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Abstract 

e-Science promises to increase the pace of science via fast, distributed access to computational resources, 
analytical tools, and digital libraries. “Big science” fields such as physics and astronomy that collaborate 
around expensive instrumentation have constructed shared digital libraries to manage their data and 
documents, while “little science” research areas that gather data through hand-crafted fieldwork continue 
to manage their data locally. As habitat ecology researchers begin to deploy embedded sensor networks, 
they are confronting an array of challenges in capturing, organizing, and managing large amounts of data. 
The scientists and their partners in computer science and engineering make use of common datasets but 
interpret the data differently.  Studies of this field in transition offer insights into the role of digital 
libraries in e-Science, how data practices evolve as science becomes more instrumented, and how 
scientists, computer scientists, and engineers collaborate around data. Among the lessons learned are that 
data on the same variables are gathered by multiple means, that data exist in many states and in many 
places, and that publication practices often drive data collection practices.  Data sharing is embraced in 
principle but little sharing actually occurs, due to interrelated factors such as lack of demand, lack of 
standards, and concerns about publication, ownership, data quality, and ethics.  We explore the 
implications of these findings for data policy and digital library architecture. Research reported here is 
affiliated with the Center for Embedded Networked Sensing. 

Introduction 

Scientists are facing a deluge of data beyond what can be captured, managed, or interpreted with 
traditional tools. While “big science” fields such as physics and astronomy (Price, 1963) have begun to 
construct tools and repositories to address this deluge, “little science” areas dependent upon fieldwork 
lack the tools and infrastructure to manage the growing amounts of data generated by new forms of 
instrumentation. The lack of an integrated framework for managing these types of scientific data presents 
significant barriers not only to those scientists conducting the research, but also to those who would 
subsequently reuse the data.  

Scientific data are expensive to produce, but can be of tremendous future value. Data associated 
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with specific times and places, such as ecological observations, are irreplaceable. They are valuable to 
multiple communities of scientists, to students, and to nonscientists such as public policy makers.  
Research on scientific data practices has concentrated on big science such as physics (Traweek, 1992; 
2004) or on large collaborations in areas such as biodiversity (Bowker, 2000a; b; c). Equally important in 
understanding scientific data practices is the study of science areas in which small teams produce 
observations of long-term, multi-disciplinary, international value. Results from local projects can be 
aggregated across sites and times, offering the potential to advance the environmental sciences 
significantly.  

Habitat ecology is an optimal case to address these issues, as this research area is in a transition 
phase from hand-crafted fieldwork to highly instrumented data collection via embedded sensor networks. 
The choice of research problems and methods in environmental research were greatly influenced by the 
introduction of remote sensing (satellite) technology in the 1980s and 1990s (Kwa, 2005). Thus one of 
our research concerns is how habitat ecology may evolve with the use of in situ sensing technologies. 
These scientists are deploying dense sensor networks in field locations to study plant growth, bird 
behavior, water quality, micrometeorological variations, and other ecological factors. This research 
community needs consistent, generalizable, scalable tools to manage and share data. 

However, little is understood about how scientists in these areas produce, use, or manage data, or 
how data management practices vary between these scientists and their partners in computer science and 
engineering.  We are studying data practices in newly instrumented areas of habitat ecology and closely 
related areas of the environmental sciences as a means to learn more about how small science can benefit 
from e-Science. Findings from our data practices research are used to illustrate digital library 
requirements for e-Science. 

The Role of Data in e-Science 

The volume of scientific data being generated by highly instrumented research projects (linear 
accelerators, sensor networks, satellites, seismographs, etc.) is so great that it can be captured and 
managed only with the use of information technology. The need to manage the “data deluge” is among 
the main drivers of e-Science and cyberinfrastructure (Hey & Trefethen, 2003; 2005; Lord & Macdonald, 
2003).  If these data can be stored in reusable forms, they can be shared over distributed networks.  Data 
are becoming an important end product of scholarship, complementing the traditional role of publications. 

Big Science, Little Science 

“Big Science,” as coined by Weinberg (1961), reflects the large, complex scientific endeavors in which 
society makes major investments.  These are characterized by expensive equipment that must be shared 
among many collaborators, such as particle accelerators or space stations.  e-Science and 
cyberinfrastructure are big science in this sense, as they are major societal investments.  

Derek de Solla Price (1963), in his canonical work Little Science, Big Science, distinguished 
between little and big science not by size of projects but by the maturity of science as an enterprise.  
Modern science, or big science in Price’s terms, is characterized by international, collaborative efforts and 
by invisible colleges of researchers who know each other and who exchange information on a formal and 
informal basis.  Little science is the 300 years of independent, smaller scale work to develop theory and 
method for understanding research problems. 

Differences between little and big science are more qualitative than quantitative. Big science 
encourages standardization of processes and products, and thus the growth of digital libraries and data 
repositories and of metadata standards are predictable outcomes of the trajectory from little to big. The 
technical infrastructure of e-Science is especially suited to supporting large-scale international 
collaborations by providing distributed access to instruments, to computational resources, and to digital 
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libraries of data.  Not surprisingly, science domains such as physics and astronomy were among the first 
to build distributed digital libraries in support of collaborative research (ArXiv.org e-Print archive, 2006; 
Ginsparg, 2001; International Virtual Observatory Alliance, 2006).  Distributed digital libraries are being 
created to support many other scientific domains, including the environmental sciences and water 
resources (Collaborative Large-Scale Engineering Analysis Network for Environmental Research, 2006; 
Consortium of Universities for Advancement of Hydrologic Science, 2006; Global Earth Observation 
System of Systems, 2006; National Ecological Observatory Network, 2006).   

Digital libraries for scientific documents and data can facilitate collaboration and promote the 
progress of science.  They also can hinder progress by forcing standardization prematurely (Bishop, Van 
House & Buttenfield, 2003; Bowker, 2005).  Many scientific research areas continue to be productive 
without the use of shared instrumentation, shared repositories, or agreements on standards for data 
description.  As research areas such as habitat ecology become more instrumented, they are facing many 
challenges associated with the transition from little science to big science, including what to standardize, 
when, and for what purposes. 

The Role of Data in Science 

Modern science is distinguished by the extent to which its practices rely on the generation, dissemination, 
and analysis of data. These practices are themselves distinguished both by the massive scale of data 
production and by the global dispersion of data resources. The rates of data generation in most fields are 
expected to increase even faster with new forms of instrumentation such as embedded sensor networks.  
Consequently, scientists need assistance in identifying and selecting data that are useful in individual 
contexts, and preserving and curating data that are of future value, whether to the originators or to others. 

Notions of what are “data,” to whom, when, and for what purposes vary widely.  The following is 
a simple and widely cited technical definition:   

Data:  A reinterpretable representation of information in a formalized manner suitable for 
communication, interpretation, or processing.  Examples of data include a sequence of bits, a table of 
numbers, the characters on a page, the recording of sounds made by a person speaking, or a moon 
rock specimen (Reference Model for an Open Archival Information System, 2002, p. 1-9). 

Scientific data can be grouped into the categories of observations, computations, experiments, and record-
keeping (Hodge & Frangakis, 2005; Long-Lived Digital Data Collections: Enabling Research and 
Education for the 21st Century, 2005). Observational data include weather measurements, which are 
associated with specific places and times; they can also be used in cross-sectional or longitudinal studies. 
Computational data result from executing a computer model or simulation, whether from a physics 
experiment or from acoustical arrays that locate the position of singing birds. Replicating the model or 
simulation in the future may require extensive documentation of the hardware, software, and input data. 
In some cases, only the output of the model might be preserved.  Experimental data include results from 
laboratory studies such as measurements of chemical reactions or from field experiments on plant growth 
under different light and soil conditions. Whether sufficient data and documentation are kept to reproduce 
the experiment varies by the cost and reproducibility of the experiment.  Records of government, 
business, and public and private life also yield useful data for scientific, social scientific, and humanistic 
research. 

These technical descriptions of “data” obscure the social context in which data exist, however.  
Observations that are research findings for one scientist may be background context to another.  Data that 
are adequate evidence for one purpose (e.g., determining whether water quality is safe for surfing) are 
inadequate for others (e.g., government standards for testing drinking water).  Similarly, data that are 
synthesized for one purpose may be “raw” for another (Borgman, 2007; Bowker, 2005).  These are 
among the many complexities of data practices that we are exploring in this research. 
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Data from Embedded Sensor Networks 

The need to develop and deploy an integrated framework for data management is no more keenly felt than 
by scientists who generate massive quantities of data via wireless sensor networks (Akyildiz et al., 2002; 
Culler & Hong, 2004; Elson & Estrin, 2004; Pottie & Kaiser, 2000; 2006). These are systems of sensors 
that are embedded in the environment of the phenomena on which data are sought, and connected via 
communication networks so that data from numerous locations can be collated and analyzed either within 
the network or external to it. In habitat ecology, scientists use multiple types of sensors to observe 
phenomena, each at different sampling rates. Sensors vary widely in type and capability. Some sensors 
capture data continuously or at discrete intervals for indefinite periods of time; some sensors are activated 
only when triggered by an event (e.g., the movement of an animal into the field of vision of a camera), 
requiring Bayesian statistical models. Once collected, sensor data may be analyzed at various frequencies 
and levels of granularity, depending on the scientific topic and research question. Earthquake data, for 
example, is typically of immediate interest to scientists, while ecological data is often of interest only 
when a sufficient period has elapsed to collect a time series. In the early stages of a project, however, 
scientists usually assess their data at short intervals to calibrate their data collection and instruments.  

 
Figure 1:  Information Life Cycle (Borgman et al., 1996)  
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Data-Intensive Science as a New Paradigm 

Scientific progress increasingly will depend on the existence of a common information infrastructure that 
enables domain scientists to exploit available data effectively and efficiently. Among the potential 
benefits of e-Science are: (i) new data analysis methods and smarter algorithms to tackle the ever-
increasing amount of data; (ii) science centers that allow for computation on the data-server side, while 
supporting data access, interchange, and integration; (iii) sophisticated metadata for data access that 
supports physical and logical independence; and (iv) semantic convergence of data tools, crossing 
disciplinary and epistemological boundaries (Gray et al., 2005). All too often, scientists must become 
computer scientists and statisticians in addition to their chosen discipline. They need a “tool layer” to 
support the information life cycle from initial research design through instrumentation, data capture, data 
management, analysis, publication, and curation (see Figure 1 above).   

Digital Libraries for Data 

A key component of an integrated framework for data management is automated support for the 
description and annotation of data, so that those data remain easily identifiable, discoverable, and 
available in a useful form. At the minimum, a digital library for scientific data will involve the following 
activities: (i) specification of a standard communication framework (such as is provided by XML) for the 
communication and exchange of metadata, both among the members of the immediate research 
community, and between the immediate community and others; (ii) specification of the semantics 
(meaning) and syntax (structure) of a standard metadata schema (i.e., a standard set of metadata 
elements), for use by all members of the immediate research community; and (iii) implementation of tools 
enabling members of multiple communities to supervise the creation (manual, semi-automatic, and 
automatic) of metadata, as well as the analysis, use, and preservation of data. Metadata provide data 
independence by separating the data from the database architecture and from analysis software, thus 
increasing the longevity of those data.  

Several technical standards developed by the digital library community will underpin distributed 
access to scientific data, documents, and composite objects: Reference Model for Open Archival 
Information Systems (OAIS), Open Archives Initiative Protocols for Metadata Harvesting (OAI-PMH), 
OpenURL, the Info URI scheme, and Object Reuse and Exchange (ORE) (Bekaert & Van de Sompel, 
2006; Chudnov et al., 2005; Document Action: 'The "info" URI Scheme for Information Assets with 
Identifiers in Public Namespaces' to Informational RFC, 2005; Object Reuse and Exchange, 2006; Van 
de Sompel et al., 2004). OAI-PMH facilitates the creation of a platform-independent content layer to 
support discovery services. OpenURL provides context-sensitive services in coordination with OAI and 
OAIS. The Info URI scheme maps legacy namespaces into a URI format. The original structure is 
preserved, while enabling Web services to incorporate extant namespaces and content.  Object Reuse and 
Exchange integrates the aforementioned standards and protocols into an interoperability framework. 

These technical standards also facilitate open access to data, which is essential to continued 
scientific progress. A rich content layer of scientific information on the Internet also creates opportunities 
for public and private entities to produce tools and services (Esanu & Uhlir, 2004).  

e-Science and Data Practices  

e-Science initiatives state the requirement for better tools, but say little about what the criteria should be 
for building them. More understanding is need about practices, behaviors, and incentives associated with 
the collection, use, and management of scientific data.  These findings are important input to the design of 
effective digital library systems, services, and policies. 

The development of digital libraries for scientific data and the policies of funding agencies to 
promote deposit of data in those systems is predicated on the assumption that these data will be reused by 
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others (Sharing Data from Large-scale Biological Research Projects: A System of Tripartite 
Responsibility, 2003; 2006).  However, data sharing is more common in big science than in small science 
fields. Scholars in smaller science fields often assume that their data are not of value beyond a specific 
study or research group. Heads of small labs often have difficulty reconstructing datasets or analyses done 
by prior lab members, as each person used his or her own methods of data capture and analysis. Local 
description methods are common in fields such as environmental sciences where data sources vary widely 
by study (Estrin, Michener & Bonito, 2003; Zimmerman, in press-a; Zimmerman & Nardi, 2006; 
Zimmerman, 2003). 

The degree of instrumentation of data collection is a factor in data sharing due both to the cost of 
equipment and to the potential reduction in manual effort to generate data. Sharing expensive equipment 
is among the main drivers for collaboration. In these cases, collaboration, instrumentation, and data 
sharing are likely to be correlated (David & Spence, 2003). The relationship between instrumentation and 
data sharing may be more general, however. A small but detailed study conducted at one research 
university found that scholars whose data collection and analysis were most automated were the most 
likely to share raw data and analyses; these also tended to be the larger research groups. When data 
production was automated but other preparation was labor-intensive, scholars were less likely to share 
data. Those whose data collection and analysis were the least automated and most labor-intensive were 
most likely to guard their data. These behaviors held across disciplines; they were not specific to science 
(Pritchard, Carver & Anand, 2004). 

Despite the assumed value of data sharing for e-Science, scientists have a number of disincentives 
to sharing their data.  Firstly, they are rewarded for publication, not for data management. Secondly, 
documenting data sufficiently for others to use them requires considerably more time and effort than 
documenting them only for the use of a small research team. Documenting data for later use also requires 
much more effort than what is required to publish data summaries in a journal article or conference paper. 
Scientists may be willing to share their data, but only after publication and only with certain conditions 
(e.g., attribution, non-commercialization). If scientific data are to be leveraged for larger communities, 
data digital libraries must reflect scientific practices in ways that make documenting and sharing data 
attractive. These may include mechanisms for personal digital libraries, attribution and provenance 
support, embargo periods for access, and security (Arzberger et al., 2004; Borgman, 2004; 2007; Bowker, 
2005; Hilgartner & Brandt-Rauf, 1994). 

Habitat Ecology as a Science in Transition 

Ecology is defined as “the scientific study of the interrelationships among organisms and between 
organisms, and between them and all aspects, living and non-living, of their environment” (Allaby, 2006). 
While people tend to think of ecology in modern context, the term was first coined in 1866.  “Habitat” is 
defined as “The living place of an organism or community, characterized by its physical or biotic 
properties” (Allaby, 2006).  Habitat ecology researchers study relationships among plants and animals in 
their native environments. Their educational background is usually in biology or in areas of the 
environmental sciences such as environmental engineering and public health.  Instrumented data 
collection such as embedded sensor networks is relatively new, and is leading to new methods and new 
research questions.  

CENS as a Context to Study Data Practices 

Research reported here is affiliated with the Center for Embedded Networked Sensing (CENS), a National 
Science Foundation Science and Technology Center [http://www.cens.ucla.edu/]. CENS conducts 
collaborative research among scientists, technology researchers, and educators, crossing many 
disciplinary boundaries.  Five universities are partners in CENS. Faculty, students, and staff from other 
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institutions also participate in research and outreach activities. The Center’s goals are to develop, and to 
implement in diverse contexts, innovative wireless sensor networks. CENS’ scientists are investigating 
fundamental properties of these systems, designing and deploying new technologies, and exploring novel 
scientific and educational applications. CENS’ commitment to sharing its research data, combined with 
its interdisciplinary collaborations, make it an ideal environment in which to study scientific data 
practices and to construct digital library architecture to support the use and reuse of research data. The 
combination of science and technology research offers a rare opportunity to address questions such as 
differences in criteria for what constitutes “data” and what constitutes a “finding.”  

CENS’ research crosses four scientific areas: terrestrial ecology, marine biology, environmental 
contaminant transport, and seismology, plus applications in urban settings and in the arts. The research 
reported here addresses the use of embedded networked sensor technology in the first three of these 
application areas.  Specific research questions in these terrestrial ecology, marine biology and 
environmental contaminant transport are closely related to habitat ecology.  Research methods are based 
on in situ monitoring, with the goal of revealing patterns and phenomena that were not previously 
observable. While the initial framework for CENS was based on autonomous networks, early results 
revealed the difficulty of specifying field requirements in advance well enough to operate systems 
remotely.  Autonomous networks also require robust technology that can be left unattended in the field.  
In contrast, prototype technology, which often is delicate and expensive, can be used in controlled 
deployments of a few hours or a few days.  For these reasons, CENS has moved toward more “human in 
the loop” models where investigators can adjust monitoring conditions in real time with a wider array of 
sensor technology.  

Research Methods in Habitat Ecology 

Habitat ecology research tends to iterate between induction and deduction.  Exploratory research is 
mainly inductive, relying on observations and other data collected in the field to generate hypotheses, 
which are later tested through deductive experiments performed in the lab (Maurer, 2004). Their methods 
are rooted in the natural sciences, but also are constrained by available resources. Collecting biological 
samples is time-sensitive and time-intensive, often requiring sophisticated instrumentation for processing 
and analysis.  Field methods are reflexive to the observations obtained, with many experimental design 
decisions being made on-site in response to current conditions. 

Two brief CENS examples will illustrate the data requirements of this research area. One team is 
studying toxic algal blooms using a combination of sensor arrays and biological samples of the plankton 
and algae present in the water.  These algae photosynthesize and acquire nutrients on a 24-hour cycle.  
When conducting field research on this project, biologists on the team set up wet-labs onsite to preserve 
the samples for future analysis. They must work on-site for at least one continuous 24-hour cycle to 
capture a complete time series. Technology partners on the team are developing aquatic sensing arrays to 
capture hydrographic samples, such as temperature, chlorophyll, and light at varying depths. The 
hydrographic profile serves two functions: these data can provide context for biological sampling, and can 
flag interesting phenomena that may be worthy of biological sampling and analysis.  The aquatic sensor 
arrays can capture more samples in a short time span than is possible by manual methods. In this project, 
the sensor networks augment human collection of physical samples, but do not supplant requirements for 
on-site wet labs or the presence of biology researchers. 

Another CENS team is studying soil processes with the use of embedded sensor networks. 
Biologists and technology researchers jointly developed a means to track underground soil activity by 
placing clear tubes in the ground.  Digital video cameras placed in the tubes take pictures of the soil 
system surrounding the tube. These images track the growth of roots and the fungal structures that bind to 
them and act as a system, trading nutrients and water collected by the fungi for sugars produced by the 
plant through photosynthesis. The sensor networks serve several functions in this project. Sensors are 
used to capture micrometerological conditions associated with the immediate habitat; the networks 
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process those data.  In the initial stage of the project, images were collected manually by sticking cameras 
down the tubes and then hand-coding the images for root growth.  As the project progresses, better 
cameras are being mounted in the tubes, which will send images via the sensor networks.  Another part of 
the project is to classify the soil images using computer vision algorithms.  Sensor networks will enable 
more data to be captured, at a much higher sampling rate, than with manual methods.  The project also is 
evolving toward more remote data collection, with less need for human monitoring of soil conditions.  

Local vs. Global Science 

Ecology can be studied on a local scale, such as the relationships among species in a given habitat, and on 
a global scale, such as patterns of species migration or of crop conditions. The transformation of methods 
in large-scale ecology research with the introduction of remote sensing via orbiting satellites was neither 
fast nor painless. Complex agreements in policy and standards were required, and practices evolved 
accordingly (Kwa, 2005).  Habitat ecology is in the early stages of technological transition through the 
use of embedded sensor networks that capture data in situ.  If these data can be captured in standardized 
forms that other scientists consider trustworthy, they can be stored in digital libraries and made available 
for shared use via the distributed networks of e-Science.  Data from similar habitats could be compared 
across places and over time.  This transition also has been slow, and not without pain. 

Data gathering for comparative research on habitat and local ecology has advanced over the last 
several decades.  The U.S. Long Term Ecology Research Network celebrated its 25th anniversary in 2005 
(U.S. Long Term Ecological Research Network). NEON is a new effort to coordinate ecological 
observations across the U.S. (National Ecological Observatory Network, 2006).  Observatories of the 
ocean exist in a tiered network of local systems (Southern California Coastal Ocean Observing System, 
2006), which are part of a national system (Integrated Ocean Observing System, 2006; National Office for 
Integrated and Sustained Ocean Observations, 2006), which is part of an international system (Global 
Ocean Observing System, 2006).  The international system for oceans, in turn, is part of a yet larger 
international effort to coordinate ecological data (Global Earth Observation System of Systems, 2006).  
Related international projects include the International Biological Program (IBP; established in 1964 by 
the International Council of Scientific Unions) and the Man and the Biosphere program (MAB; 
established in 1971 by the United Nations) (Michener & Brunt, 2000). These systems support multiple 
data types (numerical measurements, text, images, sound and video) and interact with other systems that 
manage geographical, meteorological, geological, chemical, and physical data.  

Several XML-based standards and protocols exist for managing biocomplexity data but none 
have been adopted widely. The Knowledge Network for Biocomplexity, for example, offers a data 
management system and a metadata standard for ecological data (Ecological Metadata Language, 2004). 
The Sensor Modeling Language, a product of the OpenGIS Consortium, can be used to express ecology 
data captured by sensor technology.  SensorML is in the final stages of being accepted as a formal 
standard, after many years of development (Botts, 2004; 2006; Botts & McKee, 2003; Sensor Modeling 
Language, 2005).  The observatory systems are making steady progress on capturing data for which 
standardized measurements have been agreed, such as micrometerological records.  Even here, data 
collection can be contentious, as basic elements such as temperature and humidity can be measured in 
many ways, and weather stations often are moved.  One of the biggest challenges in developing effective 
digital libraries in habitat ecology is the “data diversity” that accompanies biodiversity (Bowker, 2000b).  

Observatory data can be research results in and of themselves, but in habitat ecology they often 
serve as context to other research questions. Habitat ecologists observe phenomena at a local scale using 
relatively ad hoc methods (Zimmerman, in press-b). In CENS, for example, multiple research teams are 
using the micrometeorological data from sensor networks as context for their own research questions 
about when, why, and under what conditions do toxic algal blooms occur and root activity changes occur 
in the soil.  These researchers collect additional data with other instruments to address specific research 
questions.  
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Thus the study of biodiversity and ecosystems remains a complex and interdisciplinary domain 
(Schnase et al., 1997).  Mechanisms used to collect and store biological data are almost as varied as the 
natural world those data document.  Data collection is guided more by best practices than by formal 
standards. To the extent that scientific maturity is characterized by the standardization of tools and 
practices, habitat ecology is a young field (Maurer, 2004).     

Empirical Studies of Data Practices 

The overarching goal of our research program on data practices is to construct systems to capture and 
manage scientific data in ways that will facilitate immediate use by the data creators and later reuse by the 
creators and others, and which will reflect fair policies for access. Multidisciplinary collaboration, which 
is among the great promises of e-Science, depends heavily on the ability to share data within and between 
fields.  Research in habitat ecology is much different in character than research in computer science and 
engineering, and thus these collaborators vary widely in data practices.  

Our research also has educational components in which data from sensor networks are used in 
teaching middle-school and high-school science.  These aspects of the project are reported elsewhere 
(Borgman, 2006; Sandoval & Reiser, 2003; Thadani et al., 2006; Wallis et al., 2006), but questions about 
the use of scientific data for educational purposes are included in our interviews on data practices. 

Collaborative research often takes much more time than individual research, due to the effort and 
experience required for collaborators to learn each others’ terminology, methods, and research problems 
well enough to work together effectively (Borgman, 2006; Cummings & Kiesler, 2005; Finholt, 2003; 
Olson, 2005; Olson & Olson, 2000; Sonnenwald, 2007; Van House, 2003).  This project is no exception.  
We have been working on these problems since 2001, as the CENS grant proposal was developed, and 
actively since CENS was funded in August, 2002.  Our research problem in data practices has evolved in 
parallel with the maturity of the technology and of the science being conducted. In the first year (2002-
2003), we sat in on team meetings across CENS to learn about scientific and engineering activities and we 
inventoried data standards for each area (Shankar, 2003). In the second year (2003-04), we interviewed 
individual scientists and teams and continued to inventory metadata standards. We used the results of the 
first two years to design an ethnographic study of habitat biologists, conducted in the third year (2004-
05).  Those results informed the design of a more comprehensive study in CENS’ fourth year (2005-06).  
This paper includes results from the ethnographic study of 2004-05 and selected results from the 2005-
2006 interviews with habitat ecologists, marine biologists, environmental scientists, and their partners in 
computer science and engineering.  

Our current research questions address the initial stages of the data life cycle in which data are 
captured, and subsequent stages in which the data are cleaned, analyzed, published, curated, and made 
accessible (Figure 1). The questions can be categorized as follows: 
• Data characteristics: What data are being generated? To whom are these research data and to whom are these context data? To 

whom are these data useful?   

• Data sharing: When will scientists share data? With whom will they share data? What are the criteria for sharing? Who can 
authorize sharing? How do data sharing criteria vary between scientific, technological, and educational applications? 

• Data policy: What are fair policies for providing access to these data? What controls, embargoes, usage constraints, or other 
limitations are needed to assure fairness of access and use? What data publication models are appropriate?  

• Data architecture: What data tools are needed at the time of research design? What tools are needed for data collection and 
acquisition? What tools are needed for data analysis? What tools are needed for publishing data? What data models do the 
scientists who generate the data need? What data models do others need to use the data? 

Data Collection Methods 

The ethnographic work from the first three years of the study (interviewing teams and individuals, 
participating in working groups, etc.) is documented in notes, internal memoranda, and a white paper 
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(Shankar, 2003). We did not audiotape or videotape those meetings to avoid interfering with the local 
activities.  Results of the initial studies were used to identify metadata standards relevant to the scientific 
domains and instruments of these research teams.  In turn, these metadata standards were reviewed with 
the research teams to determine their suitability.  

We used the results of interviews and documentary analyses in the first two years of our research 
to design the ethnographic study conducted in 2004-05.  Interview questions were based on Activity 
Theory, which analyzes communities and their evolution as “activity systems” (Engeström, 1987; 
Engeström, Miettinen & Punamaeki, 1999).  Activity systems are defined by the shared purposes that 
organize a community and by the ways in which joint activity is mediated by shared tools, rules for 
behavior, and divisions of labor. Contradictions are analyzed as the engine for organizational change.  We 
asked participants about their motives, their understanding of their community’s motives, the tools they 
used in daily work, ways in which they divided labor, power relations within their community, and rules 
and norms for the community. 

The results of this small ethnographic study were combined with results of other interviews and 
notes from meetings of participants (Borgman, Wallis & Enyedy, 2006).  Building upon those results, we 
designed a larger study of five ecology projects. For each project, we interviewed a complementary set of 
science and technology participants, including faculty, post-doctoral fellows, graduate students, and 
research staff.  One member of our team participated in a 4-day field deployment for one of these projects 
to observe how data are produced, captured, and managed, both from sensor networks and other methods.  

Participants 

CENS is comprised of more than 80 faculty members and other researchers, including a varying number 
of post-doctoral researchers, student researchers, and full-time research staff affiliated with the five 
participating universities.  Many other individuals participate in CENS research activities via 
collaborations with members of CENS’ teams, summer internships, industry partnerships, or other 
relationships.  Of this large community, about 50 people are working on scientific or technological 
aspects of habitat ecology and related areas of environmental sciences.  

The ethnographic study consisted of in-depth interviews with two participants. We interviewed 
one subject on three occasions for a total of four hours. The other subject was interviewed one time for 
approximately two hours. The intensive interview study consisted of 22 participants working on the five 
ecology projects; half the participants were from the science domains and half were from computer 
science and engineering. Interviews ranged from 45 minutes to two hours in length, averaging about 60 
minutes. Also included in the analysis presented here are notes from a group meeting (about 20 people) to 
discuss data sharing policy. 

Qualitative Data Analysis 

The ethnographic interviews with two participants were transcribed from the audiotapes.  The transcripts 
are complemented by the interviewers’ memos on topics and themes (Lofland et al., 2006).  Analysis 
proceeded in sequence from the first interviews with each participant to identify emergent themes, then to 
test and refine these themes in coding of subsequent interviews. With each refinement, the remaining 
corpus was searched for confirming or contradictory evidence.  Analysis focused on themes rather than 
extensive coding of variables.  These results, complemented by other meetings and interviews, were 
sufficiently informative to design the fuller study on data practices in habitat ecology.  

The 22 interviews were audiotaped and transcribed. These interviewers also wrote memos after 
each interview to aid in interpreting the results. The transcripts are now fully coded using NVIVO; 
analysis of this extensive data set (more than 300 pages of transcripts) is still in progress.  Both studies 
use the methods of grounded theory (Glaser & Strauss, 1967) to identify themes and to test them in the 
full corpus of interview transcripts and notes.   
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Lessons  Learned 

Findings from our studies of data practices are used to identify design and policy considerations for 
digital libraries in e-Science, which is the theme of this special issue. Habitat ecology research is in the 
early stages of transition from hand-crafted to technology-intensive data collection.  Lessons learned from 
their experience, and that of closely related environmental science domains, can inform e-Science design 
and policy for other “small science” research areas.  Findings are organized by the research questions 
identified above: Data characteristics, data sharing, data policy, and data architecture.  

Data Characteristics 

Our interview questions explored what data are being generated, to whom are these research data, to 
whom are they context data, and to whom are they useful. CENS technologies are being evaluated and 
field-tested concurrently with scientific data collection. Figure 2 illustrates the diversity of data being 
collected and the purposes for which they are being used.  We grouped the variables into four overlapping 
categories of sensor-collected application data, hand -collected application data, sensor-collected 
performance data, and sensor-collected proprioceptive data.  These are example variables rather than a 
complete list.  Note that the application scientists often are collecting the same variables with sensors and 
with other technologies, usually to calibrate the sensors.  Data collected for scientific purposes also is 
useful for computer science and engineering research, either to assess the performance of the sensing 
technology (e.g. packets transmitted and received, battery life) or to guide robotic sensors in boats or 
other devices (e.g., motor speed, rudder angle).  Whether the converse is true is a question we are 
pursuing further.  Performance data and proprioceptive data about the sensors may be of value to the 
scientists as context for their research questions, but these are not data they would normally collect for 
scientific purposes.  

 
Figure 2:  Diversity of Data Variables Collected  by CENS Researchers 
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The scientists appear to be collecting the same variables by different means both to calibrate sensors and 
because the sensor technology was insufficiently reliable.  They were losing too much data to trust the 
output of the sensors (Borgman et al., 2006).  Issues for further study are to identify scientists’ 
requirements for trust and validation of sensor data, and to distinguish between issues of scientific 
validity and issues of technology maturity. 

While both the science and engineering teams use the scientific data in their research questions, 
they do so for different purposes and at different levels of granularity.  The scientists assess the numerical 
data to discover trends, whether in growth patterns of plants or diurnal cycles of algae in lakes.  The 
engineering teams may find the presence or absence of data from a sensor sufficient to monitor system 
performance.  Requirements for data accuracy and “cleaniness” vary considerably between the science 
and technology research teams. 

The ethnographic interviews offered insights into the distinction between experimental data and 
contextual data.  Experimental data are those that reflect the hypotheses and research questions of the 
investigator.  Contextual data include micrometeorological measurements (temperature, humidity, etc.) 
and calibration of tools and instruments for the study, such as the density of shade cloth for a field 
experiment.  

Complicating matters further are the many states in which these data exist and the many places in 
which they are stored.  The states of data can be grouped into raw data, processed data, verified data, 
certified data (such as water quality data that meets government standards), models, and software and 
algorithms (which often are required to interpret the data).  Digital data in any of these forms may reside 
on the computers of the investigators and students who collected them, on laboratory servers, or on shared 
servers.  Data typically are stored in multiple places, in multiple versions.  Data in the form of printouts or 
field notes are stored in desks or file cabinets.  Data in the form of specimens or samples are stored in 
refrigerators or freezers.  

Our interviewees were much more concerned with publications as the end product of their 
research than with the sensor data per se. Several scientists explained how they design a field experiment 
with a particular story in mind, and how the story determines roughly the amount of data needed. One of 
our subjects in the ethnographic interviews was very explicit, telling us that “to tell that story I’m going to 
need an average of five figures and a table.” Thus the amount of data required for a study is a 
consideration in the design of tools and services.  

Data Sharing 

Of particular value from these studies are insights about what data scientists will share, when, with whom, 
and by what criteria.  These scientists are most willing to share data that already have been published and 
least willing to share data that they plan to publish, as these data represent claims for their research. This 
basic result confirms lessons from the social studies of science (Latour, 1987; Latour & Woolgar, 1986).  
More interesting are the specific examples of criteria for sharing and their implications for digital libraries 
and e-Science.   

Scientists, computer scientists, and engineers alike all were forthcoming with long lists of 
variables being collected, such as those listed in Figure 2.  When asked about which data they would be 
willing to share, all referred to the scientific variables as being the data of interest to others.  The 
computer science and engineering teams did not appear to view the performance data or proprioceptive 
data as being of much interest or value to anyone else.   

Our subjects varied widely in what data they were willing to release, to whom, and under what 
conditions.  We found all combinations of distinctions by state of the data (e.g., raw, processed, certified), 
requestor conditions (to anyone, no restrictions; if no commercial reuse, share and share alike; to anyone, 
provided source is acknowledged or cited; if co-authorship credit given for providing the data; if research 
questions do not compete with ours), and temporal conditions (release after articles are published; after 
we’ve finished mining the data; after a certain time period, e.g., 3-5 yrs; or “it depends”).   
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In cases where subjects made a distinction between experimental and contextual data, they were 
more willing to release contextual data.  These data can be essential when comparing results of multiple 
studies at a research site.  For example, the James Reserve, which is part of the University of California 
Natural Reserve System and a partner in CENS, makes available a wide array of data collected on-site 
(James San Jacinto Mountains Reserve, 2004). 

One of our ethnographic subjects explained that his willingness to share is influenced by the 
effort required to collect the data.  His hand-collected data are more “hard won” than sensor-generated 
data, and he is less likely to share them.  This finding is consonant with that of Pritchard, et al. (2004) 
who found that data sharing increased with the degree of automation in all disciplines studied.  

We also asked subjects to give examples of when they had acquired data from others, based on 
Zimmerman’s (2003) findings that those most likely to borrow were most likely to share.  Few of our 
subjects reported experience in borrowing data from others. Several respondents said they were not 
sharing data because their data was not of value to others. However, many of them were able to identify 
current and potential future audiences for data resulting from their research (Figure 3).  

 
Figure 3:  Diversity of Current and Potential Users of CENS Data  
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four categories (the funding or supporting institution; the principal investigator; anyone with any 
intellectual contribution; don’t know/haven’t considered), with the last two being the most common.  The 
lack of clarity in who “owns” or has authority to release data is problematic for the design of a digital 
library to support such data, and an issue we will clarify in more detail in the next rounds of data analysis 
and interviews.  

The wide range of opinions about what data would be released, under what conditions, when, and 
to whom (listed above under data sharing) also complicates data policy.  While CENS has a general 
commitment to sharing the data from its research, the default setting on access obviously cannot be that 
everything is public, immediately.  Rather, CENS’ digital libraries of data will need to provide multiple 
levels of access controls that can be set by principal investigators or by whomever a project designates as 
having proper authority.  We also found that quality of data being released is considered to be an ethical 
issue. In the large group meeting about ethics and policy of data sharing, responsibility for data quality 
was a central issue.  Concerns also arose about whether any sort of liability disclaimers or rights claims 
(e.g., Creative Commons licenses for attribution and non-commercial reuse) should be applied. Some 
commented that if they feel they are forced to share data they will, knowing that raw data may not be of 
much use to others.  

In one of our ethnographic interviews, our questions about data policy elicited an enlightening 
scenario that contrasts scientific and engineering views about data use policy.  At issue was whether data 
from an instrument belonged to the designers of the instrument or to the designers of the experiment. 
Although the instrument in question was designed and installed by a member of an engineering faculty, 
that investigator did not analyze or publish the resulting data.  After several years of data production, 
which were being posted on a public website, one of the biological scientists sought permission to use the 
data.  Authority for release of that data did rest explicitly with the director of the field site where the 
instrument was installed.  The director granted permission to the biological scientist, who then invested 
effort in cleaning and analyzing the data for his own research questions.  When the results appeared 
promising for publication, the scientist and site director invited the engineering professor to participate in 
the publication. However, the engineering professor objected to the use of those data for biological 
research on the grounds that they were his data because he had deployed the instrument. The situation 
later was resolved in an ad hoc way without making general policy, and the resulting data were published. 

Data Architecture 

Our analyses to date suggest several lessons about tool requirements at each stage in the life cycle. The 
challenge is to integrate the lessons from data characteristics, sharing, and policy into data architecture.  
At the initial stages of research design, habitat ecologists indicated a need for tools to guide sensor 
placement.  Maps of research sites that include the location of sensors and the types of data that each 
sensor could produce would be helpful.  Once in the field, they need to test and calibrate sensors and 
monitor the data those sensors produce.  Scientists and engineers all expressed a desire for better tools to 
assess individual sensors and overall “network health.” They want tools in the field to verify the validity 
and reliability of the data stream.  They mentioned the desire for tools to help them identify when values 
are duplicated or missing, when sensors are failing, and other anomalous situations. They want to 
annotate the data in the field to provide important context that cannot be anticipated in data models. 
Habitat ecologists often modify the instruments or field conditions on-site.  They may change the location 
of equipment during an experiment in response to field conditions, for example. Documenting which data 
were collected at which location, when, and with what instruments is essential to later interpretation.  

Many different types of sensors are used concurrently, each generating different variables. 
Sensors change from deployment to deployment as technology improves and as research questions 
change.  Some of these sensors are off-the-shelf commercial technology and others are developed by the 
research teams or are prototypes.  The data produced and the form in which they are structured varies 
widely.  Scientists need tools to reconcile these many data formats.  They often need to reconcile data 



Borgman, Wallis, Enyedy, IJDL paper final revisions, Nov 25, 2006, Page 15 of 20 

 

from multiple sensors using external variables such as time stamps.  Sometimes several people have to 
handle data before they can be analyzed by the investigator, severely hampering the ability to make real-
time adjustments in research deployments.  The need to capture data as cleanly as possible was mentioned 
frequently.  Capturing data in a single consistent format is unlikely, given how quickly the technology 
and the research questions change.  However, improvements can be made in consistency of data capture, 
and data can be mapped forward into common data structures such as SensorML and Ecological Metadata 
Language, mentioned earlier.  

The scientists also want tools for data analysis.  They clean their data with respect to their 
research questions, thus data that are extraneous to a given study may be stored, but not cleaned or 
analyzed.  Data files and analysis tools proliferate, as each individual creates data files, analyses, and 
transformations, using preferred tools such as Excel spreadsheets or Matlab. Practices are not 
standardized either within or between research teams. Again, mapping the sensor data and other data from 
field deployments into common formats would aid in reconciling data from individuals, groups, and 
deployments.  

Conclusions 

Habitat ecology and closely related areas of environmental sciences research are in a state of transition 
from “small science,” characterized by hand-crafted data collection, to “big science,” with instrumented 
data collection, larger volumes of data, and distributed, multi-disciplinary research teams.  The scientific 
value of technologies such as sensor networks is recognized for the potential to ask new questions, in new 
ways, and to get results more rapidly.  The value of the resulting data for longitudinal and comparative 
research also is recognized widely.  This is a new way of “doing science,” which requires new kinds of 
practices.  These practices are emerging as scientists, computer scientists, and engineers gain experience 
in working together and in learning what each can bring to the collaboration. 

The present stage of development reflects a paradoxical situation.  Researchers are generally in 
favor of sharing the data from their research, but they do not agree on what those data are, on the 
conditions under which data should be released, nor who has the authority to release them.  Their 
differences in opinion represent valid differences in practices between participating disciplines.  Their 
reluctance to release data immediately also reflects valid concerns about ethics, about misuse of their 
data, and about others “scooping” their research findings.   

Also paradoxical is researchers’ awareness of extant metadata standards for reconciling, 
managing, and sharing their data, but their lack of use of such standards.  The present dilemma is that few 
of the participating scientists see a need or ability to use others’ data, so they do not request data, they 
have no need to share their own data, they have no need for data standards, and no standardized data are 
available.  Our working hypothesis is that digital libraries and associated tools that are designed to reflect 
the practices of the participating communities may provide some solutions to this dilemma. 

We have identified several design factors to expedite the development of digital libraries for the 
habitat biology and smaller scale environment sciences communities with which we work.  Tools and 
services can be used to map current datasets and structures into common metadata formats.  We are 
exploring how much of the older data can be mapped with metadata “crosswalks” (Godby, Young & 
Childress, 2004).  New data can be mapped by capturing it initially in forms as close to these standard 
structures as possible.  Once mapped into common formats, data will be more amenable to common tools 
and to aggregation. 

Policies that establish shared ownership of the data also will encourage the contribution and 
sharing of data.  Metadata can identify who contributed to the production and analysis of each dataset, for 
example. This may mean some sort of public trace of the development and history of the data.  Access 
and release rights could be based on responsibility for data creation.  Rich descriptions of data will assist 
in their being discovered by people with new research questions.  Authority for releasing data can be built 
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into the system in several ways:  Individuals can authorize release of datasets.  Publications of articles 
using a dataset could trigger data release.  Embargo periods could trigger release (e.g., all data will be 
released 2 years after it enters the digital library unless specific action is taken to prevent release).  Data 
can be labeled for degree of verification or certification.  Liability disclaimers and attribution 
requirements can be incorporated into conditions for release.  

e-Science offers great promise for improving access to scientific data via distributed digital 
libraries.  “Little science” areas that focus on local research problems, collect data in response to local 
conditions, and work in small teams are not yet well served by e-Science technologies.  The data they 
produce is irreplaceable and has tremendous potential for longitudinal and comparative research on 
scientific problems of global significance.  However, not enough is known about how scientists in these 
areas produce, use, or manage data, or how data management practices vary between these scientists and 
their partners in computer science and engineering.  Studies of data practices in newly instrumented 
research areas will contribute to understanding more about how e-Science can benefit little science.  The 
Center for Embedded Networked Sensing offers a microcosm in which to address these issues. If e-
Science infrastructure can facilitate understanding of earth’s rapidly changing ecosystem, the investments 
will be deemed well spent by society. 
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