
Parallel Peak Pruning for Scalable SMP Contour Tree Computation
Hamish A. Carr∗

University of Leeds
Gunther H. Weber†

Lawrence Berkeley National Laboratory
University of California, Davis

Christopher M. Sewell‡ James P. Ahrens§

Los Alamos National Laboratory

ABSTRACT

As data sets grow to exascale, automated data analysis and visu-
alisation are increasingly important, to intermediate human under-
standing and to reduce demands on disk storage via in situ anal-
ysis. Trends in architecture of high performance computing sys-
tems necessitate analysis algorithms to make effective use of com-
binations of massively multicore and distributed systems. One of
the principal analytic tools is the contour tree, which analyses rela-
tionships between contours to identify features of more than local
importance. Unfortunately, the predominant algorithms for com-
puting the contour tree are explicitly serial, and founded on serial
metaphors, which has limited the scalability of this form of analy-
sis. While there is some work on distributed contour tree computa-
tion, and separately on hybrid GPU-CPU computation, there is no
efficient algorithm with strong formal guarantees on performance
allied with fast practical performance. We report the first shared
SMP algorithm for fully parallel contour tree computation, with for-
mal guarantees of O(lgn lg t) parallel steps and O(n lgn) work, and
implementations with up to 10× parallel speed up in OpenMP and
up to 50× speed up in NVIDIA Thrust.

Keywords: topological analysis, contour tree, merge tree, data
parallel algorithms

Index Terms: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Curve, surface, solid, and object rep-
resentations I.6.6 [Simulation and Modeling]: Simulation Output
Analysis;

1 INTRODUCTION

Modern computational science and engineering depend heavily
on ever-larger simulations of physical phenomena. Accommodat-
ing the computational demands of these simulations is a major
driver for hardware advances, and has led to clusters with hun-
dreds of thousands of cores to achieve petaflops of performance
and petabytes of data storage as well as the effort to achieve sus-
tainable exaflop performance within the next seven to nine years.
For recent hardware, the I/O cost of data storage and movement
dominates, and increasingly requires in situ data analysis and vi-
sualisation, increasing the appeal of algorithms that can efficiently
and automatically identify key features such as contours while the
simulation is running, and store only those features to disk, rather
than all the raw data. While in situ analysis requires distributed al-
gorithms, with clusters now built around NVIDIA’s Tesla cards and
Intel’s Xeon Phi boards, we are seeing a return of SIMD (Single In-
struction, Multiple Data) computational models for shared-memory
architectures, and algorithms will need to exploit this.

In situ analysis and visualisation require more sophisticated ana-
lytic tools—to identify relevant features for further analysis and/or

∗Email: H.Carr@leeds.ac.uk
†Email: GHWeber@lbl.gov
‡Email: csewell@lanl.gov
§Email: ahrens@lanl.gov

output to disk—as does the recognition that one component of
the pipeline remains unchanged: the human perceptual system.
This need has stimulated research into areas such as computational
topology, which constructs models of the mathematical structure
of the data for the purposes of analysis and visualisation. One of
the principal mathematical tools is the contour tree or Reeb graph,
which summarizes the development of contours in the data set as
the isovalue varies. Since contours are a key element of most visu-
alisations, the contour tree and the related merge tree are of prime
interest in automated analysis of massive data sets.

The value of these computations has been limited by the algo-
rithms available. While there is a well-established algorithm [7] for
computing merge trees and contour trees, the picture is patchier for
distributed and data-parallel algorithms. While some approaches
exist, they either target a distributed model [1], or have serial sec-
tions [16], do not come with strong formal guarantees on perfor-
mance, and do not report methods for augmenting the contour tree
with regular vertices, which is required for secondary computations
such as geometric measures [8]. We therefore report a pure data-
parallel algorithm with strong formal guarantees and practical run-
time, that computes either the merge tree or the contour tree, aug-
mented by any arbitrary number of regular vertices.

2 BACKGROUND

Since the goal of this work is to use data-parallel computation to
construct an algorithm for contour tree computation, we split rel-
evant prior work between data-parallel computation (Section 2.1)
and contour tree computation (Section 2.2). This divide is not strict,
since some work has been published on distributed and parallel con-
tour tree computation, but is convenient for the sake of clarity.

2.1 Data-Parallel Computation
Data-parallelism is one effective method for exploiting the shared-
memory parallelism available on accelerators, such as GPUs and
multi-core CPUs. Blelloch [3] defined a scan vector model and
showed that many algorithms in computational geometry, graph
theory, and numerical computation can be implemented using a
small set of “primitives.” These primitive operators—such as trans-
form, reduce, and scan—can each be implemented in a constant
or logarithmic number of parallel steps. NVIDIA’s open-source
Thrust library provides an STL-like interface for such primitive op-
erators, with backends for CUDA, OpenMP, Intel TBB, and serial
STL. An algorithm written using this model can utilize this abstrac-
tion to run portably across all supported multi-core and many-core
backends, with the architecture-specific optimisations isolated to
the implementations of the data-parallel primitives in the backends.

PISTON [15] and VTK-m use Thrust for algorithms such as
isosurfaces, cut surfaces, thresholds, Kd-trees [23] and halo find-
ers [11]. Halo finding [11, 22] makes use of a data-parallel union-
find algorithm, which most contour tree algorithms depend on.

We will also rely on one particularly useful technique in data-
parallel computation—“pointer-jumping”, which is used to find the
root of each node in a forest of directed trees [13]. In this approach,
the successor for each node is initialised to be its parent: thereafter,
the successor of the node is updated to the successor’s successor in
each iteration. After at most logarithmic iterations, all vertices are
guaranteed to point to the root of their forest.



(a)

24

15

22

10

13

0

(b)

24

15

10

1

8

0

(c)

24

15

22

10

1

13

8

0

6.5

11.5

21.25

(d)

24

15

22

10

1

13

8

0

6.5

11.5

21.25

(e)

Figure 1: (a) Landscape and select isolines. (b), (c) Join and split tree record where maxima and minima respectively “meet.” (d) The branch
decomposition is a hierarchical representation of the contour tree based on a simplification measure.

2.2 Contour Tree Computation

A considerable literature has now built up on the contour tree, its
algorithms and its applications. We give some definitions and then
canvass the algorithmic papers relevant to our new approach.

2.2.1 Contour Tree Definition

Given a function of the form f : Rd → R, a level set—usually
termed isosurface in scientific visualization—is the inverse image
f−1(h) of an isovalue h, and a contour is a single connected com-
ponent of a level set. The Reeb graph is obtained by contracting
each contour to a single point [21], and is well defined for Eu-
clidean spaces or for general manifolds. The number and, in three
dimensions, the genus of contours changes only at isolated critical
points. Critical points where the number of contours changes ap-
pear as nodes in the Reeb graph. For simple domains, the graph is
guaranteed to be a tree, and is called the contour tree.

The contour tree abstracts isosurface behavior, as seen in Figure
1. By contracting contours to single points, it indexes all possible
contours. If the contour tree is laid out so that the y-coordinates
correspond to function value (Figure 1), a horizontal cut intersects
one edge of the contour tree per connected isosurface component at
the corresponding isovalue. We show three such cuts: orange at 6.5
(two contours), cyan at 11.5 (three contours) and blue at 21.25 (4
contours). This property was exploited in one of the early visual-
ization applications: accelerated extraction by generating seed cells
for isosurface extraction by contour following [26, 27].

As well as relating contours and critical points, contour trees also
allow assigning importance to features [8] and ignoring features
below an importance threshold. Features are defined by pairs of
critical points, usually an extremum-saddle pair. The most common
pairing is through topological persistence, shown in Figure 1.

At saddle 15, peaks 24 and 22 meet, and we pair one with 15:
the choice can be based on isovalues or on geometric properties of
the peak [8]. Here, peak 24 has higher persistence (24− 15 = 9)
than peak 22 does 22− 15 = 7), so 22 pairs with 15 and is subor-
dinate to peak 24. 24 is now a single peak with saddle at 10: this
is more persistent than peak 13 (13−10 < 24−10), and peak 24 is
ultimately paired with the minimum at 0. This process, applied to
all critical points, results in the hierarchical branch decomposition
of Pascucci et al. [20], shown in Figure 1(e).

Instead of these pairs or cancellations, we can assign each crit-
ical point to its governing saddle, i.e. the saddle at which it joins
another peak. In Figure 1, 15 is the governing saddle for both 24

and 22, and 10 is the governing saddle for both 13 and 15 - i.e. we
can assign governing saddles to saddles themselves.

Whether we use cancellation or pairing with governing saddles,
simplification of the tree then consists of cancelling the extremum
with the saddle, e.g., by “flattening” it, chopping off the correspond-
ing peak or “filling in” the corresponding valley.

For data analysis, we normally assume that the domain is a
mesh—i.e., a tessellated subvolume of Rd , such as is used for nu-
merical simulation. For simplicial meshes in particular, all criti-
cal points of the function are guaranteed to be at vertices of the
mesh [2], massively simplifying topological computations.

We will refer to the number of vertices in a graph as V and the
number of edges as E, and note that pathological tetrahedral meshes
may have E = Θ(V 2). For regular meshes (our principal targets at
present), E = Θ(V ). In all practical cases, however, V < E.

In practice, the contour tree may also be augmented by regular
points, which is important if geometric computations are to be per-
formed over the tree for analysis or visualisation purposes.

2.2.2 Sweep And Merge Algorithm for Contour Trees
For simplicial meshes on simple domains, the sweep and merge
algorithm [7] performs a sorted sweep through the data, incremen-
tally adding all vertices to a union-find data structure [25]. As com-
ponents are created or merged in the union-find, critical points are
identified, and a partial contour tree is created, called a merge tree.
After performing ascending and descending sweeps, the two resul-
tant merge trees, known as the join and split trees are combined
to produce the contour tree. The conference and journal versions
flipped the meaning of “join” and “split”, which led to some confu-
sion. We will follow the journal version, and use “join” for a saddle
where peaks meet and “split” for a saddle where pits meet.

2.2.3 Topology Graph
For a simplicial mesh, the contour tree is normally computed by
taking the edges of a triangulated mesh as the input to a graph-based
algorithm (see below for details). However, while this is a sufficient
input, it is not necessary, and may cause unnecessary workload.
Carr & Snoeyink [6] abstracted this to a topology graph, in which
all critical points must be represented, along with a set of edges that
can represent any critical path through the underlying scalar field.
Moreover, one can use separate topology graphs to compute the join
and split trees, in which case we may refer to them as join and split
graphs. This approach is also visible in other algorithms [24, 9, 16],
and is essential to the performance of our new approach.



2.2.4 Scaling Sweep and Merge

While the sweep and merge algorithm is simple and efficient, it
is based on a metaphor of a sweep through the contours which is
inherently sequential, hindering the development of parallel algo-
rithms. Pascucci & Cole-McLaughlin [19] described a distributed
method that divides the data into spatial blocks, computes the con-
tour tree separately for each block and combines the contour trees of
individual blocks in a fan-in process combined until a single master
node holds the entire contour tree.

Similarly, Acharya & Natarajan [1] also compute the contour
tree by splitting the data into blocks and combining the resulting
local trees. Within each block, their algorithm identifies critical
points, and constructs monotone paths from saddles to extrema to
build topology graphs, following Chiang et al. [9]. Once this is
done, they stitch together the join & split trees for the blocks, to
produce join & split graphs for computing the global contour tree.

In practice, contour trees have a significant memory footprint,
and, for noisy or complex data set, their size is nearly linear in input
size, which forces the contour tree for the entire data set to reside
on the master node, defeating one of the purposes of parallelisation:
distribution of cost both in computation and in storage.

More recently, Morozov & Weber [17] proposed a method for
distributing a merge tree computation by observing that each vertex
in the mesh belongs to a unique component based at a single root
maximum, and to a corresponding component at a minimum. Thus,
by storing the location of each vertex in a merge tree, the merge tree
is held implicitly, distributed across the nodes of the computation.
They then generalized this further [18] and stored unique maximal
and minimal roots for each vertex. Since this combination is unique
for each edge of the contour tree, this implicitly stores the contour
tree across the nodes of the computation. These algorithms, how-
ever, focus on distributed computing but not data-parallelism, lim-
iting the efficient utilisation of individual compute nodes. Our new
approach makes computation on individual compute nodes more
efficient and can be combined with these approaches into a hy-
brid shared-/distributed-memory approach. Furthermore, they do
not extract arcs and nodes of the contour tree explicitly.

Notably, one of the advantages of this work is that instead of re-
lying on transferring all of the topology computed per block during
the fan-in, it only needs to transfer information relating to bound-
aries between blocks—i.e., its communication cost can be bounded
by O(n2/3) for a data set of size n.

Similarly, Landge et al. [14] introduce segmented merge trees
for segmenting data and identifying threshold-based features. Their
approach constructs local merge trees and corrects them based on
neighbouring domains. By considering features only up to a pre-
defined size, this correction process requires less communication
compared to the approach by Morozov & Weber [17].

Related to this, Widanagamaachchi et al. [28] described a data-
parallel model for the merge tree, breaking the computation into a
finite number of fan-in stages. This approach in effect quantised the
merge tree, an effect that was acceptable for the task in hand.

The hybrid GPU-CPU algorithm by Maadasamy et al. [16] finds
critical points then monotone paths [9] from saddles to extrema, to
build join & split graphs to identify equivalence classes of vertices
that share a set of accessible extrema to compute the merge trees.

Once the merge trees are computed, the computation continues
in serial on the CPU, using the merge phase of Carr et al. [7]. Where
E � V , this is practical, but as shown by Carr et al. [8], there are
classes of data (principally empirical) for which E ≈V . Moreover,
even the GPU phase is not pure data-parallel, as the search from
saddles to extrema is serial for each vertex, and the number of steps
needed is bounded by the longest such path in the mesh. Although
this tends to average out over a large number of vertices, it limits the
formal guarantees on performance. Lastly, this algorithm computes
the contour tree without augmentation of regular vertices, limiting

the forms of analysis that are feasible.
In addition to work on contour tree computation, some of the

work on Reeb graph and higher-dimensional topological compu-
tation is also relevant. In particular, Hilaga et al. [12] quantised
the range of the function, explicitly dividing an input mesh into
slabs—i.e., the inverse image of intervals rather than of single iso-
values. They then identified the neighbourhood relationships be-
tween these slabs to approximate the Reeb graph of a 2-manifold.
More recently, Carr & Duke [4] generalised this with the Joint Con-
tour Net—which approximates the Reeb space [10] for higher di-
mensional cases—by quantizing all variables in the range.

Based on quantised Joint Contour Net computation, Carr
et al. [5] used Reeb’s characterisation to contract contours to points.
They achived data-parallel computation by using explicit quantisa-
tion to break cells into fragments representing fat contours as in the
work on Joint Contour Nets [4], then used the parallel union-find
algorithm of Sewell et al. [22] to collapse the contours nodes in the
quantised contour tree. A second union-find pass then constructed
superarcs out of the nodes. However, this was profligate of mem-
ory, and processed c. 1M samples on a single Tesla K40 card, with a
memory footprint even larger than the sweep and merge algorithm.

3 ALGORITHM

The goal of this paper is develop a data parallel, shared memory
algorithm for contour tree computation. This goal is motivated
by several factors. First, multi-core accelerator boards, such as
NVIDIA GPGPU and Intel Xeon Phi increasingly provide data par-
allel compute power to personal work stations as well as supercom-
puters like Titan at the Oak Ridge Leadership Facility (NVIDIA
Kepler), Trinity at the Los Alamos National Laboratory & San-
dia National Laboratories (Intel Xeon Phi) and Cori at the Na-
tional Energy Research Scientific Computing Center (Intel Xeon
Phi). Second, high performance computing already uses hybrid
shared-memory/distributed memory architectures with 16 or more
cores per compute node with high-speed interconnect. Third, ma-
chines like Silicon Graphics UV racks make it feasible to have up
to 512 processors and 4TB of RAM in a shared memory space, us-
ing OpenMP as the programming paradigm, while NVIDIA’s Tesla
K40 cards have up to 2880 cores and 12GB of VRAM.

All these factors make an efficient data parallel algorithm for
contour trees desirable, but existing approaches are largely serial
or operate in distributed memory settings. Developing a new algo-
rithm for data parallel contour tree calculation requires reformulat-
ing the problem in a way that is more parellisable. Our new ap-
proach still builds on the two-phases of Carr et al. [7] of comput-
ing merge trees (join & split tree) and combining them into a con-
tour tree. To parallelize merge tree calculation, we deviate from the
union-find based approach and develop a new merge tree algorithm
that constructs monotone paths from saddles to extrema and then
iteratively “prunes” peaks, i.e., cuts of merge tree branches ending
in an extremum (Section 3.2). Many extrema can be “pruned” si-
multaneously, making this approach easily parallelisable. Once join
and split tree are computed, we combine them into the contour tree.
While the original algorithm [7] uses priority queues to serialize
transferring arcs from join and split tree into the contour tree, these
operations are not inherently serial, and, with some extension to the
algorithm, we can perform them in parallel (Section 3.5).

3.1 New Terminology
We start by introducing two new terms that will help us build our
algorithm. Where previous forms of simplification uniquely pair
peaks with saddles, building a hierarchy, we wish to allow multiple
peaks to pair with a given saddle. We therefore define the governing
saddle for a peak to be the highest saddle from which a monotone
path exists to the peak. Thus, where a Y-structure is broken into one
long and one short edge in branch decomposition, we break it into



two short branches and a residuum. This residuum may itself form
a branching tree, of which the peaks were saddles in the original
tree. We therefore repeat recursively until only one peak remains,
at which point we call the residuum the trunk of the merge tree.

In terms of branch decomposition or simplification, this is equiv-
alent to choosing as an importance measure the vertex depth in the
tree, and using batches of simplification before reducing degree 2
vertices, rather than a queue. This allows parallelisation of the op-
eration rather than relying on serial inductive correctness.

3.2 Parallel Peak Pruning
Our new algorithm, Parallel Peak Pruning, is fully data-parallel
and computes both merge trees and contour trees, with or without
augmenting vertices. As with sweep and merge, we compute merge
trees first, then combine them. Since this algorithm is somewhat
complex after optimisation, we will build it in several stages:

1. Parallel Peak Pruning to Construct Merge Trees

2. Optimising Parallel Peak Pruning

3. Parallel Combination of Merge Trees

3.2.1 Parallel Peak Pruning for Merge Tree Construction
Since the join tree and split tree computations are symmetric in
nature, we will describe and illustrate the algorithm for the join tree
only. At heart, our algorithm is similar to the simplification process
for the contour tree: we identify peaks and find their governing
saddles to establish superarcs in the join tree, then delete (prune) the
regions defined by each peak/saddle pair, and process the remaining
data recursively. When there is only one peak left, there cannot be
a saddle, and all remaining vertices form the “trunk” of the tree.

For now, we assume that the input is a triangulated mesh in 2D,
and reduce it to the edge graph of the mesh, as we know that this
is sufficient to compute the join tree [6]. The parallel peak pruning
algorithm for merge tree construction then operates as follows:

1. Iterate Until No Saddles Remain:

(a) Monotone Path Construction: from vertices to peaks

(b) Peak Pruning: to governing saddles

2. Trunk Construction: from remaining vertices

3. Join Arc Construction: along superarcs

Ascent
Chosen

Mesh 
Edge

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

Ascent Loopback
at Peak

Figure 2: Selection of Initial Ascending Edge

Monotone Path Construction: In this phase, we build one
monotone path from each vertex to a peak. No canonicity is as-
sumed, as any peak reachable from the vertex can be chosen. The

simplest way to do this is to choose the first ascending edge from
each vertex, except for peaks, as shown in Figure 2. Since every
edge points to a higher vertex (except at peaks), we have no cycles,
and the directed graph is therefore a forest. In this forest, each tree
consists of a set of vertices which are guaranteed to have a mono-
tone path to the peak at the root of the tree. We then set each peak
to point to itself to simplify the computation.

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

AscentNodes Coloured 
By Peak

Ascent Loopback
at Peak

Figure 3: Monotone Path Construction. 3 iterations are required.

Since the trees form the connected components of the forest, we
use pointer-doubling as described by Jaja [13] to collect the trees,
as shown in Figure 3. In each iteration, each vertex points to its
ascending neighbour’s neighbour, terminating at the peak. At the
end of this process, every vertex has been assigned to a peak, as
shown by the coloured groups: the colour attests to the existence of
a monotone path from the vertex to the peak.

Peak Pruning: In the second phase, we identify the governing
saddles for each peak. Recall from Section 3.1 that the governing
saddle of a peak p is the highest saddle s from which a monotone
path to p exists. But since we know [8] that this maps to a path
through the mesh (i.e. a set of edges), there is therefore at least one
edge e = (s,v) from s that leads towards p. We claim that v is la-



Nodes Coloured 
By Peak

Edges Coloured 
By Peak

Saddle Candidates 
in Bold

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

Figure 4: Saddle Candidate Identification. Edges are assigned to
the same peak as their upper end. Any vertex whose edges lead to
multiple peaks is a saddle candidate.

belled with p. If not, then v is labelled with q, and a monotone path
from v to q exists - and this implies the existence of a saddle be-
tween p and q that is higher than s. This contradicts the assumption
that s is the governing saddle of p, and the result follows.

We are therefore guaranteed that there is at least one edge from
the governing saddle s whose upper end is already labelled with p.
Except for other similar edges that lead from s to p, all edges whose
upper ends lead to p must have lower ends below s, and we can
therefore identify the governing saddle by taking all of the edges in
the mesh, grouping them into equivalence classes according to the
peak which labels their upper end, and sorting by the lower end to
find an edge that identifies the governing saddle.

This, however, assumes that we are examining only edges from
saddles, which is harder to test than it may appear. We therefore
define a saddle candidate to be a vertex which has ascending edges
whose upper ends are labelled with at least two peaks: i.e. vertices
in Figure 4 with ascending edges in two different colours. Every
saddle is guaranteed to be a saddle candidate, but not vice versa:
for example, vertex 5 is not a saddle, but is a saddle candidate.

However, for each peak, the governing saddle is the highest sad-
dle candidate with a monotone path to that peak. Suppose not. Then
there is a saddle candidate c above the governing saddle s: all edges
ascending from c must lead to p. Otherwise, either c is a saddle
higher than the governing saddle, or none of the edges lead to p,
in which case, because if not, c has no monotone path to the peak,
which is a contradiction. Either way, the result follows.

What this means is that we can choose all edges whose lower
end is a saddle candidate, and sort them by the label of their upper
end to group them into equivalence classes by the peak they lead
to. We then sort again by the value of the lower end to identify the
highest saddle candidate from which a path leads to the peak.

In practice, we take all edges in the mesh and sort them, using
saddle candidacy as the primary sort, the ID of the peak as the sec-
ondary index, and the value of the saddle as the tertiary index, as
illustrated in Figure 5. This can be done either with a single sort
using a comparator, or by a sequence of stable sorts.

The result of this sort is that all edges leading to each peak p are
clumped in the sort array, and the rightmost (highest) such edge is
adjacent either to the end of the array or an edge leading to a dif-
ferent saddle. Given that we have now found each peak by finding
the edge from its governing saddle s, we now save s to an array
prunedTo, i.e. prunedTo[p] = s. This represents removing the en-
tire peak down to the level of the governing saddle.

This test for peak-saddle pairs is fully parallelised over all edges:
only the edge that satisfies the conditions is allowed to assign the
saddle s to the peak p, precluding write conflicts.

From Saddle Candidate 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Peak for Upper End 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 22 22 22 22 22

Lower End 15 11 10 10 8 7 7 7 5 5 5 3 3 2 2 15 11 11 11 10

From Saddle Candidate 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Peak for Upper End 22 22 22 22 13 13 13 13 24 24 24 24 24 24 24 24 24 24 24 24

Lower End 8 8 5 2 10 8 7 3 23 20 18 18 18 17 14 12 12 12 12 9

From Saddle Candidate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak for Upper End 24 24 24 24 24 24 24 24 24 24 24 24 22 22 22 22

Lower End 9 9 9 9 6 6 4 4 1 1 0 0 21 19 19 16

Peak 24 24 24 24 24 22 22 22 22 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 13

Vertex 24 23 20 18 17 22 21 19 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 13

Join Neighbour 23 20 18 17 15 21 19 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 10

�1

Figure 5: Peak-Saddle Pairing. Edges from non-saddle candidates
(grey) are ignored, as are edges whose left neighbour has the same
peak. The three marked edges identify peak-saddle pairs.

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

Nodes Above the Saddle (15,15,10) 
Belong to the Peak (24,22,13)

Figure 6: Assigning Regular Points. Regular points above the gov-
erning saddle can only ascend to a single peak, and are assigned to
it accordingly.

This process pairs critical points, but we must still process the
regular points. In each iteration, once we have identified peak-
saddle pairs, we exploit a simple property: any regular vertex above
the governing saddle s of a peak p can only have monotone paths
to p, and can therefore be assigned to that peak-saddle pair, shown
inFigure 6 by assigning the maximum as a label.

Once peak p and its regular vertices are found, they are no longer
needed, and the region is deleted [8]. However, monotone ascents
to vertices inside this region are still needed, which is handled by
redirecting any edge leading to a deleted vertex so that it instead
ascends to the governing saddle, as shown in Figure 7.

Trunk Construction: In each pass, we prune all peaks to their
governing saddles, flattening (or deleting them) to remove the re-
gion above the governing. As a result, each governing saddle be-
comes either a peak (e.g. 15 in our example) or a regular point (e.g.
10 in our example). We now recompute monotone paths and iterate:
Figure 8 illustrates the next iteration for our example. Here, there
is only one peak left at 15 and no saddles, so we have hit the base
case and can assign all remaining vertices to the trunk which leads
downwards from 15 to a virtual saddle at −∞.

Join Arc Connection: One final step remains: to compute the
join arcs that connect all the vertices together so that we can com-
pute the fully-augmented join tree. To do this, we observe that each
vertex points to the next highest vertex in it’s peak-saddle join su-
perarc, and construct this by sorting first on the vertex’ peak, then
it’s value, as shown in Figure 9. Each vertex then points to it’s right-
hand neighbour, unless this belongs to a different peak, in which
case the vertex points to the saddle paired with the peak.

We note that the peak-saddle pairs themselves do not give
the join superarcs in the same form as existing algorithms.



22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

24

Edges to Pruned Nodes are Redirected to Saddle:
Looped Edges are Deleted

Figure 7: Peak Pruning. Edges leading up to pruned vertices are
truncated at the saddle’s isovalue, represented by redirecting them
to the saddle. Pruned vertices and looped edges are removed.

15 10

0

8

114 6

12 7 3

9

4 5 11

2

After Final Iteration

Figure 8: Second Round of Monotone Path Construction. 15 is the
last peak, and we transfer all vertices to the trunk of the tree.

To see this, consider Figure 10, which shows the join arcs
we have just computed. We extracted peak-saddle pairs
(24,15),(22,15),(13,10),(15,−∞): note that in the second pass,
10 was treated as a regular point, not a critical point. Once the indi-
vidual join arcs have been constructed, however, the join superarcs
can readily be broken up at these vertices.

3.2.2 Optimising Parallel Peak Pruning

We have just described an algorithm for constructing the join tree
using only parallel operators. In practice, however, this algorithm
is slow, as it carries regular vertices forward throughout the entire
computation. We therefore optimise the algorithm by operating
only on the critical points rather than the entire edge graph. As
noted above, this can be done by defining a suitable join graph [6].
We further optimise by reducing the size of our arrays in each iter-
ation, carrying forward only those vertices which are required.

Join Graph Construction: We start with the set of (local) joins
and peaks, and add one edge to the join graph for each connected
component of each join’s upper link. Since the vertex at the far end
of this edge is not necessarily critical, we use the monotone paths
from the previous phase to extend the edge to a peak. This gives us
a valid join graph for our computation. This can be seen in Figure
11, where the grey vertices are carried forward. For example, vertex
15 is locally a saddle, so we extend the dotted edges to their cor-
responding peak to get the initial chain graph shown in the second
sub-figure. The rest of the algorithm then proceeds as described
above, as shown in the rest of the figure.

Select Sorting Edges: In the above, we sorted all edges, rather
than only edges ascending from saddle candidates. In order to im-

From Saddle Candidate 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Peak for Upper End 24 24 24 24 24 24 24 24 24 24 24 24 24 22 22 22 22 22 22 22

Lower End 15 11 10 10 8 7 7 7 5 5 5 2 2 15 11 11 11 11 10 8

From Saddle Candidate 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Peak for Upper End 22 22 22 13 13 13 13 13 24 24 24 24 24 24 24 24 24 24 24 24

Lower End 8 5 2 2 10 8 7 3 23 20 18 18 18 17 14 12 12 12 12 9

From Saddle Candidate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak for Upper End 24 24 24 24 24 24 24 24 24 24 24 24 22 22 22 22

Lower End 9 9 9 9 6 6 4 4 1 1 0 0 21 19 19 16

Peak 24 24 24 24 24 22 22 22 22 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 13

Vertex 24 23 20 18 17 22 21 19 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 13

Join Neighbour 23 20 18 17 15 21 19 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 10

�1

Figure 9: Join Arc Construction. Each vertex points to the next
lowest in it’s peak-saddle superarc.

Saddle Candidates F F F F F There are no saddle candidates, since there is only one chain 
maximum. This is the base case, and is dealt with by 

assigning the chain max as join max to all remaining vertices, 
with the global minimum as the “saddle”F F F F F

F F F F F

F F F F F

F F F F F

Join Maximum 0 0 12 12 12 Join Saddle 12 12 20 20 20

For each coloured component, all 
vertices above the corresponding 
saddle belong to the leaf from the 
chain max to the saddle. We 
therefore record this in the Join 
Max and Join Saddle arrays, and 
also mark the vertices as being 
pruned to the saddle

0 0 12 12 12 12 12 20 20 20

0 12 12 12 14 12 20 20 20 13

12 12 12 18 12 20 20 20 12 20

12 12 18 18 18 20 20 12 12 12

At this stage, every vertex has been assigned to a “superarc” - note 
that the algorithm performs pruning in order of leaf depth (from the 
top), so our branch decomposition is different from the usual one. 
This can, however, be fixed in post-processing. For each superarc (i.e 
coloured zone), each vertex points to the next highest, with the 
lowest vertex pointing to the saddle. This is a straightforward 
application of sorting, & is omitted.

Join Neighbours (Index) 5 6 7 16 20 Join Neighbours (Value) 23 18 12 5 0 Data Values (Reference) 24 20 14 6 1

1 10 17 3 21 20 17 11 6 2 23 18 12 7 3

12 19 2 11 13 15 8 14 9 10 17 9 15 10 13

9 15 13 24 8 3 4 10 21 7 4 5 11 22 8

20 4 12 22 23 0 (-1) 1 15 16 19 0 2 16 19 21

Join Arcs (shown graphically) 24

23 22

20 21

18 19

17 16

15

14

12

11 13

10

9

8

7

6

5

4

3

2

1

0

�4

Figure 10: The Join Tree.

prove performance, we therefore add an extra phase that transfers
only these ascending edges to a sorting array. As the algorithm pro-
ceeds, this set naturally dwindles along with the vertices: we refer
the reader to the next section for analysis.

Since this requires reduction operators, and the initial identifica-
tion of the active graph means that all edges are used in the first
pass, we place this at the bottom of the loop rather than the top.

Augmenting the Join Tree: By using a join graph as input,
we compute the unaugmented join tree, but may still need an aug-
mented join tree. We observe that our superarcs represent a branch
decomposition of the join tree by vertex depth. In this, each peak is
pruned to a saddle, which is in turn pruned to another saddle, until
the trunk is reached - note that no peak can be pruned more times
than the number of iterations through the main loop.

To augment with a regular vertex r, recall that we initially as-
signed r to a peak p through monotone path construction. We prune
r to a sequence of critical points c1 = p,c2 = prunedTo[c1], ... un-
til we find the first ci lower than r, which attests that r belongs to
the superarc (ci−1,ci). We then compute join arcs as before. Since
each vertex operates independently, this too is parallelisable.

3.3 Parallel Combination of Merge Trees

As in the sweep and merge algorithm, we now wish to combine
the two merge trees, and for this we need to ensure that the two
trees share the same vertex set. We therefore augment each with the
others nodes, and relabel all vertices and edges accordingly. Once
we have done this, we batch transfers of edges from the merge trees
to the contour tree in order to parallelise the combination phase.

Transfer Leaves: We observe that the transfer of a leaf from
join or split tree in the sweep and merge algorithm is essentially
a local operation. Here, as illustrated in Figure 12, we alternate
transferring upper leaves from the join tree and lower leaves from
the split tree. As we see in the first phase (Ia), we can transfer all
upper leaves (grey) simultaneously. However, unlike the original
sweep and merge, we do not delete these vertices immediately, as
this causes write conflicts when updating edges. Instead, we flag
the vertex as deleted, for later processing.

Collapse Regular Vertices: After the first transfer, we note the
chain 17-15-13-11. If we only prune one upper leaf at a time,
this serialises the computation, so we perform yet another pointer-
doubling to collect all regular points (as determined by vertex up-



Join Graph Edge

INITIAL JOIN GRAPH

24

22

15

10

13

REGULAR ASCENTS TO MAXIMA

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19 Ascending Mesh Edge

Monotone Path

FIRST PRUNING PASS

24

22

15

10

13

FIRST COLLAPSE

24

22

15

10

13

FINAL JOIN TREE

24

22

15

10

13

Join Tree Superarc / Pruning

- ∞

Figure 11: Optimised Computation With Join Graph. (Left) We start with edges ascending from saddles (dotted) to their neighbours, then
follow uphill to peaks, defining paths (dashed): eliminating duplicates gives us a valid join graph for merge tree computation. (Middle) In the
first pass, edge n2n0 and n1n0 both ascend to n0, but n1 is higher, and is therefore the governing saddle for n0. (Middle Right) We collapse
these peaks out of the graph, and redirect n2n0 to point to n1 instead, since we have pruned n0 down to the level of n1. (Right) Since we only
have one edge left, we have reached the base case and transfer −∞n2 to the join tree, with n2 treated as a regular point along −∞n2.

and down- degrees) leading downwards from an upper leaf to a crit-
ical point, transfer their edges, and mark them as deleted.

Remove Deleted Vertices: Once the leaves and edges are trans-
ferred to the contour tree (Phase Ia, grey), deleting them from the
join tree is trivial, but deleting them from the split tree involves re-
connecting edges. To do this, we use pointer-jumping once again,
but only pointer-jump if our successor has been deleted. Thus, ver-
tex 15 updates its successor to 17: even if there are multiple deleted
vertices, the pointer-jumping will guarantee that we find the next
valid node in logarithmic steps. This results in the join & split trees
shown in Phase Ib, ready for the next phase.

Vertex Degree Update: We now update the active set of ver-
tices and edges in both merge graphs ready for the next iteration,
and recompute vertex up- and down- degrees by summing over all
vertices, ready for the next pass.

3.4 Algorithmic Analysis
Consider the algorithmic cost of the optimised merge tree com-
putation. In the initialisation stage, we take O(logE) steps and
O(E log(E)) work to initialise the array of edges, then a further
O(logV ) steps and O(V logV ) work to ascend to the maxima.

We then take O(logE) more steps and O(E logE) further work
to find the topology graph to carry forward to the iteration. This
graph will have t ≤ v <V vertices and t < e < E edges.

During the iterative stage, we have O(log t) iterations, each of
which involves a sort and several reductions with O(loge) steps and
O(e log(e)) work. Although the size of the tree diminishes in each
iteration, there is a pathological case, so the most we can safely
claim at present is that the iterative phase takes O(log(t) log(E)
steps and O(E log(t) log(E)) work.

In the pathological case, exactly half of the vertices are critical
(i.e. t = V/2), and there are r = V/2 regular points, all of which
belong to the lowest (and final) superarc computed and have ascents
to at least two maxima each. Here, while the number t of critical
points diminishes by half in each pass, r remains constant to the
end, and each iteration therefore processes Θ(V ) vertices and edges.

Adding regular points takes O(log t) steps and O(V log t) work,
then sort and reassignment in O(logV ) steps and O(V logV ) work.

For a regular mesh, initialisation can be done in O(E/V ) steps
and O(E) work, since the degree of each vertex is δ = O(E/V ).
Obviously, if δ > logV , it may still be cheaper to use the more
general algorithm, but 2d & 3d regular meshes have low degrees,
so for large problem sizes, the reduction should be avoided.

In the iterative stage, the fact that we have a regular mesh works
to our advantage again, as we can look at the connectivity of the
upper link of each vertex to eliminate all regular points. However,

if we have a large number of vertices that are Morse critical but
not connectivity critical, the same pathological case may occur. In
practice, however, the collapse is significantly faster because we
carry many fewer vertices forward between iterations.

In all, the computation therefore is limited by the iterative phase
with O(log t logE) steps and O(E log t logE) work, largely due to
sorting. We note that it is possible to run a simplified version of
the algorithm by retaining all V vertices and E edges throughout,
with the same formal bound, but our early experience is that this
is several orders of magnitude slower than the sweep and merge
algorithm in serial, and twice as slow even for the version running
on a Tesla K40 card. The optimisation to work with a diminishing
graph size is therefore crucial in practice to keep runtimes down.

3.5 Contour Trees
For the final contour tree construction, the key question is how
many iterations are needed to collapse the contour tree. We start by
observing that the paired passes that remove upper and lower leaves
between them remove all leaves. In order to force logt iterations,
we would need to guarantee that no degree 2 vertices were left in
the tree after each pass. Although many of them will be removed
by the collapse described above, there is a pathological case.

In the pathological case, shown in Figure 12, a row of alternat-
ing up and down edges (4−8−5−9−3−7−6) in the tree forms
a repeated W -motif. Here, when the upper and lower leaves are
removed, only the endmost edges may be removed, causing the al-
gorithm to serialise along the W . As a result, the best formal guar-
antee for the algorithm is the graph diameter but, we usually take
less than a logarithmic number of iterations.

Inside each iteration, the leaf transfer is fully parallel, taking
O(1) steps and O(t) work in each pass. Collapsing regular and
deleted vertices is logarithmic in nature, taking O(logt) steps and
O(tlogt) work, as is the compression of the active graph and the
recomputation of vertex degrees.

Thus, the formal cost of the merge phase, like the join and split
tree computations, is O(log(t)) steps and O(tlog2(t) work.

4 RESULTS

The algorithm described above has been implemented for regu-
lar DEM (Digital Elevation Model) data (i.e. for two-dimensional
data). A serial code was first written and then parallelised using
Nvidia’s Thrust library. Thrust provides data-parallel operators,
such as transform, for each, reduce, scan, and sort, which can be
customised using functors. A significant advantage of designing a
data-parallel algorithm and implementing it using a portable library
such as Thrust is that the exact same code can run on all supported



19
17
15

20

11
13

18
16

14
12

10

4
2

9

1

7

3
5

8
6

19
17
15

20

11
13

18
16

14
12

10

4
2

9

1

7

3
5

8
6

Contour Tree: Join Tree: Split Tree:

19
17
15

20

11
13

18
16

14
12

10

4
2

9

1

7

3
5

8
6

19
17
15

20

11
13

18
16

14
12

10

4
2

9

1

7

3
5

8
6

17
15

11
13

4
2

9

1

7

3
5

8
6

Contour Tree: Join Tree: Split Tree:

17
15

11
13

4
2

9

1

7

3
5

8
6

19
17
15

20

11
13

18
16

14
12

10

4
2

9

1

7

3
5

8
6

Contour Tree: Join Tree:

1

4
2

9
7

3
5

8
6

Split Tree:

19
17
15

20

11
13

18
16

14
12

10

4
2

9

1

7

3
5

8
6

Contour Tree: Join Tree:

9
7

3
5

8
9

7

3
5

8

Split Tree:

4
2

9

1

7

3
5

8
6

19
17
15

20

11
13

18
16

14
12

10

4
2

9

1

7

3
5

8
6

Contour Tree: Join Tree:

9

3
5

9

3
5

Split Tree:

PHASE Ia: TRANSFER ALL UPPER LEAVES

PHASE Ib: COLLAPSE UPPER LEAF CHAINS

PHASE II: TRANSFER ALL LOWER LEAVES (NO LEAF CHAINS)

PHASE III: TRANSFER ALL UPPER LEAVES (NO LEAF CHAINS)

PHASE IV: TRANSFER ALL LOWER LEAVES (NO LEAF CHAINS)

Figure 12: Parallelisation of Contour Tree Merge Phase. We first identify all upper leaves in parallel (top) and transfer them to the contour
tree. After deleting these vertices from the join and split trees, we collapse regular chains from upper leaves (second), then repeat with
lower and upper leaves, omitting collapses if there are no chains available. Note how the algorithm serialises along the W shape of vertices
8-5-9-3-7.

architectures, including GPUs (with Thrust’s CUDA backend) and
multi-core CPUs (with Thrust’s OpenMP backend).

The performance and accuracy of the parallel peak pruning al-
gorithm was evaluated using the GTOPO30 database, which con-
tains elevation maps for the Earth at a horizontal grid spacing of 30
arc seconds (roughly one-half to one kilometer). The data consists
of 33 tiles (excluding the special case of Antarctica), each 6000 x
4800 (28.8 million points). The full data set is 21,600 x 43,200,
about 933 million points.

Verification was performed by comparing to the original sweep

and merge algorithm. All superarcs were output to file, sorted lex-
icographically, and compared using the Linux diff utility. Verifica-
tion was performed for each tile using each version of our algorithm
(serial, Thrust OpenMP, and Thrust CUDA), as well as for the full
data set using each version of our algorithm except Thrust CUDA
(since the GPU memory was insufficient to run the full data set).

The performance of the original sweep and merge algorithm and
the serial, Thrust OpenMP, and Thrust CUDA versions of the new
parallel peak pruning algorithm are shown in Figure 13. Each vari-
ant was run five times on each of the 33 GTOPO30 tiles, with the



fastest of the five runs recorded for each variant on each tile. These
tests were run on a 32-core 2.10GHz Intel Xeon E5-2683 v4 Broad-
well CPU (two sockets with 16 cores each, and two threads per
core), with 128 GB of RAM, and an Nvidia Tesla K40m with 2880
745 MHz CUDA cores and 12 GB of memory. The graph compares
the implementations on the fastest tile and the slowest tile, as well
as the average over all 33 tiles. The serial version of parallel pruning
averaged about 40% slower than sweep and merge, but its primary
advantage is its ability to run efficiently in parallel. For the mean
over all tiles, the Thrust OpenMP version of parallel pruning had
a speed-up of 13.1x relative to the serial version, and 9.2x relative
to the original sweep and merge algorithm. We also implemented
and tested a native OpenMP version of parallel pruning (not using
Thrust), which was slightly slower than the Thrust OpenMP version
(mean of 2.05 seconds compared to 1.25 seconds), indicating that
the portability of Thrust did not negatively impact our performance.
The Thrust CUDA version running on the GPU was faster still, with
speed-ups of 21.0x and 14.8x relative to the serial parallel pruning
version and to the sweep and merge version, respectively. GPU
memory usage (obtained using cudaMemGetInfo) ranged between
2.6 GB and 3.8 GB for each tile, with the mean 3.1 GB.

▼�✁ ✂�✄☎ ▼☎✆✁ ✂�✄☎ ▼✆✝ ✂�✄☎

❈✞✟✠✞✡☛ ☞☛rr ☞✌✍✌✟✎✏ ✑✞☛ ♦☞❖✒❖✓✔ ☞✌✕r✏

❚
✖✗
✘
✙✚
✘
✛
✜
✢
✣
✚
✤

✵

✶
✵

✷
✵

✸
✵

✹
✵

✻✥✦✧

★✩✥✪✪

✩✥✻✫ ✩✥✦✻

★★✥✬✬

★✻✥✫✬

★✥✦✬ ✩✥✭✧

✫✬✥✬✬ ✫✬✥✩✬

✫✥✦✪
✦✥✮✩

❙✯✰✐✱✲ ❙✳✯✯❡ ✱✴✺ ✼✯✰✽✯

❙✯✰✐✱✲ ✾✯✱✿ ✾✰✉✴✐✴✽

❀❁✰✉❂❃ ❄❡✯✴✼✾ ✾✯✱✿ ✾✰✉✴✐✴✽

❀❁✰✉❂❃ ❅❆❇❉ ✾✯✱✿ ✾✰✉✴✐✴✽

Figure 13: Comparison of join tree computation with the serial
sweep and merge, serial version of parallel pruning, Thrust version
of parallel pruning using the OpenMP backend on the CPU, and
Thrust version of parallel pruning using the CUDA backend on the
GPU. Results are shown for the fastest, slowest, and mean of the 33
GTOPO30 tiles.

Figure 14 shows the scaling of Thrust parallel pruning with the
number of OpenMP threads. With four threads, the speed-up is
2.9x (parallel efficiency of 74%), and with eight threads the speed-
up is 4.7x (parallel efficiency 58%). Beyond that, the speed-up
plateaus. Profiling using the VTune Performance Analyzer, with
one GTOPO30 tile as the input, reports an overall memory bound
metric of 43.4%, with the tree compression step and the monotone
path construction reporting memory-bound metrics above 70%.
VTune also identified the Thrust OpenMP stable sort as the largest
potential gain, since it underutilises the available threads. The sta-
ble sort gets called for a sort that uses a custom comparator, which
we do when computing augmented arcs in the merge tree compu-
tation and when finding the governing saddles in the chain graph.

Therefore, there may be an opportunity to further improve scala-
bility by either optimizing the OpenMP stable sort or by adapting
our algorithm to be able to avoid using it in favor of an unstable
sort. The 21.0x speed-up of the GPU version relative to the serial
version, running on cores with clock rate that is 2.8 slower than
the GPU, indicates that the algorithm is able to achieve over 50x
parallel speed-up.

0
.5

1
.0

2
.0

5
.0

1
0
.0

Contour Tree Computation Scaling with OpenMP Threads

Number of OpenMP threads (log scale)

T
im

e
 i
n
 s

e
c
o
n
d
s
 (

lo
g
 s

c
a
le

)
4 8 12 16 20 281

10.63

3.61

2.28

1.82

1.54
1.45

1.331.281.34

Figure 14: Scaling of the Thrust version of the parallel pruning
algorithm with the number of OpenMP threads on a 32-core CPU.
The ideal scaling line is shown in red.

Join Tree Contour Tree

Join and Contour Tree Timings for Full GTOPO30 Data

T
im

e
 (

s
e

c
o

n
d

s
)

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

346 321

30

2685

786

103

Serial Sweep and Merge

Serial Peak Pruning

Thrust OpenMP Peak Pruning

Figure 15: Comparison of serial sweep and merge, serial version
of parallel pruning, and Thrust version of parallel pruning using the
OpenMP backend running on the full 933 million point GTOPO30
data set. Timings are shown for the join and contour trees.

As shown in Figure 15, the sweep and merge, serial parallel
pruning, and Thrust OpenMP parallel pruning versions were also
tested on the entire GTOPO30 data set, which contains almost one



billion points. The memory requirements precluded running this
test on the GPU, but the other versions were run using a machine
with 1.5 TB of memory and a 32-core 2.60GHz Intel Xeon E5-
4650L Sandy Bridge CPU (four sockets with eight cores each, and
two threads per core). In this case, the serial implementation of the
parallel pruning algorithm was 3.1x faster than the original sweep
and merge algorithm. Running with OpenMP, there was an addi-
tional 8.6x speed-up, or 26.4x relative to sweep and merge. Tim-
ings are also shown for computing only the join tree, which can also
be useful independent of the full contour tree.

We note that internal representation of the contour tree can vary
greatly between implementations, so timing and memory footprints
should be compared only with a large margin for error.

5 CONCLUSIONS AND FUTURE WORK

We have described the first pure data-parallel algorithm for the
merge tree and contour tree in either unaugmented (canonical) or
augmented form, with strong guarantees on computation time, and
practical performance faster than the sweep and merge algorithm,
with parallel speedup of at least one order of magnitude on GPU.

We intend to continue this line of research by implementing the
algorithm for arbitrary meshes and graphs as well as 3d data, by ex-
tending the scalability with a hybrid distributed/ data-parallel stage,
and by adding geometric computation and simplification to allow
the contour tree to be used for in situ analysis.

ACKNOWLEDGEMENTS

We would like to acknowledge EPSRC Grant EP/J013072/1 and the
University of Leeds for supporting the first author’s study leave at
Los Alamos National Laboratory. This work was supported by the
U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231 to the Lawrence Berke-
ley National Laboratory (“Towards Exascale: High Performance
Visualization and Analytics Program”) and under Award Number
14-017566 at Los Alamos National Laboratory (“XVis: Visual-
ization for the Extreme-Scale Scientific-Computation Ecosystem”),
with Lucy Nowell the program manager for both awards. We thank
Li-ta Lo and Patricia Fasel for their contributions.

REFERENCES

[1] A. Acharya and V. Natarajan. A parallel and memory efficient algo-
rithm for constructing the contour tree. In Proceedings of the 2015
IEEE Pacific Visualization Symposium (PacificVis), pages 271–278,
Apr. 2015.

[2] T. F. Banchoff. Critical Points and Curvature for Embedded Polyhe-
dra. Journal of Differential Geometry, 1:245–256, 1967.

[3] G. Blelloch. Vector Models for Data-Parallel Computing. PhD thesis,
MIT, 1990.

[4] H. Carr and D. Duke. Joint Contour Nets. IEEE Transactions on
Visualization and Computer Graphics, 20(8):1100–1113, 2014.

[5] H. Carr, C. Sewell, L.-T. Lo, and J. Ahrens. Hybrid data-parallel
contour tree computation. Technical Report LA-UR-15-24579, Los
Alamos National Laboratory, 2015.

[6] H. Carr and J. Snoeyink. Representing Interpolant Topology for Con-
tour Tree Computation. In H.-C. Hege, K. Polthier, and G. Scheuer-
mann, editors, Topology-Based Methods in Visualization II, Mathe-
matics and Visualization, pages 59–74. Springer, 2009.

[7] H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in
All Dimensions. Computational Geometry: Theory and Applications,
24(2):75–94, 2003.

[8] H. Carr, J. Snoeyink, and M. van de Panne. Flexible Isosurfaces:
Simplifying and Displaying Scalar Topology Using the Contour Tree.
Computational Geometry: Theory and Applications, 43(1):42–58,
2010.

[9] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and Opti-
mal Output-Sensitive Construction of Contour Trees Using Monotone

Paths. Computational Geometry: Theory and Applications, 30:165–
195, 2005.

[10] H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb Spaces of Piecewise
Linear Mappings. In Proceedings of ACM Symposium on Computa-
tional Geometry, pages 242–250., 2008.

[11] K. Heitmann, N. Frontiere, C. Sewell, S. Habib, A. Pope, H. Finkel,
S. Rizzi, J. Insley, and S. Bhattacharya. The Q Continuum Simula-
tion: Harnessing the Power of GPU Accelerated Supercomputers. To
appear in the Astrophysical Journal Supplement., 2015.

[12] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology
Matching for Fully Automatic Similarity Estimation of 3D Shapes.
ACM Transactions on Graphics, pages 203–212, 2001.

[13] J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley,
1992.

[14] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla,
J. Chen, and P. T. Bremer. In-situ feature extraction of large scale
combustion simulations using segmented merge trees. In SC14: Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1020–1031, Nov. 2014.

[15] L.-T. Lo, C. Sewell, and J. Ahrens. PISTON: A Portable Cross-
Platform Framework for Data-Parallel Visualization Operators. In
Proceedings of Eurographics Symposium on Parallel Graphics and
Visualization, pages 11–20, 2012.

[16] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel
algorithm for computing and tracking level set topology. In High Per-
formance Computing (HiPC), 2012 19th International Conference on,
pages 1–10. IEEE, Dec. 2012.

[17] D. Morozov and G. Weber. Distributed Merge Trees. ACM SIGPLAN
Notices, 48(8):93–102, 2013.

[18] D. Morozov and G. Weber. Distributed Contour Trees. In P.-T. Bre-
mer, I. Hotz, V. Pascucci, and R. Peikert, editors, Topological Methods
in Data Analysis and Visualization III, Mathematics and Visualization,
pages 89–102. Springer, 2014.

[19] V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the
Topology of Level Sets. Algorithmica, 38(2):249–268, 2003.

[20] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. The TOPOR-
RERY: Computation and Presentation of Multi-Resolution Topology,
pages 19–40. Springer-Verlag, Berlin Heidelberg, Germany, 2009.
Preliminary version appeared in the proceedings of the IASTED con-
ference on Visualization, Imaging, and Image Processing (VIIP 2004),
2004, pp.452-290.

[21] G. Reeb. Sur les points singuliers d’une forme de Pfaff complètement
intégrable ou d’une fonction numérique. Comptes Rendus de
l’Acadèmie des Sciences de Paris, 222:847–849, 1946.

[22] C. Sewell, K. Heitmann, L.-T. Lo, S. Habib, and J. Ahrens. Utilizing
Many-Core Accelerators for Halo and Center Finding within a Cos-
mology Simulation. In submission., 2015.

[23] C. Sewell, L.-T. Lo, and J. Ahrens. Portable Data-Parallel Visual-
ization and Analysis in Distributed Memory Environments. In Pro-
ceedings of the IEEE Symposium on Large-Scale Data Analysis and
Visualization (LDAV), pages 25–33, 2013.

[24] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algo-
rithms for Extracting Correct Critical Points and Constructing Topo-
logical Graphs from Discrete Geographical Elevation Data. Computer
Graphics Forum, 14(3):C–181–C–192, 1995.

[25] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22:215–225, 1975.

[26] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R.
Schikore. Contour Trees and Small Seed Sets for Isosurface Traversal.
In Proceedings, 13th ACM Symposium on Computational Geometry,
pages 212–220, 1997.

[27] M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R.
Schikore. Topological Data Structures for Surfaces: An Introduction
for Geographical Information Science, chapter 5: Efficient contour
tree and minimum seed set construction, pages 71–86. John Wiley &
Sons, May 2004.

[28] W. Widanagamaachchi, C. Christensen, P.-T. Bremer, and V. Pascucci.
Interactive Exploration of Large-Scale Time-Varying Data Using Dy-
namic Tracking Graphs. In Proceedings of Large-Scale Data Analysis
and Visualization (LDAV), pages 9–17, 2012.


	Introduction
	Background
	Data-Parallel Computation
	Contour Tree Computation
	Contour Tree Definition
	Sweep And Merge Algorithm for Contour Trees
	Topology Graph
	Scaling Sweep and Merge


	Algorithm
	New Terminology
	Parallel Peak Pruning
	Parallel Peak Pruning for Merge Tree Construction
	Optimising Parallel Peak Pruning

	Parallel Combination of Merge Trees
	Algorithmic Analysis
	Contour Trees

	Results
	Conclusions and Future Work

