/2. If routing can achieve r ≥ 1/2, then it’s

obvious that we don’t require any other complex schemes let alone alignment scheme. The

cases that require investigation are the ones where r < 1/2 ≤ S; in these cases, we will

describe a scheme that uses network coding (without alignment) at carefully selected nodes

in the middle of the network, and guarantees rate of 1/2 for every session. In fact, it achieves

this goal by using only the direct paths.

Let Pi = {P (n)
i : n = 1, 2, . . . , Ni} represent the set of all direct paths from source i to

receiver i. Choose a path for each session, say P
(α)
1 ∈ P1, P

(β)
2 ∈ P2 and P

(γ)
3 ∈ P3 where

α ∈ {1, . . . , N1}, β ∈ {1, . . . , N2} and γ ∈ {1, . . . , N3}. We are in the case where the rate

achievable by routing is smaller than 1/2; this means that the three paths P
(α)
1 , P

(β)
2 , P

(γ)
3

traverse through a bottleneck edge. But we are also in the case where S > 1/3; this ensures

that there is another path P ′ ∈ P1 or P2 or P3 such that there is no bottleneck edge through

which all four of the paths (P
(α)
1 , P

(β)
2 , P

(γ)
3 and P ′) will traverse. Without loss of generality

we can assume that P ′ ∈ P1. P ′ , P
(β)
2 , P

(γ)
3 should have a bottleneck edge so that routing
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can’t achieve half rate. Any edge that doesn’t belong to any of the previously defined four

paths can be ignored for the design of the scheme we are about to describe.

The scheme involves sharing the network between the sessions over time. In the first time

slot, the network is used by a pair of sessions; during the second time slot the session that

was left out in the first time slot gets the network resources to itself. To achieve rate of half

the min-cut, we need to make sure that the two sessions, sharing the network in the first

time slot, are able to decode their respective messages within that time slot. This is done

by carefully choosing the coding coefficients at some nodes. To pick the pair of sessions that

would be active in the first time slot we need to look at the first and last edge where all

direct paths of any two sessions overlap. Such an overlap is always present because of the

bottlenecks described earlier. Let edge ef be the first edge, where all paths of sessions (i, j)

overlap, and edge el be the final edge, where sessions (j, k) overlap at the end, then we can

choose session (i, k) to be the active pair in the first time slot.

If session 1 is one of the active sessions in the first time slot, then we know that there are

two paths P
(α)
1 and P ′ joining at some node after el. We can choose the coefficients at the

tail node of the edge el such that the message component of session 1 is eliminated and only

the component of the other session is present at the head of the edge el. Thus the sink of

the other session gets its message without any interference and session 1 can still decode

its message by using the component of the other session, from the head of edge el, as an

antidote at the edge where the two paths of session 1 meet. If session 1 is not among the

pair of active sessions in the first time slot, then we can use the same idea to cancel out the

interference before delivering the messages to the respective sinks of the sessions. But here,

we choose the coefficients at the tail node of edge el to cancel out the interference component

of session i and the coefficients at the tail node of the edge right before el where the paths of

session i and session k overlap. This ensures that each session that is active in the first time

slot gets its corresponding message delivered within that time slot. This scheme succeeds in
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Figure 2.8: Example topology with r < 1/2 and S = 1/2

achieving rate of half-the-min-cut per session without using any alignment techniques.

Fig. 2.8 illustrates a simple example where the achievable routing rate r < 1/2 and the

sparsity bound S > 1/3. In this example the value of sparsity bound can be easily determined

as 1/2 and we can see that routing cannot achieve any rate more than 1/3 because of the

overlapping paths. But it is still possible to achieve a rate of 1/2 by making use of the

scheme suggested in the proof above. According to the scheme, we can choose session 1 and

session 2 to be active in the first channel use, and during this period we can also choose the

coding coefficients node C1 and C2, namely, by choosing d = −pa and q = −rp, we could

get rid of the interfering components at destination D1 and D2 respectively. For the second
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Figure 2.9: Example topology with r = 1/2

channel use, we can make session 1 and 2 to be idle, there by giving all the network resources

to session 3, thus helping each session to send a single message over two channel uses (rate

= 1/2).

Fig. 2.9 illustrates a network topology where the desired rate of 1/2 per user is easily achieved

with routing alone. Session 1 uses the path S1 − A − B − C − Z −D1 , session 2 uses the

path S2 −A−B −E − F −G−D2 and session 3 uses the path S3 −C −Z −E −H −D3.

At edge AB, session 1 and 2 compete for resource; at edge CZ session 2 and 3 compete

for resources; and at edge EF session 2 and 3 compete for resources. The competition for

resource at any edge is at maximum between two users only. This is ensured by choosing
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Figure 2.10: Examples that require alignment, K = 4, min-cut= 1.

S2 − A−B − E − F −G−D2 as the path for session 2 when it also had the option to use

S2−A−B −C −Z −E −F −G−D2. Now by limiting the flow of each session to 1/2, we

can make sure that all the session are able to transmit and receive their flows withoiut any

problem.

2.8.2 K > 3 or Min-Cut > 1

Figures 2.10 to 2.12 show examples where the number of sessions is K > 3 or the min-

cut is greater than one. In all these cases alignment is required in the following sense:

the maximum rate is 1/2 the min-cut, alignment achieves it and no other baseline scheme

(packing butterflies or coding without alignment) can achieve it. Indeed, in Fig. 2.10, receiver

3 has 2 equations with 4 unknowns over 2 time slots (Notice that the side links convey the

redundant information over 2 time slots). Even if the sink nodes are considered to be present

at 1′, 2′, 3′ and 4′, we can observe that over 2 time slots node 3′ receives only 3 independent

equations with 4 unknowns. So it needs an alignment technique to decode its message.

This effect is amplified for 5 sessions example in Fig. 2.11, where the nodes 1′, 2′, 3′ and

5′ effectively get 4 equations in 5 unknowns over two time slots. In Fig. 2.12 it can be

53



Figure 2.11: Examples that require alignment, K = 5, min-cut= 1.
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Figure 2.12: Examples that require alignment: K = 3, min-cut= 2

observed that the equations carried by the incoming edges of node Di, ∀i = 1, 2, 3, needs to

have their interference component aligned in order for the receiver to be able to decode its

corresponding message.

2.8.3 PBNA vs. Routing

In this section, we present a comparison of rate achievable through PBNA and the rate

achievable through routing. We would like to point out that such a comparison is unfair

54



YN

Achievable rate: 
Routing -> 1/2  
PBNA -> 1/3  

YY NN

η(x)=1 ? 

Achievable rate: 
Routing -> 1 
PBNA -> 1/2 

Sparsity Bound =1/3? 

Type II ? 
Y N

Type I 

Type III Type II  

Type III 

Type I ? 

Achievable rate: 
Routing -> 1 
PBNA -> 2/5 

Achievable rate: 
Routing -> ?  
PBNA -> 1/2 

Achievable rate: 
PBNA & Routing -> 1/3 

Figure 2.13: A comparison between PBNA and routing in terms of achievable symmetric
rate for various types of networks.

to PBNA because of the network setting considered. Routing involves intelligence inside

the network, whereas in our setting, the internal nodes have no intelligence and can only

perform random linear network coding. Therefore, routing by definition is not included in

our network setting. The structure of the network determines the rate achievable by any

scheme, depending on the structure one scheme can perform better than the other. In Fig.

2.13, we provide a taxonomy of the network based on its structures and the rates achievable

through routing and PBNA.

Type III networks are the main focus of this chapter and it is hard to characterize the rate

achievable through routing for these networks which make PBNA more interesting as it can

systematically achieve a rate of 1
2

per user under this network type. The following points

can be noted from Fig. 2.13:
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• Type I networks can be further classified into two cases based on the sparsity bound.

When the sparsity bound equals 1
3
, both PBNA and routing can only achieve a sym-

metric rate of 1
3

per user. An example of such network is shown in Fig. 2.14a. When

the sparsity bound is greater than 1
3
, routing can achieve a symmetric rate of 1

2
per

user. However, PBNA can only achieve a symmetric rate of 1
3

per user, which is the

optimal symmetric rate achieved by any precoding-based linear schemes. Fig. 2.14b

illustrates such an example.

• Type II networks, due to the presence of the coupling relations, p1(x) = η(x)
1+η(x)

or

p2(x) = 1 + η(x) or p3(x) = 1 + η(x), will have a network structure where each source

has a disjoint path to its corresponding receiver making it possible to achieve a rate of

1 per user with routing. In contrast, PBNA can only achieve a symmetric rate of 2
5

for

these networks. An example of such a network is shown in Fig. 2.14c.

• For Type III networks, PBNA can achieve a symmetric rate of 1
2
. Consider the special

case of η(x) = 1, it can be shown (see 2.8.4) that these networks can be characterized

by the presence of disjoint paths from each source to its corresponding receiver and

routing can always achieve a symmetric rate of 1 per user here. An example of such

network is shown in Fig. 2.14f. For the less constrained case of η(x) 6= 1, however, it

is not straightforward to characterize the the performance of routing. We can see that

there are networks in which routing can only achieve a symmetric rate of 1
3

(see Fig.

2.14d); and there are also networks where routing can achieve a symmetric rate of one

due to the rich connectivity in the network (see Fig. 2.14e).

Type III networks, especially the ones with η(x) 6= 1, are our main focus and it

is hard to characterize the rate achievable through routing for these networks. This

makes the case for PBNA more interesting, as PBNA provides a systematic approach

for achieving a rate of 1
2

per user for these networks.
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(a) A type I network (Spar-
sity bound= 1

3)
(b) A type I network (Spar-
sity bound> 1

3)
(c) A type II network

(p1(x) = η(x)
η(x)+1)

(d) A type III network
(η(x) 6= 1)

(e) A type III network
(η(x) 6= 1)

(f) A type III network
(η(x) = 1)

Figure 2.14: Example networks. (a) shows a Type I network, for which PBNA and routing
both achieve symmetric rate 1

3
. (b) shows another Type I network, for which routing can

achieve symmetric rate 1
2
, and PBNA can only achieve symmetric rate 1

3
. (c) shows a

Type II network, for which routing can achieve symmetric rate one, and PBNA can only
achieve symmetric rate 2

5
. (d) shows a Type III network, for which routing can only achieve

symmetric rate 1
3
, and PBNA can achieve symmetric rate 1

2
. In (e), we show another Type

III network, for which routing can achieve symmetric rate one, and PBNA can only achieve
symmetric rate 1

2
. (f) shows a Type III network, for which routing can always achieve

symmetric rate one, and PBNA can only achieve symmetric rate 1
2
.

2.8.4 Characterizing the Routing Rate for Type III Networks with

η(x) = 1

In this subsection, we prove that for Type III networks with η(x) = 1, routing can always

achieve a symmetric rate of one.

We will first define the following polynomials:

L(x) = m13(x)m32(x)m21(x) R(x) = m12(x)m23(x)m31(x)

Thus, η(x) = L(x)
R(x)

. Given two distinct edges/nodes e1, e2, if there exists a directed path from

e1 to e2, we say e1 is upstream of e2 (or e1 is downstream of e2), and denote this relation by

e1 ≺ e2. Similarly, e1 6≺ v2 implies that there is no directed path from e1 to e2.
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Given two subsets of nodes S,D ⊆ V , let EC(S;D) denote the minimum capacity of all the

edge cuts separating S from D. Define the following subsets of edges:

S̄i
∆
= {e ∈ E − {σi} : e ∈ Cij ∩ Cik, j 6= k, j, k ∈ {1, 2, 3} − {i}}

D̄i
∆
= {e ∈ E − {τi} : e ∈ Cjj ∩ Ckj, j 6= k, j, k ∈ {1, 2, 3} − {i}}

The following proposition was stated in [49], which gives a graph theoretic interpretation of

the condition η(x) = 1.

Proposition 2.10. L(x) ≡ R(x) if and only if there exists two distinct integers i, j ∈

{1, 2, 3} such that S̄i ∩ S̄j 6= ∅ and D̄i ∩ D̄j 6= ∅.

Lemma 2.11. Let i, j be two distinct integers in {1, 2, 3}, and e2 ∈ D̄i ∩ D̄j. If S̄i ∩ S̄j 6= ∅,

then there exists e1 ∈ S̄i ∩ S̄j such that e1 ≺ e2 or e1 = e2.

Proof. Same as lemma 5 in [49] .

Lemma 2.12. For a given i, j, k ∈ {1, 2, 3} and i 6= j 6= k, if S̄i ∩ S̄j 6= ∅ ; D̄i ∩ D̄j 6= ∅

and EC({si, sj}; {di, dk}) > 1, then there exists a path P ′ii from si to di such that for each

e′ ∈ P ′ii, sj 6≺ e′, sk 6≺ e′, and e′ 6≺ dj, e
′ 6≺ dk.

Proof. Without loss of generality, suppose i = 1, j = 2 and k = 3. We can choose two edges

e1 ∈ S̄1 ∩ S̄2 and e2 ∈ D̄1 ∩ D̄2 such that e1 ≺ e2 or e1 = e2 (from lemma 1). Now consider

the edge e1, by definition cutting this edge would cut the flows s1 → d2, s1 → d3 , s2 → d1

and s2 → d3. Since we also have EC({si, sj}; {di, dk}) > 1, we can see that there should

exist a path P ′11 such that e1 6∈ P ′11. Consider any edge e′ ∈ P11,

• If this edge e′ has d2 (or d3 ) as a downstream node, then there will exist a path P12
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(or P13) such that e1 6∈ P12 ( or e1 6∈ P13), which contradicts the definition of edge e1

(or e2 ). Thus e′ 6≺ d2, e′ 6≺ d3.

• Similarly, if edge e′ is downstream of s2, it would result in a path P21 such that e1 6∈ P21,

which again will contradict the definition of e1. Thus s2 6≺ e′.

• If edge e′ is downstream of s3, it would result in a path P31, where e1 6∈ P31. But by

definition of e2, e2 ∈ P31, this in turn would result in paths P ′12 and P ′13 that does not

go through edge e1. Thus s3 6≺ e′.

Theorem 2.13. Assume that all the senders are connected to all the receivers via directed

paths. If η(x) = 1 and pi(x) 6= 1 for 1 ≤ i ≤ 3, then routing can achieve the rate tuple

(1, 1, 1).

Proof. Without loss of generality, suppose i = 1, j = 2, k = 3 and S̄1∩ S̄2 6= ∅ ; D̄1∩ D̄2 6= ∅.

From Lemma 2.12, we can see that there exist two disjoint paths, P1 ∈ P11 and P2 ∈ P22.

Therefore, ω1 and ω2 can transmit one unit flow through P1 and P2 respectively. Meanwhile,

ω3 can route one unit flow through the rest of the network. This implies that routing can

achieve the rate tuple (1, 1, 1).

2.9 Summary

In this chapter, we consider the problem of network coding for the SISO scenarios with three

unicast sessions. We described two general approaches, i.e., coding at the edge or in the

middle of the network, and two specific methods of the first approach, i.e., the eigenvector

method and the symbol extension method originally introduced in [11,44]. We discussed the

feasibility conditions for each of these schemes and their relation to network structure. We
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show that network topology may introduce algebraic dependence between different transfer

functions, which can potentially affect the rate achieved by PBNA. We identify the minimal

set of conditions that are realizable in networks. Moreover, we show that each of these

conditions has a unique interpretation in terms of network topology. We also derived the

optimal rates achievable under any precoding based linear scheme for various network types

and showed that these rates are indeed achievable with PBNA (with small modifications in

some cases).

We also compared alignment to alternative approaches that can achieve half the rate de-

pending on the network topology. For three unicast sessions with min-cut one, we show a

negative result: whenever alignment is possible, alternative approaches can also achieve half

the min-cut. However, for more than three sessions and/or for min-cut per session greater

than one, we show examples where alignment is necessary. We also provide a classification

of the network based on the network structure and compare the rates achievable by PBNA

to routing.

This work is limited to three unicast sessions in the SISO scenario (i.e., with min-cut one

per session) and following a precoding-based approach (all precoding is performed at the end

nodes, while intermediate nodes perform random network coding). This is the simplest, yet

highly non-trivial instance of the general problem of network coding across multiple unicasts.

Apart from being of interest on its own right, we hope that it can be used as a building block

and provide insight into the general problem.
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Chapter 3

Networks with Rank Deficient

Transfer Matrix

After thoroughly analyzing and successfully characterizing the precoding-based linear rates

for the networks with three session in the previous chapter, we move on to more than three

sessions (K > 3). Alignment techniques become more complex as we increase the number of

sessions. In this chapter, we focus on certain sub-classes of network topologies, namely we

look at wireless interference channels with a rank deficient transfer matrix. In the wired case,

due to the simplicity of the topology considered, it is possible to design the network code

to achieve desirable rates. But in the wireless setting, the channel coefficients are inherently

random and we have to make use of precoding based scheme, so it makes more sense to study

these topologies from the wireless perspective.
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3.1 Introduction

Wireless networks are interference limited and understanding the degrees of freedom (DoF) of

various interference networks is a significant problem in network information theory. Optimal

DoF results are available for several K-user MIMO interference channels using the principle

of Interference Alignment [11, 51–53]. When all transmitters and receivers have M nodes

with full rank channel matrices, it is known that KM
2

DoF are achievable using the CJ08

asymptotic alignment scheme [11], when channel coefficients are time-varying and drawn

from a continuous distribution.

The DoF of rank deficient MIMO interference channels have been studied in [54–57]. All

these prior works consider individual channels between a transmitter-receiver pair to be

rank deficient. Such rank deficient channels are frequently encountered in wireless MIMO

networks due to poor scattering and keyhole effects. This chapter considers the overall

transfer matrix of the network to be rank deficient, which has not been explored before.

Rank deficient transfer matrices are observed typically in wired and wireless networks with

constraints in the network topology. For example, such rank deficient transfer matrices could

manifest in relay networks, wherein all the intelligence resides only at the transmitters. Rank

deficiency in the transfer matrix leads to spatial dependencies between the direct and cross

channels, implications of which will be discussed in this work.

The DoF of 2-user SISO interference channel with such rank deficiencies are known trivially,

while those for 3-user SISO interference channel follows from [48, 58, 59]. The use of inter-

ference alignment for the 3 multiple unicast network coding problem was initially discussed

in [58] and [59]. Later, Meng et al. derived the feasibility conditions for asymptotic inter-

ference alignment, in [48]. Rank deficiency in X channels was discussed in [60], with the

individual channels being rank deficient. Spatial dependencies have also been observed in

interference channels with coordinated multipoint (CoMP) transmission and reception, the
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DoF of which were explored in [61].

In this chapter, we introduce the problem of characterizing the DoF of K-user SISO inter-

ference channels with transfer matrix of rank D (D < K). We present a modified version of

the asymptotic interference alignment [CJ08] scheme to handle the spatial dependencies that

arise due to the rank deficiency. A set of polynomial conditions are derived which are shown

to be sufficient for achieving half rate per user using this modified scheme. We analyze the

4-user and 5-user interference channels with rank D, and point out the difficulty in proving

the sufficient conditions here. We then study the 6-user interference channel where we show

that the sufficient conditions are not satisfied, thereby pointing out the challenges in showing

achievability for K ≥ 6.

3.2 System Model

We consider the K-user SISO interference channel with perfect global channel knowledge.

The channel output at the k-th receiver over the t-th channel use is given as,

Yk(t) =
K∑
j=1

Hkj(t)Xj(t) + Zk(t)

where, k ∈ {1, 2, . . . , K} is the user index, t ∈ N is the channel use index, Yk(t) is the output

signal of the k-th receiver, Xk(t) is the input signal of the k-th transmitter, Hkj(t) is the

channel coefficient from transmitter j to receiver k over the t-th channel use, and Zk(t) is the

AWGN at the k-th receiver. The bold face notations Xk,Yk, and Zk are used to represent

the vector form of their corresponding scalars over multiple channel uses, and the bold face

notation Hij is used to represent the diagonal channel matrix over multiple channel uses.

For any given time slot t ∈ N, the overall transfer matrix is defined as the K ×K matrix of

the form H(t) = [Hij(t)] ∀i, j ∈ {1, 2, . . . , K} , and its rank is given by D. Time indices are
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Figure 3.1: System Model

omitted for brevity.

Let Rk(ρ) denote the achievable rate of user k where ρ is the Signal-to-Noise Ratio (SNR).

The capacity region C(ρ) of this network is the set of achievable rate tuplesR(ρ) = (R1(ρ), R2(ρ), . . . RK(ρ)),

such that each user can simultaneously decode its desired message with arbitrarily small error

probability. The maximum sum rate of this channel is defined asRΣ(ρ) = maxR(ρ)∈C(ρ)

∑K
k=1 Rk(ρ).

The sum DoF is defined as dΣ = limρ→inf
RΣ(ρ)
log(ρ)

and dΣ

K
as the normalized DoF per user.

3.3 Overview Of Results

For the K-user SISO interference channel with rank deficient transfer matrix (D < K), we

show that the outer bound of the sum degrees of freedom is : dΣ ≤ min{D, K
2
}.
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The rank deficiency in the transfer matrix creates algebraic dependencies even among the

cross channel coefficients making it hard to apply the [CJ08] alignment scheme directly. We

introduce a modified version of the [CJ08] scheme to deal with these dependencies, and then

derive the sufficient conditions under which there will be no overlap between the desired and

interfering signal spaces. This scheme is also used in [62] to show achievability results for

individual channel rank deficiency of MIMO interference channels.

Let S denote the set of channel realizations with rank D.

Theorem 3.1. Degrees of freedom achievable for the K-user interference channel with rank

deficient transfer matrix, can be made arbitrarily close to half per user using the modified

alignment scheme, if for each k ∈ {1, . . . , K} : QHkk − P 6= 0 ∀ P,Q ; where P and Q are

multivariate polynomials in the variables {Hij : i 6= j} and non-zero under S.

This theorem signifies that half rate per user is achievable even with algebraic dependencies

among the channels, provided the dependencies between the direct and cross channels can

not be expressed in the form defined above.

We then check if these conditions hold true for the general K-user case. We discuss a simple

approach that uses ergodic alignment [41] ideas to get a subspace of realizations which in

turn would help us prove some, but not all, of these sufficient conditions.

We present our analysis for K = 4, 5 and explain the difficulties of proving the sufficient

conditions from Theorem 3.1. We also study the 6-user channel, and show that the sufficient

conditions are not satisfied.
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3.4 Mathematical Preliminaries

In the appendix, we use some results in algebraic geometry, so we start by recalling some

basic terminology in algebraic geometry. We refer the reader to the book [63] for an excellent

introduction.

3.4.1 Varities and Ideals

Let C[t1, t2, · · · , tn] and C(t1, t2, · · · , tn) denote the set of multivariate polynomials and ratio-

nal functions, respectively, in the variables t1, t2, · · · , tn. For any polynomials f1, f2, · · · , fm ∈

C[t1, t2, · · · , tn], the affine variety generated by f1, f2, · · · , fm is defined as set of points at

which the polynomials vanish:

V (f) = {t ∈ Cn : f(t) = 0}.

Any subset I ⊆ C[t1, t2, · · · , tn] is called an ideal if it satisfies the three properties

• 0 ∈ I.

• If f1, f2 ∈ I, then f1 + f2 ∈ I.

• If f1 ∈ I and f2 ∈ C[t1, t2, · · · , tn], then f1f2 ∈ I.

For any set A ⊆ Cn, the ideal generated by A is defined as

I(A) = {f ∈ C[t1, t2, · · · , tn] : f(t) = 0 ∀t ∈ A}.

For any ideal I, the affine variety generated by I is defined as

V (I) = {t ∈ Cn : f(t) = 0 ∀f ∈ I}.
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3.4.2 Algebraic Independence and Jacobian Criterion

Definition 3.1. The rational functions f1, f2 · · · , fm ∈ C(t1, t2, · · · , tn) are called alge-

braically dependent (over C) if there exists a nonzero polynomial F ∈ C[s1, s2 · · · , sm]

such that F (f1, f2, · · · , fm) = 0. If there exists no such annihilating polynomial F , then

f1, f2, · · · , fm are algebraically independent.

Lemma 3.2 (Theorem 3 on page 135 of [64]). The rational functions f1, f2 · · · , fm ∈

C(t1, t2, · · · , tn) are algebraically independent if and only if the Jacobian matrix

Jf =

(
∂fi
∂tj

)
1≤i≤m,1≤j≤n

(3.1)

has full row rank equal to m.

The Jacobian matrix is a function of the variables t1, t2, · · · , tn, and hence the Jacobian

matrix can have different ranks at different points t ∈ Cn. The above lemma refers to the

structural rank of the Jacobian matrix which is equal to m if and only if there exists at least

one realization t ∈ Cn where the Jacobian matrix has full row rank.

3.5 Preliminary Analysis

Lemma 3.3. For the K-user SISO interference channel with transfer matrix H of rank D,

the sum DoF dΣ is bounded from above by min{D,K/2}, i.e. dΣ ≤ min
{
D, K

2

}
Proof. We know that for a generic K-user interference channel the outer bound for the sum

DoF is given by K
2

[11]. This bound also holds for the rank deficient channel considered in

this chapter, giving the outer bound of K
2

when the rank D ≥ K
2

. The rank of the transfer

matrix, D, acts as the cutset bound, i.e., no more than D independent data streams can
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be transmitted over this network. Hence we get the final outer bound for the sum DoF as,

dΣ ≤ min{D, K
2
}.

The outer bound depends on the value of D, but in our analysis we will focus on the setting

where D = dK
2
e . The rank D = dK

2
e is the most interesting setting because, if we can prove

the achievability for this, the result extends easily to all other values of D. A more rigorous

discussion about this can be found in Appendix B.1.

Consider the determinant of any l × l sub matrix of the network transfer matrix H, where

l > D, it gives a polynomial in Hij which identically equates to 0. This implies that the

channel coefficients (Hij’s) are algebraically dependent. In a generic interference channel

the cross channels are all algebraically independent, so the precoding matrix used in [CJ08]

scheme is almost surely full rank. But in a rank deficient interference channel, especially

in the case where the rank is dK
2
e , the cross channels might be algebraically dependent

thus making the precoding matrix rank deficient too. We will modify the [CJ08] scheme to

exclude the linearly dependent columns in the precoding matrix, which reduces the number

of dimensions of the desired and interfering signal spaces at the receivers. We will explore if

there is overlap between the desired and the interfering signal spaces, and consequently the

achievability of half rate per user.

3.5.1 The Modified Scheme

Consider the asymptotic interference alignment scheme for K-user Gaussian SISO interfer-

ence channel (CJ08) as described in [11, 65]. The symbol extended version of the receiver

equation is given below,

Yj =
K∑
i=1

HjiXi + Zi, ∀j ∈ {1, . . . , K} (3.2)
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Let us denote the precoding matrix used at each transmitter in the [CJ08] scheme as Vn for

some arbitrarily large n ,

Vn = {(T1)α1(T2)α2 . . . (TN)αN1 |
N∑
i=1

αi ≤ n, α1, α2, . . . , αN ∈ {0} ∪ Z+} (3.3)

In = {(T1)α1(T2)α2 . . . (TN)αN1 |
N∑
i=1

αi ≤ n+ 1, α1, α2, . . . , αN ∈ {0} ∪ Z+} (3.4)

wherein T1, . . . , TN are the N = K(K − 1) cross channels Hji, j 6= i and 1 refers to the all

one column vector. We can impose a lexicographic ordering on the columns Vn and In. We

will construct a new precoding matrix V̄n by just removing linearly dependent columns of Vn.

We will use In and Īn to denote the original interference space and interference space with

the modified scheme, at the receivers respectively. Similar to [65], all transmitters use the

same set of beamforming vectors V̄n and all receivers approximately see the same interfering

signal space of Īn . It can be noted that In = Vn+1 and Īn = V̄n+1. Since we have removed

only the linearly dependent columns from Vn and In to form V̄n and Īn, the column span of

the precoding matrices remains the same, i.e. following relations hold

span(V̄n) = span(Vn)

span(TiV̄n) = span(TiVn) ⊆ span(In) = span(Īn)
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In the original construction, number of column vectors was given by |Vn| =
(
n+N
N

)
and

|In| =
(
n+N+1

N

)
. While we do not precisely know the number of column vectors in V̄n and Īn,

we know that |V̄n| < |Īn| = |V̄n+1|. Now we will show that the desired signal space occupies

half the dimensions at all receivers, almost surely. To this end, we need to align all the

interference at every receiver within one half of the total signal space available, leaving the

other half interference free for the desired signals. This will enable the receivers to decode

its desired message.

We will use limit infimum in proofs for the following lemmas as limits may not exist in

general for divergent series.

Lemma 3.4. Growth rate of the new precoding vectors asymptotically reaches zero for large

n, i.e.

lim inf
n→∞

|V̄n+1|
|V̄n|

= 1 (3.5)

Proof. We will prove this by contradiction. Suppose the contrary is true, i.e., there exists a

positive number ε > 0 such that

lim inf
n→∞

|V̄n+1|
|V̄n|

> (1 + ε) (3.6)

By definition of limit infimum, (3.6) means that there exists a positive integer n0 such that

for all n > n0, the below relation holds.

|V̄n|
|V̄n0|

> (1 + ε)n−n0 (3.7)
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Figure 3.2: Growth rate of precoding vectors

Note that (3.7) represents a recursive relation that holds for all positive integers n, leading

to :

|V̄n| > (1 + ε)n−n0|V̄n0| (3.8)

Based on the modified construction of precoding vectors for asymptotic interference align-

ment scheme, we know that |V̄n+1| ≤
(
n+N+1

N

)
. Hence, we have the following :

|V̄n+1|
|V̄n|

≤
(
n+N+1

N

)
(1 + ε)n−n0V̄n0

(3.9)

It can be seen that for large n, the term on the right side goes to zero since it is a ratio

of a polynomial over an exponential in n. Note that we have assumed ε to be a positive

number. However, we know that this cannot be true since |V̄n| ≤ |V̄n+1|, leading to a

contradiction. Hence the assumption in (3.6) cannot hold, and we have proved the lemma,

i.e., growth rate of size of precoding matrix after removing the dependent columns, reaches

zero asymptotically for large n.
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Lemma 3.5. Given that the desired signal space V̄n does not overlap with the interfering

signal space Īn, the ratio of desired signal dimensions and total signal dimensions can be

made arbitrarily close to 1
2
, i.e.

|V̄n|
|V̄n|+ |Īn|

≈ 1

2

Proof. We know from Lemma 3.4 that (3.5) holds true. Also, for a sequence xn, if a >

lim inf xn, then there is an infinite subsequence xnk of xn such that a > xnk . Using this we

can choose a series of n and a value for δ such that

1 ≤ |V̄n+1|
|V̄n|

< 1 + δ

from which we get

lim
δ→0

|V̄n|
|V̄n|+ |V̄n+1|

=
1

2

Hence with appropriate choice of δ, we can make above relation arbitrarily close to 1
2
, i.e.

the ratio of desired signal dimensions and total signal dimensions reaches 1
2

for large n.

Lemma 3.4 and 3.5 imply that for the interference channel with rank deficient transfer matrix,

DoF per user can be made arbitrarily close to 1
2

for large n with the modified scheme, if the

desired and interfering signal space do not overlap. This modified scheme has been essential

in proving achievability results in [62] for the rank-deficient MIMO interference channels

where the individual channels are rank-deficient.
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3.5.2 The Overlap

Proof of Theorem 3.1. Let us consider the signal space at receiver 1, S1 = [H11V̄n Īn].

Matrix S1 needs to be full rank so that desired and interference signal spaces have no overlap.

span(H11V̄n) ∩ span(Īn) = ∅ (3.10)

Let us denote number of columns in V̄n as lv, and the number of columns in Īn as lint . Note

that lv =
(
n+N−1

N

)
and lint =

(
n+N
N

)
when all cross channels are algebraically independent.

Based on modified CJ08 construction scheme, the linear independence condition can be

expressed as

lv−1∑
i=0

qiH11

∏
m

(
Tm

)αmi
6=

lint−1∑
j=0

pj
∏
m

(
Tm

)αmj
(3.11)

where m ∈ {1, . . . , K(K − 1)}, αmi ∈ {0, 1, . . . , lv − 1}, αmj ∈ {0, 1, . . . , lint − 1}, and all

pi, qj are not simultaneously zeros. Rearranging above, we get

H11 6=

∑lint−1
j=0 pj

∏
m

(
Tm

)αmj
∑lv−1

i=0 qi
∏

m

(
Tm

)αmi (3.12)

Because of the diagonal nature of Hij’s and Tm’s, (3.11) can be easily translated to its scalar

form. If the conditions in Theorem 3.1 are satisfied, (3.11) will hold almost surely under S,

a rigorous proof for this is presented in Appendix B.2, and consequently matrix S1 will be
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Figure 3.3: Decomposition of the 4× 4 transfer matrix of rank 2.

full rank. The same argument can be extended to the other direct channels Hkk. This, along

with Lemma 3.5, proves the theorem.

Consider the case where the rank is dK
2
e, i.e. D = dK

2
e. In order to show that the sum DoF

outer bound is tight for this case, all we need to prove is that the direct channel cannot be

expressed as a rational function of the cross channels.

Hkk 6=
P

Q
∀ k = 1, . . . , K (3.13)

where X is the set of all cross channels and P,Q are non-zero multivariate polynomials of the

cross channels. In other words, we need to show that any polynomial of the form QHkk −P

is not identically equal to 0 under S. We can make use of the Schwartz-Zippel lemma from

polynomial identity testing for this purpose, proof of applicability of Schwartz-Zippel lemma

under S is presented in Appendix B.2.

Consider the K ×K transfer matrix H, since the rank of this matrix is D = dK
2
e, it’s rank
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decomposition is the product of a K ×D matrix and a D ×K matrix.

H = G|K×D| ∗ F|D×K| (3.14)

In one time slot, each receiver will see a linear equation in K variables (messages), each of

which is in turn a linear combination of D linear equations. Now consider sending the same

set of messages over two consecutive time slots, we will use H1 to represent the coefficients

of the linear equations at the receivers for the first time slot and H2 for the second time slot.

Each receiver would be able to decode its respective message if H1 −H2 = I|K×K|, which

implies,

G1 ∗ F1 −G2 ∗ F2 = I|K×K|[
G1 G2

] F1

−F2

 = I|K×K|

[
G1 G2

]
=

 F1

−F2


−1

(3.15)

wherein Gt,Ft are obtained from rank decomposition of matrix Ht, t ∈ {1, 2}. If we have

the freedom to manipulate

[
G1 G2

]
or

 F1

−F2

, then by choosing one as the inverse of

the other and by sending the same message over the two time slots, we would be able to zero

force the interference over the two slots at each receiver. This gives us a set of realizations

where the value of the cross channels would remain the same while the direct channels would

vary, similar to ergodic alignment [41].

We define the subset S′ ⊂ S as the set of channel realizations where for each H in the subset
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there exists a complementary realization H′ such that H−H′ = I, i.e.,

S′ = {H | H ∈ S, H′ ∈ S, H−H′ = I} (3.16)

When P 6= 0 and Q 6= 0 under S′, we get non-zero realizations for QHkk − P , thus proving

that this polynomial is non-zero under S. The same argument could be made when only

one of the two polynomials P or Q is non-zero under S′. The problem occurs when both P

and Q are zeros in S′, in which case we can not get non-zero realizations for QHkk −P even

under S′, making it hard to say whether QHkk −P is a zero or a non-zero polynomial under

S . At this point, it is not clear whether the conditions hold for generic K.

3.6 Achievability

In this section we will first show the hurdles in proving the sufficient conditions for K = 4

and K = 5. We will also show that the sufficient conditions are not satisfied for K ≥ 6.

3.6.1 K = 4 and D = 2

Consider the 4-user rank deficient SISO interference channel with 4 direct channels and 12

cross channels shown below,

H =



H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44


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Lemma 3.6. All 12 cross channels of 4×4 channel matrix with rank D = 2, are algebraically

independent.

Proof. We prove this with the help of symbolic toolbox in MATLAB. Please refer Appendix

B.3 for further details.

Let us denote the first direct channel H11 as z; the set of all cross channels as X = {Hij :

i 6= j;∀i, j ∈ {1, 2, 3, 4}}, and S the set of all channel realizations with rank 2. Consider a

3× 3 submatrix of H containing two direct channels, say H11 (denoted as z) and H22. The

determinant of any such submatrix is zero (since D = 2).

∣∣∣∣∣∣∣∣∣∣∣
z H12 H13

H21 H22 H23

H41 H42 H43

∣∣∣∣∣∣∣∣∣∣∣
= 0

Evaluating the determinant, we get a polynomial in z,H22 and the 7 cross channels. Rear-

ranging the polynomial equation, we can express H22 as a rational function, f2(z,X), of z

and the 7 cross channels.

H22 =
H21(H12H43 −H42H13) +H23(zH42 −H41H12)

zH43 −H41H13

The denominator polynomial, zH43 − H41H13 is non-zero, this is shown in Appendix B.3.

The denominator could still evaluate to zero for some realizations in S and f2(z,X) will be

undefined for these realizations. But we can consider a domain D under which f2(z,X) is

always defined, i.e., set of all points in S for which the denominator polynomial is always

non-zero. We can also see that the set of points excluded from S to get D has measure zero.
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Consider the determinant of another 3× 3 submatrix comprising of H11 and H22.

∣∣∣∣∣∣∣∣∣∣∣
z H12 H14

H21 f2(z,X) H24

H31 H32 H34

∣∣∣∣∣∣∣∣∣∣∣
= 0

Evaluating the above determinant, we get a multivariate polynomial which is quadratic in

z, of the form:

A(X)z2 +B(X)z + C(X) = 0 (3.17)

where A(X), B(X), C(X) are all polynomial functions of the 12 cross channels. Also polyno-

mials A(X), B(X), C(X) are non-zero since the cross channels are algebraically independent.

Let us assume that there is a polynomial Q(X)H11 − P (X) that always evaluates to zero

under D. We already know that Q(X) is a non-zero polynomial, so we can express H11 as a

rational function of the cross channels, i.e., z = H11 = P (X)
Q(X)

, which is always defined in the

domain D′ ⊆ D. Similar to D, we can see that the set of points excluded from S to get D′

has measure zero. Substituting this rational function for z in (3.17), we get

A(X)P (X)2 +B(X)P (X)Q(X) + C(X)Q(X)2 = 0 (3.18)

The above equation holds if

• The polynomial in (3.18) is non-trivial and always evaluates to zero.

• z = P (X)
Q(X)

is a root of the quadratic equation (3.17).
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If we suppose that the non-trivial polynomial in (3.18) always evaluates to zero, then this

gives a zero polynomial in the 12 cross channels, indicating that the 12 cross channels are

algebraically dependent. However this is a contradiction.

If we could show that z = P (X)
Q(X)

cannot be a root, we can establish that Q(X)H11−P (X) 6= 0.

This is hard as we do not exactly know P (X) or Q(X). Using MATLAB, we were able

to verify that for rational realizations of the cross channels Hij the roots of the equation

(3.17) are not always rational. Even though this helps in showing that the polynomial

Q(X)H11−P (X) is almost surely non-zero in the rational space, we will not be able to make

the same statement for the general space S.

3.6.2 K = 5 and D = 3

Consider the 5-user rank deficient SISO interference channel represented by the following

matrix,

H =



H11 H12 H13 H14 H15

H21 H22 H23 H24 H25

H31 H32 H33 H34 H35

H41 H42 H43 H44 H45

H51 H52 H53 H54 H55


the rank of this matrix is D=3,

Lemma 3.7. All 20 cross channels along with any one of the direct channel of the 5 × 5

transfer matrix with rank D = 3 are algebraically independent.

Proof. Proof is presented in Appendix B.3.
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Let us denote the first direct channel as z = H11, and the fifth direct channel as ZAI = H55

(that is algebraically independent of other channels). Set of cross channels is denoted by X,

similar to that in K = 4 setting.

Consider a 4×4 submatrix of H containing 3 direct channels, say H11, H22, H55, wherein H55

is considered to be algebraically independent of all the cross channels. The determinant of

any such sub-matrix is zero, since D = 3.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z H12 H14 H15

H21 H22 H24 H25

H31 H32 H34 H35

H51 H52 H54 ZAI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Evaluating the determinant, we can express H22 as a rational function of z, fifth direct

channel ZAI and 20 cross channels.

H22 = f2(z,X, ZAI) (3.19)

The denominator polynomial of this rational function can be shown to be non-zero. This is

due to the algebraic independence of all cross channels and ZAI , as discussed in Appendix

C2. The denominator could still evaluate to zero for some realizations in S and f2(z,X, ZAI)

will be undefined for these realizations. But we can consider a domain D under which

f2(z,X, ZAI) is always defined, i.e., set of all points in S for which the denominator polyno-

mial is always non-zero.
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Now, let us consider determinant of another 4×4 submatrix comprising of H11, H22 and H55.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z H12 H13 H15

H21 f2(z,X, ZAI) H23 H25

H41 H42 H43 H45

H51 H52 H53 ZAI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Evaluating above determinant, we get a multivariate polynomial which is quadratic in z of

the form

A(X,ZAI)z
2 +B(X,ZAI)z + C(X,ZAI) = 0 (3.20)

where A(X,ZAI), B(X,ZAI), C(X,ZAI) are all polynomial functions of the 20 cross channels

and 1 direct channel H55. Also, A(X,ZAI), B(X,ZAI), C(X,ZAI) are non-zero since X,ZAI

are algebraically independent.

Let us assume that there is a polynomial Q(X)H11 − P (X) that always evaluates to zero

under D. We already know that Q(X) is a non-zero polynomial, so we can express H11 as a

rational function of the cross channels, i.e., z = H11 = P (X)
Q(X)

, which is always defined in the

domain D′ ⊆ D. Similar to D, we can see that the set of points excluded from S to get D′

has measure zero. Substituting this rational function for z in (3.20), we get

A(X,ZAI)
p(X)2

q(X)2
+B(X,ZAI)

p(X)

q(X)
+ C(X,ZAI) = 0 (3.21)

Above equation holds if
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• The polynomial in (3.21) is non-trivial and always evaluates to zero.

• z = P (X)
Q(X)

is a root of the quadratic equation (3.20).

If the non-trivial polynomial in (3.21) always evaluates to zero, then it gives a zero polynomial

in the 20 cross channels and 1 direct channel, indicating that the 21 channels are algebraically

dependent. However this is a contradiction.

If we could show that z = P (X)
Q(X)

cannot be a root, we can establish that Q(X)H11−P (X) 6= 0.

This is hard as we do not exactly know P (X) or Q(X). Using MATLAB, we could verify

that for rational realizations of the 20 cross channels Hij and 1 direct channel, the roots

of the equation (3.20) are not always rational. Even though this helps in showing that the

polynomial Q(X)H11 − P (X) is almost surely non-zero in the rational space, we will not be

able to make the same statement for the general space S.

This analysis provides insights into why it is hard to prove the sufficient conditions, even for

the simple 4-user and 5-user channels.

3.6.3 Challenges with Higher Number of Users

The 4-user and 5-user channels have algebraically independent cross channels. But as we in-

crease the number of users to 6, we can see that the cross channels are no longer algebraically

independent. To see how this might affect us, consider the 6-user interference channel with

rank deficient transfer matrix H. Similar to the analysis in section 3.6.1, consider a 4 × 4

submatrix of H containing only 2 direct channels, say H11 = z, and H22, the determinant of
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any such sub matrix is zero.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z H12 H15 H16

H21 H22 H25 H26

H31 H32 H35 H36

H41 H42 H45 H46

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.22)

Evaluating this determinant, we can express H22 as a rational function of H11 and the 12

cross channels, H22 = f2(z,X), and this rational function is always defined in a domain D.

Consider the determinant of another 4× 4 submatrix containing of H11 and H22 = f2(z,X).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z H12 H13 H14

H21 f2(z,X) H23 H24

H51 H52 H53 H54

H61 H62 H63 H64

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.23)

Evaluating this determinant, we can get a multivariate polynomial which is quadratic in z

of the form

A1(X)z2 +B1(X)z + C1(X) = 0 (3.24)

where A(X), B(X), C(X) are all polynomial functions of the cross channels. We can do the

same for H33, by considering two different sub matrices containing H11 and H33, and derive

another multivariate polynomial which is quadratic in z after modifying the domain D to
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include the rational function H33 = f3(z,X).

A2(X)z2 +B2(X)z + C2(X) = 0 (3.25)

In the 4-user case, doing this with H33 would result in the same polynomial as (3.17). But

in the 6-user case considered here, we can see that (3.24) will have certain cross channel

coefficients, namely H24 and H42, which are not present in (3.25), and (3.25) will have

certain cross channel coefficients, namely H34 and H43, which are not present in (3.24). By

linearly combining (3.24) and (3.25) after scaling them appropriately, we can eliminate the

z2 terms and solve for z as a function of the cross channels.

(A2(X)B1(X)− A1(X)B2(X))z −

(A1(X)C2(X)− A2(X)C1(X)) = 0 (3.26)

The above equation shows that for a 6-user interference channel with rank D = 3, there

exists a polynomial Q(X)H11 − P (X) = 0. But, both the P (X) part and Q(X) part of

(3.26) have to be non-zero polynomials in order for (3.26) to be relevant, as under the

modified alignment scheme it is not possible for either of them to be zero polynomials. That

being said, by using MATLAB we can numerically confirm that these polynomials are non-

zeros and thus (3.26) is relevant. In other words the desired and interfering signal spaces

will overlap at the receivers if we try to use the modified scheme for the 6-user channel.

Even though this is not enough to say that the DoF outer bounds from Lemma 3.3 are not

achievable for higher number of users, it shows the complications that arise when we increase

the number of users in the interference channel with rank deficient transfer matrix.
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3.7 Summary

We introduced the problem of characterizing the DoF of the K-user interference channel with

rank a deficient transfer matrix. We presented a modified asymptotic alignment scheme to

handle the algebraic dependencies, and discussed the sufficient conditions to achieve half rate

per user. We illustrated the difficulties of proving the sufficient conditions for the simpler

cases of K = 4, 5 and showed that the sufficient conditions are not met for K ≥ 6. In

conclusion, finding the optimal DoF of the general K-user interference channel with rank

deficient transfer matrix remains open and presents a considerable challenge. The contents

of this chapter appeared in a paper that we published in ISIT 2014 [66].
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Chapter 4

Coded Caching

In this chapter, we look at content distribution networks with caches at the enduser. The

cache essentially provides side information, and makes the problem reduce to index coding

instances [76].

4.1 Introduction

Today’s Internet traffic is dominated by content distribution services like live-streaming

and video-on-demand. These services have been the driving force behind the explosive

traffic growth seen in recent times. Popular services like Netflix, YouTube, etc, exhibit two

important features: (i) the user demands are predictable based on their statistical history [67]

and (ii) they exhibit strong temporal variability, resulting in highly congested peak hours

and underutilized off-peak hours.

A common approach is to take advantage of the memories distributed across the network (at

end users and/or inside the network) to store some of the popular contents. This process,

termed caching, can be done during off-peak hours, so that during peak hours user requests
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can be served from these locally available memories without having to burden the network.

Design and analysis of caching techniques for various kinds of networks have been researched

extensively in the past [68–72] along with the impact of user demand statistics (file popu-

larities) on the performance of caching [67, 73, 74]. This body of prior work only considered

uncoded caching. It is easy to see that filling the cache with the most popular files (LFU)

is indeed the optimal strategy for a system with only one user [75], but as we move on to

systems with requests from multiple users, new challenges and opportunities arise.

A coded caching strategy was proposed by Maddah-Ali et al. in [76] for a system of uniform

user demands and centralized content placement scheme and was extended to decentralized

approach [77] and non-uniform Zipf based user demands in [78]. In a recent work [79], Ji et

al. independently and in parallel proved order optimality for a caching policy that is uniform

or uniform over a subset of the files based on the Zipf parameter for a Zipf distributed file

popularity distribution. The coded caching problem typically consists of two phases, the

placement phase where the contents are placed in local memory based on the statistics of

user demands (file popularities) and the delivery phase where the remaining content, which

is not available locally, is delivered after the demands of the users have been revealed.

In this chapter, we focus mainly on the delivery phase. Our main contribution is the design

and evaluation of the Heterogenous Coded Delivery (HCD) scheme that improves upon the

current state-of-the-art in coded caching and significantly reduces the load on the server dur-

ing the delivery phase. The structure of the rest of this chapter is as follows. In Section 4.2,

we formulate the problem. In Section 4.3, we discuss the intuition and background of coded

caching. In Section 4.4, we present the proposed heterogenous coded delivery scheme and ex-

plain its working in detail. In Section 4.5, we present an evaluation of the proposed scheme.

Section 4.7 concludes the chapter.
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Figure 4.1: Problem Setup for Coded Caching.

4.2 Model and Assumptions

4.2.1 Problem Setting

We consider a system consisting of a server connected through a shared, error-free link to K

users as illustrated in Fig. 4.1. The server has access to a database of N files W1, . . . ,WN

each of size F bits. Without loss of generality, we assume all files to be of the same size1.

Each user k has an isolated cache memory Zk of size MF bits (MB packets) for some real

number M ∈ [0, N ]. The popularity of a file Wn is the probability that this file is requested

by a user. The file popularity distribution in the server is p = [pn]Nn=1, where
∑N

n=1 pn = 1.

W.l.o.g. we can assume p1 ≥ p2 ≥ · · · ≥ pN . The system operates in two phases: a placement

phase and a delivery phase.

1Files of different sizes can be split into smaller files of the same size.
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In the placement phase, the users are given access to the entire database W1, . . . ,WN of

files. Each user k is then able to fill the content of its cache Zk using the database. The

users follow a caching policy q = [qn]Nn=1, where qn denotes the fraction of the cache space

in each user that will be allocated to the file Wn and
∑N

n=1 qn = 1. The caching can either

be done in a centralized manner, where the server besides deciding the caching policy q also

decides what parts of each file is stored in each user’s cache; or in a decentralized/distributed

approach. In the decentralized approach, the server has no control over which parts of the

file goes into each user’s cache, it can only control what fraction of each file is cached (i.e.,

the caching policy q). The users randomly cache some portion (the size of this portion alone

is dictated by the server) of each file in their corresponding cache. The server is assumed to

have complete knowledge of Zk, the content of the cache of user k. By knowing the content

of cache Zk, the server knows which bits/packets of each file are stored in the cache of user

k.

In the delivery phase, only the server has access to the database. Each user k requests one

of the files Wdk in the database, where dk represents the index of the file requested by user

k. The vector (d1, . . . , dk) is a vector of indices of the files requested simultaneously by all

K users ordered accordingly. The file requests are independently and identically distributed

across all the users and follow the popularity distribution p. The probability that a user

requests file n is pn. The server is informed of these requests and proceeds by transmitting

a message X(d1,...,dk) of size R(d1,...,dk)F bits over the shared link for some fixed real number

R(d1,...,dk). R(d1,...,dk) is referred to as the load in this chapter and is a measure of the length of

the message. Using its cache content Zk and the message X(d1,...,dk) received over the shared

link, each user k aims to reconstruct its requested file Wdk .
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4.2.2 Problem Statement

Problem Statement. Given the cache content Zk for each user k and the exact demand

vector (d1, d2, . . . , dK), what is the optimal length R∗(d1,...,dk)F of message X(d1,...,dk) that the

server should transmit to satisfy the given demand?

In general, this is an optimization of the delivery scheme and assumes the content of the

caches to be given. As shown in the next subsection, this optimization is in general NP-hard.

Here we design a practical delivery scheme for the given cache state that helps to reduce the

length of the message X(d1,...,dk) compared to the current state of the art scheme in [78].

The expected load is defined as the expectation of the loads over all possible demand vectors,

i.e., R̄(p) =
∑

(d1,...,dK)

R(d1,...,dK)pd1pd2 · · · pdK , and will be used to evaluate how the delivery

schemes perform over all demands.

4.2.3 Formulation

In general, the process of various users caching different parts of a given file results in splitting

a file into several nonoverlaping subfiles, such that each subfile is present in the caches of a

distinct subset of users. Consider a file in the server, say A, there are K users in the system

and during the placement phase, based on the caching policy, different parts of this file A

might get placed at the cache of each user. Grouping the bits of this file based on the set of

users they are cached at, the file A can be split into several subfiles AS , where each subfile

AS denotes the group of bits that are stored only in the cache of the specific set of users

given by the corresponding S ⊆ {1, . . . , K}. For example, let us say there are K = 2 users,

then the file A can be possibly split into A{}, A{1}.A{2} and A{1,2}. Here A{} represents all

the bits that are cached at neither of the two users, A{1}(A{2}) represents the bits that are

cached only at user 1(2) and A{1,2} represents the bits that are cached at both users 1 and
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2. Note that these subfiles are non-overlapping, i.e., if a bit of the file is present in one

subfile it cannot be present in any other subfile. Also note that not all subfiles have to be

populated, in the example above if not even a single bit of file A is cached at both user 1

and 2 then A{1,2} is unpopulated and hence can be discarded. The cache Zk of the user k

can be thought of as a collection of such subfiles that are cached at this user k. The subfiles

can in turn be classified into types based on the number of users they are cached at. We say

a subfile is of type t if exactly t users have cached the bits of this subfile. It is easy to see

that there are K + 1 types of subfiles and there are
(
K
t

)
subfiles for each type t.

In a centralized approach, the server has complete control over which bit of each file gets

placed in the cache of each user. This basically means that the server can determine how

a file is split in the subfiles defined above. In the decentralized approach, since the users

randomly choose the bits they will cache, the splitting is also randomized.

Now consider a demand vector (d1, d2, . . . , dK), which indicates that user 1 demands file Wd1 ,

user 2 requests file Wd2 , and so on. To simplify notation, let Vk denote the file requested by

user k, i.e., Vk = Wdk and Vk,S denote the subfiles corresponding to the file Wdk that are

requested by user k and are only available in the cache of users in S. The notation S is used

to refer to some ordered set of users, S ⊆ {1, 2, . . . , K}. For a given demand, based on the

cache content across all users, the server creates subfiles of the form Vk,S , for each user k,

which will be used for transmission. The user k already knows some subfiles of the file Vk,

as these subfiles are already present in its cache Zk; so the server only needs to transmit the

subfiles that are not present in its cache Zk to satisfy user k’s demand, i.e., the server needs

to send all populated subfiles of the form Vk,S\{k} ∀S , for that particular user k. Note that

even if two users, i and j, request the same subfile, say AS , we will use separate notations

Vi,S and Vj,S to denote the subfile requested by the respective users.

For a given caching and demand vector, finding the delivery scheme that minimizes the code

length of the message is equivalent to solving an index coding problem [80, 81] whose side
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information graph is determined by the caching configuration. The side information graph

G = (V , E), where V denotes the set of vertices and E the set of (directed) edges, can be

constructed as follows

• Each bit requested by each user is represented as a vertex. More specificially, every

vertex v ∈ V corresponds to a bit in a subfile of the form Vk,S\{k} that is requested

by user k and is cached only at all the users in the set S \ {k}. If two users request

the same bit of a file, then that bit is represented by two distinct vertices. Note that

the notation Vk,S\{k}, when used in context of the side information graph, denotes the

group of vertices that represent the bits in the subfile Vk,S\{k}.

• There exists an edge (u, v) ∈ E iff the cache of the user requesting the bit represented

by u contains the bit represented by v.

It is well-known that the index coding problem is, in general, NP-hard [82]. One can use

the chromatic number based approach to get a sub-optimal solution [79] by constructing an

undirected graph Ga = (V , Ea) similar to G. The vertices of Ga are the same as the vertices

of G and there exists an undirected edge (u, v) ∈ Ea between two vertices u and v iff the

cache of the user requesting the bit represented by u contains the bit represented by v and

the cache of the user requesting the bit represented by v also contains the bit represented by

u. The chromatic number solution for the complement graph of Ga, which is equivalent to

the minimum clique cover of the graph Ga, will give a sub-optimal approach for the delivery

scheme in our problem, but finding the chromatic number is also known to be NP-hard, in

general.
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4.3 Background on Coded Caching

In this section, we present background on coded caching and a rather detailed overview of

prior work, including observations and insights that inspired our new scheme.

4.3.1 Uniform Demands

We start from the intuition of the caching policy and the delivery scheme for the uniform

demands scenario, considered in [76]. The N files in the database of the server are assumed

to have equal popularity here, i.e., the probability that a given file is requested by a user is

1/N . Due to the uniform popularity, it only makes sense that an equal portion of each file be

cached at the user caches and since each user has a cache of size M files, some M/N portion

of each file should be cached at every user. In other words, we choose a caching policy where

qn = M/N for all n. Also note that, [76] considers a centralized placement scheme, where

the server can determine which bits of each file gets cached at each user.

Let us consider a file A. The caching policy dictates that each user caches MF/N bits of

this file. In order to determine which bits get placed at which user’s cache, the server splits

this file A into
(
K
t

)
subfiles of type t each labeled as AS , for some S. The subset S comprises

of t users and it is easy to see that there are
(
K
t

)
such subsets for a system with K users.

Since the content of the subfiles are nonoverlapping, each subfile will contain F/
(
K
t

)
bits of

the file A. A user k must cache all the subfiles AS , where k ∈ S. There are
(
K−1
t−1

)
such

subfiles for each user and the total bits in them should add up to MF/N bits for each user.

(
K−1
t−1

)
F(

K
t

) =
MF

N
⇒ t =

M

N
K

Thus the server will split each file into subfiles of type t = MK/N in order to help the users

determine which bits they will be storing in their respective caches.
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Designing an optimal delivery scheme for a given demand vector is equivalent to solving an

index coding problem. Due to the NP-hardness of this problem, practical solutions consider

suboptimal solutions. The centralized placement scheme, described above, coupled with the

uniform caching policy introduces a symmetry in the system that makes it easier to find

the minimum clique cover (chromatic number) solution for any given demand vector. The

undirected graph Ga = (V , Ea) can be constructed for a given demand vector as explained in

section 4.2.3 every user, there are
(
K−1
t

)
, subfiles each with F/

(
K
t

)
bits that are not cached

at that particular user. So the server needs to transmit a total of K
(
K−1
t

)
F/
(
K
t

)
bits to

satisfy the demand, i.e., |V | = K
(
K−1
t

)
F/
(
K
t

)
= K(1 − M/N)F . An uncoded delivery

scheme would require the server to send all those bits one by one (in the worst case scenario,

when each user demands a different file) to satisfy the demand. The minimum clique cover

provides a coding mechanism which would significantly reduce the number of bits that the

server needs to transmit. Consider a subset S of t+ 1 users, for each k ∈ S consider a node

in Ga that represents a bit in the subfile Vk,S\{k}. These t + 1 nodes can form a clique of

size t + 1. By coding (XORing) together all the t + 1 bits represented by these nodes and

transmitting them to all users in S, each user in S will be able to decode its desired bits

using the information stored in its own cache. Note that F/
(
K
t

)
cliques are required to cover

all the bits in a subfile and each clique covers a bit in t + 1 subfiles. Each clique here is a

maximal clique and subsequently it is not hard to see that the cover indeed uses a minimum

number of cliques. This whole process of clique cover based coding can be thought of bitwise

coding (XOR) the subfiles of the form Vk,S\{k} ∀ k ∈ S and repeating this for all S of size

t + 1. In the end there will be F/
(
K
t

)
cliques for each subset S of size t + 1 and

(
K
t+1

)
such

subsets, so the server only needs to send a message of size
(
K
t+1

)
F/
(
K
t

)
bits to satisfy all

the demands. The transmitted message length R(d1,...,dk)F =
(
K
t+1

)
F/
(
K
t

)
remains the same

across all demand vectors because of the symmetry and the uniformity in the placement and
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delivery schemes. For easier notation, let us denote this load R(d1,...,dk) as just R.

R =

(
K

t+ 1

)
1(
K
t

) =
K − t
t+ 1

=
K(1−M/N)

1 +KM/N
(4.1)

In [76], R is shown to be information theoretically optimal.

In the decentralized approach for content placement, the server has no control over which

bits are cached at each user, so it is not possible to look at the files as a collection of subfiles

of a single type. The users randomly select MF/N bits to store in their cache and based

on this random placement of bits, each file can be seen as a collection of subfiles of various

types. An algorithm was provided in [77] for the delivery in the decentralized setup, which

was still based on the clique cover approach, but the clique cover solution yielded by this

algorithm is not necessarily the minimum.

Insight. More importantly, the algorithm in [77] was restricted to form cliques only between

nodes (i.e., code the corresponding bits together) in the subfiles of the same type, and

thus missed coding opportunities We build upon this observation and design a new delivery

scheme, which considers more coding opportunities by forming cliques between nodes not

only of the same, but also of different type.

4.3.2 Non-Uniform Demans

Although uniform demands facilitate analysis, file popularities are far from uniform in prac-

tice; in fact, they could vary several orders of magnitude. In the uniform case, each file has

the same probability of being requested by a user, thus it is natural to allocate equal cache

to each file at every user. In the non-uniform case, the least popular file almost never get

requested by users. Therefore, cache should not be allocated equally to highly popular files

and least popular files. An intuitive way to share the cache is to make the caching policy q
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follow the popularity distribution p.

The work in [78] considers Zipf-distributed file popularities and they propose a caching policy

that groups files together. The files are divided into groups based on the closeness in their

popularities and the caching policy q is designed such that all the files in the same group will

have the same amount of cache space, qn, which is determined by dividing the cumulative

popularity of all the files in the corresponding group by the total number of files in that

group. However, files in different groups will have different qn (cache space allocation).

They also explicitly state that the grouping can be optimized to minimize the expected load.

The work in [79] considers Zipf file popularities, but proposes a simpler and different caching

policy than the one in [78]. [79] divides the files into just two groups. The files in one group

are not allocated any cache space at all, i.e., qn = 0 for all the files in this group, whereas

the files in the other group get to divide the entire cache space equally among themselves

(qn = M/group size, for all files in this group). Both [78] and [79] assume a decentralized

placement scheme, because a centralized approach would require a lot of work from the

server, which is not as practical as the decentralized approach.

Unlike the uniform case, the load R(d1,...,dk) varies across all demand vectors, thus it is more

meaningful to consider the expected load R̄(p) instead. The delivery scheme used in [78] is

essentially the same as the one in [77], as discussed briefly in section 4.3.1. The key idea

behind the scheme in [78] is to code (bitwise XOR) together all the subfiles of the form

Vk,S\{k} ∀ k ∈ S and repeating this coding procedure for all valid S. If the size of these

subfiles is not the same, which is usually the case when employing non-uniform caching

policy and/or decentralized placement scheme, the scheme just pads them with zeros to

make all their sizes the same.

Considering a graph Ga constructed based on the cache content of the users, for each S, the

algorithm tries to cover all the nodes in the groups of the form Vk,S\{k} ∀k ∈ S, by trying to
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form cliques of maximum size |S \ {k}| between the nodes across the groups Vk,S\{k} ∀k ∈ S.

If it cannot find any uncovered node within the groups Vk,S\{k} ∀k ∈ S to form a clique

of size |S \ {k}|, then the algorithm simply chooses to form a clique of lower size with the

available nodes.

Insight. In the situation just described above, the algorithm unnecessarily restricts itself

from considering all coding opportunities: it could form a bigger clique with nodes from a

different group of the form Vk,S′\{k}, where S ⊂ S ′. This is the key point we will exploit

in the improved algorithm that we present in the next section. The delivery scheme in [79]

makes use of the minimum clique cover solution, but finding the minimum clique cover is

NP-hard and [79] does not provide any practical algorithm to do that efficiently. Both [78]

and [79], prove that their respective placement and delivery scheme combinations are indeed

order optimal. In particular, [78], chooses a specific grouping, where files with popularity

differing by at most a factor of two are grouped together, to prove the order optimality of

their approach.

4.4 Heterogenous Coded Delivery Scheme

In this section, we propose the Heterogenous Coded Delivery scheme (HCD). First, we define

the algorithm and we discuss the core ideas and intuition on how this scheme achieves better

performance than the state-of-the-art in [77] and [78]. Then, we walk through the details of

this new scheme through an illustrative example.

4.4.1 The Scheme

The pseudocode for the HCD scheme is presented in Algorithm 1. HCD can be used with

both centralized and decentralized placement approaches. The new scheme, similar to the
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Algorithm 1 Heterogenous Coded Delivery (HCD)

1: procedure Delivery(d1, . . . , dK)
2: for t = 1, 2, . . . , K − 1, K do
3: for S ⊆ [K] : |S| = t do
4: binsize = maxk∈S Vk,S\{k}
5: for k ∈ S do
6: if |Vk,S\{k}| < binsize then
7: Move (binsize− |Vk,S\{k}|) bits from non-empty bins Vk,S′\{k} : S ′ ⊃ S

to temp
8: Create new subfile V ′k,S\{k}
9: V ′k,S\{k} ← Vk,S\{k} + temp

10: coded← coded⊕ V ′k,S\{k}
11: else
12: coded← coded⊕ Vk,S\{k}
13: end if
14: end for
15: server transmits subfile coded
16: end for
17: end for
18: end procedure

ones in [77, 78], is still based on finding a clique cover for the graph Ga. But HCD exploits

the possibilities of forming cliques with nodes from subfiles of higher types, which could

potentially reduce the number of cliques required for the cover. The users have already

populated the cache based on some caching policy and placement scheme. Once the server

is informed of the user requests, i.e., the demand vector (d1, . . . , dK), it would be able to

format the subfiles Vk that are required for transmission.

The procedure Delivery is called for the given demand vector to determine the message

X(d1,...,dk) that needs to be transmitted to satisfy the demands. The scheme requires to iterate

over all possible subsets of users, S, and the two outermost loops in the algorithm help to do

that. Note that in Algorithm 1, we use the notation [K] to refer to the set {1, 2, . . . , K}, the

operator + refers to concatenation and ⊕ refers to bitwise XOR operation. The innermost

loop helps to iterate through each user within a given subset S. The steps within the inner

most loop are the core of the algorithm and the difference between our algorithm and those
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presented in [77, 78]. Recall that the algorithms in [77, 78] code together all the subfiles of

the form Vk,S\{k} ∀ k ∈ S, after appending zeros to make them all of the same size (equal

number of bits). In our algorithm, instead of appending zeros right away, we first try to

borrow bits from the immediate higher type subfiles of the form Vk,S′\{k}, where S ′ ⊃ S.

After exhausting all the options for borrowing, we append zeros. In the algorithm, this

borrowing process is accompanied by a step involving the creation of new subfile V ′k,S\{k}.

We do this to avoid conflict with the definition of Vk,S′\{k}. Note that there are bits in the

new subfile that, although present in the caches of users in S \{k}, are no longer cached only

at these user in S \ {k}. Since S ′ can be any superset of S, all the bits in the new subfile

V ′k,S\{k} are cached at all the users in S \ {k} and so they would still be able to decode their

respective bits using the information present in their cache. Also note that the borrowing

process actually involves moving bits from the original subfile, not just copying them. It is

important to first code and transmit the subfiles of lower type before moving on to higher

types, because a subfile can only borrow bits from the corresponding subfiles of higher types.

In graph theoretic terms, we consider a graph Ga constructed based on the cache content of

the users, as in [77, 78]. For each S the algorithm tries to cover all the nodes in the groups

of the form Vk,S\{k} ∀k ∈ S, by trying to form cliques of maximum size |S \{k}| between the

nodes across the groups Vk,S\{k} ∀k ∈ S. Our algorithm differs in the fact that, if it cannot

find any uncovered node within the groups Vk,S\{k} ∀k ∈ S to form a clique of size |S \ {k}|,

instead of just settling with forming a clique of lower size, our algorithm tries to cover the

nodes from the corresponding higher type groups Vk,S′\{k}, where S ′ ⊃ S. We would like to

point out that, since our algorithm tries to cover nodes from higher type groups whenever

possible, even in the worst-case scenario the performance of our algorithm will be at least as

good as the ones in [77,78].

Observe that we do not try to optimize the borrowing step, i.e., we do not try to determine

the subfiles to borrow bits from such that final clique is minimized. The optimization of this
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W1 p1 = 0.3

W2 p2 = 0.2

W3 p3 = 0.2

W4 p4 = 0.2

W5 p5 = 0.1

Figure 4.2: File Server with N = 5 and popularity distribution p.

step is the core of the minimum clique cover and so could be NP-hard. Instead, we choose

to go with a simpler and more practical approach wherein a subfile Vk,S\{k}, if required, will

first borrow from a valid immediate higher type subfile of the form Vk,S′\{k}, where S ′ ⊃ S.

For example, consider an iteration where we are trying to code together the subfiles V1,{2},

which has 5 bits, and V2,{1}, which only has 1 bit, and the other subfiles related to user 2

present in the system are V2,{1,3,4}, V2,{1,4,5} and V2,{1,3,4,5} with 2 bits each. The algorithm will

first try to borrow from the immediate higher type subfiles, which in this case are V2,{1,3,4}

and V2,{1,4,5}. The next higher type subfile V2,{1,3,4,5} will only be considered if V2,{1,3,4} and

V2,{1,4,5} do not have enough bits to borrow from.

4.4.2 Example

We now present a detailed walkthrough of our algorithm through an illustrative example.

This will help highlight the subtleties in the proposed scheme.

Example 4.1. Consider a system with a server consisting of N = 5 files, each of size F

bits, K = 5 users, each with a cache of size M = 2 files and popularity distribution p

as shown in fig. 4.2. The file popularity distribution takes three distinct values: p1 = 0.3,

p2 = p3 = p4 = 0.2 and p5 = 0.1.
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Figure 4.3: Placement Phase

For this example, we will consider a caching policy that follows exactly the popularity dis-

tribution, i.e., q = p, and a centralized placement scheme. We choose the centralized

placement scheme as it helps to highlight the key difference between our algorithm and the

one in [77, 78]. The centralized scheme for the non-uniform caching policy is quite similar

to the one described in section 4.3.1. The server splits a file Wi into
(
K
ti

)
subfiles of type

ti = piMK, each getting F/
(
K
ti

)
bits as shown in fig. 4.3. The server splits the file W1 into(

5
3

)
= 10 subfiles of type t1 = p1MK = 3, namely W1,{1,2,3}, W1,{1,2,4}, W1,{1,2,5}, W1,{1,3,4},

W1,{1,3,5}, W1,{1,4,5}, W1,{2,3,4}, W1,{2,3,5}, W1,{2,4,5} and W1,{3,4,5}, each with F/10 bits. Simi-

larly, each of the files (W2,W3,W4) with popularity 0.2, will be split into
(

5
2

)
= 10 subfiles

of type 2 (t2 = t3 = t4 = 0.2MK = 2), each with F/10 bits. For instance, the file W2 will be

split into the following subfiles: W2,{1,2}, W2,{1,3}, W2,{1,4}, W2,{1,5}, W2,{2,3}, W2,{2,4}, W2,{2,5},

W2,{3,4}, W2,{3,5} and W2,{4,5}. Finally, the file W5 will be split into
(

5
1

)
= 5 subfiles of type

t5 = 0.1MK = 1, each with F/5 bits, namely W5,{1},W5,{2},W5,{3},W5,{4} and W5,{5}. A

user i will store in its cache all the subfiles of the form Wk,{S:i∈S} ∀ k, i.e., it will store all

the subfiles with a label of the form Wk,S , where i ∈ S. Observe that now each user will

have cached piMF bits of the file Wi and since
∑
pi = 1, the users end up with their caches

fully occupied.

We will first consider the demand vector (W1,W2,W3,W4,W5) to see the improvements this

new scheme offers. After the server is informed about the demand vector, it would be able to

create and populate the subfiles Vk,S using the corresponding Wdk,S . User 1 demands the file
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Table 4.1

User i Subfiles requested but not cached at user i Size of each bin

1 V1,{2,3,4}, V1,{2,3,5}, V1,{2,4,5}, V1,{3,4,5} F/10

2 V2,{1,3}, V2,{1,4}, V2,{1,5}, V2,{3,4}, V2,{3,5}, V2,{4,5} F/10

3 V3,{1,2}, V3,{1,4}, V3,{1,5}, V3,{2,4}, V3,{2,5}, V3,{4,5} F/10

4 V4,{1,2}, V4,{1,3}, V4,{1,5}, V4,{2,3}, V4,{2,5}, V4,{3,5} F/10

5 V5,{1}, V5,{2}, V5,{3}, V5,{4} F/5

W1. It already has the subfiles V1,{1,2,3}, V1,{1,2,4}, V1,{1,2,5}, V1,{1,3,4}, V1,{1,3,5} and V1,{1,4,5} in

its cache, so the server only needs to send the remaining subfiles V1,{2,3,4}, V1,{2,3,5}, V1,{2,4,5}

and W1,{3,4,5}. Table 4.1 shows the subfiles, along with the number of bits in each, that the

server has to send for each user.

The algorithm goes through all the subfiles in Table 4.1, starting with the lower type ones.

In this example the lowest type subfiles are V5,{1}, V5,{2}, V5,{3} and V5,{4}, each containing

F/5 bits of the file Vi that is not cached at user 5. If there is a subfile V1,{5} containing bits

demanded by user 1 and cached only at user 5, we will be able to code (bitwise XOR) V5,{1}

with V1,{5}. But such a subfile is not present, so we create a new subfile V ′1,{5} and populate

it with bits borrowed from V1,{2,3,5}, V1,{2,4,5} and V1,{3,4,5}, which we refer to as the donor

subfiles. V1,{5} has F/5, so we borrow F/15 bits from each of the three donor files reducing

their size to F/30 bits. Note that the bits in these donor subfiles are all demanded by user

1 and are cached at user 5 (and also at few other users), so by transmitting the F/5 bits

obtained by coding V5,{1} with V ′1,{5} user 1 would still be able to recover its requested bits

and at the same time user 5 would also be able to receive and recover some of its requested

bits. This process is repeated for all the remaining subfiles type 1 as shown in table 4.2 and

fig. 4.4.

Moving on to the type 2 subfiles, we can see that there are 18 subfiles under this type.

Originally, all of these subfiles had F/10 bits each, but the borrowing steps shown in table 4.2

has reduced the size of some of them to F/30 bits. Consider the subfiles V2,{3,4}, V3,{2,4} and
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Table 4.2

Subfiles Size Donor subfiles : Bits taken Bits left
Bits left (before) (after)
V1,{2,3,5} : F

10
F
15

F
30

V ′1,{5}
F
5

V1,{2,4,5} : F
10

F
15

F
30

V1,{3,4,5} : F
10

F
15

F
30

V2,{1,5} : F
10

F
15

F
30

V ′2,{5}
F
5

V2,{3,5} : F
10

F
15

F
30

V2,{4,5} : F
10

F
15

F
30

V3,{1,5} : F
10

F
15

F
30

V ′1,{5}
F
5

V3,{2,5} : F
10

F
15

F
30

V3,{4,5} : F
10

F
15

F
30

V4,{1,5} : F
10

F
15

F
30

V ′1,{5}
F
5

V4,{2,5} : F
10

F
15

F
30

V4,{3,5} : F
10

F
15

F
30

V5,{1} V 0
1,{5} V5,{2} V 0

2,{5}

V5,{3} V 0
3,{5} V 0

4,{5}V5,{4}

F
5

F
5

F
5

F
5

Figure 4.4: Cliques of size 2

V4,{2,3}, none of them were used in table 4.2 and so these subfiles can be coded together and

transmitted as a single subfile of size F/10 bits.

Next, consider the subfile V2,{1,5}, it could be potentially coded together with bins V1,{2,5}

and V5,{1,2} if they were present. We can create new subfile V ′1,{2,5} and fill it up with F/30

bits from donors V1,{2,3,5} and V1,{2,4,5}, but there is no point in creating a subfile V5,{1,2}

as it does not have any donor subfiles of higher types to borrow from. V3,{1,5} and V4,{1,5}

encounter a similar situation and the entire process for those subfiles can be seen in table 4.3
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V2,{3,4}

V3,{2,4} V4,{2,3}

F
10

Figure 4.5: Cliques of size 3, no bits borrowed.

Table 4.3

Subfiles Size Donor subfiles : Bits taken Bits left
Bits left (before) (after)

V ′1,{2,5}
F
30

V1,{2,3,5} : F
30

F
60

F
60

V1,{2,4,5} : F
30

F
60

F
60

V ′1,{3,4}
F
30

V1,{2,3,5} : F
60

F
60

0

V1,{3,4,5} : F
30

F
60

F
60

V ′1,{4,5}
F
30

V1,{2,4,5} : F
60

F
60

0

V1,{3,4,5} : F
60

F
60

0

F
30

V 0
1,{2,5} V2,{1,5}

V 0
5,{1,2} V 0

5,{1,3} V 0
5,{1,4}

V 0
1,{3,5} V 0

1,{4,5}V3,{1,5} V4,{1,5}

F
30

F
30

Figure 4.6: Cliques of size 3 that are reduced to cliques of size 2, bits borrowed.

and fig. 4.6.

Consider subfile V2,{3,5}, it could be potentially coded with V3,{2,5} and V5,{2,3}, one of which

is already present. As in the previous case, it does not make sense to create a new subfile

V ′5,{2,3} as it does not have any higher type donor subfiles to borrow from. Both V2,{3,5} and

V3,{2,5} have F/30 bits as seen in table 4.2 each, so we could code these two together and
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F
30

V2,{3,5} V3,{2,5}

V 0
5,{2,3} V 0

5,{2,4} V 0
5,{3,4}

V2,{4,5} V3,{4,5}V4,{2,5} V4,{3,5}

F
30

F
30

Figure 4.7: Cliques of size 3 that are reduced to cliques of size 2, no bits borrowed.

Table 4.4

Subfiles Size Donor subfiles : Bits taken Bits left
Bits left (before) from each bin (after)

V ′1,{2,3}
F
10

V1,{2,3,4} : F
10

F
10

0

V1,{2,3,5} : 0 0 0

V ′1,{2,4}
F
10

V1,{2,3,4} : 0 0 0

V1,{2,4,5} : 0 0 0

V ′1,{3,4}
F
10

V1,{2,3,4} : 0 0 0

V1,{3,4,5} : 0 0 0

transmit a single subfile of size F/30 bits. This, along with a similar process for V2,{4,5},

V4,{2,5} , V3,{4,5} and V4,{3,5}, are shown in fig. 4.7.

There are still a few more subfiles of type 2 that have not been transmitted yet, namely

V2,{1,3}, V3,{1,2}, V2,{1,4}, V4,{1,2}, V3,{1,4} and V4,{1,3}. None of them were used as a donor so

far and so each of them still has F/10 bits. V2,{1,3} and V3,{1,2} can be coded together with

V1,{2,3}, which is not present. So we create a new subfile V ′1,{2,3} and try to fill it up with

bits from donor subfile. We can see from Table 4.4 that there is only one non-empty donor

subfile that we could borrow from and we will borrow all F/10 bits from it. For the other

subfiles, we are left with no donor subfiles to borrow from and hence it does not make sense

to create new subfiles. The process is illustrated in table 4.4 and fig. 4.8.

In total, we have transmitted 4 coded subfiles of size F/5 bits (fig. 4.4), 4 coded subfiles of size
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1,{2,4} V 0
1,{3,4}

V2,{1,4} V3,{1,4}V4,{1,2} V4,{1,3}

F
10

F
10

Figure 4.8: Cliques of size 3, some are reduced to size 2.

F/10 bits (figs. 4.5 and 4.8) and 6 coded subfiles of size F/30 bits. Therefore, the total length

of the message that was transmitted to satisfy the demands vector (W1,W2,W3,W4,W5) is

4× F

5
+ 6× F

30
+ 4× F

10
= 1.4F bits (4.2)

Baseline. The scheme in [77, 78] does not borrow bits from higher type subfiles during the

coding process, so their scheme will end up transmitting 4 subfiles of size F/5 bits for user 5’s

request, 10 coded subfiles of size F/10 bits for user 2, 3 and 4’s requests and 4 more subfiles

of size F/10 for user 1’s request. This sums up to a total of 2.2F bits, which is considerably

more than the length of our scheme.

4.5 Evaluation of the Coding Scheme

We present an evaluation of the Heterogeneous Coded Delivery (HCD) scheme using sim-

ulations for both the centralized and decentralized approaches. Our focus is mainly on

the evaluation of the delivery scheme, not of the caching policy; the latter is fixed for

each evaluation. The load R(d1,d2,...,dk) of the coded message depends on the demand vector

(d1, d2, . . . , dK),. Therefore, to evaluate the overall performance, we will use the expected
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load metric R̄(p) =
∑

(d1,...,dK)

R(d1,...,dK)pd1pd2 · · · pdK throughout this section. We will be

mainly comparing the expected load of our scheme to the state-of-the-art delivery scheme

provided in [77,78].

A note on the decentralized scenario. We would like to highlight some points before diving

into the evaluation results. In the decentralized approach, the users randomly cache qnMF

bits of file Wn in their respective caches. Because of the randomness here, the bits of a file are

distributed across subfiles of various types, unlike the centralized approach where they are

contained in subfiles of a single type. It is easy to see that a bit in file Wn has a probability

qnM of being cached at any given user. Note qnM ≤ 1, as it does not make sense to allot

more that the 1F bits for caching the file Wn. The probability that a bit gets cached at t

users can be easily deduced as:

Pr(a bit is cached at t users) =

(
K

t

)
(qnM)t(1− qnM)K−t (4.3)

Thus the number of bits in type t subfiles can be modeled as a binomial distribution

B(K, qnM) and the bits within a type t are uniformly distributed across all the subfiles

of type t. We will use this modeling to simulate the decentralized caching.

4.5.1 Uniform Caching

Under a uniform caching policy, all N files will be allocated an equal amount of cache space

at each user, i.e., qn = 1/N ∀ n. If such a caching policy is used, irrespective of the file

popularity distribution, both our scheme and the scheme in [77] would yield similar load

values. Especially, a centralized placement scheme following a uniform caching policy will

have a strong symmetry in the cache contents, which would result in our scheme essentially

reducing to the scheme in [77]. In the centralized approach, the bits of a file are split within

subfiles of the same type, and due to the uniform nature of the caching policy, a similar
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phenomenon can be observed across all the files. Here the step creating new subfiles that

borrow bits from subfiles of higher type becomes unnecessary.

In the decentralized approach, the subfile types are no longer limited to a single value.

The bits of a file get distributed across several subfiles types, which can be modeled as a

binomial distribution. This distribution maintains its parameters across all files because of

the uniformity of qn. All the subfiles which would be coded together in the delivery phase

will have almost the same number of bits, thereby minimizing the need to borrow bits from

higher type subfiles in our algorithm. Thus the improvement we get from our algorithm,

compared to the state of the art, would be negligible. This was indeed observed in our

simulations.

4.5.2 Non-Uniform Caching

We define non-uniform caching as a caching policy that does not allocate equal cache space

for all files irrespective of their popularities. This definition includes the multilevel grouping

in [78] and the two level policy used in [79].

The caching policy considered in [79] divides the files into two groups, one group with files

of low popularity which will not be cached at any user and the remaining files of higher

popularity which will divide the cache space equally among themselves. The bits of these

files cannot be coded together with another bit, as the users do not have the side information

necessary to decode. The bits of the files in the later groups are uniformly divided in

subfiles of single type in a centralized approach. Therefore, the HCD scheme will not have

performance gain compared to the state-of-the-art. The same arguments from decentralized

uniform caching can be used to explain the negligible difference in load observed in the

decentralized approach for this caching policy.
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If the considered caching policy has multiple levels like the one in [78] or example 4.1, then

we can see a significant difference in the expected load. Example 4.1 uses a caching policy

where q = p, we were able to calculate the expected load for HCD scheme as 1.156 and the

expected load of state of the art scheme as 1.696. This brings an improvement of nearly 30%

for this example. We also evaluated our scheme for a system with N = 10 files, K = 5 users

and M = 4 sized cache, where the user demands are Zipf distributed. The results of the

evaluation for a centralized caching approach is presented in fig. 4.9. The figure shows a plot

of the expected load vs Zipf parameter for four different caching policies. The first three are

arbitrary policies with multiple level groups, we are able to see a significant improvement

for these; the fourth one is similar to the policy in [79] and our scheme does not provide an

improvement.

The performance evaluation of HCD for a decentralized caching approach is shown in fig. 4.10

again for a system with N = 10, K = 5 and M = 4, but in here we consider a caching

policy that is also Zipf based, namely Zipf(0.5,N). In this case as well, there is an apparent

performance benefit from HCD compared to the current state-of-the-art.

4.5.3 Comparison to State-of-the-Art.

Performance. HDC performs always at least as well as the baseline scheme, by design: HDC

considers all the coding opportunities that the baseline does, and then some more. In the

uniform case, however, there is no substantial benefit: due to the symmetry of the problem,

our scheme essentially degenerates to the baseline. The significant benefits come in the non-

uniform case, for which our scheme was specifically designed to extend beyond the baseline

approach.

Complexity. HDC has a polynomial complexity in the number of subfiles Vk,S (nodes of the

graph Gd), the same as the coded caching schemes in [77] and [78]. The main difference
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Figure 4.9: Plot of expected load for N = 10, K = 4 and M = 5 and centralized caching.
q(1),q(2),q(3) : arbitrary multilevel caching polices - around 30% improvement can be noted.
q(4) : two level caching scheme with levels 0 and 0.25 - no improvement.

between HCD and the one in [78] is the added step of borrowing bits from higher type

subfiles to fill up the lower type ones. Consider the worst case scenario, where a subfile of

very low type needs to borrow some bits, the algorithm will first access the next immediate

higher type and will keep moving up to higher type until it is full. The algorithm will move

to higher types only after exhausting all bits from the immediate higher type. So even if it

ends up borrowing bits from the highest type subfiles, in the process it has covered all the

bits for that user’s demand.
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Figure 4.10: Plot of expected load for N = 10, K = 4 and M = 5 and decentralized caching.
Top row: Zipf based caching policy; Bottom row: Zipf based, factor 2 grouping applied. Big
gap in performance in the top right plot : due to qiM > 1. Improvements of around 10%
are seen in almost all cases.

4.6 Caching Policy Evaluation

In most real world scenarios the file popularities are not uniform; rather they vary over several

orders of magnitude. In the uniform case each file had an equal popularity of 1/N , thus the

decision to allot 1/N fraction of the cache memory of every user to each file made perfect

sense. The most logical way to extend this caching policy to the non-uniform case would be

to allot different amount of cache memory to each file depending on the popularity of that

file, but this breaks the symmetry of content placement and requires a new coding scheme

in the delivery phase. In [76], the authors propose a caching policy and a coding scheme

based on a grouping approach. They partition the files into groups with approximately
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uniform popularities and each file within the same group is allocated the same amount of

cache memory. The symmetry within each group is preserved here and thus the demands

within each group can be delivered using the same concept as in the uniform case. We think

that this method is inefficient and can be improved upon significantly.

In the placement phase we propose to cache piM fraction of file i at the every user. By

relabeling the files, we can assume without loss of generality that p1 ≥ p2 ≥ · · · ≥ pN . Note

that files with higher popularity will have part of it stored in the cache of every user. The

problem with this type of caching, as observed in [76], becomes apparent in the delivery

phase. Due to varying size of the bins across different files, it would no longer be easy to

code using the cliques technique explained in section 4.3.1 and we need the Heterogenous

coded caching scheme.

4.6.1 Caching Tweaks

In section 4.3.2 we proposed to cache piMF bits of file i at every user in the placement

phase, in general file popularities are such that the resulting bin type (ti = PiMK) for

caching these piM fractions of the files won’t actually be an integer. In order to overcome

this inconvenience we will describe a small tweak in this section that would help us to cache

the fraction we want while keeping the bin type close to the desired one too.

First lets look at what would happen if we just truncate the decimal part of the original ti

to get a integer value, i.e. t′i = bpiMKc. To get this value for ti we will have to modify

the amount of the file cached at each user to p′iM , where p′i =
t′i
MK

. It is easy to see that

the modified caching scheme does not fill up the cache since the fractions don’t add up to

the size of the cache, i.e.
∑

i p
′
iM 6= M . In order to counter this truncation error and use

the cache efficiently we propose the following scheme. Each file is split into two orthogonal

parts, the first one will be of size αF bits and the second one will be the remaining (1−α)F
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bits. The intuition behind doing this is that we can apply the policy of caching p′iMF bits

to one part and we can use a different caching policy to the other part, now by manipulating

value of alpha and the caching policy used for the second part we could fill up the entire

cache and be close to our desired bin type.

The part of the file with αF bits will follow a caching policy where some p′iM fraction of

this part will be cached at each user, for the second part with (1 − α)F bits we will cache

βM fraction of it at each user. In order to stay close to the original bin type we can choose

the new parameter β such that the bin type t
′′
i for the second part is equal to t

′
i + 1. Now

we have the following relations,

p′iMαF + βM(1− α)F = piMF (4.4)

β(1− α) = pi − αp′i (4.5)

(1− α)(β − p′i) = (pi − p′i) (4.6)

(4.6) represents a rectangular hyperbola with asymptodes parallel to co-ordinate axis, namely

α = 1 and β = p′i. There are two choices of β (and corresponding α) that are of interest to

us. We can either choose β such that βMK is close to t
′
i, i.e. t′′i = βMK = t

′
i + 1, or we

can choose β such that the part of the file that follows the original caching policy is kept as

large as possible. For the latter, the value of β should be as big as possible, which is 1/M

since βMK ≤ K. Intuitively, we are splitting each file into two parts (α and 1 − α) and

cache them such that the first part could be split into bins of type t
′
i and the second part

into bins of type t
′′
i = βMK.
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4.6.2 Simulation and Inference

On running the simulation for zipf distributed file popularities, we found that the allotting

cache memory based on file popularity might not be the optimal way to go. From the

simulation results we can see that the new caching scheme is not necessarily better than

uniform caching or greedy caching, the performance of the new caching policy along with

the new coding scheme seems to always lie between the those of greedy and uniform schemes.

In evidence of these observations through simulation it becomes necessary to understand

why the caching policy doesn’t perform better and to do this lets start by looking at the

single user case (K = 1). The expected rate of transmission for the single user case is as

simple as calculating the weighted average for the code length required to transmit each file,

the weight here being the popularity of that file. It is easy to see that caching the most

popular files (greedy caching) is the optimal for the single user setting. The intuition here is

that even if a fraction of the cache space allotted to a more popular file is used for caching a

file of lesser popularity, it will increase the transmission length of the more popular file and

decrease the transmission length of the less popular file, but the more popular file has higher

weight thus this reallotment would only negatively affect the expected rate (as it increases

the average transmission length). The optimality of greedy caching is not so apparent for

the multiple user case. Let us look at a few multi user examples to get some intuition.

Example 4.2. Consider a database with N = 2 files, each of size F bits, K = 2 users and a

cache size of M = 2 files. Let p denote the popularity of file A and (1−p) the popularity of file

B. Now consider a caching scheme where the user caches a fraction of the file proportional

the popularity of the corresponding file.

For this example we try to assume that the two users will try to cache different parts of the

files as possible, in other words the bits of the files cached by the two users will have as little

overlap as possible. Lets call the part of file A that is cached by user 1 as A1 and the part
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cached by user 2 as A2, similarly B1 the part of file B that is cached by user 1 and B2 as the

part cached by user 2. For notational convenience lets call A1 ∩A2 as A′ and B − (B1 ∪B2)

as B′. The average length of code can be calculated as follows:

• When both users demand file A, they both already have the part A′ in their cache,

so the server needs to send A2 − A′ and A1 − A′ which can be coded together and

effectively transmitted as (1− p)F bits.

• When one of the users demand file A and the other demands file B, the server needs

to send A2 − A′ (A1 − A′) , B1 (B2) and B′. Among these A2 − A′ and B1 (A1 − A′

and B2) can be coded together into (1 − p)F bits . Thus the server needs to send

(1− p)F + (2p− 1)F bits.

• When both users demand file B, the server can code together B1 and B2 into (1− p)F

bits and B′ will be sent separately. Thus the server needs to send (1−p)F + (2p−1)F

bits

avg = p2 ∗ (1− p)F + 2p(1− p) ∗ [(1− p)F + (2p− 1)F ] + (1− p)2 ∗ [(1− p)F + (2p− 1)F ](4.7)

= [(1− p) + (1− p2)(2p− 1)]F bits (4.8)

Figure 4.11 shows the this avg rate plotted for various values of p along with the plot for the

corresponding avg rate for greedy and uniform caching scheme.

Example 4.3. For this example let’s consider a database with 4 files , A,B,C and D. We

will consider two sets of file popularities (as shown in table 4.5) in this example to see when

the proposed scheme could do better.
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Figure 4.11: Plot showing the average code length for various values of p

Table 4.5

Files Set 1 Set 2

A 0.3 0.32

B 0.3 0.32

C 0.3 0.32

D 0.1 0.04

The rates corresponding to the both the sets of popularity for various schemes are shown in

table 4.6. The table also depicts the rate for a caching scheme that employs a type of uniform

caching among the three equiprobable file A,B and C.

Table 4.6

Greedy Uniform 3 files Uniform Proposed scheme (t′i = ti + 1)

Set 1 0.46 0.5 0.4119 0.4315

Set 2 0.3856 0.5 0.52 0.548

Let us explore an alternate scheme of caching uniformly over n files out of the total N files

and try to get an intuition why such schemes don’t perform better. For the following example

we will consider a zipf factor of 0.7 for which we already know uniform does better, so we

116



will compare this partially uniform scheme with the actually uniform caching scheme.

Example 4.4. In this example we have N = 20, M = 10 , K = 3 and additionally n = 19.

The value of n represents the files over which the uniform scheme will be applied, in this

case we will uniformly cache the first 19 most popular files. No part of the least popular file

will be be cached. Lets analyze this further to understand why such partially uniform scheme

might not help in improving the average length.

Let p denote the popularity of the least popular file. The table 4.7 shows the rate for various

types of combination of demanded files along with the probability of such a demand. The first

row represents the case where all there users demand from the least popular file, we need to

send the whole F bits of the file. The second row represents the case where two users demand

the 20th file and the 3rd user demands one of the other files, here the server sends F bits

of the 20th file and it only needs to send 0.473F not-cached bits of the other file. Similarly,

the third row represents the case where only one user demands the least popular file and the

other 2 users demand one of the other files, here again the server sends F bits of the least

popular file in addition to 0.614F bits required for transmitting the coded bins. Finally, the

last column represent the case where all 3 users demand one of the first 19 files , the server

needs to send 0.614F bits of coded bins.

Table 4.7

Probability Rate of Partially uniform scheme Rate of uniform scheme

p3 1 0.66

3p2(1− p) 1.473 0.66

3p(1− p)2 1.614 0.66

(1− p)3 0.614 0.66

Expected length 0.678 0.66

From table 4.7, it is clear that gain for the partially uniform approach occurs only for the

last case and this is why the final average rate is not better than uniform.
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Another scheme to explorer is a hybrid, it tries to combine both the greedy and uniform

strategies. We will check out two variations of the hybrid scheme here.

Hybrid-1: Take a major portion(α) of each file and employ uniform caching for this portion.

Lets say αF bits of each file is considered and M/N of this portion will be cached at each

user following the uniform caching policy. Now (1 − α)MF bits of the cache is still empty

and (1− α)F bits of each file hasn’t been considered for any caching scheme. We can make

use of this (1− α)MF bits of cache space such that the whole of the first few popular files

gets cached at each user.

Example 4.5. Consider N = 20, M = 10 and K = 2. For this example we will assume a

value of 0.8 to α. As per the scheme some 0.5 ∗ 0.8F = 0.4F bits of each file will be cached

at each user. About 2F bits of the cache at each user is still unused, we can use that to

cache the remaining 0.6F bits of the first 3 most popular files. Now let’s look at the rate

for various types of demands. Let p be the probability of the first 3 most popular files. This

Table 4.8

Probability Rate - Hybrid-1 Rate - uniform

p2 0 0.5

3p2(1− p) 0.6 0.5

3p(1− p)2 0.6 0.5

Expected length (zipf=0.7) 0.5134 0.5

(zipf=1) 0.444 0.5

method seems have potential as we get an expected code length lower than uniform. Let’s

look at the gain this method provides compared to uniform approach:

Gain = p2 ∗ (−0.5) + 2p(1− p) ∗ 0.1 + (1− p)2 ∗ 0.1 (4.9)

= 0.1− 0.6p2 (4.10)
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A negative value for the gain implies that the code length of the hybrid scheme is lesser than

uniform and in order to keep the gain negative the value of p has to be greater than 0.4802

for this example.

Hybrid-2: In this scheme we will first choose the number of files that we want to be cached

fully at each user, let’s call this n. Now M ′ = M − n cache only remains at each user and

N ′ = N − n files still left. We will employ a uniform caching scheme for these modified

parameters N ′,M ′ and K.

Example 4.6. Consider N = 20, M = 10 and K = 2. Let’s do greedy caching on the first

2 popular files, i.e. n = 2. Now, N ′ = N − n = 18 and M ′ = M − n = 8. These remaining

18 files are cached by following the uniform caching policy. Let p denote the combined

popularity of the first n most popular files. Then the code length for various demand types

can be calculated as shown in the table below.

Table 4.9

Probability Rate - Hybrid-2 Rate - uniform

p2 0 0.5

3p2(1− p) 0.5882 0.5

3p(1− p)2 0.5882 0.5

Expected length (zipf=0.7) 0.5032 0.5

(zipf=1) 0.4354 0.5

The gain for the scheme can be derived similar to last example.

For this scheme we can also derive a closed form expression of the expected length as follows:

Expected length = (1− p2)
K − KM ′

N ′

1 + KM ′

N ′

= (1− p2)
K(N −M)

N +KM − n(K + 1)

Would we be able to lower the code length using these schemes for more number of users?,

this still remains to be seen.
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4.7 Summary

The coded caching problem consists of two phases: one involves optimization of the caching

policy and the other is the design of the delivery scheme that minimizes the load on the

shared link for any given demand. The caching policy optimization is a very interesting

problem, with recent works from [78,79] showing some order optimality results, but not the

focus of this chapter. Given the cache content and the demands of the users, the delivery

phase optimization is basically an instance of the index coding problem, which is known

to be NP-hard. We provide a practical algorithm, called the Heterogenous Coded Delivery

(HCD) scheme, that performs significantly better than the current state-of-the- art scheme

in coded caching for all multilevel (more than two) caching policies. An open question for

future work is whether multiple levels are necessary for optimal caching policies, or two levels

are sufficient.
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Chapter 5

Conclusion

In this thesis, we tackle a very important open problem of multiple unicasts. Due to the

obvious complexity of the problem, and the fact that it still remains an open problem, we

focus primarily on precoding based techniques. We started by considering three unicast

sessions in the SISO scenario (i.e., with min-cut one per session) and following a precoding-

based approach (all precoding is performed at the end nodes, while intermediate nodes

perform random network coding). This is the simplest, yet highly non-trivial instance of the

general problem of network coding across multiple unicasts. Apart from being of interest on

its own right, we hope that it can be used as a building block and provide insight into the

general problem. We applied a alignment based scheme called the precoding-based network

alignment (PBNA) and discussed the feasibility conditions for achievability of the desired

rates under this scheme. More importantly we gave a graph theoretic characterization of

these feasibility conditions which in turn gave us the necessary insight and helped us to

rigorously prove them in [47,48].

We also compared alignment to alternative approaches that can achieve half the rate de-

pending on the network topology. For three unicast sessions with min-cut one, we show
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a negative result: whenever alignment is possible, alternative approaches can also achieve

half the min-cut. However, for more than three sessions and/or for min-cut per session

greater than one, we show examples where alignment is necessary. We also classification of

the network based in the network structure and compare the rates achievable by PBNA to

routing.

There are still many problems that remain to be solved regarding applying interference

alignment techniques to this network setting. For example, one important problem is the

complexity of PBNA, which arises in two aspects, i.e., precoding matrix and field size, and is

inherent in the framework of PBNA. One direction for future work is to apply other alignment

techniques (with lower complexity) to the network setting, like alignment by network code

design in the middle of the network.

The extensions to other network scenarios beyond SISO or more than three unicast sessions

are highly non-trivial. Applying alignment to more that three sessions gets very compli-

cated, so we in order to simplify things we focused on the interference channel topology

where the network transfer matrix is rank deficient. The rank deficiency in the transfer

matrix causes algebraic dependencies between the channel coefficients and this provides an

interesting problem to solve. We studied the problem of characterizing the DoF for the K-

user interference channel with rank deficient transfer matrix. We presented the optimal DoF

for the basic cases of K = 4 and K = 5 and illustrated the difficulties involved in finding the

same for K ≥ 6. In conclusion, finding the optimal DoF of the general K user interference

channels with rank deficient transfer matrix still remains open and presents a considerable

challenge.

We also looked into the problem of caching in content distribution networks with caches at

the end users. Another multiple unicast problem that is of great interest in the informa-

tion theory community is the index coding problem. The side information provided by the

content of the cache induces index coding instances. The coded caching problem consists of
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two phases: one involves optimization of the caching policy and the other is the design of

the delivery scheme that minimizes the load on the shared link for any given demand. The

caching policy optimization is a very interesting problem, with recent works from [78, 79]

showing some order optimality results, but not the focus of this thesis. Given the cache con-

tent and the demands of the users, the delivery phase optimization is basically an instance of

the index coding problem, which is known to be NP-hard. We provide a practical algorithm,

called the Heterogenous Coded Delivery (HCD) scheme, that performs significantly better

than the current state-of-the- art scheme in coded caching for all multilevel (more than two)

caching policies. An open question for future work is whether multiple levels are necessary

for optimal caching policies, or two levels are sufficient.
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Appendices

A Network Alignment

A.1 Schwartz-Zippel Lemma

Schwartz-Zippel lemma is a tool commonly used in probabilistic polynomial identity test-

ing, i.e., in the problem of determining whether a given multivariate polynomial is a zero-

polynomial or identically equal to 0. It bounds the probability that a non-zero polynomial

will have roots at randomly selected test points. The formal statement is as follows:

Lemma A.1. Lemma Let P (x1, . . . , xn) be an n-variate polynomial of degree exactly d over

a field F, P (x1, . . . , xn) is not identically zero. Let S be a non-empty finite subset of the field

F and let r1, r2, . . . , rn be selected randomly from S. then

Pr[P (r1, r2, . . . , rn) = 0] 6
d

|S|

The lemma has an inductive proof. For univariate polynomials, i.e., m = 1, the lemma

follows directly from the fact that a polynomial of degree d can have no more than d roots.

The lemma works for any number of variables m ≥ 1.
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A.2 Proof for Graph Theoretic Representation

For the sake of notational convenience, we will omit the argument term,
(
ξ
)
, in the rest of

the proof. Also, let us use m′ii and m
′′
ii to represent the terms

mijmki
mkj

and
mjimik
mjk

respectively.

We also use me1,e2 to represent the polynomial coefficient from node/edge e1 to node/edge

e2.

Proof of Theorem 2.4. First, we prove the “if” part of the theorem. It is given that αkij is

a bottleneck between Si and Dj and αjik is a bottleneck between Si and Dk. With this, it is

easy to see that m′ii reduces to mS1,αjikmαjik,D1 and m
′′
ii reduces to mS1,αkijmαkij ,D1 . Hence,

m′ii + m
′′
ii = mS1,αjikmαjik,D1 and m

′′
ii + mS1,αkijmαkij ,D1 . It is also given that αkij is parallel

to αjik and{αjik, αkij} forms a cut-set between Si and Di, this implies m′ii and m
′′
ii represent

two set of disjoint paths connecting Si to Di, thus proving mii = m′ii +m
′′
ii.

Next, we prove the converse part of the theorem. Now, it is given that mii = m′ii + m
′′
ii.

If αkij is a bottleneck between Si and Dj and αjik is not a bottleneck between Si and

Dk, then m′ii is a rational function whose denominator is a non-constant polynomial, while

m
′′
ii is a polynomial. This leads to m′ii + m

′′
ii being a rational function with a non-constant

denominator polynomial, and sincemii is a polynomial we can clearly see thatmii 6= m′ii+m
′′
ii,

which is a contradiction. The same argument can be made for when αkij is not a bottleneck

between Si and Dj and αjik is a bottleneck between Si and Dk.

Now let us assume αkij is not a bottleneck between Si and Dj and αjik is also not a bot-

tleneck between Si and Dk. We have m′ii =
mSi,βjikmαjik,D1

mαjik,βjik
and m

′′
ii =

mS1,βkij
mαkin,Di

mαkij ,βkij
. From

Theorem 2.3, we also know that αjik 6= αkij or βjik 6= βkij. This implies that one of the

following must hold:

1. There exists an irreducible polynomial mee′ , such that mee′ is divisible by mαjik,βjik but

not divisible by mαkij ,βkij .

132



2. There exists an irreducible polynomial mee′ , such that mee′ is divisible by mαkij ,βkij but

not divisible by mαjik,βjik .

We will use lcm(p, q) to denote the least common multiple of the two polynomials p and q.

We also define the following polynomials :

f = lcm(mαjik,βjik ,mαkij ,βkij)

f1 = f/mαjik,βjik

f2 = f/mαkij ,βkij

m′ii +m
′′

ii =
mS1,βjikmαjik,D1f1 +mS1,βkijmαkij ,D1f2

f

Consider the first case. We have mee′ divisible by mαjik,βjik but not divisible by mαkij ,βkij .

Moreover, we also know gcd(mαjik,βjik ,mS1,βkijmαkij ,D1) = 1. This implies mee′ is not di-

visible by mS1,βkijmαkij ,D1 , which intern implies mee′ is not divisible by mS1,βjikmαjik,D1f1 +

mS1,βkijmαkij ,D1f2. However, mee′ is divisible by f . This shows that m′ii + m
′′
ii is a rational

function with non-constant denominator. Thus showing mii 6= m′ii +m
′′
ii, which is a contra-

diction to our initial assumption. We can use similar arguments for the second case. Thus

proving αkij is a bottleneck between Si and Dj and αjik is a bottleneck between Si and Dk.

This shows that mii = mSi,βjikmαjik,Di +mSi,βkijmαkij ,Di . Hence any path connecting source

Si to sink Di should pass through either αjik or αkij, implying that {αjik, αkij} forms a cut

set separating Si from Di. Also, it is obvious that αkij is parallel to αjik, as there won’t be

two disjoint paths connecting Si to Di if they are not parallel.
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B Rank Deficient Transfer Matrix

B.1 Achievability for Other Points of the Outer Bound

In this section we will show how to prove the DoF achievability when the rank of the transfer

matrix is either less than dK
2
e or greater than dK

2
e, i.e. D < dK

2
e or D > dK

2
e, provided

we could show the achievability for D = dK
2
e. We will assume that DoF of 1/2 per user is

achievable when D = dK
2
e throughout this section.

First let us consider D < dK
2
e case, the DoF outer bound here is simply D. The achievability

for this case is based on the achievable scheme for a 2D user interference channel with rank

D transfer matrix. Consider the K user channel, if we choose only 2D users among the

K user to be active at any given time, it reduces to the case of D = Number of users/2

thus making it possible to achieve the sum DoF of D. Symmetric DoF can be achieved by

cycling through the
(
K
2D

)
combinations of active users. Here each user is active in

(
K−1
2D−1

)
combinations and a DoF of half per user is assumed to be achievable in combination, thus

each user will get total DoF of 1
2
× (K−1

2D−1)
(K2D)

= D
K

.

Now consider the D > dK
2
e case, we will show that a sum DoF of K/2 is achievable using the

scheme from section 3.5.1 provided it works for D = dK
2
e. More specifically, we will assume

that the direct channels cannot be represented as a rational function of the cross channels.

We will make use of concepts of Varieties and Ideals from algebraic geometry to prove this

case. We know that the determinant of any D + 1 ×D + 1 sub matrix is going to be zero.

Let VD denote the affine variety generated by these determinant polynomials. Without loss

of generality consider the case of D = dK
2
e+ 1, VdK

2
e+1 denotes the affine variety and IdK

2
e+1

can be used to represent the ideal generated by this variety, i.e. IdK
2
e+1 = I(VdK

2
e+1). The
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following are true,

VdK
2
e ⊆ VdK

2
e+1 (B.1)

The above equation implies that,

IdK
2
e ⊇ IdK

2
e+1 (B.2)

Now assume, under D = dK
2
e+1, the direct channels can be expressed as a rational function

of the cross channels. This tells us that there exists a polynomial, let us call it f1, of the

form q(X)Hkk − p(X) that evaluates to 0, i.e. f1 = 0, for any realization in the variety,

where X is the vector of cross channels and p(X) and q(X) are multivariate polynomials in

the cross channels. Since f1 = 0 under the affine variety, we get f1 ∈ IdK
2
e+1, which implies

f1 ∈ IdK
2
e. This contradict our primary assumption that direct channels cannot be expressed

as a rational function of the cross channels under D = dK
2
e, thus we can conclude that

direct channels cannot be expressed as a rational function of the cross channels even under

D = dK
2
e+ 1. This argument can be extended to all cases of D > dK

2
e.

B.2 Schwartz-Zippel Lemma for the Variety

We have a transfer matrix H = [Hij] of size K×K and rank D. The sample space, S here is

the set of all channel realizations for which the rank of the transfer matrix does not exceed

D, and as seen in Appendix B.1 this is same as VD. Since the sample space S is an affine

variety and not a field, it is not clear how Schwartz-Zippel lemma would be applicable here.

In this section we will show that the Schwartz-Zippel lemma is valid even under S.
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The transfer matrix H can be written as the product of a K × D matrix G and a D ×K

matrix F.

H = G|K×D| ∗ F|D×K|

=



g11 . . . g1D

g21
. . . g2D

...
. . .

...

gK1 . . . gKD




f11 f12 . . . f1K

...
. . . . . .

...

fD1 fD2 . . . fDK



Each of the channel coefficient (Hij) in H can be expressed as a polynomial of certain gij’s

and fij’s, namely Hij =
∑D

k=1 gikfkj, this is a parametric representation of Hij. This implies

that all realizations of H are given by G ∗ F, as gij’s and fij’s vary over C.

Consider a non-trivial polynomial in Hij’s, that evaluates to zero always. Substituting Hij

with its parametric form, we can see that the polynomial will trivially reduce to zero. But

for a non-zero polynomial in Hij’s, we can see that the parameteric representation of the

polynomial will not trivially reduce to zero, i.e., we will have a non-zero polynomial in fij’s

and gij’s instead. Since the fij’s and gij’s take values from the filed C, we can now use

Schwartz-Zippel lemma for any polynomials in these variables.
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B.3 Algebraic Independence of Channels

For a K user interference channel with a transfer matrix of rank D = dK/2e, the transfer

metric H can be written as the product of a K ×D matrix G and a D ×K matrix F.

H = G|K×D| ∗ F|D×K|

=


g11 g12 . . . g1D

...
. . . . . .

...

gK1 gK2 . . . gKD





f11 . . . f1K

f21
. . . f2K

...
. . .

...

fD1 . . . fDK



The elements of G and F form an algebraically independent set since they are generic

variables. We have K(K − 1) cross channel coefficients each of which can be expressed as a

polynomial function of the generic variables gij’s and fij’s. For the sake of convenience let’s

represent the cross channel coefficients as Ti’s, we have have set of multivariate polynomials

T1, T2, . . . , TK(K−1) ∈ C [f11, f12, . . . , fDK , g11, g12, . . . , gKD].

K = 4 and D = 2

Proof of lemma 3.6. The transfer matrix for the 4 user case has 12 cross channels and there

are 16 generic variables as the rank D = 2. In order to prove the 12 cross channels are

algebraically independent, we write down the 12×16 Jacobian matrix as described in lemma

3.2, since we have 12 cross channels and 16 independent variables from G and F. It can be

noted that in H = G× F, G is a matrix of size 4× 2 and F is a matrix of size 2× 4. Each

of the 12 cross channels is a polynomial function of these 16 independent variables. Let us

denote the 16 variables of G,F as original variables, {S : s1, . . . , s16} and 12 cross channels
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as the derived variables, {T : T1, . . . , T12}.

Original variables : S = {gij, fji}, i ∈ {1, 2, 3, 4}, j ∈ {1, 2} (B.3)

Derived variables : T = {Hij}, i, j ∈ {1, 2, 3, 4}, i 6= j (B.4)

Now we have the Jacobian matrix defined element-wise by

Jij = {∂Ti
∂sj
}1≤i≤12,1≤j≤16 (B.5)

=



f12 f22 0 0 0 0 0 0 0 g11 0 0 0 g12 0 0

f13 f23 0 0 0 0 0 0 0 0 g11 0 0 0 g12 0

f14 f24 0 0 0 0 0 0 0 0 0 g11 0 0 0 g12

0 0 f11 f21 0 0 0 0 g21 0 0 0 g22 0 0 0

0 0 f13 f23 0 0 0 0 0 0 g21 0 0 0 g22 0

0 0 f14 f24 0 0 0 0 0 0 0 g21 0 0 0 g22

0 0 0 0 f11 f21 0 0 g31 0 0 0 g32 0 0 0

0 0 0 0 f12 f22 0 0 0 g31 0 0 0 g32 0 0

0 0 0 0 f14 f24 0 0 0 0 0 g31 0 0 0 g32

0 0 0 0 0 0 f11 f21 g41 0 0 0 g42 0 0 0

0 0 0 0 0 0 f12 f22 0 g41 0 0 0 g42 0 0

0 0 0 0 0 0 f13 f23 0 0 g41 0 0 0 g42 0



(B.6)

We need to prove the rank of this matrix is almost always 12 and for that all we need to

show is a single realization of gij’s and fij’s that gives a non zero value for the determinant

of any 12 × 12 sub matrix. The idea here is that the determinant of the jacobian matrix

is a multivariate polynomial in gij’s and fij’s and using the Schwartz-Zippel lemma we can

argue that if this polynomial is has a non-zero realization that almost surely the polynomial

by itself is non-zero. Using MATLAB, we can see that the determinant polynomial of the

Jacobian matrix is non-zero for a random realization of gij’s and fij’s.

This proves the algebraic independence of the 12 cross channels of the 4-user interference

channel with rank, D=2.
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Similar to the proof of lemma 3.6, we can also show that the channels H11, H13, H41 and

H43 are algebraically independent. This in turn shows that the polynomial zH43 −H41H13

is non-zero.

K = 5 and D = 3

Proof of lemma 3.7. The transfer matrix for this case has 20 cross channels and the number

of generic variables here is 30. Here we consider 21 channels of the transfer matrix comprising

of 20 cross channels and anyone of the direct channels, say H55, without loss of generality.

The proof for this is similar to the case in B.3, we just consider 1 direct channel along with

20 cross channels. The matrix from lemma 3.2 is of size 21× 30 for this case. Similar to the

4-user case, using MATLAB we can see that the determinant polynomial of the Jacobian

matrix is non-zero for a random realization of gij’s and fij’s.

Similar to the proof of lemma 3.7, we can also show that the channels involved in the

denominator polynomial of f2(z,X, ZAI) in equation 3.19, are algebraically independent.

This in turn shows that the denominator polynomial of f2(z,X, ZAI) is non-zero.
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