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Abstract of the Dissertation
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by
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Doctor of Philosophy in Statistics
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Professor Yingnian Wu, Chair

Sparse modeling has become a particularly important and quickly developing topic

in many applications of statistics, machine learning, and signal processing. The main

objective of sparse modeling is discovering a small number of predictive patterns

that would improve our understanding of the data. This paper extends the idea of

sparse modeling to the variable selection problem in high dimensional linear regres-

sion, where there are multiple response vectors, and they share the same or similar

subsets of predictor variables to be selected from a large set of candidate variables.

In the literature, this problem is called multi-task learning, support union recovery

or simultaneous sparse coding in different contexts.

We present a Bayesian method for solving this problem by introducing two nested

sets of binary indicator variables. In the first set of indicator variables, each indicator

is associated with a predictor variable or a regressor, indicating whether this variable

is active for any of the response vectors. In the second set of indicator variables,

each indicator is associated with both a predicator variable and a response vector,

indicating whether this variable is active for the particular response vector. The
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problem of variable selection is solved by sampling from the posterior distributions

of the two sets of indicator variables. We develop a Gibbs sampling algorithm for

posterior sampling and use the generated samples to identify active support both in

shared and individual level. Theoretical and simulation justification are performed in

the paper.

The proposed algorithm is also demonstrated on the real image data sets. To learn

the patterns of the object in images, we treat images as the different tasks. Through

combining images with the object in the same category, we cannot only learn the

shared patterns efficiently but also get individual sketch of each image.
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CHAPTER 1

Introduction

Variable selection is a fundamental problem in linear regression, especially in modern

applications where the number of predictor variables or regressors can exceed the

number of observations. Under the sparsity assumption that the number of active

variables is small, it is possible to select these active variables even if the number of

candidate variables is very large.

During the past decade, the problem of variable selection in high dimensional

linear regression has been intensely studied in statistics, machine learning and signal

processing. Many variable selection methods have been developed, such as the Lasso

by Tibshirani (1996) [Tib96], SCAD by Fan and Li (2001) [FL01], elastic net by Zou

and Hastie (2005) [ZH03], and MCP by Zhang (2010) [Zha10]. In addition to these

penalized least squares methods, Bayesian approaches have also been proposed, for

example, stochastic search variable selection (SSVS) by George and McCulloch (1993)

[GM93], Gibbs variable selection (GVS) by Dellaportas et al. (2000) [DFN00], and

RVM by Tipping (2005) [Tip01].

Variable selection methods have also been proposed for group sparsity. For ex-

ample, Yuan and Lin (2006) [YL06] proposed the group Lasso method under the

group sparsity assumption. Simon et al. (2012) [ST12] generalized group Lasso to

sparse group lasso. In the Bayesian framework, Farcomeni (2010) [Far10] proposed
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a Bayesian constrained variable selection approach that can also be used for group

selection. Raman et al. (2009) [RFW09] proposed a Bayesian group Lasso method

by extending the standard Bayesian Lasso. Chen et al. (2014) [CCCnt] introduced a

Bayesian approach for the sparse group selection problem.

The linear regression problems treated by the above methods usually involve a sin-

gle response vector. In some applications, there can be multiple response vectors, and

these response vectors may be explained by the same or similar subsets of variables

to be selected from a large set of candidate variables. Such shared sparsity pattern

enables different response vectors to collaborate with or to borrow strength from each

other to select the active variables. Such a problem has been studied by Tropp et al.

(2006) [Tro06] under the name of simultaneous sparse coding, where each response

vector is a signal, each predictor vector is a base signal or an atom, and the collection

of all the base signals form a dictionary. The goal is to select a small number of

base signals from the dictionary to represent the observed signals. The problem has

been studied by Lounici et al. (2009) [LPT09] under the name of multi-task learning,

where the regression of each response vector on the predictor variables is considered

a single task. Obozinski et al. (2011) [OWJ11] studied this problem under the name

of support union recovery, where the word “support” means the subset of variables

selected for a response vector, and “support union” means the union of subsets of

variables selected for all the response vectors. If the supports of different response

vectors are similar, then the union of the supports will only be slightly bigger than

the supports of individual response vectors.

In this paper, we propose a Bayesian method for solving the above support union

recovery problem, by assuming two nested sets of binary indicator variables. In the

first set of indicators, each indicator is associated with a variable, indicating whether
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this variable is active for any of the response vectors. The set of variables whose indi-

cators are 1’s then become the union of the supports. In the second set of indicators,

each indicator is associated with both a variable and a response vector, indicating

whether this variable is active for explaining the particular response vector. So the

second set of indicators gives us the supports of individual response vectors. Variable

selection can then be accomplished by sampling from the posterior distributions of the

two sets of indicators. We develop the Gibbs sampling algorithm for posterior sam-

pling and demonstrate the performances of the proposed method for both simulated

and real data sets.

1.1 Variable selection

In machine learning and statistics, variable selection is a process of selecting a subset

of relevant variables from all the candidate predictors. The desired task is that we can

have good predictive ability on the new observations, or can explain the relationships

in the data, through the promising model constructed by the selected features.

The algorithm of variable selection combines the search technique for the suggested

new variable subsets, and a way of measuring used to evaluate the different variable

subsets. The simplest algorithm is to test each possible subset of variables and find the

best one which minimizes the error rate. However, when there are tens or hundreds

of thousands of variables available in the dataset, it will be an exhaustive search of

the predictor space and computationally intractable in most cases. Therefore, how to

efficiently distinguish the relevant variables from other redundant variables has been

the major issue. Different evaluation metrics and constrains are used in different

algorithm. In this paper, we are going to focus on Lasso and Bayesian variable
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selection.

1.1.1 LASSO

Suppose we have a response vector Y ∈ Rn and a design matrix X = [X1, · · · , Xp] ∈

Rn×p. We want of find a linear model Y ≈ Xβ to describe the relationship between

Y and X, where β ∈ Rp. If n > p, this is the classical linear regression problem. We

can solve the problem by minimizing the ordinary least square,

min
β∈Rn
||Y −Xβ||2. (1.1)

The solution is well-defined and can be found easily. However, high technology has

made it possible to collect large amount data over the recent years, and the number

of features often exceeds the number of examples, it means p � n. In this case, we

believe many features in the data could be redundant and irrelevant. The idea is

illustrated in Figure 1.1, where β is a sparse vector that has many zero components.

Therefore, the goal is to dig out and identify nonzero coefficients and estimate their

values. In order to incorporate the sparsity into the ordinary least square, a penalty

term can be added in Eq (1.1). This goal becomes

arg min
β∈Rn

{
||Y −Xβ||22 + λ||β||0

}
, (1.2)

where ||β||0, the 0-norm, denotes the number of nonzero components in β and λ > 0

is a regularization parameter. Unfortunately, this optimization problem is computa-

tionally intractable, because the 0-norm is non-convex.

Consider the convex relaxation, Tibshirani (1996) [Tib96] proposed an alternative

version to replace the sparsity constraint by the l1 norm ||β||1, which is the sum of

the absolute coefficients. It is known as Lasso (least absolute shrinkage and selection
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Figure 1.1: The linear regression model Y ≈Xβ, with p� n and a sparse X.

operator), and represented as

arg min
β∈Rn

{
||Y −Xβ||22 + λ||β||1

}
. (1.3)

Through the l1 norm, more and more coefficients will be driven to zero by increasing

the value of λ. Thus, Lasso can automatically find a sparse model that includes more

relevant features and discards the others.

Lasso with the l1 norm regularization has achieved great success in many applica-

tions. However, in some cases, the explanatory factors used to predict the response

variable are represented by a group of features but not just a single feature. For exam-

ple, in microarray gene expression data analysis, these groups may be gene pathways.

Then, the selection of relevant features is extended to the selection of groups of fea-

tures. Yuan and Lin (2006) [YL06] introduced group Lasso for this problem. Suppose

the p predictors can be divided into L different groups with pl predictors in each group

l, Xl is the sub matrix of X with columns corresponding to the predictors in group

5



Figure 1.2: The group Lasso model with L groups for selection of relevant groups of

features.

l, and β(l) is the coefficient vector of that group. It is illustrated in Figure 1.2. The

introduced group Lasso criterion is

arg min
β∈Rn

{
||Y −

L∑
l=1

Xlβ
(l)||22 + λ

L∑
l=1

√
pl||β(l)||2

}
, (1.4)

where the
√
pl terms accounts for the varying group size, and || · ||2 is the Euclidean

norm. In fact, If each group consists of just one variable, this reduces to the regular

Lasso in Eq. (1.3).

The group Lasso gives a sparse set of groups with the tuning parameter λ con-

trolling the sparsity level. Larger value of λ implies more regularization and entire

predictors of some groups may be drop out of the model at the same time. In the

contrary, if a group is included in the group Lasso model then all coefficients in

the group will be nonzero. It means, the group Lasso considers just the group-wise

sparsity but not the sparsity within each group. However, sometimes we would like

6



Figure 1.3: The sparse group Lasso model that considers both group-wise sparsity

and sparsity within each group.

sparsity at both the group and individual predictor levels. For example, when we

want to construct the land climate model using ocean climate variables in the climate

research, not only the relevant location on the ocean, but also the particular impor-

tant feature(s) at the location are the goals we are looking for. The revised model

is illustrated in Figure 1.3, where the coefficient vectors corresponding to the active

first and the third group have some zero terms.

To generalize group Lasso, Simon et al. (2012) [ST12] proposed the sparse group

Lasso, and the estimator is given by

arg min
β∈Rn

{
||Y −

L∑
l=1

Xlβ
(l)||22 + λ1

L∑
l=1

√
pl||β(l)||2 + λ2||β||1

}
, (1.5)

where the regularization combines the Lasso and group Lasso penalties. If λ1 = 0 its

gives the Lasso criterion, while λ2 = 0 gives the group Lasso criterion.

7



1.1.2 Bayesian Variable Selection

Consider the general linear regression

Y = Xβ + ω, (1.6)

where Y corresponds to the n × 1 response vector, X = [X1, · · · , Xp] corresponds

to the n × p design matrix, β is the p × 1 unknown coefficient vector, and ω is the

n× 1 random error. The random error ω is assumed to follow a multivariate normal

distribution with mean 0 and covariance matrix σ2I. The regression problem is trying

to express the response variable with a number of the predictors. In sparse coding,

the aim is to select a small and promising subset from the over-complete potential

predictors, while controlling the trade-off between bias and variance.

To define a Bayesian approach for variable selection, the variable selection problem

is considered as a model selection problem. In the 2p possible models, each model Sδ

is represented by a binary vector δ = (δ1, · · · , δp), where δj = 1 indicates predictor Xj

is included in the model. Let p(δ) denote the prior probability of model Sδ. Based on

the Bayesian rule, the posterior probability of model Sδ is obtained through updating

the prior probability with observation data Y and X:

P (δ|Y,X) =
P (δ)L(Y |δ,X)∑
δ? P (δ?)L(Y |δ?,X)

, (1.7)

where L(Y |δ,X) =
∫
L(Y |βδ,X)dP (βδ) is the marginal likelihood under model Sδ,

and L(Y |βδ,X, ) is the likelihood of Y conditional on the coefficients βδ in model Sδ.

Eq. (1.7) describes the posterior probabilities for each of the candidate models, and

these posterior probabilities also provide weights to be used in model selecting. In

general, the goal is to find a single ”best” model for further consideration.

George and McCulloch (1993) [GM93] proposed a stochastic search variable se-
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lection(SSVS) algorithm for normal linear regression. They used proposed Gibbs

sampling to search the model with the highest posterior probability. In their ap-

proach, by using the latent variable δj = 1 or 0, a normal mixture model with a low

and a high variance centered at zero for each regression parameter βj is represented:

βj|δj ∼ (1− δj)N(0, τ 2) + δjN(0, τ 2j ). (1.8)

If δj = 0, the coefficient βj which corresponds to the normal distribution with very

low variance τ 2, could be efficiently estimated by 0. In the other way, if δj = 1, a

non-zero estimate of βj, which follows the normal distribution with high variance τ 2j ,

should be included in the model.

In 1997, to improve the efficiency of computation, George and McCulloch modified

SSVS by iteratively samples the predicator inclusion indicator for the jth predicator

δj from its Bernoulli full conditional posterior distribution given the other predicators

in the model, δ−j = {δ:, 6= j,= 1, · · · , p} for = 1, · · · , p.

1.1.3 Gibbs sampling

Gibbs sampling is one of the Markov chain Monte Carlo (MCMC) algorithms for

simulating a sequence of samples from the posterior distribution of a multivariate

probability distribution, when the joint distribution is not know explicitly or is diffi-

cult to sample from directly. Suppose we have a joint distribution p(θ1, · · · , θp) that

we want to sample from. If we know the full conditional distribution for each variable,

which is the distribution of the variable conditional on the known information and

all the other variables: p(θj|θ−j), we can use the Gibbs sampling to simulate samples

from the joint distribution by sampling each variable in turn. The procedure is:
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1. Begin with a vector of initial values θ(0) = (θ
(0)
1 , · · · , θ(0)p ).

2. Repeat for t = 1, 2, · · · , T .

Generate θ
(t)
1 from p(θ1|θ(t−1)2 , θ

(t−1)
3 , · · · , θ(t−1)p )

Generate θ
(t)
2 from p(θ2|θ(t)1 , θ

(t−1)
3 , · · · , θ(t−1)p )

...

Generate θ
(t)
p from p(θp|θ(t)1 , θ

(t)
2 , · · · , θ

(t)
p−1)

3. Return samples {θ(1),θ(2), · · · ,θ(T )}.

4. Discard samples in burn-in period.

In the algorithm, at each repeating procedure in step 2, each variable is sampled

from the distribution conditional on the most recently generated parameter values in

turn. Through exploiting the updating schemes, the sequence of the simulated sam-

ples will converge to a stationary distribution, which is the desired joint distribution.

However, it may take a while for the stationary distribution to be reached. In order to

discard samples that may not accurately represent the desired distribution, a burn-in

period is commonly used to ignore samples from the beginning. Then just the left

samples are considered.

1.2 Multi-task Learning

Multi-task learning [Car97] is a kind of machine learning that learns related tasks in

parallel while using a shared representation. Based on the assumption that there are

commonalities among related tasks, multi-task learning often leads to better perfor-

mance than single-task learning. In fact, multi-task learning can be treated as an

10



inductive mechanism. It improves generalization performance by using the informa-

tion contained in the training signals of related tasks as inductive bias.

Assume we have M learning tasks and all data for the tasks come from the same

space {X, Y }, where X ⊂ Rp, and Y ⊂ R. For each task m ∈ {1, · · · ,M}, we have

n samples

{(X1m, y1m), (X2m, y2m), · · · , (Xnm, ynm)}

sampled from a distribution fm on {X, Y }. So the total data available is:

{(X11, y11), · · · , (Xn1, yn1)}, · · · , {(X1M , y1M), · · · , (XnM , ynM)}.

We assume that fm is different for each task, but that the fm are related. The goal

of multi-task learning is to learn M functions f̂1, · · · f̂M such that f̂m(Xim) ≈ yim. If

M = 1, it becomes the standard single-task learning problem.

The multi-task learning problem has been studied in the statistics literature and

shown the benefits of such multi-task learning relative to individual task learning

when tasks are related. Based on the minimization of regularization functions that

have been successfully used in single-task learning, Evgeniou and Pontil (2004) [EP04]

presented an multi-task learning approach by molding the relation between tasks in

terms of a novel kernel function. Obozinski, Taskar, and Jordan (2006) [OTJ06]

proposed a novel type of joint regularization of the model parameters in order to

couple feature selection across tasks. Argyriou, Evgeniou, and Pontil (2008) [AEP08]

presented a method for learning sparse representation, which is shared across multiple

related tasks. This method built upon the 1-norm regularization problem using a new

regularizer, which controls the number of learned features common for all tasks. These

methods work on the assumption that all tasks are related. However, this assumption

can be violated in many real-world problems and reduce the performance. Some
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methods assume that tasks can be grouped in clusters and parameters of tasks within

the same cluster are shared (Bakker and Heskes (2003) [BH03]; Kumar and Daum

III(2012) [I12]).

In this paper, we focus on learning related tasks. We adopt a simpler setting

in which the same input data Xim are used for all the tasks. It means, for every

i ∈ {1, · · · , n} the vector Xim is the same for all m ∈ {1, · · · ,M}. However, the

output values yim are different for each m. Therefore, the data we need is

{y11, · · · , yn1}, · · · , {y1M , · · · , ynM}, {X1, · · · , Xn}.

We wish to learn a low-dimensional representation which could be shared across

multiple related tasks.

1.2.1 Group Lasso in multi-task learning

In order to deal with the situation of coupling multiple related tasks, Obozinski, Wain-

wright, and Jordan (2011) [OWJ11] has extended the idea of group lasso penalty [YL06]

and introduced a group lasso method to recover the union of the supports SS =⋃M
m=1 Sm in the multiple linear regression, where Sm is the support set that contains

the variables with nonzero coefficient for the m-th singular regression model. The

multiple linear regression is written as

Y = XB +W,

where Y is a n×M response matrix, X is a n×p design matrix, B is a p×M matrix

of the unknown regression coefficients, and W is a n ×M noise term. This method

is know as the L1/L2-regularized multi-task regression. In this case, the criterion to
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estimate the coefficient matrix is

arg min
B∈Rp×M

(
1

2
‖Y −XB‖2F + λ‖B‖l1/l2

)
, (1.9)

where ‖ · ‖F is the Frobenius norm, and ‖B‖l1/l2 is the block l1/l2 norm

‖B‖l1/l2 =

p∑
j=1

(
M∑
m=1

β2
jm

)1/2

=

p∑
j=1

‖βj‖2. (1.10)

The L2 norm is applied to the regression coefficients for all responses for each predic-

tor, βj, and these L2 norms for the p predictors are combined through the L1 norm.

Because the L1 part of penalty prefer sparse solutions, there is only a sparse set of

predictors to have nonzero regression coefficients. The L2 part of penalty doesn’t

encourage sparsity. Once a predictor is selected in the model, all entries in the corre-

sponding coefficient vector for all responses will be nonzero, although the values are

allowed to vary across different responses. Otherwise, the predictor is not relevant

to any of the responses, and is drop out of the model. Therefore, the structure as-

sumption in the multivariate group lasso is that all responses in the multiple linear

regression are relevant to the same set of predictors.

The multivariate group lasso just consider the shared sparsity, but ignore the

individual sparsity for each response. It is not realistic in many natural situations.

We assume some responses can be irrelevant to the predictors in the union support,

and would like to identify them. A sparse group lasso, the more general penalty

consider sparsities in both ways, is introduced in SLEP [LJY09]. The criterion to

solve the coefficient matrix is:

arg min
B∈Rp×M

(
1

2
‖Y −XB‖22 + λ1‖B‖1 + λ2‖B‖l1/l2

)
. (1.11)

Besides the block l1/l2 norm, the sparse group lasso apply the L1 part of penalty

13



to all entries in the coefficient matrix B. It encourages the sparsity within the row

vector that the group lasso doesn’t cover.
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CHAPTER 2

Bayesian Variable Selection in Multi-response

Linear Regression

2.1 Problem Set-up and the Model

Consider the following multiple linear regression model

Y = XB +W, (2.1)

where Y = [Y1, · · · , YM ] is a n×M response matrix of observations,X = [X1, · · · , Xp]

∈ Rn×p is the fixed n × p design matrix, B = [β1, · · · , βM ] is a p ×M matrix of the

unknown regression coefficients, and W = [ω1, · · · , ωM ] ∈ Rn×M is the corresponding

noise matrix. Here the error term ωm is an n×1 noise vector that follows a multivariate

normal distribution with zero mean vector and covariance matrix σ2In, where In is

the n-dimensional identify matrix. Thus a group of M response vectors are to be

regressed on the same design matrix X. The model can also be written as

Ym = Xβm + ωm ∼ Nn(Xβm, σ
2In), m = 1, · · · ,M, (2.2)

where βm = (β1,m, · · · , βp,m)′ is the coefficient vector for the m-th response vector Ym.

The estimation of each column of B, βm, is a single linear regression problem with

response vector Ym and design matrix X, and can be solved individually. However,
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in this study, we solve the M individual regression problems together by exploiting

the similarities among βm, or by imposing constraint on the matrix B.

In particular, we are interested in finding the sparse model for the multi-response

model (2.2). Suppose Sm is the support set for the m-th response vector, i.e.

Sm = {j ∈ {1, · · · , p} | βj,m 6= 0}. (2.3)

In some applications, the multiple response vectors could be related by a set of shared

sparsity variables. It means the support sets Sm may be the same or similar for

different m. Thus each response vector depends on variables specific to itself in

addition to the ones that are shared. In this case, finding the set of variables which

are related to any of the multiple response vectors simultaneously is more benefit than

identifying Sm separately. Therefore, in the assumption of structural, it is natural to

believe certain variables are related to several responses, corresponding to rows of B

have many non-zero entries, while certain variables are relevant to some but not all,

corresponding to rows would be element-wise sparse, while certain variables are not

relevant to any responses, corresponding to rows have all zero entries.

Obozinski et al. (2011) [OWJ11] focus on the problem of recovering the union of

the supports,

SS = ∪Mm=1Sm = {j ∈ {1, · · · , p} |
∑
m

βj,m 6= 0}, (2.4)

which is denoted as SS, support union of the shared model in this paper. This support

union of the shared model corresponds to the subset of indices j ∈ {1, · · · , p} that are

included in at least one support set Sm, m = 1, · · · ,M . In this paper, we go deeper

to the second level. Consider not only the group sparsity but also the individual

sparsity, we are interested in identifying each nonzero entries in the true coefficient

matrix B. Thus another union of the support sets is introduced here, we call it the
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support union of individual models, which is defined as

SI = {(j,m) | βj,m 6= 0, j ∈ 1, · · · , p,m ∈ 1, · · · ,M}. (2.5)

This support union of individual models, SI , is a subset of pair of indices, which

indicate which particular model is the shared variable active for. To target the ”sup-

port union recovery” problem, a Bayesian approach is adopted and the corresponding

Bayesian algorithms are proposed to recover the unknown support sets SS and SI .

2.2 Group-Wise Gibbs Sampler

In support union recover problem, Obozinski et al. (2011) [OWJ11] set the group

structure fro each variable across multiple response vectors, and the group Lasso

approach was adopted. Consider the corresponding Bayesian approach, it is straight-

forward to apply Bayesian group selection algorithm to replace the group Lasso ap-

proach. Thus one set of the indicators is defined to denote whether Xj is active or

not. Similar to group Lasso, we want to select the ”best” subset of variables from

X1, · · · , Xp to explain the multiple responses Y1, · · · , YM simultaneously.

First, following SSVS in George and McCulloch (1993) [GM93], a p × 1 vector

of indicator variables, δ = (δ1, . . . , δp)
′, is introduced to indicate which variables are

selected. It is defined as:

δj =


1, if Xj is selected or active

0, if Xj is not selected or inactive

j = 1, · · · p. (2.6)

Consider the prior assumption for (δj, βj). The prior distribution of δj is assumed to
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follow the Bernoulli distribution with

P (δj) =


θj, if δj = 0

1− θj, if δj = 1

j = 1, · · · p. (2.7)

Then the prior distribution of the coefficient βj,m given the indicator δj is set as

βj,m|δj ∼ (1− δj)γ0 + δjN(0, τ 2j,m),m = 1, · · · ,M, (2.8)

where γ0 is a point mass at 0. That is if Xj is inactive, i.e. δj = 0, then βj,m = 0 for all

m = 1, · · · ,M . Otherwise N(0, τ 2j,m) is the prior distribution of βj,m. We also assume

that the prior distribution of (δj, βj,m) are independent form = 1, · · · ,M, j = 1, . . . , p,

and they are independent of the prior distribution of the residual variance σ2, which

is assumed to follow an inverse Gamma distribution, σ2 ∼ IG(a/2, b/2).

Based on the prior assumptions, the sampling scheme of component-wise Gibbs

sampler in Chen et al. (2011) [CCL11] is modified. We sample (δj, βj,1, · · · , βj,M)

one at a time by fixing the other components δ−j and β−j,m, m = 1, · · · ,M , where

δ−j denotes all the indicators except δj, and β−j,m denotes all the coefficients for

Ym except βj,m. Therefore in the Gibbs sampler, we need to computer the posterior

probability P (δj = 1|Y , δ−j, {β−j,m,m = 1, · · · ,M}, σ), where the calculation of the

likelihood ratio

Z̃j =
P (Y|δj = 1, δ−j, {β−j,m,m = 1, · · · ,M}, σ)

P (Y|δj = 0, δ−j, {β−j,m,m = 1, · · · ,M}, σ)

is the key step. Due to the independent assumption of Y1, · · · , YM , it is easy to show
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that

Z̃j =
M∏
m=1

P (Ym|δj = 1, δ−j, β−j,m, σ)

P (Ym|δj = 0, δ−j, β−j,m, σ)

=
M∏
m=1

∫
P (Ym|δj = 1, δ−j, βj,m, β−j,m, σ)P (βj,m|δj = 1)dβj,m∫
P (Ym|δj = 0, δ−j, βj,m, β−j,m, σ)P (βj,m|δj = 0)dβj,m

=
M∏
m=1

σ√
X ′jXjτ 2j,m + σ2

· exp

{
(R′j,mXj)

2τ 2j,m
2σ2(σ2 +X ′jXjτ 2j,m)

}
(2.9)

where Rj,m = Ym −
∑

i 6=j Xiβi,m. Define rj,m =
R′j,mXjτ

2
j,m

σ2+X′jXjτ
2
j,m

, and σ?2j,m =
σ2τ2j,m

X′jXjτ
2
j,m+σ2 .

We then can rewrite Z̃j as:

Z̃j =
M∏
m=1

√
σ?2j,m/τ

2
j,m exp

{
r2j,m

2σ?2j,m

}
, (2.10)

The group-wise Gibbs sampler is described in Algorithm 1. In practice, we start

from the null model and then iterate the steps in Algorithm 1 to generate the posterior

samples of δj, βj, for the posterior inference.

Algorithm 1: Group-Wise Gibbs Sampler for Support Recovery

1. Randomly select a variable Xj. Compute Rj,m = Ym −
∑

i 6=j Xiβi,m, for m =

1, · · · ,M .

2. Compute the likelihood ratio Z̃j according to Eq. (2.10), and then evaluate the

posterior probability of δj

P (δj = 1|Y , δ−j, {β−j,m,m = 1, · · · ,M}, σ) =
(1− θj)Z̃j

(1− θj)Z̃j + θj
. (2.11)

3. Sample δj based on the posterior probability in (2.11). If δj = 0, then set

βj,m = 0, m = 1, · · · ,M , otherwise, sample βj,m ∼ N(rj,m, σ
?2
j,m).
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4. After repeat above steps for all variables, compute the current residual matrix,

Res = Y −XB. Then sample σ2 ∼ IG(a+n×M
2

,
∑

(diaq(Res′Res))+b
2

). Go to Step

1.

2.3 Two-Layer Structure and Two-Layer Gibbs sampler

In the group selection methods, once a variable, Xj, is selected, then Xj is active

for all the responses, Y1, · · · , YM . However, we can further assume that the selected

variable might not be active for all response vectors simultaneously. In other words,

we are interested in finding the best union of supports sets, SS, and we also assume

that the variable in SS might be inactive for some response vectors. Therefore, unlike

the single indicator set-up in the group-wise Gibbs sampler, two nested sets of binary

indicator variables are used. The first set of indicators δ = (δ1, · · · , δp)′ is associated

with variables, X1, · · · , Xp, respectively, and δj is defined to indicate if the variable,

Xj, is active for any of the response vectors. Specifically if δj = 1, then the variable

Xj is selected, and δj = 0 otherwise. In the second set of indicators, each indicator

is associated with a variable an a response vector, indicating whether this variable is

active for explaining the particular response vector. Thus for each variable Xj, we

define the indicator vector η(j) = (ηj,1, · · · , ηj,M), and if ηj,m = 1, the variable Xj is

active for the m-th response, Ym, and ηj,m = 0 otherwise.

Similar the the group-wise Gibbs sampler, the prior distribution of δj is also

assumed to follow the Bernoulli distribution with P (δj = 0) = θj and P (δj = 1) =

1−θj, i.e. Ber(1−θj). Consider the prior assumption for the second set of indicators.

Following Chen et al. (2014) [CCCnt], the prior distribution of the indicator in the

second set, ηj,m, is chosen as a mixture distribution depending on the indicator in the
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first set: δj, and is represented as

ηj,m|δj ∼ (1− δj)γ0 + δjBer(1− ρj,m), (2.12)

where P (ηj,m = 0) = ρj,m. Based on Eq. (2.12), if the j-th variable, Xj, is not selected

in SS, i.e. δj = 0, then ηj,m = 0 for all m = 1, · · · ,M , however, when δj = 1, ηj,m

still could be 0 or 1 due to the Bernoulli prior distribution. Then for the coefficient,

βj,m, given the indicators δj and ηj,m, the prior distribution of βj,m can be defined as

βj,m|δj, ηj,m ∼ (1− δjηj,m)γ0 + δjηj,mN (0, τ 2j,m), (2.13)

where γ0 is a point mass at 0. That is the prior of βj,m is N(0, τ 2j,m) only when δj = 1

and ηj,m = 1, i.e. Xj is in SS and is active for the m-th response Ym. Otherwise

βj,m is set to be zero. In fact, this coefficient prior has also been used in Chen et

al. (2014) [CCCnt]. For the prior assumption on the noise variance σ2, as usual,

we choose the inverse gamma conjugate prior σ2 ∼ IG(a/2, b/2). Finally in the prior

distribution, (δj, ηj,m, βj,m), j = 1, · · · , p are assumed to be independent and given

δj = 1, (ηj,m, βj,m), m = 1, · · · ,M are assumed to be independent of each others,

too.

Based on the prior set-up, we can use Gibbs sampler to draw posterior samples

of the indicators and the coefficients. Similar to group-wise Gibbs sampler in Al-

gorithm 1, the key step is to compute the likelihood ratios of the indicators in the

first and second sets respectively, and then the posterior probabilities for δj = 1 and

ηj,m = 1 can be computed accordingly. Thus we can sample these indicators from the

corresponding posterior Bernoulli distributions. First, consider the multi-response

model in Eq. (2.1). Based on the assumption of independence between Y1, · · · , YM ,
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the likelihood ration Zj of the variable Xj is represented as

Zj =
P (Y|δj = 1, δ−j, {β−j,m,m = 1, · · · ,M}, σ)

P (Y|δj = 0, δ−j, {β−j,m,m = 1, · · · ,M}, σ)

=
M∏
m=1

P (Ym|δj = 1, δ−j, β−j,m, σ)

P (Ym|δj = 0, δ−j, β−j,m, σ)
(2.14)

Let k = {(k1, · · · , kM) : km = 0 or 1,m = 1, · · · ,M} denote the set of all possible

combinations of (ηj,1, · · · , ηj,M). It is easy to show that

Zj =
∑

k=(k1,··· ,kM )

(
M∏
m=1

bj,km),

where

bj,km =

∫
P (Ym|βj,m, ηj,m = km, δj = 1, δ−j, β−j,m, σ)P (βj,m, ηj,m = km|δj = 1)dβj,m

P (Ym|δj = 0, δ−j, β−j,m, σ)
.

If km = 0, then we can simply obtain bj,km=0 = ρj,m. When km = 1, then

bj,km=1 =

(1−ρj,m)√
2πτ2j,m

∫
exp

{
− 1

2σ2 (Rj,m − βj,mXj)
′(Rj,m − βj,mXj)−

β2
j,m

2τ2j,m

}
dβj,m

exp
(
− 1

2σ2R′j,mRj,m

)
=

(1− ρj,m)√
2πτ 2j,m

·
∫

exp

{
(− 1

2τ 2j,m
− 1

2σ2
X ′jXj)β

2
j,m +

1

σ2
R′j,mXjβj,m

}
dβj,m

=
(1− ρj,m)√

2πτ 2j,m

· exp

{
( 1
σ2R

′
j,mXj)

2

2( 1
τ2j,m

+ 1
σ2X ′jXj)

}
·
√√√√ 2π

X′jXj

σ2 + 1
τ2j,m

=
(1− ρj,m)σ√
X ′jXjτ 2j,m + σ2

· exp

{
(R′j,mXj)

2τ 2j,m
2σ2(σ2 +X ′jXjτ 2j,m)

}

= (1− ρj,m)×
√
σ?2j,m/τ

2
j,m exp

{
r2j,m

2σ?2j,m

}
. (2.15)

Thus the likelihood ration Zj of the indicator δj can be represented as

Zj =
∑

k=(k1,··· ,kM )

{
M∏
m=1

[(
(1− ρj,m)×

√
σ?2j,m/τ

2
j,m exp

{
r2j,m

2σ?2j,m

})km
· ρ(1−km)

j,m

]}
.

(2.16)
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Once Xj is not selected, then we can simply set ηj,m = 0 and βj,m = 0 for all m =

1, · · · ,M . Otherwise, if the variable Xj is included in SS, i.e. δj = 1, then we need to

check if Xj is active or not for each individual response Ym separately. Following the

component-wise Gibbs sampler in Chen et al. (2011) [CCL11], the likelihood ratio

Qj,m of the variable Xj with respect to the m-th model, Ym, is computed and can be

show as

Qj,m =
P (Ym|ηj,m = 1, η−j,m, β−j,m, σ, δj = 1)

P (Ym|ηj,m = 0, η−j,m, β−j,m, σδj = 1)

=

∫
P (Ym|βj,m, ηj,m = 1, η−j,m, β−j,m, σδj = 1)P (βj,m|ηj,m = 1δj = 1)dβj,m

P (Ym|ηj,m = 0, η−j,m, β−j,m, σδj = 1)

=
σ√

X ′jXjτ 2j,m + σ2
· exp

{
(R′j,mXj)

2τ 2j,m
2σ2(σ2 +X ′jXjτ 2j,m)

}

=
√
σ?2j,m/τ

2
j,m exp

{
r2j,m

2σ?2j,m

}
. (2.17)

Based on both likelihood ratio functions, Eq. (2.16) and Eq. (2.17), the corre-

sponding posterior probabilities of δj = 1 and ηj,m = 1 can be derived. The proposed

Gibbs sampling algorithm is summarized in Algorithm 2. Note that we would start

from the null model by setting δj = 0; ηj,m = 0 and βj,m = 0 for all j and m. Based

on our experiences, this initial model works well.

Algorithm 2: The Two-Layer Gibbs Sampler for Support Recovery

1. Randomly select a variable Xj. Compute Rj,m = Ym −
∑

i 6=j Xiβi,m, for m =

1, · · · ,M .

2. Compute the likelihood ratio Zj according to Eq. (2.16), and then evaluate the

posterior probability of δj

P (δj = 1|Y , δ−j, {β−j,m,m = 1, · · · ,M}, σ) =
(1− θj)Zj

(1− θj)Zj + θj
. (2.18)
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3. Sample δj based on the posterior probability in (2.18). If δj = 0, then set ηj,m =

0, and βj,m = 0, for all m = 1, · · · ,M . Otherwise, for each m = 1, · · · ,M ,

compute the likelihood ratio Qj,m according to Eq. (2.17), and sample ηj,m

based on the posterior probability

P (ηj,m = 1|Ym, η−j,m, β−j,m, σ, δj = 1) =
(1− ρj,m)Qj,m

(1− ρj,m)Qj,m + ρj,m
. (2.19)

If ηj,m = 0, set βj,m = 0; otherwise, sample βj,m ∼ N(rj,m, σ
?2
j,m).

4. After repeat above steps for all variables, compute the current residual matrix,

Res = Y −XB. Then sample σ2 ∼ IG(a+n×M
2

,
∑

(diaq(Res′Res))+b
2

). Go to Step

1.

2.4 Sample Version of Two-Layer Gibbs Sampler

In Algorithm 2, the computation of Zj in Eq. (2.16) involves 2M cases and can be

computational expensive, especially when the number of the responses, M , is large.

To save computational cost, instead of deciding whether the j-th variable, Xj, is

selected or not based on the posterior probability in Eq. (2.18) directly, we adopt

another method as below. If the current variable is not selected in the support union of

the shared model, i.e., δj = 0, we propose to active this variable first by setting δj = 1,

and sample the individual indicators ηj,m and coefficients βj,m from the corresponding

conditional distributions via the component-wise Gibbs sampling approach in Chen

et al. (2011) [CCL11], i.e. the Step 3 in Algorithm 2. We then decide whether to

keep the sampled indicators and coefficients via the Metropolis-Hasting acceptance-

rejection rule. Conversely, if the variable is selected in SS, i.e. δj = 1, we then propose

to turn down this indicator by switching δj to 0, and setting all the corresponding

indicators ηj,m and coefficients βj,m to be zero. Therefore, we determine whether
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to accept this proposal or not via the Metropolis-Hastings acceptance-rejection rule,

too. Thus this proposal method can be treated as the sample version of the two-ayer

Gibbs sampler. The details of these stages are shown in following.

Let Θj = (δj, η
(j), β(j)) be the parameter set of the j-th variable, Xj, where η(j) =

(ηj,1, · · · , ηj,M), and β(j) = (βj,1, · · · , βj,M) are the corresponding second set indicators

and coefficients. The proposed transition of Θj can be defined as

T (Θ0
j → Θ1

j) = P (β̂(j), η̂(j)|R(j), δj = 1, σ) (2.20)

T (Θ1
j → Θ0

j) = 1, (2.21)

where Θ0
j = (δj = 0, η(j) = 0, β(j) = 0), Θ1

j = (δj = 1, η̂(j), β̂(j)), R(j) = (Rj,1, · · · , Rj,M),

and {β(j), η̂(j)} are sampled from the joint posterior distribution. Here T (Θ0
j → Θ1

j) is

the proposal distribution for changing δj from 0 to 1, and T (Θ1
j → Θ0

j) is the proposal

distribution to switch δj to 0. Suppose the variable Xj is not included in SS currently,

i.e. δj = 0. Then after sampling η̂j,m and β̂j,m by setting δj = 1, we calculate the
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acceptance probability Âj as:

Âj(Θ
0
j → Θ1

j) (2.22)

=
P (Θ1

j)

P (Θ0
j)
·
T (Θ1

j → Θ0
j)

T (Θ0
j → Θ1

j)

=
P (δj = 1, η̂(j), β̂(j)|Y , δ−j, η(−j), β(−j), σ)

P (δj = 0, η(j) = 0, β(j) = 0|Y , δ−j, η(−j), β(−j), σ)
· 1

P (β̂(j), η̂(j)|R(j), δj = 1, σ)

=

(
M∏
m=1

P (Ym|β̂j,m, η̂j,m, δj = 1, δ−j, β−j,m, σ)P (β̂j,m, η̂j,m|δj = 1)

P (Ym|δj = 0, δ−j, β−j,m, σ)

)
× 1− θj

θj

× 1∏M
m=1 P (β̂j,m|η̂j,m, Rj,m, δj = 1, σ)P (η̂j,m|Rj,m, δj = 1, σ)

=
M∏
m=1


 1− ρj,m√

2πτ 2j,m

· exp

(
−
σ2 + τ 2j,mX

′
jXj

2τ 2j,mσ
2

β̂2
j,m +

R′j,mXj

σ2
β̂j,m

)η̂j,m

· ρ(1−η̂j,m)
j,m


×

M∏
m=1

( 1

pj,m

√
2πσ∗2j,m · exp(

(β̂j,m − rj,m)2

2σ∗2j,m
)

)η̂j,m (
1

1− pj,m

)(1−η̂j,m)


×1− θj
θj

=
M∏
m=1

(1− ρj,m
pj,m

·
σ∗j,m
τj,m
· exp

(
−
σ2 + τ 2j,mX

′
jXj

2τ 2j,mσ
2

β̂2
j,m +

R′j,mXj

σ2
β̂j,m +

(β̂j,m − rj,m)2

2σ∗2j,m

))η̂j,m


×
M∏
m=1

[(
ρj,m

1− pj,m

)(1−η̂j,m)
]
· 1− θj

θj
(2.23)

where pj,m = P (ηj,m = 1|Rj,m, δj = 1, σ) =
(1−ρj,m)Qj,m

(1−ρj,m)Qj,m+ρj,m
, η(−j) denotes all the

second set indicator vectors except η(j), and β(−j) denotes all the coefficient vectors

except β(j). So based on Metropolis-Hastings acceptance-rejection rule, we accept

the proposed samples, δj = 1 and (β(j), η(j)) = (β̂(j), η̂(j)), with probability Padd =

min{1, Âj}. Otherwise if the variable Xj is active already, that is δj = 1, then based
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on the current β?(j) = (β?j,1, · · · , β?j,M) and η?(j) = (η?j,1, · · · , η?j,M), we have

D̂j(Θ
1
j → Θ0

j) (2.24)

=
P (Θ0

j)

P (Θ1
j)
·
T (Θ0

j → Θ1
j)

T (Θ1
j → Θ0

j)

=
P (δj = 0, η(j) = 0, β(j) = 0|Y , δ−j, η(−j), β(−j), σ)

P (δj = 1, η?(j), β?(j)|Y , δ−j, η(−j), β(−j), σ)
· P (β?(j), η?(j)|R(j), δj = 1, σ)

=

(
M∏
m=1

P (Ym|δj = 0, δ−j, β−j,m, σ)

P (Ym|β∗j,m, η∗j,m, δj = 1, δ−j, β−j,m, σ)P (β∗j,m, η
∗
j,m|δj = 1)

)
× θj

1− θj

×
M∏
m=1

P (β∗j,m|η∗j,m, Rj,m, δj = 1, σ)P (η∗j,m|Rj,m, δj = 1, σ)

=
M∏
m=1

[(
pj,m

1− ρj,m
· τj,m
σ∗j,m

· exp

(
σ2 + τ 2j,mX

′
jXj

2τ 2j,mσ
2

β?2j,m −
R′j,mXj

σ2
β?j,m −

(β?j,m − rj,m)2

2σ∗2j,m

))η?j,m]

×
M∏
m=1

[(
1− pj,m
ρj,m

)(1−η?j,m)
]
· θj

1− θj
. (2.25)

Thus the probability of accepting the proposed to remove the variable Xj from SS is

Pdel = min{1, D̂j}.

The modified algorithm is shown in Algorithm 3. As mentioned before, in this

algorithm, component-wise Gibbs sampler is used to generate the proposal samples

of ηj,m and βj,m for the corresponding response Ym individually.

Algorithm 3: Sample Version of Two-Layer Gibbs Sampler for Support

Union Recovery

1. Randomly select a variable Xj. Compute Rj,m = Ym −
∑

i 6=j Xiβi,m, for m =

1, · · · ,M .

2. If δj = 0, sample {(η̂j,m, β̂j,m),m = 1, · · · ,M} based on the component-wise

Gibbs sample (step 3 in Algorithm 2) through Rj,m. Compute Âj in Eq. (2.23).
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Switch δj from 0 to 1 with probability Padd = min{1, Âj}. If δj = 1, set

ηj,m = η̂j,m, βj,m = β̂j,m, m = 1, · · · ,M .

3. If δj = 1, suppose the current coefficients and indicators in the second set are

βj,m = β?j,m and ηj,m = η?j,m, m = 1, · · · ,M . Compute D̂j in Eq. (2.25). Change

δj from 1 to 0 with the probability Pdel = min{1, D̂j}. If the proposal is rejected,

it means the variable Xj is kept in the shared model. Then we can re-sample

ηj,m and βj,m, m = 1, · · · ,M for each individual regression model according to

the component-wise Gibbs sampler by Rj,m.

4. After repeat above steps for all variables, compute the current residual matrix,

Res = Y −XB. Then sample σ2 ∼ IG(a+n×M
2

,
∑

(diaq(Res′Res))+b
2

). Go to Step

1.
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CHAPTER 3

Simulation

In this chapter, through simulation examples, we illustrate the performance of the

proposed two-layer Gibbs sampler for support union recovery in multi-response linear

regression.

3.1 Group-Wise v.s. Two-Layer Gibbs Sampler

Example 3.1 Consider a multi-response linear regression example with M = 3

response vectors. In this example, there are p = 50 predictor variables of length

n = 80. The predictor variables are defined by

Xj = Gj + kG, (3.1)

where k is a pre-specified constant, and Gj’s and G are independently generated

from multivariate normal distribution with zero mean vector and identical covariance

matrix I80. Here we set k = 1, then the correlation between any two variables

is 0.5. The true active variables in the shared model are X7, X8, X9, X11, X12, i.e.

SS = {7, 8, 9, 11, 12}, and the corresponding coefficients of 3 single regression models

are shown in Table 3.1. Some variables in SS are not active in all individual regression

models. The other coefficients are all set to be zero. Then each response vector Ym
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is generated according to the linear model Ym = Xβm + ωm where ωm ∼ N80(0, I80).

Table 3.1: Example 3.1: The true coefficients of the support union in the shared

model

Xj βj,1 βj,2 βj,3

X7 1.5 1.7 0

X8 1.5 1.7 2.2

X9 1.5 0 2.2

X11 3.2 2.5 4.1

X12 3.2 0 4.1

The group-wise Gibbs sampler, Algorithm 1, and two-layer Gibbs sampler, Al-

gorithm 2, are used in this example. In the group-wise Gibbs sampler, the first

set of indicator variables, δj, j = 1, · · · , p, are only adopted in the model, while in

the two-layer Gibbs sampler, in addition to δj, the second set of indicator variables,

ηj,m, j = 1, · · · , p, m = 1, · · · ,M are also added into the model. The prior param-

eters are set as θj = P (δj = 0) = 0.5, ρj,m = P (ηj,m = 0|δj = 1) = 0.5, τ 2j,m = 20

for all j ∈ {1, · · · , 50}, m ∈ {1, 2, 3}, and a = b = 0.001 as the non-informative

parameter for inverse Gamma prior for σ2. The initial model is set as null model,

i.e. δj = 0; ηj,m = 0 and βj,m = 0 for all j and m. Totally we run 500 sweeps.

After discarding the first 300 sweeps, samples collected from the last 200 sweeps are

used for the inference about support union recovery. First the posterior probabilities

P (δj = 1|Y ) for Algorithm 1 and Algorithm 2, and P (ηj, = 1|δj = 1,Y ) for Algorithm

2, are estimated based on the posterior samples. Then for the posterior inference, the

median probability criterion is used according to Barbieri and Berger (2004)[BB04].

Thus the threshold probabilities for including predictor in the shared and individual
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model are both set to 0.5, i.e. P̂ (δj = 1|Y ) > 0.5 and P̂ (ηj,m = 1|δj = 1,Y ) > 0.5.

The posterior probabilities of P̂ (δj = 1|Y ) for Algorithm 1 and Algorithm 2 are

shown in Figure 3.1. In fact, in both algorithms, the estimated posterior probabilities

of X7, X8, X9, X11, X12 are all higher than 0.5, and even equal to 1. Therefore, for

the support union in the shared model SS, the selection results of the support union

recovery in group-wise Gibbs sampler and two-layer Gibbs sampler both agree with

the true model. There is one phenomenon that the posterior probabilities, P̂ (δj =

1|Y ), of the inactive variables in the two-layer Gibbs sampler, i.e. the bottom figure

in Figure 3.1, are generally higher than those in the group-wise Gibbs sampler, i.e. the

top figure in Figure 3.1. The reason is the likelihood ratio, the key step in calculating

the the posterior probability P̂ (δj = 1|Y ). The likelihood ratio of indicators in the

first set in the two-layer Gibbs sampler, i.e. Zj in Eq. 2.16, consider all possible

combination of indicators in the second set. However, because only indicators in

the first set are adopted in group-wise Gibbs sampler, the likelihood ratio, Z̃j in

Eq. 2.10, just consider the situation that the variable Xj is active or inactive for

all regression models simultaneously. Therefore, Zj is higher than Z̃j, and then the

posterior probabilities in two-layer Gibbs sampler are higher than those in group-wise

Gibbs sampler.

Then, for the two-layer Gibbs sampler, i.e. Algorithm 2, P̂ (ηj,m = 1|δj = 1,Y )

for j ∈ SS are shown in Figure 3.2. For those nonzero coefficients in Table 3.1, all

corresponding indicators in the second set have posterior probability higher than 0.5.

Therefore, based on the median probability criterion, these are treated as active.

Thus, both the group-wise Gibbs sampler and two-layer Gibbs sampler can suc-

cessfully recover the support union in the shared model, SS, correctly. In addition,

by using the second set of indicators ηj,m, the two-layer Gibbs sampler even indicate
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Figure 3.1: Example 3.1: The estimated posterior probabilities of δj : P̂ (δj = 1|Y ).

Top: Group-wise Gibbs sampler. Bottom: Two-layer Gibbs sampler.
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Figure 3.2: Example 3.1: The estimated posterior probabilities of

ηj,m : P̂ (ηj,m = 1|δj = 1,Y ) obtained by the two-layer Gibbs sampler
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the particular regression model these variables in SS are active for. The posterior

means of the coefficients for the selected variables in both algorithms are shown in

Table 3.2.

Table 3.2: Example 3.1: The estimated coefficients. (a) Group-wise Gibbs sampler

(Algorithm 1).(b) Two-layer Gibbs sampler (Algorithm 2).

Xj βj,1 βj,2 βj,3

X7 1.55 1.56 0.13

X8 1.37 1.84 2.38

X9 1.49 0.02 2.12

X11 3.10 2.57 4.15

X12 3.21 -0.02 3.94

(a)

Xj βj,1 βj,2 βj,3

X7 1.57 1.55 0

X8 1.37 1.84 2.40

X9 1.49 0 2.16

X11 3.09 2.57 4.16

X12 3.18 0 3.97

(b)

3.2 Two-Layer Gibbs Sampler

Example 3.2 Performance of sample version of two-layer Gibbs sampler

In this example, we set M = 5 and there are p = 200 predictor variables of length

n = 80. The variables are generated by Eq. 3.1 and k = 2 is chosen here, then

the correlation between any two variables is 0.8. The true active variables are

{X7, X8, X9, X11, X12, X19, X20, X21}, i.e. SS = {7, 8, 9, 11, 12, 19, 20, 21}, and the

corresponding coefficients of 5 individual regression model are shown in Table 3.3.

The other coefficients are all set to be zero. Then each response vector is generated

according to the linear model Ym = Xβm + ωm, where ωw ∼ N80(0, I80).
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Table 3.3: Example 3.2: The true coefficients of the support union in the shared

model

Xj βj,1 βj,2 βj,3 βj,4 βj,5

X7 0.9 1.7 0 1.2 1.5

X8 0.9 1.7 2.2 1.2 0

X9 0.9 1.7 0 0 0

X11 0 2.5 0 0 1.3

X12 3.2 0 4.1 2.3 0

X19 0 0.6 0 0.4 0

X20 0 0 0 0 0.7

X21 1.5 0 0 0 0

To demonstrate the efficiency of the sample version of the two-layer Gibbs sam-

pler, both the two-layer Gibbs sampler, Algorithm 2, and sample version of two-

layer Gibbs sampler, Algorithm 3, are used in this example. In both methods,

the prior parameters set-up are chosen as θj = 0.5, ρj,m = 0.5, τ 2j,m = 20 for all

j ∈ {1, · · · , 50}, m ∈ {1, · · · , 5}, and a = b = 0.001 as the non-informative parame-

ter for inverse Gamma prior for σ2. The last 200 draws are kept from the total 500

sweeps as the posterior samples, and the median probability criterion is also adopt

for the posterior inference.

The estimated posterior probabilities of P̂ (δj = 1|Y ) are shown in Figure 3.3. The

estimated posterior probabilities of X7, X8, X9, X11, X12, X19, X20 and X21 in both fig-

ures are all singinificantly higher than 0.5. Compare the probabilities of those inactive

variables in the two figures, due to the Metropolis-Hasting acceptance-rejection rule,
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more inactive variables in sample version of two-layer Gibbs sampler have probabili-

ties higher than 0.1. Then P̂ (ηj,m = 1|δj = 1,Y ) for j ∈ SS are shown in Figure 3.4

and Figure 3.5. The results in two methods are very similar to each other.

The elapsed time is 90.13 seconds for the original two-layer Gibbs sampler, and

29.70 seconds for the sample version of two-layer Gibbs sampler. It means the sample

version do speed up the calculation and save more than half of time to get the correct

results. The posterior means of the coefficients for the selected variables are shown

in Table 3.4.

Table 3.4: Example 3.2: The estimated coefficients. (a) Two-layer Gibbs sampler (b)

Sample version of the two-layer Gibbs sampler

Xj βj,1 βj,2 βj,3 βj,4 βj,5

X7 1.04 1.58 0 1.04 1.53

X8 0.74 1.71 2.26 1.16 0

X9 0.82 1.73 0 0 0

X11 0 2.61 0 0 1.32

X12 3.14 0 4.07 2.36 0

X19 0 0.68 0 0.56 0

X20 0 0 0 0 0.64

X21 1.69 0 0 0 0

(a)

Xj βj,1 βj,2 βj,3 βj,4 βj,5

X7 1.01 1.60 0 0.99 1.54

X8 0.74 1.71 2.25 1.14 0

X9 0.86 1.73 0 0 0

X11 0 2.60 0 0 1.32

X12 3.18 0 4.07 2.40 0

X19 0 0.71 0 0.59 0

X20 0 0 0 0 0.65

X21 1.69 0 0 0 0

(b)

Example 3.3 In this example, three different values of residual variance, 1, 5,

and 10, are used for generating three different sets of response vectors. By applying

the proposed sample version of two-layer Gibbs sampler on the three sets of response
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Figure 3.3: Example 3.2: The estimated posterior probabilities of δj : P̂ (δj = 1|Y ).

(a) two-layer Gibbs sampler (b) sample version of two-layer Gibbs sampler.
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Figure 3.4: Example 3.2: The estimated posterior probabilities of

ηj,m : P̂ (ηj,m = 1|δj = 1,Y ) obtained by the two-layer Gibbs sampler
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Figure 3.5: Example 3.2: The estimated posterior probabilities of

ηj,m : P̂ (ηj,m = 1|δj = 1,Y ) obtained by the sample version of two-layer

Gibbs sampler

39



vectors, we want to know the influence of residual variance on the recovery results.

Using the same date generating scheme and parameters setting in Example 3.2, the

selection results with 50 replications are summarized in Table 3.5.

We measure the true positive rate (TPR), false positive rate (FPR) and accuracy

for both first and second set of indicator variables, δj and ηj,m respectively. True

positive rate is the probability that the estimated set contains the true active variables.

It is a measure of correct recovery. False positive rate is the rate of mis-containing the

inactive variables. It measures the prediction errors. Accuracy is the rate of correct

prediction, which is the sum of true positive and true negative over total variables.

For TPR and accuracy, the higher the better, and for FPR, the lower the better. The

values in Table 3.5 are the mean values over 50 replications.

Table 3.5: Example 3.3: The average rates of δ and η after 50 replications.

δ η

TPR FPR Accuracy TPR FPR Accuracy

σ2 = 1 0.9950 0.0055 0.9945 0.9884 0.0011 0.9987

σ2 = 5 0.8475 0.0229 0.9719 0.8505 0.0042 0.9930

σ2 = 10 0.7900 0.0436 0.9497 0.7495 0.0082 0.9872

From the results in Table 3.5, we can see large variance do affect the recovery

results. Both TPR and accuracy decrease, and FPR increases when the variance

increases, no matter for indicators in the first or second sets. However, the results

may not be unacceptable. With the extreme high variance 10, the TPR for δis 0.

79 , it means it miss less than two active variables in average. The FPR for δ is

0.0436. it means about 7 from 192 inactive variables are incorrectly included in the

model. As for the accuracy, both values for two sets of indicators are higher than
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94%. Therefore, the proposed two-layer Gibbs sampler still did a good job in support

union recovery.

Example 3.4 Consider another multi-response linear regression model. There

areM = 10 regression models and p = 400 predicator variables of length n = 100. The

variables are generated by Eq. 3.1 with k = 1. Thus the correlation between any two

variables is 0.5. The true active variables are {X7, X8, X9, X11, X12, X13, X14, X15}, i.e.

SS = {7, 8, 9, 11, 12, 13, 14, 15}, and the corresponding coefficients of the 10 individual

regression models are shown in Table 3.6. The other coefficients are all set to zero.

Table 3.6: Example 3.4: The true coefficients of the support union in the shared

model.

Xj βj,1 βj,2 βj,3 βj,4 βj,5 βj,6 βj,7 βj,8 βj,9 βj,10

X7 0.9 1.7 0 1.2 0.5 0 2.1 0.7 0 0.8

X8 0.9 1.7 2.2 1.2 0 0.4 2.1 0.7 0 0.8

X9 0.9 1.7 0 0 0.5 0.4 2.1 0 0.5 0.8

X11 0 1.3 0 0.9 0 0 1.2 1.3 0 0

X12 0 0 0 0.9 0 0.7 1.2 0 0.8 0

X13 0 0 0 0 1.3 0 0 0 0 0

X14 0 0 0 0 0 0 0 0 0.7 0

X15 0 0.6 0 0 0 0.5 0 0 0.7 0

The sample version of two-layer Gibbs sampler, Algorithm 3, is applied in this

example. The tuning parameter τ 2 is chosen from the pre-specified candidate set

{1, 20, 40, 100} by 5-fold cross validation. The other prior parameters set-up are

chosen the same as those in Example 3.2, and the median probability criterion is also

adopted for the posterior inference.
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Sample Version of Two−Layer Gibbs Sampler: posterior probability of  δj

variable
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Figure 3.6: Example 3.4: The estimated posterior probabilities of δj : P̂ (δj = 1|Y ).

By cross validation, τ 2 is chosen as 20. The estimated posterior probabilities of

P̂ (δj = 1|Y ) are show in Figure 3.6. Probabilities of all active predictor variables,

and one additional variable X202, are higher than 0.5. The estimated posterior prob-

abilities of P̂ (ηj,m = 1|δj = 1,Y ) for j ∈ {SS, 202}, are shown in Figure 3.7. The

posterior means of the coefficients for the selected variables and X202 are shown in

Table 3.7.
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Figure 3.7: Example 3.4: The estimated posterior probabilities of

ηj,m : P̂ (ηj,m = 1|δj = 1,Y ).
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Table 3.7: Example 3.4: The estimated coefficients of the support union in the shared

model.

Xj βj,1 βj,2 βj,3 βj,4 βj,5 βj,6 βj,7 βj,8 βj,9 βj,10

X7 0.82 1.56 0 1.08 0.47 0 2.16 0.73 0 0.81

X8 0.85 1.70 2.18 1.33 0 0.29 2.00 0.68 0 0.81

X9 0.82 1.91 0 0 0.40 0.34 2.22 0 0.52 0.85

X11 0 1.40 0 0.88 0 0 1.23 1.23 0 0

X12 0 0 0 1.00 0 0.63 1.15 0 0.79 0

X13 0 0 0 0 1.23 0 0 0 0 0

X14 0 0 0 0 0 0 0 0 0.67 0

X15 0 0.69 0 0 0 0.62 0 0 0.7 0

X202 0 -0.33 0 0 0 0.62 0 0 0.7 0

44



3.3 Comparison between Gibbs and Lasso on Different Re-

sponse setting

In this section, we compare the performance between Gibbs and Lasso on different

response setting. First, we can use the two sets of indicators, {δj, j = 1, · · · , p} and

{ηj,m, j = 1, · · · , p,m = 1, · · · ,M}, to describe the linear regression for each response

vector, Ym, in the three different settings separately. They are shown as:

Component-Wise Ym = η1,m(β1,mX1) + · · ·+ ηp,m(βp,mXp) + ωm (3.2)

Group-Wise Ym = δ1(β1,mX1) + · · ·+ δp(βp,mXp) + ωm (3.3)

Two-layer Ym = δ1η1,m(β1,mX1) + · · ·+ δpηp,m(βp,mXp) + ωm (3.4)

In Eq. (3.2), each component, βj,mXj, is multiplied by the indicator in the second

set, ηj,m. That is, in the component-wise setting, whether the variable Xj is active

for the m-th response vector, Ym, depends individually on the specific indicator ηj,m.

Instead, in Eq. (3.3), the component βj,mXj in the group-wise setting is multiplied

by the indicator in the first set, δj. That is whether the variable Xj is active for all

response vectors, Ym,m = 1, · · · ,M , depends on the same indicator δj simultane-

ously. Consider the proposed two-layer setting. By Combining two sets of indicators

together, each component in Eq. (3.4) is multiplied by δjηj,m. Thus whether the vari-

able Xj is active in the m-th response vector, Ym, is decided by both δj and ηj,m.

Only when δj = 1 and ηj,m = 1, the variable Xj is active for the response vector Ym.

Example 3.5. Comparision

In this example, we extend the dimension of the response vectors to M = 15. There

are p = 200 predictor variables of length n = 80. As defined before, the variables

are generated by Xj = Gj + kG, where k = 2 is a pre-specified constant. In the

setting, the correlation between any two variables is 0.8. The true active variable set
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is {X7, X8, X9, X11, X12, X13}, i.e. SS = {7, 8, 9, 11, 12, 13}, and the corresponding

coefficients of 15 single regression models are shown in Table 3.8. The cell with gray

color means the variable is not active for this singular regression model. The other

coefficients are all set to be zero. Then each response vector is generated according

to the linear model Ym = Xβm + ωm, where ωm ∼ N80(0, I80).

Table 3.8: Example 3.5: The true coefficients of the support union in the shared

model.

Xj βj,1 βj,2 βj,3 βj,4 βj,5 βj,6 βj,7 βj,8 βj,9 βj,10 βj,11 βj,12 βj,13 βj,14 βj,15

X7 0.9 1.7 0 1.2 0.5 0 2.1 0.7 0 0.8 0.8 2.5 0 0 0.9

X8 0.9 1.7 2.2 1.2 0 0.4 2.1 0.7 0 0.8 0.8 2.5 1.3 0 0

X9 0.9 1.7 0 0 0.5 0.4 2.1 0 0.5 0.8 0.8 2.5 0 0.5 0

X11 0 0 0 0 1.3 0 0 0 0 0 0 0 0 0 0

X12 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0

X13 0 0.6 0 0 0 0.5 0 0 0 0 0 0 0 0 0

In sample version of two-layer Gibbs sampler, i.e. Algorithm 3, two sets of indica-

tors, δj and ηj,m, are adopted, and the prior parameters are set as θj = 0.5, ρj,m = 0.5

for all j ∈ {1, · · · , 200}, m ∈ {1, · · · , 15}. In Group-wise Gibbs sampler, i.e.

Algorithm 1, only the first set of indicators, δj, is adopted, and the parameter

θj, j = 1, · · · , p are all set to be 0.5. As for the component-wise Gibbs sampler, we

treat each response as a special case of multi-response linear regression with M = 1,

and apply Algorithm 3 on each response vector separately. Then the union of the

selected predictors from each singular regression model are chosen as the support

union in the shared model. The other prior parameters for the three algorithms are

set as τ 2j,m = 20 for all j ∈ {1, · · · , 200}, m ∈ {1, · · · , 15}, and a = b = 0.001 as the
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non-informative parameter for inverse gamma prior of σ2. The initial model is set as

the null model, i.e. δj = 0; ηj,m = 0 and βj,m = 0 for all j and m, and the median

probability criterion is adopt for the posterior inference. Totally we run 500 sweeps.

After discarding the first 300 sweeps, samples collected from the last 200 sweeps are

used for the inference.

The chosen sets of the support union in the shared model, SS, by the three different

algorithms are shown in Table 3.12. The selection results of the two-layer Gibbs

sampler agree the true model, but the selection results of Group-wise Gibbs sampler

miss identify three active predictor variables, X11, X12, and X13, which are active for

just one or two singular regression models. Thus due to the weak group signal for the

variables X11, X12, and X13, this group-wise Gibbs sampler has the under-selection

problem. As for the component-wise Gibbs sampler, the selection result reveal the

problem of over-selection. 29 predictor variables are chosen as active. Focus on the

true active variable set, SS. The posterior means of the coefficients are shown in

Table 3.9, Table 3.10, and Table 3.11.

Table 3.9: Example 3.5: The estimated coefficients by the sample version of the

two-layer Gibbs sampler

Var β̂j,1 β̂j,2 β̂j,3 β̂j,4 β̂j,5 β̂j,6 β̂j,7 β̂j,8 β̂j,9 β̂j,10 β̂j,11 β̂j,12 β̂j,13 β̂j,14 β̂1,15

X7 0.90 1.46 0 1.15 0.57 0 2.07 0.60 0 0.83 0.82 2.58 0 0 0.85

X8 0.91 1.86 2.24 1.18 0 0 2.03 0.78 0 0.67 0.84 2.35 1.22 0 0

X9 0.90 1.68 0 0 0.45 0.36 2.20 0 0.51 0.78 0.77 2.47 0 0.54 0

X11 0 0 0 0 1.23 0 0 0 0 0 0 0 0 0 0

X12 0 0 0 0 0 0 0 0 0.68 0 0 0 0 0 0

X13 0 0.73 0 0 0 0.69 0 0 0 0 0 0 0 0 0
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Table 3.10: Example 3.5: The estimated coefficients by the Group-wise Gibbs sampler

Var β̂j,1 β̂j,2 β̂j,3 β̂j,4 β̂j,5 β̂j,6 β̂j,7 β̂j,8 β̂j,9 β̂j,10 β̂j,11 β̂j,12 β̂j,13 β̂j,14 β̂j,15

X7 0.84 1.71 0.15 1.19 0.93 0.39 2.07 0.54 0.17 0.87 0.82 2.58 0.07 0.01 1.01

X8 0.87 2.15 2.19 1.10 0.51 0.29 2.07 0.72 0.24 0.67 0.86 2.34 1.14 0.01 -0.14

X9 0.89 1.84 -0.09 0.05 0.71 0.51 2.17 0.11 0.74 0.73 0.75 2.49 0.03 0.52 -0.07

X11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.11: Example 3.5: The estimated coefficients by the Component-wise Gibbs

sampler

Var β̂j,1 β̂j,2 β̂j,3 β̂j,4 β̂j,5 β̂j,6 β̂j,7 β̂j,8 β̂j,9 β̂j,10 β̂j,11 β̂j,12 β̂j,13 β̂j,14 β̂j,15

X7 0.90 1.63 0 1.14 0.46 0 2.03 0.53 0 1.02 0.78 2.58 0 0 0.95

X8 0.93 1.91 2.28 1.09 0 0 2.06 0.70 0 0.95 0.75 2.23 1.19 0 0

X9 0.93 1.68 0 0 0.37 0 2.16 0 0.42 0.86 0.67 2.42 0 0.55 0

X11 0 0 0 0 1.11 0 0 0 0 0 0 0 0 0 0

X12 0 0 0 0 0 0 0 0 0.54 0 0 0 0 0 0

X13 0 0.96 0 0 0 0.56 0 0 0 0 0 0 0 0 0
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Table 3.12: Example 3.5: The selection results of support union in the shared model.

Algorithm SS

Two-layer 7 8 9 11 12 13

Group-wise 7 8 9

Component-wise 7 8 9 11 12 13 5 10 16 40 45 47 49 50 51 54 60 69 83

91 94 106 130 134 155 179 183 184 199

Sparse group Lasso 7 8 9 13 10 27 46 55 72 105 149 154 156 184

Group Lasso 7 8 9 13 10 27 46 55 62 105 131 154 184

In addition to Bayesian approaches, we also compare the simulation results with

the Lasso type methods. Here the group Lasso function, mcLeastR.m, and sparse

group Lasso function, mc − sgLeastR.m, in SLEP MATLAB toolbox are used for

this simulation study. According to the response vector setting in the multi-response

linear regression described in Eq. 3.3 and Eq. 3.4, the group Lasso corresponds to

the group-wise Gibbs sampler, and sparse group Lasso corresponds to the two-layer

setting.

Consider the selection results of support union in the shared model, SS, shown in

the last two rows for sparse group Lasso and group Lasso in Table 3.12. The results of

both Lasso methods are similar. 4 out of 6 true active variables, X7, X8, X9, X13, are

detected as active in both methods. Additional 10 and 9 variables, i.e. numbers in the

gray color, are false detected as active by the two Lasso methods respectively. There-

fore, both Lasso methods have over-selection problem for the support union in the

shared model. Focus on the true active variable set, SS. The coefficient estimations,

βj,m for j ∈ SS and m = 1, · · · , 15, are shown in Table 3.13 and Table 3.14.
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Table 3.13: Example 3.5: The estimated coefficients by the sparse group Lasso

Var β̂j,1 β̂j,2 β̂j,3 β̂j,4 β̂j,5 β̂j,6 β̂j,7 β̂j,8 β̂j,9 β̂j,10 β̂j,11 β̂j,12 β̂j,13 β̂j,14 β̂j,15

X7 0.47 1.12 0 1.165 0.20 0 1.52 0.13 0 0.43 0.37 1.91 0 0 0.08

X8 0.09 1.04 1.05 0.25 0 0 1.03 0 0 0 0.07 1.22 0.24 0 0

X9 0.87 1.71 0 0.06 0.43 0.22 2.08 0.09 0.40 0.73 0.67 2.33 0.02 0 0

X11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X13 0 0.29 0 0.03 0 0.08 0.03 0 0 0 0 0.03 0 0 0

Table 3.14: Example 3.5: The estimated coefficients by the group Lasso

Var β̂j,1 β̂j,2 β̂j,3 β̂j,4 β̂j,5 β̂j,6 β̂j,7 β̂j,8 β̂j,9 β̂j,10 β̂j,11 β̂j,12 β̂j,13 β̂j,14 β̂j,15

X7 0.70 1.45 0.46 0.75 0.63 0.29 1.67 0.40 0.22 0.63 0.65 2.01 0.24 0.08 0.44

X8 0.59 1.37 0.88 0.63 0.43 0.23 1.43 0.39 0.21 0.51 0.58 1.66 0.47 0.08 0.08

X9 0.81 1.73 0.36 0.42 0.63 0.40 1.98 0.27 0.49 0.70 0.72 2.28 0.22 0.31 0.11

X11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X13 0.02 0.05 0.02 0.02 0.02 0.02 0.04 0.01 0.01 0.02 0.02 0.05 0.01 0 0.01
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Based on the same tuning parameter set-up and the number of iterations, the

selection results with 100 replications are summarized in Table 3.15. We measure the

true positive rate (TPR), false positive rate (FPR) and accuracy for both first and

second set of indicator variables, δj and ηj,m respectively. For TPR and accuracy, the

higher the better, and for FPR, the lower the better. The values in Table 3.15 are

the mean values over 100 replications.

Consider the first set of indicator variables, δj. Although the component-wise

Gibbs sampler produces the perfect identified rates for the true active variables, i.e.

TPR = 1, it has the highest FPR in three Gibbs sampler algorithms. It means when

learning related tasks independently, it is easy to have over-selection problem. How-

ever, the problem can be solved by multi-task learning through Bayesian approaches.

Both group-wise and two-layer Gibbs sampler have very low FPR, 0.0005, and 0.0006

respectively. It means in the two Bayesian algorithms, about 10 variables are false

selected as active in total 100 replications. In contrast, the over-selection problem

still exists in two Lasso algorithms. Both group Lasso and sparse group Lasso have

high FPR, 0.0373, 0.0424 respectively. In other words, on average 8 variables are false

selected as active in each replication. The advantage of two-layer setting is in TPR,

where the value rise significant from 0.5282 in group-wise Gibbs sampler to 0.9833 in

two-layer Gibbs sampler, and from 0.5833 in group Lasso to 0.7783 in sparse group

Lasso. The same as accuracy, the value of accuracy goes up when the second set of

indicator variables, ηj,m, are added in the multi-task regression model. As for the

second set of indicators, ηj,m. Two-layer Gibbs sampler produces over 99% TPR and

accuracy, and has the lowest FPR: 0.0002. It means on average 0.5 indicator from

total 2965 inactive indicators of the second set are false selected as active. Thus, by

adopting the two sets of indicator variables together in the multi-task learning, the

51



proposed two-layer Gibbs sampler cannot only dig out the shared variables but also

indicate which particular response vector the variable is active for.

Table 3.15: Example 3.5: The average rates of δ and η after 100 replications.

δ η

TPR FPR Accuracy TPR FPR Accuracy

Component-wise 1 0.0414 0.9223 0.9669 0.0056 0.9944

Group-wise 0.5283 0.0005 0.9853

Two-layer 0.9833 0.0006 0.9989 0.9909 0.0002 0.9997

Group Lasso 0.5833 0.0373 0.9496

Sparse group Lasso 0.7783 0.0424 0.9583 0.8660 0.0249 0.9753
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CHAPTER 4

Application in Image Studies

In this section, the proposed Bayesian algorithm is applied in image analysis. Based

on the sparse coding theory of Olshausen and Field (1996) [OF96], an image I can

be represented as a linear composition of Gabor wavelet elements

I =

p∑
j=1

cjGj + U, (4.1)

where (Gj, j = 1, . . . , p) is a dictionary of Gabor basis functions defined on the same

domain as I, {cj, j = 1, . . . p} are the coefficients, and U is the unexplained residual

image. In this situation, the basis functions are treated as representational features

and assumed over-complete.

Example 4.1 Given a domain χ = {(x1, x2)| x1 ∈ {1, 2, · · · , 10}, x2 ∈ {1, 2, · · · , 10}},

the image can be represented as (10 × 10) × 1 image vector. We define the Gabor

basis dictionary as

G(u, v) = exp

[
−1

2
(
u2

σ2
u

+
v2

σ2
v

)

]
cos

[
2πu

λ

]
, (4.2)

u = u0 + x1 cos θ + x2 sin θ, (4.3)

v = v0 − x1 sin θ + x2 cos θ, (4.4)

where (u0, v0) ∈ χ has the same domain as image, σu = 1, σv =
√

2, λ =
√

2π and

θ = {0, π/3, 2π/3} is the angle between the x1-axis of the image and the u-axis of
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the Gabor functions. Thus, we have 300 Gabor basis functions in total whose norms

are all equal to 1 on χ. For simplicity, we use X1, · · · , X300 to index all the basis

functions, and Xi is a 100 × 1 vector, i = 1, 2, · · · , 300. The true active variables

in the shared model are {X17, X71, X161, X180}, i.e. SS = {17, 71, 161, 180}, and the

corresponding coefficients of 5 single regression models are shown in Table 4.1. Then

each response vector Ym is generated according to the linear model Ym = Xβm + ωm

where ωm ∼ N100(0, I100).

Table 4.1: Example 4.1: The true coefficients of the support union in the shared

model.

Xj βj,1 βj,2 βj,3 βj,4 βj,5

X17 7 -9 8 -7 -8

X71 -7 9 0 0 8

X161 7 9 -8 7 -8

X180 -7 -9 0 0 8

The sample version of two-layer Gibbs sampler, i.e. Algorithm 3, is applied in the

example, and the prior parameters are set as θj = 0.5, ρj,m = 0.5, τj,m = 40 for all j ∈

{1, · · · , 300}, m ∈ {1, · · · , 5}, and a = b = 0.001 as the non-informative parameter for

inverse gamma prior of σ2. Totally we run 1000 sweeps. After discarding the first 500

sweeps, examples collected from the last 500 sweeps are used for the inference about

support union recovery. The estimated posterior probabilities of indicators in the first

set, P̂ (δj = 1|Y ), j = 1, · · · , p, are shown in Figure 4.1. It is clear that the posterior

probabilities of X17, X71, X161, and X180 are all higher than 0.5. Therefore, based

on the median probability criterion, the selection result agrees with the true model.

The P̂ (ηj,m = 1|δj = 1,Y ) for j ∈ Ss are shown in Figure 4.2. For those nonzero
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Sample Version of Two−Layer Gibbs Sampler: posterior probability of  δj

variable
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Figure 4.1: Example 4.1: The estimated posterior probabilities of δj : P̂ (δj = 1|Y ).

coefficients, the corresponding indicators in the second set have posterior probabilities

larger than 0.5. Therefore, these are treated as active. The corresponding means of

the coefficients for the selected variable are also shown in Table 4.2.
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Figure 4.2: Example 4.1: The estimated posterior probabilities of

ηj,m : P̂ (ηj,m = 1|δj = 1,Y ) obtained by the sample version of the two-layer

Gibbs sampler.

Table 4.2: Example 4.1: The estimated coefficients.

Xj βj,1 βj,2 βj,3 βj,4 βj,5

X17 6.14 -7.10 8.75 -7.74 -7.74

X71 -7.04 9.29 0 0 8.60

X161 6.27 8.53 -6.01 7.41 -8.93

X180 -9.26 -10.09 0 0 8.52
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4.1 Real Images

This section presents the performance of the proposed two-year Gibbs sampler on the

real images. To fix notation, a Gabor basis defined in 4.2 is of the form G(u, v) =

exp{−[(u2/σ2
x) + (v2/σ2

y)]/2} cos(2πu/λ), where σu < σv. We can translate, ro-

tate, and dilate G(u, v) to obtain a general form of Gabor basis: Bx,y,s,α(u′, v′) =

g(ũ/s, ṽ/s)/s2 where ũ = (u′ − x) cosα + (u′ − y) sinα, ỹ = −(u′ − x) sinα + (v′ −

y) cosα. (x, y) is the central position, s is the scale parameter, and α is the orientation.

Let D be the domain of image lattice. The dictionary of Gabor basis is Dictionary =

{Bx,y,s,α,∀(x, y, s, α)}, where (x, y) ∈ D, and α ∈ {aπ/A, a = 0, · · · , A − 1} (e.g., A

= 5).

In real image learning, we assume that the images are defined on the same image

lattice which is the bounding box of the objects in these images. The Gabor basis are

generated on the same domain of the image lattice. The following are the parameter

values we use in all image examples in this paper (unless otherwise stated). Length

of Gabor wavelets = 7. The orientation α takes A = 5 equally spaced angles in [0, π].

θj = 0.5, ρj,m = 0.5 and τj,m = 20 for all j ∈ {1, · · · , p}. m ∈ {1, · · · ,M}. σ2 is given

as 0.001.

Example 4.2. In Example 4.2.1, we apply the sample version of the two-layer

Gibbs sampler to a set of M = 5 cup images. The cup images are resized to 50× 50

(height × length), so each cup image is represented as (50 × 50) × 1 image vector.

Totally 50× 50× 5 = 12500 Gabor basis functions are chosen in this example. There

are 4852 out of 12500 Gabor basis are chosen as active in the shared model. Figure 4.3

displays the results. The image on the top displays the shared model learned by the

sample version of two-layer Gibbs sampler, where active Gabor basis are multiplied

57



Figure 4.3: Example 4.2.1. The 5 cup images are 50 × 50 (height × length). The

top image shows the image recovered by the shared model. Each block displays the

observed image and the corresponding recovered images by sample version of the

two-layer Gibbs sampler. Samples collected from the last 500 sweeps are used for

inference after discarding the first 500 sweeps.

by the average of the estimated coefficients. For the remaining 5 pairs of plots, the

top plot shows the original image Im, and the bottom plot shows the recovered image

by the individual support Sm. Figures 4.4 - 4.7 display more examples, where the

results are obtained by the same algorithm.
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Figure 4.4: Example 4.2.2. The 8 handwritten digits of number 4 images are 30× 30.

Samples collected from the last 200 sweeps are used for inference after discarding the

first 300 sweeps.

Figure 4.5: Example 4.2.3. The 6 handwritten digits of number 5 images are 30× 30.

Samples collected from the last 200 sweeps are used for inference after discarding the

first 300 sweeps.
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Figure 4.6: Example 4.2.4. The 12 cat images are 50 × 50. Samples collected from

the last 500 sweeps are used for inference after discarding the first 500 sweeps.
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Figure 4.7: Example 4.2.5. The 9 bicycle images are 50× 50. Samples collected from

the last 500 sweeps are used for inference after discarding the first 500 sweeps.
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Figure 4.8: Example 4.3. The 6 butterfly images are 34 × 50. First row: original

images. Second row: recovered images by Gabor basis with length = 5. Third row:

recovered images by Gabor basis with length = 15.

Example 4.3. In Example 4.3, we apply the same algorithm to a set of M = 6

butterfly images. The butterfly images are resized to 34× 50 (height × length), then

6 butterfly images are represented as 1700× 6 image matrix. The parameters set-up

are the same with those in Example 4.2. However, Gabor basis of two different scales

are adopted for comparison. The lengths of the Gabor basis at these two scales are

5 and 15 respectively. Figure 4.8 and Figure 4.9 display the results. In each block of

Figure 4.8, the top plot shows the original image, the middle plot shows the recovered

image by Gabor basis with length = 5, and the bottom plot shows the recovered image

by Gabor basis with length = 15. The two plots in Figure 4.9 display the two shared

models learned by the two different Gabor basis sets, where active Gabor basis are

multiplied by the average of the estimated coefficients. From the recovered results

on both individual images and shared models, we can see the results by Gabor basis

with length = 15 are foggier and cannot detect the details.

Example 4.4. In Example 4.4, two-layer Gibbs sampler is applied to a set of

M = 4 deer images with different backgrounds. In order to get more clear images,
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(a) (b)

Figure 4.9: Example 4.3. The shared models. (a): Gabor basis with length = 5. (b):

Gabor basis with length = 15.

the number of sweeps is increased to 2000, and only the last 500 sweeps are used

for inference after discarding the first 1500 sweeps. 4971 Gabor bases are chosen as

active from the total 12500 bases. The sum of active bases for each image, i.e. the

size of SI , is 8273.

The recovered results are shown in Figure 4.10. Due to the contrast between the

deer in the image and the background, the recovered results are different. We can see

there are a lot of sketches for the background in the first and the last recovered images,

because compare to the deers, the two images have a higher greyscale background.

Therefore, the deers are left white in the recovered images. As for the third image,

because it has a more consistent and low greyscale background, the recovered image

clearly sketch the deer and let the background white.
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Figure 4.10: Example 4.4. The 4 deer images are 50 × 50. Samples collected from

the last 500 sweeps are used for inference after discarding the first 1500 sweeps. First

row: original images. Second row: recovered images.
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CHAPTER 5

Full Bayesian approach

In the Bayesian framework, the prior distribution is used to express one’s uncertainty

about the parameter. The parameters of the prior distributions are called hyper

parameters. One could assign the given value for a hyper parameter. For example,

the failure probabilities, θj and ρj,m in Eq. (2.7) and Eq. (2.12), of the Bernoulli prior

for the first and second sets of indicators, δj and ηj,m, and the variance, τ 2j,m in Eq. 2.13,

of the normal prior for the coefficients, are all pre-specified hyper parameters in the

proposed two-layer Gibbs sampler. One could also assign a probability distribution,

which is called a hyper-prior, on the hyper parameter itself, so the value of the

hyper parameter could be updated by iteration. For example, we assume the hyper-

prior distribution of residual variance, σ2 in Eq. (2.2), follow an inverse Gamma

distribution, σ2 ∼ IG(a/2, b/2). Then it is kept updating by the inverse Gamma

distribution IG((a+n×M)/2, (
∑

(diag(Res′Res))+b)/2), i.e. the Step 4 in Algorithm

3. In this chapter, we consider to extend the proposed two-layer Gibbs sampler,

i.e. algorithm 3, to a full Bayesian framework by adding hyper-priors for the hyper

parameters θj, ρj,m, and τ 2j,m.
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5.1 Beta Hyper-Priors for θj and ρj,m

First, consider the hyper parameters, θj and ρj,m, the failure probabilities of the

Bernoulli prior in the first and second sets of indicators, δj and ηj,m. In the proposed

two-layer Gibbs sampler, we assume δj and ηj,m follow the Bernoulli distributions

respectively as below:

δj ∼ Ber(1− θj), j = 1, · · · , p

ηj,m|δj ∼ (1− δj)γ0 + δjBer(1− ρj,m), j = 1, · · · , p, m = 1, · · · ,M.

Without any prior information, we simply set the failure rates θj = ρj,m = 0.5,

j = 1, · · · , p, m = 1, · · · ,M . However, Scott and Berger (2010) [SB10] mentioned

that to set the probability at 0.5 in the Bernoulli prior might not have multiplicity

control, if p is large and the model is sparse. Taking advantage of the characteristic

that Bernoulli and Beta are conjugate distributions, they suggested setting a Beta

hyper-prior distribution instead of the given the probability = 0.5. Thus, the Beta

hyper-prior assumption is adopted to modify the proposed method here.

In order to reduce the number of hyper parameters and simplify the calculation,

we set θj = θ and ρj,m = ρ for all j = 1, · · · , p and m = 1, · · · ,M . We assume the

hyper-priors of θ and ρ follow Beta(r, s) and Beta(t, u), respectively, and other prior

setting of δj, ηj,m, βj,m, and σ2 are the same as those in the two-layer structure.

Then we can add one more step in Algorithm 3 to draw θ and ρ from the posterior

distributions listed below:

θ ∼ Beta

(
r + p−

∑
j

δj, s+
∑
j

δj

)
, (5.1)

ρ ∼ Beta

(
t+
∑
j

∑
m

(1− ηj,m)δj, u+
∑
j

∑
m

ηj,mδj

)
, (5.2)
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where
∑

j δj is the sum of the indicators in the first set, i.e. the number of variables in

the support union of the shared model SS, and
∑

j

∑
m(1−ηj,m)δj and

∑
j

∑
m ηj,mδj

are the sum of two different products of the indicators in first and second sets, which

correspond to the total number of zero and nonzero corresponding coefficients of the

active variables in all regression models, respectively.

To demonstrate the performance of the modified algorithm that include Beta

hyper-priors for θ and ρ, we use the data generated by the setting in Example 3.2.

Thus there were M = 5 response vectors and p = 200 predictor variables of length

n = 80. The true active variable set was {X7, X8, X9, X11, X12, X19, X20, X21}, i.e.

SS = {7, 8, 9, 11, 12, 19, 20, 21}, and the corresponding coefficients of 5 single regres-

sion models are shown in Table 3.3.

Consider the parameter setting in the Beta hyper-priors. According to Castillo

and van der Vaar (2012) [CV12], to have small variance in the Beta distribution and

to meet the sparsity assumption, s and u should be small, and r and t can be decided

through the variable size and the number of the response vectors, respectively. We

set s = u = 1, r = 32, and t = M + 1 = 6 as the parameters of Beta hyper-priors for

θ and η in this example, while the hyper parameter τ 2 is set as 20, and σ2 is assigned

by inverse Gamma with parameters a = b = 0.001. We use the last 200 sweeps

from total 500 sweeps for the inference in each replication. Based on the median

probability criterion, the selection results of 100 replications of the simulation are

shown in Table 5.1. In order to compare the results with those in the sample version

of the two-layer Gibbs sampler, Algorithm 3 is applied on the same 100 simulation

data, and the same parameter setting is adopted, except θ and ρ are set as the given

value 0.5. The results are shown in Table 5.2.

The first column in Table 5.1 and Table 5.2 shows the frequencies of P̂ (δj =
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Table 5.1: The selection frequency of the modified algorithm with Beta hyper-priors

for θ and ρ

Xj δj ηj,1 ηj,2 ηj,3 ηj,4 ηj,5

X7 100 100 100 1 100 100

X8 100 100 100 100 100 0

X9 100 100 100 0 0 2

X11 100 1 100 1 0 100

X12 100 100 0 100 100 0

X19 97 1 97 0 78 1

X20 100 0 0 0 3 100

X21 100 100 0 0 0 1

Table 5.2: The selection frequency of the sample version of the two-layer Gibbs sam-

pler

Xj δj ηj,1 ηj,2 ηj,3 ηj,4 ηj,5

X7 100 100 100 1 100 100

X8 100 100 100 100 100 1

X9 100 100 100 0 0 0

X11 100 0 100 1 2 100

X12 100 100 0 100 100 1

X19 96 0 96 0 75 1

X20 99 0 0 0 1 99

X21 100 100 0 0 0 0
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1|Y ) > 0.5 in 100 replications of the simulation, i.e. the frequencies of including the

true active predictors in the shared model. In fact, both two methods work well in

recovery of the support union in the shared model SS. 7 and 6 out of 8 true predictors

are chosen as active with 100 percentage in the modified algorithm with beta hyper-

priors and in sample version of the two-layer Gibbs sampler, respectively, and the 3

others are all equal or higher than 97 percentage.

Consider the indicators in the second set: ηj,m. The left 5 columns in Table 5.1

and Table 5.2 show the frequencies of P̂ (ηj,m = 1|δj = 1,Y ) > 0.5 for j ∈ SS in 100

replications of the simulation, i.e. the frequencies of including the active predictor in

each individual model. The cell with grey color means the corresponding coefficient is

zero, i.e. the predicator is not active in this particular regression model, and therefore

the lower the frequency is better. In Table 5.1 and Table 5.2, the values in grey cells

are all equal or smaller than 3. As for the frequencies in white cells, it means the

corresponding coefficients are nonzero, only η19,2 : 97, η19,4 : 78 in Table 5.1, and

η19,2 : 96, η19,4 : 75, η20,5 : 99 in Table 5.2 are not equal to 100 percentage. In

particular, these frequencies correspond to β19,2 = 0.6, β19,4 = 0.4 and β20,5 = 0.7,

which are relatively smaller values.

The average true positive rate, the average probability of correct recovery, and the

average false positive rate, the average probability of incorrect recovery, are listed in

Table 5.3. The results coming form the two algorithms both give good performance

in identify the true 8 predictors in the shared model. The average true positive rates

for the indicators in the first set δj are 0.9963 and 0.9938 respectively. It means in

total 100 replication of simulation, only about 5 and 3 predictors are not correctly

included in the shared mode respectively. However, compare the average false positive

rates, the modified algorithm has about five times lower average rate, 0.0012, than
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0.0059 in sample version of two-layer Gibbs sampler, in false including any of the 192

inactive predictors in the shared model. As for recovery of the support union of the

individual models SI , i.e. finding the particular regression model the predicator is

active for, there is no significant difference between the two algorithms. 0.9868 and

0.9842 are the average true positive rates of the 19 active indicators in the second set

ηj,m respectively. The average false positive rate decrease from 0.0052 to 0.0038 by

adding Beta hyper-priors, the change is not very much neither.

Based on the results, updating the hyper parameters θ and ρ by Beta hyper-

priors can decrease the false positive rate, prediction error, in both sets of indicators.

However, the influence is not significant. Therefore, using the value 0.5 as the given

hyper parameters for θj and ρj,m is acceptable.

Table 5.3: The average rates of δ and η.

δ η

TPR FPR TPR FPR

Sample version of two-layer Gibbs sampling 0.9963 0.0059 0.9868 0.0052

With Beta hyper-priors for θ and ρ 0.9938 0.0012 0.9842 0.0038

With inverse Gamma hyper-prior for τ 2 0.9463 0.0001 0.9305 0

5.2 Inverse Gamma hyper-prior for τ 2

In the two-layer structure, we assume the coefficients follow the distribution as below,

βj,m|δj, ηj,m ∼ (1− δjηj,m)γ0 + δjηj,mN (0, τ 2j,m),
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i.e. if the variable Xj is active for the m-th regression model, the corresponding

coefficient βj,m follow the Normal distribution with zero mean and variance τ 2j,m. In

order to simplify the calculation, we set τ 2j,m = τ 2 for all j = 1, · · · , p and m =

1, · · · ,M .

Like what we did in Example 3.4, we can adopt cross validation to tune the

proper τ 2 value based on the current data set. However, due to the high sparsity in

the coefficient matrix, the value of τ 2 used in the algorithm usually has to be set much

higher than the assumption. To modify the current approach, we can assign a hyper-

prior distribution for the hyper parameter τ 2. Here we choose inverse Gamma with

parameters c and d as the hyper-prior for τ 2, i.e. τ 2 ∼ IG(c/2, d/2). To incorporate

the hyper-prior in the sample version of the two-layer Gibbs sampler, we can add a

step to draw τ 2 from the posterior distribution

τ 2 ∼ IG

(
c

2
,
d+

∑
m

∑
j β

2
j,m/

∑
m

∑
j δjηj,m

2

)
, (5.3)

where
∑

m

∑
j β

2
j,m/

∑
m

∑
j δjηj,m takes the average of squared coefficients over the

support union of the individual models SI .

The simulation data in Section 5.1 are used to demonstrate the performance. Here

we set c = d = 0.1 as the parameters in the inverse gamma hyper-prior of τ 2. The

other hyper parameters are chosen as θj = ηj,m = 0.5, for j = 1, · · · , p, m = 1, · · · ,M ,

and a = b = 0.001 for the inverse Gamma hyper-prior of σ2. We run 500 iterations

and the last 200 posterior samples are collected. With 100 replications, the frequencies

of including the predictors in the shared and in the individual models are shown in

Table 5.4.

The under-detection problem happens more frequently both in the shared model

SS, and in the individual models SI . The frequencies are 65 in δ19, 92 in δ20, 63 in
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η19,2, 15 in η19,4, and 92 in η20,5. The poor performance happens especially in the

predictor X19, whose two nonzero corresponding coefficients are relatively smaller:

β19,2 = 0.6, and β19,4 = 0.4. However, it has very good performance in not including

the false predictors in each of the individual models. The values in the grey cells in

Table 5.4 are all equal to zero. It means in the 100 replication of simulation, the

modified algorithm with inverse Gamma hyper-prior for τ 2 didn’t have any chance

to include the false predictors in all individual regression models.

The TPR and FPR shown in the third row of Table 5.3 also reveal this phe-

nomenon. The TPR of including the active predictors in the shared and in the

individual models are 0.9463 and 0.9305 respectively. Both values are lower than the

rates in the sample version of two-layer Gibbs sampler and in the modified algorithm

with Beta hyper-priors. However, the FPR of incorrectly including the inactive in

the shared and in the individual models are extremely low as 0.0001 and 0, which

definitely have the dominant position.
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Table 5.4: The selection frequency of the modified algorithm with inverse Gamma

hyper prior for τ 2

Xj δj ηj,1 ηj,2 ηj,3 ηj,4 ηj,5

X7 100 100 100 0 100 100

X8 100 100 100 100 100 0

X9 100 100 100 0 0 0

X11 100 0 100 0 0 100

X12 100 100 0 100 100 0

X19 65 0 63 0 15 0

X20 92 0 0 0 0 92

X21 100 100 0 0 0 0
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CHAPTER 6

Model Selection Consistency

In this chapter, we investigate the theoretical properties of our proposed procedure in

terms of model selection consistency in sparse Bayesian variable selection. Let Sm,0

denote the true individual model for m = 1, · · · ,M , and S0 denote the true multi-

response model which consider all M singular models together. We use β∗j,m as the

true parameter of variable Xj in m-response vector, and B∗ for the true parameter

matrix. In fact, consistency of an estimate in linear regression includes the model

selection consistency and parameter estimation consistency. However, the two issues

are independent. In this article, we focus on the consistency of model selection. Once

the consistency of model selection is proven, the corresponding parameters can be

estimated through specified technique.

Theorem 1. Let Y = [Y1, · · · , YM ] be the multiple response matrix and X be the

n × p design matrix, where p is fixed. Assume (X ′X)/n → C when n → ∞, where

C is positive definite and the set that is the collection of possible models, S, contains

the true model S0, and median model Sme, which is the model defined with median

criterion. Fix θj > 0, ρj,m > 0, τj,m > 0, and assume

√
2πτ(j,1) > min{1− θj

θj
, 1} and

√
2πτj,m >

1− ρj,m
ρj,m

, (6.1)

for all j = 1, · · · , p and m = 1, · · · ,M , where τ(j,1) = min{τj,1, · · · , τj,M}. Let τ(1) be
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the minimum of τ(j,1), j = 1, · · · , p. Then we have

lim
n→∞

P (Sme = S0|Y ) = 1. (6.2)

With the minor restrictions shown in Eq. 6.1, the theorem shows the proposed

selection results based on the median probability criterion converge to the true model.

It means if the number of observations is large enough, we can find the true model.

The consistency of model selection means that the true model will be eventu-

ally selected if there is enough data. According to Zhao and Yu (2006) [ZY06], the

requirement in the multiple linear regression is: for each m ∈ {1, · · · ,M}:

P ({j : β̂j,m 6= 0} = {j : β∗j,m 6= 0})→ 1, as n→∞. (6.3)

Based on the posterior median criterion and the two-layer model we proposed, we

could rewrite the requirement in Eq. (6.3) in two statements:

P ({j : P (δj = 1|Y ) >
1

2
}

= {j : ∃ m ∈ {1, · · · ,M}, β∗j,m 6= 0})→ 1, as n→∞, and (6.4)

P ({j : P (ηj,m = 1|Ym) >
1

2
}

= {j : β∗j,m 6= 0})→ 1, as n→∞, for each m ∈ {1, · · · ,M}. (6.5)

The first statement is for the shared model, and the second statement is for the

singular models. It means the posterior median model will eventually coincide with

the true model.

Before the proof of Theorem 1, we need the following two Lemmas.

Lemma 1. Let Ym be the m-th response vector and X be the n × p shared design

matrix, where p is fixed. Sm = {j : βj,m 6= 0} is the support set for the m-th
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response vector. Let XSm denote the sub matrix of X with columns corresponding to

the set Sm, and β?Sm denote the vector of true parameters for model Sm. Note that

with βSm that we refer to the subset of parameters included in model Sm. Assume

(X ′X)/n→ C when n→∞, where C is positive define. By conditioning on Sm that

we mean model Sm is deemed to be the true model. There exist a product measure

P∞Sm on (R∞,B(R∞)) such that there exist Ω ∈ B(R∞), of P∞Sm-probability 1, such

that

βSm|Sm, Ym
P−→ β?Sm , (6.6)

where
P−→ denotes convergence in probability. Further,

√
n(E[βSm|Sm, Ym]− β?Sm)

d−→ N(0, σ2C−1Sm), (6.7)

where
d−→ denotes convergence in distribution and note that E[βSm|Sm, Ym] is a random

variable as a function of Ym.

Proof. For the condition in the following proof, we need

X ′SmXSm

n
−−−→
n→∞

Dm,

for some Dm that is positive definite matrix. We take a matrix ESm whose columns

are elementary vectors which corresponding to Sm. From the assumption, we have

limn→∞(X ′X)/n = C, where C is positive define. Applying the Theorem 5.2 in

Friedberg [FWR02], we obtain that

lim
n→∞

X ′SmXSm

n
= lim

n→∞

E ′SmX
′XESm
n

= E ′SmCESm = CSm , (6.8)

where CSm that corresponds to Sm is the principal sub matrix of C, and CSm is

positive definite, since every principal sub matrix of a positive definite matrix is

positive definite.
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If Sm is assumed as the true model, we have βSm|Sm ∼ N(0, σ2Idm), where dm =

#Sm is chosen from Θ which is an open set of Rdm and the prior density of βSm|Sm

is continuous and positive on Θ. Using the condition in Eq. (6.8), we have two

asymptotic theorems from Ferguson [Fer96] in the the following.

From Chapter 21 in Ferguson [Fer96], the asymptotic of posterior distribution is

√
n(BSm|Sm, Ym − B̂Sm,n)

d−→ N(0, J−1(β?Sm)), (6.9)

where β̂Sm,n is the MLE of βSm and J(β?Sm) = (X ′SmXSm)/σ2
Sm

is the Fisher informa-

tion. It implies that

βSm|Sm, Ym − β̂Sm,n
P−→ 0. (6.10)

According to Theorem 18 in Ferguson [Fer96], it leads that

√
n(β̂Sm,n − β?Sm)

d−→ N(0, J−1(β?Sm)), (6.11)

and it also implies

β̂Sm,n − β?Sm
P−→ 0. (6.12)

Therefore, we have

lim
n→∞

P (|βSm|Sm, Ym − β?Sm| > ε)

6 lim
n→∞

P (|βSm|Sm, Ym − β̂Sm,n| >
ε

2
) + lim

n→∞
P (|β̂Sm,n − β?Sm| >

ε

2
) = 0.

based on Eq. (6.10) and Eq. (6.12). That is,

βSm|Sm, Ym
P−→ β?Sm . (6.13)

According to Eq. (6.8), we further can obtain

√
n(E[βSm|Sm, Ym]− β∗Sm)

d−→ N(0, σ2C−1Sm), (6.14)
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Lemma 2. Let Y = [Y1, · · · , YM ] be the n×Mresponse matrix in the multi-response

linear regression model, Ym = (Ym,1, · · · , Ym,n)′ be the m-th response vector, and X be

the n×p shared design matrix, where p is fixed. Assume (X ′X)/n→ C when n→∞,

where C is positive definite. Assume the set that is the collection of all possible models,

S, contains the true model S0, and the median model Sme, which is defined with median

criterion. Fix θm > 0, ρj,m > 0 and τj,m > 0, j = 1, · · · , p,m = 1, · · · ,M . If the

prior distribution of βj,m|δm, ηj,m is defined as Eq. (2.13), we have

lim
n→∞

P (S0|Y ) = 1.

Proof. Let the prior distribution of βj,m is defined as

βj,m|δj, ηj,m = (1− δjηj,m)N(0, a2n) + δjηj,mN(0, τ 2j,m), (6.15)

where 0 < an < τj,m, ∀m, j, and an → 0 when n→∞. In this prior assumption, we

need prove that

P (δj = 1|Y )→

 1, ∃ m ∈ {1, · · · ,M} : j ∈ Sm,0,

0, ∀ m ∈ {1, · · · ,M} : j 6∈ Sm,0,
(6.16)

and

P (ηj,m = 1|δj = 1,Y )→

 1, j ∈ Sm,0,

0, j 6∈ Sm,0,
(6.17)

when an → 0, where Sm,0 is the true model for the m-th singular regression model.

From Eq. (6.15), given any Q ∈ S for Lemma 1, we have βQ|Q ∼ N(0, σ2Id), where

d = #Q, is chosen from Θ that is an open set of Rd and the prior density of βQ|Q

is continuous and positive on Θ. Therefore, we can obtain βQ|Q, Ym
P−→ β?Q,∀ Q ∈ S.

That is, for each response vector Ym

β|Ym
P−→ β?m. (6.18)
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If we consider all M response vectors together at the same time, Eq. (6.18) becomes

B|Y P−→ B?. (6.19)

Hence

lim
n→∞

P (δj = 1|Y ) = lim
n→∞

P (δj = 1,Y )

P (Y )

= lim
n→∞

∫
P (β(j), δj = 1,Y )

P (Y )
dβ(j)

= lim
n→∞

∫
P (β(j), δj = 1,Y )

P (β(j),Y )

P (β(j),Y )

P (Y )
dβ(j)

= lim
n→∞

∫
P (δj = 1|β(j),Y )dF (β(j)|Y )

= P (δj = 1|β(j)?), (6.20)

where Eq. (6.20) holds by Eq. (6.19), and β(j)? = (β?j,1, · · · , β?j,M) is the vector of true

coefficients for variable Xj in the multi-response linear regression model. Then the

posterior probability of δj converges to

P (δj = 1|β(j)?) =
P (β(j)?, δj = 1)

P (β(j)?)

=

∑
η(j) P (β(j)?, η(j), δj = 1)∑

η(j) P (β(j)?, η(j), δj = 1) + P (β(j)?, η(j) = 0, δj = 0)

=
1

1 +
θj

1−θjC1

, (6.21)
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where

C1 =
P (β(j)?, η(j) = 0|δj = 0)∑
η(j) P (β(j)?, η(j)|δj = 1)

=

M∏
m=1

P (β?j,m|ηj,m = 0, δj = 0)

∑
η(j)

M∏
m=1

P (β?j,m|ηj,m, δj = 1)P (ηj,m|δj = 1)

=

M∏
m=1

1
an

exp
(
−β?2j,m

2a2n

)
∑

η(j)

M∏
m=1

(
ρj,m

1
an

exp
(
−β?2j,m

2a2n

))1−ηj,m (
(1− ρj,m) 1

τj,m
exp

(
− β?2j,m

2τ2j,m

))ηj,m
=

∑
η(j)

M∏
m=1

ρj,m

(
1− ρj,m
ρj,m

an
τj,m

exp

(
−
β?2j,m

2

a2n − τ 2j,m
a2nτ

2
j,m

))ηj,m−1 .
If j should not be included in any Sm,0, i.e. β?j,m = 0, ∀ m, then we have

P (δj = 1|β(j)?) =
1

1 +
θj

1−θj

[∑
η(j)

M∏
m=1

ρj,m

(
1−ρj,m
ρj,m

an
τj,m

)ηj,m]−1 . (6.22)

It converges to 0 when an → 0. That is, P (δj = 1|Y )→ 0, when an → 0, if j should

not be included in any Sm,0.

If j should be included in at least one Sm,0, it means at least one β?j,m 6= 0,

m ∈ {1, · · · ,M}. Because when βj,m 6= 0, we have an
τj,m

exp
(
−β2

j,m

2

a2n−τ2j,m
a2nτ

2
j,m

)
→ ∞

when an → 0. In this case, C1 → 0 when an → 0. Therefore, we get P (δj = 1|Y )→ 1

when an → 0, if ∃ m ∈ {1, · · · ,M} : j ∈ Sm,0. Then Eq. (6.16) is proven.

Similarly, we can have

P (δj = 0|β(j)?) =
P (β(j)?, η(j) = 0, δj = 0)∑

η(j) P (β(j)?, η(j), δj = 1) + P (β(j)?η(j) = 0, δj = 0)

=
1

1−θj
θj
C2 + 1

, (6.23)
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where

C2 =

∑
η(j) P (β(j)?η(j)|δj = 1)

P (β(j)?, η(j) = 0|δj = 0)
= C−11 .

Using the same argument, we can get the result:

P (δj = 0|Y )→

 0, ∃ m ∈ {1, · · · ,M} : j ∈ Sm,0,

1, ∀ m ∈ {1, · · · ,M} : j /∈ Sm,0,
(6.24)

Next we consider the active support in each singular model. Suppose we know j

is included in at least one Sm,0, then we want to know on which specific model the

variable is active through the posterior conditional probability:

P (ηj,m = 1|Y ) = P (ηj,m = 1, δj = 1|Y ) = P (ηj,m = 1|δj = 1,Y )P (δj = 1|Y ).

(6.25)

Then

lim
n→∞

P (ηj,m = 1, δj = 1|Y ) = lim
n→∞

P (ηj,m = 1, δj = 1,Y )

P (Y )

= lim
n→∞

∫
P (βj,m, ηj,m = 1, δj = 1,Y )

P (Y )
dβj,m

= lim
n→∞

∫
P (βj,m, ηj,m = 1, δj = 1,Y )

P (βj,m,Y )

P (βj,m,Y )

P (Y )
dβj,m

= lim
n→∞

∫
P (ηj,m = 1, δj = 1|βj,m,Y )dF (βj,m|Y )

= P (ηj,m = 1, δj = 1|β?j,m). (6.26)
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Here Eq. (6.26) is held due to Eq. (6.19) and it can be expressed as

P (ηj,m = 1, δj = 1|β?j,m)

=
P (β?j,m, ηj,m = 1, δj = 1)

P (β?j,m)

=
P (β?j,m, ηj,m = 1, δj = 1)

P (β?j,m, ηj,m = 1, δj = 1) + P (β?j,m, ηj,m = 0, δj = 1) + P (β?j,m, ηj,m = 0, δj = 0)

=
(1− θj)(1− ρj,m)

(1− θj)(1− ρj,m) + ((1− θj)ρj,m + θj)
τj,m
an

exp
(
−β?2j,m

2
( 1
a2n
− 1

τ2j,m
)
) . (6.27)

If j is included in Sm,0, i.e. β?j,m 6= 0, Eq. (6.27) converges to 1 when an → 0. If j is

not included in Sm,0, i.e. β?j,m = 0, Eq. (6.27) converges to 0 when an → 0. That is,

when an → 0, we have that Eq. (6.17) is obtained.

Similarly, using the same approach, we can have

lim
n→∞

P (ηj,m = 0, δj = 1|Y )

= P (ηj,m = 0, δj = 1|β?j,m)

=
P (β?j,m, ηj,m = 0, δj = 1)

P (β?j,m, ηj,m = 1, δj = 1) + P (β?j,m, ηj,m = 0, δj = 1) + P (β?j,m, ηj,m = 0, δj = 0)

=
(1− θj)ρj,m

(1− θj)(1− ρj,m) an
τj,m

exp
(
−β?2j,m

2
( 1
τ2j,m
− 1

a2n
)
)

+ (1− θj)ρj,m + θj
,

and

lim
n→∞

P (ηj,m = 0, δj = 0|Y )

= P (ηj,m = 0, δj = 0|β?m)

=
P (β?j,m, ηj,m = 0, δj = 0)

P (β?j,m, ηj,m = 1, δj = 1) + P (β?j,m, ηj,m = 0, δj = 1) + P (β?j,m, ηj,m = 0, δj = 0)

=
θj

(1− θj)(1− ρj,m) an
τj,m

exp
(
−β?2j,m

2
( 1
τ2j,m
− 1

a2n
)
)

+ (1− θj)ρj,m + θj
.
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Then we can get the result

P (ηj,m = 0, δj = 1|Y )→

 0, j ∈ Sm,0,
(1−θj)ρj,m

(1−θj)ρj,m+θj
, j 6∈ Sm,0,

(6.28)

P (ηj,m = 0, δj = 0|Y )→

 0, j ∈ Sm,0,
θj

(1−θj)ρj,m+θj
, j 6∈ Sm,0.

(6.29)

When an → 0, it implies that the prior distribution of βj,m converges to Eq. (2.13).

Therefore, Eq. (6.16), Eq. (6.17), Eq. (6.24), Eq. (6.28), and Eq. (6.29) hold if the

prior distribution of βj,m is defined as Eq. (2.13). Assume the true model S0 is

identified by the inclusion Aj,m = {(j,m) : ηj,m = 1} and exclusion of the remaining

Bj,m = {(j,m) : ηj,m = 0}. Let S be the model chosen from all 2p possible models,

then

lim
n→∞

P (S = S0|Y ) = lim
n→∞

P
(⋂

Aj,m
⋂

Bj,m|Y
)

= lim
n→∞

[∏
P (Aj,m|Y )

∏
P (Bj,m|Y )

]
= 1

Because

lim
n→∞

P (Aj,m|Y ) = lim
n→∞

P (ηj,m = 1|Y ) = 1,

lim
n→∞

P (Bj,m|Y ) = lim
n→∞

P (ηj,m = 0|Y )

= lim
n→∞

P (ηj,m = 0, δj = 1|Y ) + lim
n→∞

P (ηj,m = 0, δj = 0|Y )

= 1.

through Eq. (6.17), Eq. (6.28), and Eq. (6.29). Therefore, we can obtain

lim
n→∞

P (S0|Y ) = 1. (6.30)

83



Proof. Proof of Theorem 1

To accomplish the proof, based on the median probability criterion, we need to

show that the two sets of indicator variables should follow the equations as below

P (δ̃j = 1|Y , S0)→ Pj

 > 1/2, ∃ m ∈ {1, · · · ,M} : j ∈ Sm,0,

< 1/2, ∀ m ∈ {1, · · · ,M} : j /∈ Sm,0,
(6.31)

P (ηj,m = 1|δ̃j = 1,Y , S0)→ Pj,m

 > 1/2, j ∈ Sm,0,

< 1/2, j 6∈ Sm,0,
(6.32)

where δ̃j = δj × 1(η(j) 6= 0).

From Lemma 1, by conditional on model Sm,0, we have

βm,0|Ym, Sm,0
P−→ β?m,0. (6.33)

Let Scm,0 be the complement of Sm,0, i.e. Scm,0 is the set with inactive variables for the

m-th singular model, then

lim
n→∞

P (|βcm,0| > ε|Ym, Sm,0) = lim
n→∞

P (|βcm,0| > ε, Ym|Sm,0)
P (Ym|Sm,0)

= lim
n→∞

∫
P (βm,0, |βcm,0| > ε, Ym|Sm,0)dβm,0∫

P (βm,0, Ym|Sm,0)dβm,0

= lim
n→∞

P (|βcm,0| > ε|Sm,0)
∫
P (βm,0, Ym||βcm,0| > ε, Sm,0)dβm,0∫

P (βm,0, Ym||βcm,0| > ε, Sm,0)dβm,0

= lim
n→∞

P (|βcm,0| > ε|Sm,0)

= 0,
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that is,

βcm,0|Sm,0, Ym
P−→ β?cm,0 = 0. (6.34)

Using Eq (6.33) and Eq. (6.34), we have

β|Sm,0, Ym
P−→ β?m,∀ m = 1, · · · ,M. (6.35)

Hence

lim
n→∞

P (δ̃j = 1|Y , S0) = lim
n→∞

∫
P (β(j), δ̃j = 1|Y , S0)dβ

(j)

= lim
n→∞

∫
P (β(j), δ̃j = 1,Y |S0)

P (Y |S0)
dβ(j)

= lim
n→∞

∫
P (β(j), δ̃j = 1,Y |S0)

P (β(j),Y |S0)

P (β(j),Y |S0)

P (Y |S0)
dβ(j)

= lim
n→∞

∫
P (δ̃j = 1|β(j),Y , S0)dF (β(j)|Y , S0)

= P (δ̃j = 1|β(j)?, S0), (6.36)

where the Eq. (6.36) holds by Eq. (6.35). Then the posterior probability of δ̃j is

P (δ̃j = 1|β(j)?, S0)

=
P (β(j)?, δ̃j = 1|S0)

P (β(j)?|S0)

=

∑
η(j) 6=0 P (β(j)?, η(j), δ̃j = 1|S0)∑

η(j) 6=0 P (β(j)?, η(j), δ̃j = 1|S0) + P (β(j)?, η(j) = 0, δ̃j = 0|S0)
. (6.37)

If ∃ m ∈ {1, · · · ,M} such that j ∈ Sm,0 , there is at least one model m such that

β?j,m 6= 0. Therefore, P (β?(j), δ̃j = 0, η(j) = 0|S0) should be equal to 0 and then we

obtain that

P (δ̃j = 1|β(j)?, S0) = 1 (6.38)

based in Eq. (6.37). That is limn→∞ P (δ̃j = 1|Y , S0) > 1/2 if variable Xj is in at

least one true singular model Sm,0.
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If variable Xj is inactive in any singular model m, i.e. β?j,m = 0,∀ m. Then

Eq. (6.37) can be expressed as

1

1 +
P (β?(j),η(j)=0,δ̃j=0|Q0)∑
η(j) 6=0

P (β(j)?,η(j),δ̃j=1|Q0)

=
1

1 +
θj

(1−θj)
∑
η(j) 6=0

∏M
m=1

(
(1−ρj,m) 1√

2πτj,m

)ηj,m
(ρj,m)1−ηj,m

=
1

1 +
θj

(1−θj)

[∑
η(j) 6=0

∏M
m=1

(
1√

2πτj,m

)ηj,m
(ρj,m)1−ηj,m (1− ρj,m)ηj,m

]−1 . (6.39)

Let τ(j,1) = min{τj,1, · · · , τj,M}, then we have

∑
η(j) 6=0

(
M∏
m=1

(
1√

2πτj,m

)ηj,m
(ρj,m)1−ηj,m (1− ρj,m)ηj,m

)
6

1√
2πτ(j,m)

.

Therefore, based on the assumption in Eq. (6.1), we can show that Eq. (6.39) is less

than 1/2. That is, limn→∞ P (δ̃j = 1|Y , S0) < 1/2 if Xj is an inactive variable in all

singular models. Therefore, Eq. (6.31) is obtained.

Next we consider the consistency of the support in each singular model. Suppose

variable Xj is active in the m-th singular model, then the following equation

P (ηj,m = 1|Y , S0) = P (ηj,m = 1|δj = 1,Y , S0)P (δj = 1|Y , S0) (6.40)

holds with prior assumption. Hence we can get

lim
n→∞

P (ηj,m = 1|Y , S0) = lim
n→∞

P (ηj,m = 1|δj = 1,Y , S0) (6.41)
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via Eq. (6.36) and Eq. (6.38). Then

lim
n→∞

P (ηj,m = 1|Y , S0) = lim
n→∞

P (ηj,m = 1,Y , S0)

P (Y , S0)

= lim
n→∞

∫
P (βj,m, ηj,m = 1,Y , S0)

P (Y , S0)
dβj,m

= lim
n→∞

∫
P (βj,m, ηj,m = 1,Y , S0)

P (βj,m,Y , S0)

P (βj,m,Y , S0)

P (Y , S0)
dβj,m

= lim
n→∞

∫
P (ηj,m = 1|βj,m,Y , S0)dF (βj,m|Y , S0)

= P (ηj,m = 1|β?j,m, S0), (6.42)

where Eq. (6.42) is held based on Eq. (6.35), and can be expressed as

P (ηj,m = 1|β?j,m, S0) = P (ηj,m = 1, δ̃j = 1|β?j,m, S0)

=
P (β?j,m, ηj,m = 1, δ̃j = 1|S0)

P (β?j,m|S0)

=
P (β?j,m, ηj,m = 1, δ̃j = 1|S0)

P (β?j,m, ηj,m = 1, δ̃j = 1|S0) + P (β?j,m, ηj,m = 0, δ̃j = 1|S0)
,

(6.43)

because

P (β?j,m, ηj,m = 0, δ̃j = 0|S0) = P (β?j,m, ηj,m = 0|δ̃j = 0, S0)P (δ̃j = 0|S0) = 0

Suppose j is included in Sm,0, it means β?j,m 6= 0, then Eq. (6.43) is equal to 1 because

P (β?j,m, ηj,m = 0, δ̃j = 1|S0) = 0. On the other hand, if Xj is not active in the m-th

singular model, that is β?j,m = 0, Eq. (6.43) becomes

1

1 +
ρj,m

1−ρj,m

√
2πτj,m

. (6.44)

Therefore based on the assumption in Eq. (6.1), we obtain Eq. (6.43) is less than1/2.

Thus Eq. (6.32) is proven. Combine Eq. (6.31) and Eq. (6.32)

lim
n→∞

P (Sme = S0|Y , S0) = 1. (6.45)

87



Finally, we have

lim
n→∞

P (Sme = S0|Y ) = lim
n→∞

P (Sme = S0|Y , S0)P (S0|Y )+

lim
n→∞

2p−1∑
k=1

P (Sme = S0|Y , Sk)P (Sk|Y )

> lim
n→∞

P (Sme = S0|Y , S0)P (S0|Y )

=1,

according to Eq. (6.45) and Lemma 2, and the proof of Theorem 1 is completed.

88



CHAPTER 7

Empirical Results

In this chapter, with the proposed two-layer Gibbs sampler for learning the multi-

response linear regression, we conduct a number of numerical simulations to evaluate

the performance of support union recovery on different finite sample size. Depending

on the different number of tasks and on the different sparsities of the regression

vectors, we study how the sample size affect the accuracy of support union recovery

both in the shared model and in individual models. Besides, we also compare the

performance of the proposed two-layer Gibbs sampler and the sparse group Lasso.

In each replication, we measure the true positive rate (TPR), false positive rate

(FPR), and accuracy, of the first and the second set of indicator variables, δj and

ηj,m, respectively. True positive rate, which is also called the sensitivity, measures the

proportion of the variables in the support union which are correctly chosen as active.

It is a measure of correct recovery. False positive rate measures the proportion of the

variables outside the support union which are mis-identified as active. It measures the

prediction errors. Accuracy measures the proportion of true results of all variables.

For TPR and accuracy, the higher the better, and for FPR, the lower the better. The

performance is evaluated by taking average over 100 replications.
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7.1 Simulation on Different Number of Tasks

In the first study, we consider the scenario when the number of tasks M varies. We

set the predicator vector Xj as

Xj = Gj +G,

where Gjs and G are independently generated from multivariate normal distribution

with mean zero and covariance matrix In. Then the correlation between any two

predictors is 0.5. The sparsity of the linear regression vector is linear proportional to

the dimension p, i.e., s = αp, where α is the parameter that controls the sparsity of the

model. We set α = 1/16 and choose two different sizes of regressors p = {128, 256}.

In the setting of the coefficients, half of the active variables in the support union

have nonzero coefficients over all tasks, one quarter of the active variables in the

support union have nonzero coefficients in half tasks, and the remaining quarter of

the active variables in the support union have nonzero coefficient in quarter of the

tasks. The values of the nonzero coefficients are chosen randomly from {0.5, 1, 2, 3}.

We apply the sample version of two-layer Gibbs sampler for support union recovery

with M = {4, 8, 12, 16}. The setting of prior parameters are: θj,m = ρj,m = 0.5, τ 2j,m =

20, a = b = 0.001 for all m = 1, · · · ,M, j = 1, · · · , p.

Fig. 7.1 shows results of support union recovery of the shared model with two

different number of predictors p = {128, 256}, which are displayed in two different

rows respectively. After 100 replications, the mean value of the true positive rate

(TPR), the false positive rate (FPR), and the accuracy versus the rescaled sample

size r = n/[2slog(p − s)], where s = |SS| is the number of variables in the support

union of the shared model, are shown in the left, the middle, and the right column,

respectively. It shows the increase in the number of tasks do improve the performance
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of support union recovery of the shared model, no matter in true positive rate, in

false positive rate, or in the accuracy. Given the same rescaled sample size, when the

number of tasks increases, the true positive rate, i.e. the sensitivity, and the accuracy

increase, and the false positive rate, i.e. the prediction errors, decrease. Besides, the

results show that with the two-layer Gibbs sampler, the support union recovery in

the shared model rapidly reaches very good performance when the rescaled sample

size is equal or bigger than 0.5. There are sharp increases or sharp decreases when

the rescaled sample size increase from 0.2 to 0.5. Therefore, by pooling data across

tasks, two-layer Gibbs sampler can efficiently help related tasks collaborate with each

other to detect the true active variables. Furthermore, once the rescaled sample size

is big enough, the proposed Bayesian method can achieve high precision on support

union recovery in the shared model.

Fig. 7.2 shows results of support union recovery of the individual models in two

different dimensions p = {128, 256}. Generally, the performance gets better when the

number of tasks increase. And when the rescaled sample size get bigger, there is no

much difference between models with different number of tasks, because all achieve

high performance of recovery, i.e, the TPR and accuracy are close to 1, and the FPR is

close to 0. Therefore, with the proposed two-layer Gibbs sampler, we can successfully

and efficiently recover the support for each individual model simultaneously.

7.2 Simulation on Different Sparsity Ratios

In this section, we study how the sparsity ratio affect the results of support union

recovery. We fix the number of tasks M = 8, and study three linear sparsity ratios:

α = {1/8, 1/16, 1/32}. We set the dimension p = {128, 256}. The setting of the
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Figure 7.1: Plots of support union recovery of the shared models, SS, versus the con-

trol parameter r = n/[2s log(p−s)] with different number of tasks: M = {4, 8, 12, 16}.

The two rows present results for the number of regressors p = 128, 256, respectively.
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Figure 7.2: Plots of support union recovery of the individual models, SI , ver-

sus the control parameter r = n/[2s log(p − s)] with different number of tasks:

M = {4, 8, 12, 16}. The two rows present results for the number of regressors

p = 128, 256, respectively.
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predicator vector Xj, the coefficients, and the prior parameters are the same with

those in Sec. 7.1.

The results of support union recovery in the shared model and in the individual

models are shown in Fig. 7.3 and Fig. 7.4. In both figures, the influence of sparsity ra-

tio happens apparently when the rescaled sample size is small. When rescaled sample

size is small, there is significant different between models with different sparsity ratio.

The lower the sparsity ratio, the lower the TPR and accuracy, and the higher the

FPR. However, once the rescaled sample size is big enough, the influence of sparsity

decreases, because the results show that all models achieve high precision in recovery

rapidly. The only exception case is when the sparsity ratio is 1/32, and the rescaled

sample size is as low as 0.2. In this situation, the sample size used to do union sup-

port recovery is just 8 and 17 when the corresponding predictor number is 128 and

256 respectively. Therefore, although the TPR is higher than the other two sparsity

ratios 1/8 and 1/16, the FPR is also the highest. It means in this situation, with the

lack of sample size, it can’t correctly recover the true active variables, and has serious

over-selection problem. Once the sample size gets larger, the problem disappears.

94



0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 128, M = 8

n/[2s log(p−s)]

P
ro

b 
of

 C
or

re
ct

 R
ec

ov
er

y:
 δ

●

●

● ● ●

●

a = 1/8, s = 16
a = 1/16, s = 8
a = 1/32, s = 4

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 128, M = 8

n/[2s log(p−s)]

P
ro

b 
of

 F
al

se
 R

ec
ov

er
y:

 δ

●

●
● ● ●

●

a = 1/8, s = 16
a = 1/16, s = 8
a = 1/32, s = 4

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 128, M = 8

n/[2s log(p−s)]

A
cc

ur
ac

y:
 δ

●

●
● ● ●

●

a = 1/8, s = 16
a = 1/16, s = 8
a = 1/32, s = 4

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 256, M = 8

n/[2s log(p−s)]

P
ro

b 
of

 C
or

re
ct

 R
ec

ov
er

y:
 δ

●

● ● ● ●

●

a = 1/8, s = 32
a = 1/16, s = 16
a = 1/32, s = 8

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 256, M = 8

n/[2s log(p−s)]

P
ro

b 
of

 F
al

se
 R

ec
ov

er
y:

 δ

●

● ● ● ●

●

a = 1/8, s = 32
a = 1/16, s = 16
a = 1/32, s = 8

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p = 256, M = 8

n/[2s log(p−s)]

A
cc

ur
ac

y:
 δ

●

● ● ● ●

●

a = 1/8, s = 32
a = 1/16, s = 16
a = 1/32, s = 8

Figure 7.3: Plots of support union recovery of the shared models, SS, ver-

sus the control parameter r = n/[2s log(p − s)] with different sparsity ratios:

α = {1/8, 1/16, 1/32}. The two rows present results for the number of regressor

p = 128, 256, respectively.
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Figure 7.4: Plots of support union recovery of the individual models, SI , ver-

sus the control parameter r = n/[2s log(p − s)] with different sparsity ratios:

α = {1/8, 1/16, 1/32}. The two rows present results for the number of regressor

p = 128, 256, respectively.

96



7.3 Simulation on Different Methods

In this simulation, we compare the performance between the proposed sample version

of two-layer Gibbs sampler and sparse group Lasso. We set the number of tasks M =

8, sparsity ratio α = 1/8, and the dimension of predictors p = {128, 256, 512}. Fig. 7.5

shows results of support union recovery in the shared model with three different

number of predictors p = {128, 256, 512}, which are displayed in three different rows

respectively. The performance of true positive rate is shown in the left column. Two

lines by the two different methods seem to very close, but the proposed Bayesian

method achieves high precision faster than sparse group Lasso when the rescaled

sample size increases.

As for the false positive rate and accuracy, when the rescaled sample size is as small

as 0.2, the proposed Bayesian method has worse performance, due to the problem of

over-selection. However, once the rescaled sample size equal or bigger than 0.5, the

situation is reversed. In all three cases with different dimension of predictors, the

proposed Bayesian method has a sudden sharp decrease in the false positive rates,

and a sudden sharp increase in accuracy, when the rescaled sample size increase from

0.2 to 0.5. However, the influence of rescaled sample size on the sparse group Lasso

is less apparent.

Fig. 7.6 shows results of support union recovery in individual models. In the three

different measures, TPR, FPR and accuracy, the performance of the two-layer Gibbs

sampler is better than that in sparse group Lasso, except when the rescaled sample

size is 0.2. With the proposed Bayesian method, when the rescaled sample size is

equal or bigger than 0.5, the values of true positive rate and the accuracy are close

to 1, and the value of false positive rate is close to 0. Combine the results together,
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the proposed two-layer Gibbs sampler do have better recovery performance on the

support union in the shared model and in the individual models simultaneously.
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Figure 7.5: Plots of support union recovery of the shared models, SS, versus the

control parameter r = n/[2s log(p− s)] by two-layer Gibbs sampler and sparse group

Lasso. The three rows present results for the number of regressor p = 128, 256, 512,

respectively.
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Figure 7.6: Plots of support union recovery of the individual models, SI , versus the

control parameter r = n/[2s log(p− s)] by two-layer Gibbs sampler and sparse group

Lasso. The three rows present results for the number of regressor p = 128, 256, 512,

respectively.
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CHAPTER 8

Conclusion

A Bayesian variable selection method is studied in this work for recovering the union

of support sets, where two nested sets of indicators are augmented into the multi-

response linear regression model. Firstly, a two-layer Gibbs sampler based on the

two-layer setting is proposed for the posterior sampling. The posterior probabilities

of indicators are computed with likelihood ratio functions. By sampling the two sets of

indicator variables with the posterior probabilities, the union of the support sets can

be recovered, and active variables for specific responses can be identified. Secondly,

after learning the multi-response linear model, variable coefficients can be estimated

using posterior samples of indicators. Furthermore, a sample version of two-layer

Gibbs sampler with the Metropolis-Hastings acceptance rejection rule is introduced

to improve the performance. Instead of posterior probability, transition probability

is used to check whether variables are kept in the current state.

To evaluate the presented approach, a simulation study is conducted, showing

the promise on identifying active variables in multi-response linear regression models.

The result shows that using the sample version of the two-layer Gibbs sampler can

improve the performance, reducing around 35% cost on computation. The presented

sample-version approach also achieves high precision compared to Lasso methods in

terms of finding active variables. For instance, in a simulation case that our two-
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layer approach finds exactly all the 6 active variables out of 200 variables, two Lasso

methods identify around 14 active variables with 10 variables that are not active (false

positives) and two active variables that are not selected (false negatives). Finally, on

the study of sketching images with Gabor basis, we show that a shared sketch of an

object can be found effectively from different images that have the same object.

We have observed that the selection results can be sensitive to the set-up of

the prior parameters, e.g., values of success probability of indicators, and values of

coefficient variance. To address this issue, instead of using fixed values, we propose

using Beta hyper-prior for the success probabilities and using inverse Gamma hyper-

prior for the coefficient variance. The experimental result shows that the proposed

approach significantly reduces false positives on both sets of indicators compared to

a pre-given value.

Finally, the asymptotical property of the proposed Bayesian method is investigated

and proved. An empirical study is also conducted. The result confirms the property.

As for the final remark, in this study, we consider the homoscedastic model, i.e.

the covariance matrix of the error vector in each single task shares the same identity

matrix. How to extend the proposed method to the heteroscedastic multi-response

model can be an interesting project.
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