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The increase in mobile Internet usage has created a need to optimize content delivery in cellular

networks. In emerging technologies such as 5G, heterogeneous networks are proposed, which consist

of sparsely deployed cellular base stations (BS) with wide coverage but low data rate, combined

with a dense network of wireless access points (AP) of small coverage but relatively high data rate.

We envisage equipping the APs with a local cache. When a group of users request some files,

their demands are served by a (common) broadcast from one or more BSs, which is aided by side

information placed a priori in the APs. Therefore, there is a tradeoff between the size of the cache

and the size of the broadcast. Our goal is to design schemes that optimize this tradeoff.

Traditional caching techniques, which have proved efficient in the wired Internet, are insufficient

to handle the explosion in multimedia demand in wireless networks. The seminal work by Maddah-

Ali and Niesen [“Fundamental limits of caching,” IEEE Transactions on Information Theory, May

2014] introduced an information-theoretic framework to study this problem and proposed the so-

called “coded caching” technique that takes advantage of the broadcast nature of wireless to send

coded multicast messages to many users at once, thus greatly improving the transmission rate. This
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original work assumed a caching system with an error-free broadcast link between the content library

and the users, focused on equally popular files, and assumed that each user has one exclusive local

cache. Inspired by this work, this thesis studies more general coded caching problems within this

information-theoretic framework. Broadly speaking, we focus on non-uniform content popularity

as well as more general network topologies.

First, we consider a system where the files desired by the users are not all equally popular. We

adopt a “multi-level” popularity model where files are partitioned into multiple popularity classes.

Under this model, we study the behavior of the system as the total number of users, as compared

to the number of caches, varies. Furthermore, we allow a more complex topology by requiring some

users to connect to multiple caches at once. We find approximately optimal strategies for the two

extreme cases: when the number of users per cache is very large, and when each cache has exactly

one user. An interesting dichotomy is observed where the approximately optimal strategies required

for these two extremes are very different. Finally, we provide a heuristic for “discretizing” common

popularity distributions such as Zipf into multiple levels, and numerically evaluate its performance.

Second, we study the caching problem when we are allowed to assign users to caches after

their demands are known, under some restrictions. Specifically, we divide the caches into several

clusters, and we assume that each user can be assigned to one cache from a specific cluster and

that each cache can serve no more than one user. Focusing on a stochastic Zipf popularity model,

we find that there are regimes in which coded caching is no longer efficient. Instead, a strategy

that consists in replicating files across clusters and performs an uncoded delivery dominates certain

regimes. We compare these two schemes and find the regimes in which each is more efficient, as

a function of cache memory, cluster size, and skewness of popularity. Finally, we show that each

scheme is approximately optimal in some of these regimes.

Third, we return to the uniform popularity model in order to study more complicated networks

than the error-free broadcast network. Our main focus is on Gaussian interference networks, where

caches are placed at both the transmitters (BSs) and the receivers (APs). We propose a separation-

based approach that creates separate network and physical layers, with a multiple-multicast message

set to act as an interface between them. At the physical layer, we focus on transmitting this message

set across the interference channel; at the network layer, we solve the caching problem using the
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message set as a set of error-free links replacing the channel. We show that this architecture

is approximately optimal under high SNR. Among the implications of this result is that placing

common information between the transmitters cannot give more than a constant-factor benefit.

Moreover, we show that, when the receiver memory is large, a small number of transmitters is

enough to obtain most of the benefits.
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Chapter 1

Introduction

1.1 Caching in Wireless Networks

Broadband data consumption has witnessed a tremendous growth over the past few years, due

in large part to multimedia applications such as Video-on-Demand. The traditional solution to

manage this increased demand in the wired Internet is via Content Distribution Networks (CDNs),

in which data is mirrored in various locations across the network. This in effect pushes the content

closer to the end users, thereby removing the bottleneck at the content distribution server by

utilizing repeated demand of particular content.

Wireless data consumption, driven by the increased demand for high-definition content on

mobile devices, has also grown at a significant rate [1] and is testing the limits of our underlying

wireless communication systems [2]. However, simply borrowing the CDN solution from wired

networks and applying it to wireless systems is insufficient to solve the wireless content delivery

problem. The reason is that the CDN solution has the most gains when the local communication

link is not the bottleneck [3]. In wireless cellular usage, this is typically not true as the (cellular)

wireless hop is a bottleneck link. As we argue in this thesis, by leveraging the properties of wireless

channels, embedding caching in the emerging wireless network, and jointly designing storage and

transmission, one could create a foundational methodology that could enable a solution to the

wireless content delivery problem.

The broadcast nature of wireless can be used as an advantage to alleviate this problem. This,
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Figure 1.1: A wireless heterogeneous network (HetNet). Each user (circle) can connect to one or more APs
in its vicinity and access its local cache, while listening to broadcast messages from one of more BSs.

along with the emerging heterogeneous wireless network can be used to provide an architecture for

wireless content distribution. The heterogeneous wireless network (HetNet) architecture emerging

for 5G consists of a dense deployment of wireless access points (APs) with small coverage and rela-

tively large data rates, in combination with sparse cellular base-stations (BSs) with large coverage

and smaller data rates. For example, the access points could be WiFi or emerging small-cells (or

femto-cells), which provide high data rate for short ranges. The consequence of this emerging archi-

tecture is that a user could potentially receive broadcast from one or more BSs as well as connect

to one or more wireless APs. Therefore, we could place caches at local APs and complement them

with macro-cellular (BS) broadcast, as illustrated in Figure 1.1.

A first study of such a caching system was done by Maddah-Ali and Niesen in [4, 5]. They

derived the first fundamental limits of caching in wireless networks by considering a problem where

content can be stored in multiple caches without a priori knowledge of any user requests. Once

the users’ file requests are revealed, the cache contents are complemented by a broadcast message

transmitted by one BS to all users. The users can then combine this broadcast message with the

contents of their cache in order to recover the file that they requested. In [4], the authors show that

a joint design of storage and delivery, also known as “coded caching”, can significantly improve

content delivery rate requirements and yield large gains over traditional caching methods. This was
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achieved by a content placement that creates network-coded multicast opportunities among users

with access to different storage units, even when these users have different (and a priori unknown)

requests. This approach enables an examination of the optimal trade-off between cache memory

size and broadcast delivery rate. In fact, by using the coded caching technique and by deriving

information-theoretic impossibility results, the authors characterize the optimal trade-off to within

a constant multiplicative factor.

The problem studied in [4, 5] focused on an error-free broadcast setting in which each user

has their own local cache, and in which all files are equally popular. While these works were a

significant first step, some natural questions arise about more general settings. In this thesis, we

focus on three main questions. First, we ask how the scheme changes when the content follows some

non-uniform popularity distribution. For example, it is often the case that some files are requested

much more often than the rest (e.g., viral videos). Second, we ask how the density of APs and

of users in the heterogeneous network, as depicted in Figure 1.1, can influence the strategy. In

particular, we consider two aspects: the load on each AP (how many users are connected to one

AP) and the density of the APs (how many APs are in the vicinity of any user). Third, we look

at physical-layer aspects of the problem by considering multiple BSs and the resulting interference

between them. We ask whether breaking the separation between the network layer and the physical

layer is necessary, or whether a separation architecture is (approximately) optimal. Each chapter

in this thesis studies a novel problem that explores one or more of these questions.

1.2 Thesis Outline

As mentioned above, this thesis explores some fundamental questions that arise from the setting

initially studied in [4]. The setting is generalized to non-uniform popularity, multiple access, and

interference. We address these in three chapters.

In Chapter 2, we study the caching problem when the content popularity obeys a multi-level

model. In this model, the files are grouped into a small number of popularity classes (called levels)

such that the files in the same class are equally popular. We focus on a broadcast setup and allow

many users to connect to the same cache, and we study how the number of users per cache changes
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the behavior of the system.

One of the main contributions of the chapter is that the approximately optimal strategy when

there are many users per cache is very different to the one when there is only one user per cache.

When there are many users per cache, the approximately optimal strategy is to completely sepa-

rate the levels by partitioning the cache memory and allocating each part to one level. Perhaps

surprisingly, we find that it is often beneficial to allocate some memory to the less popular levels

even when the more popular levels are not completely stored. On the other hand, when there is

only one user per cache, then it is more efficient to merge some popularity levels and treat them as

though their files are of the same popularity.

In addition, Chapter 2 combines the multi-level popularity model with the ability of users to

connect to multiple caches. In particular, all users requesting files from the same popularity level

are required to connect to the same number of caches, but this number can be different across

levels. We refer to this as multi-level access. The chapter explores the effect of this multi-level

access, which enables achieving a lower network load for smaller memories.

In Chapter 3, we consider again the possibility of users connecting to multiple caches. The

difference is that, while a user has the ability to connect to many caches, the central server assigns

one cache to the user after the demands of the users are revealed. In other words, once the

users reveal their demands, we are allowed to choose a matching of users to caches, under some

restrictions, and then transmit a broadcast message to all users. We call this an adaptive matching

setup. We also adopt a non-uniform popularity model in this chapter, however it is a stochastic

model in which the number of requests for each file follows a Poisson distribution independently of

the other files.

One of the main contributions of the chapter is that a coded caching approach is no longer

always approximately optimal. Indeed, instead of creating differences in the caches by placing

different parts of files (as is done with coded caching), it is often more efficient to fully replicate

the popular files across multiple caches. When a user requests a file, it is then either matched to

a cache containing that file or served directly with a unicast message. We find that the regime in

which this approach is more efficient than the coded caching approach is larger not only when users

have potential access to a larger number of caches, but also when the popularity of files is more
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heavily skewed, i.e., a smaller number of files are requested by a larger number of users.

In Chapter 4, we study the joint design of caching and delivery in the presence of interference.

In particular, we consider multiple transmitters, each equipped with a cache, in addition to the

receivers (users). The receivers are also each equipped with a local cache. The transmitters and

receivers are separated by a Gaussian interference network where, at the physical layer, each receiver

observes a noisy linear combination of all the transmitter signals. In order to isolate the interference

aspect of the problem, we adopt the uniform popularity model in this chapter, i.e., all files are

equally popular.

Our main contribution in Chapter 4 is an approximate characterization of the communication

degrees of freedom (DoF) of the network, i.e., the log-scaling of the communication rate with

the signal-to-noise ratio. Our characterization reveals three key insights. First, the approximate

DoF is achieved using a strategy that separates the physical and network layers. This separation

architecture is thus approximately optimal. Second, we show that increasing transmitter cache

memory beyond what is needed to exactly store the entire library between all transmitters does

not provide more than a constant-factor benefit to the DoF. A consequence is that transmitter co-

operation (e.g., transmit zero-forcing) is not needed for approximate optimality. Third, we derive

an interesting trade-off between the receiver memory and the number of transmitters needed for

approximately maximal performance. In particular, if each receiver can store a constant fraction of

the content library, then only a constant number of transmitters are needed. Solving the caching

problem requires formulating and solving a new communication problem, the symmetric multiple

multicast X-channel, for which we provide an exact DoF characterization.

We conclude the thesis in Chapter 5 with a discussion of open problems.

Finally, we note that much of the work in this thesis has previously been published. Most of

Chapter 2 was published in [6], most of Chapter 3 is to appear in [7], and most of Chapter 4 is

found in [8, 9].
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Chapter 2

Multi-Level Popularity and Access

2.1 Introduction

In this chapter, we expand on the coded caching problem initiated in [4, 5] mainly by considering

non-uniform popularities. The setup studied in [4, 5] consisted of single-level content, i.e., every

file in the system is uniformly demanded. However, it is well understood that content demand

is non-uniform in practice, with some files being more popular than others. Motivated by this,

[10, 11, 12, 13, 14, 15] considered such non-uniform content demand, following different models.

In [10, 11, 12], the setup considered a single user per cache requesting a file independently and

randomly according to some (arbitrary) probability distribution that represents content popularity.

These works studied the trade-off between the average rate and the cache memory. A memory-

sharing scheme was proposed in [10], and its achievable rate was characterized. However, from

our understanding, this scheme was not shown to be order-optimal in general.1 In [11], a different

scheme was proposed, based on a clustering of the most popular files into a single content level,

which was shown to be order-optimal for Zipf-distributed content and, more recently, for arbitrary

distributions in [12].

By contrast, in [13], a deterministic multi-level popularity model was introduced (simultaneous

to the aforementioned other non-uniform popularity models), where content is divided into discrete

1We refer to an “order-optimal” result as one that is within a constant multiplicative factor from the information-
theoretic optimum. The constant is to be independent of the number of users, caches, memory size and number of
popularity levels.
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levels based on popularity. In this chapter, we focus on this model and study it mostly in the

context where a large number of users connect to each cache (“multi-user setup”), and, for each

level, a fixed and a priori known fraction of the users per cache request files from said level. It

is easy to see that, when the number of users per cache is large enough, this deterministic model

will closely approximate an equivalent stochastic-demands model similar to [10, 11, 12]. We also

study the scenario where users could connect to multiple access points (caches) as well as listen to

the broadcast to get the desired content. In short, the setup considered has a different popularity

model, user population, and cache access to those considered in earlier literature. We also compare

the results, for this popularity model, between setups with many users per cache (multi-user setup)

and a single user per cache (single-user setup).

The main contribution of this chapter is, for any given multi-level content popularity profile,

to approximately solve the trade-off of the transmission cost at the BS with the storage cost at

the APs. In addition, we also approximately solve the case where users have access to multiple

APs. Finally, we study the effect of number of users per cache in the multi-level content popularity

model. In particular, the following are the core technical contributions of the chapter:

• We propose new strategies for the multi-level popularity and access model, both for small

(single-user setup) and large (multi-user setup) number of users.

• We derive information-theoretic outer bounds in order to evaluate the performance of the

proposed schemes. Notably, we derive novel non-cut-set-based outer bounds for the multi-

user setup.

• We demonstrate the order-optimality of the strategies (both when the number of users is

small and when it is large) with respect to the information-theoretic outer bounds. This

order-optimality is independent of the number of popularity levels, users, files, and caches.

• Finally, we demonstrate that the order-optimal strategy for the problem can be very different

depending on the total number of users in the system, as compared to the number of caches.

In particular, when there are many users per cache (i.e., the multi-user setup), the order-

optimal strategy requires a complete separation of the levels along with a careful allocation of

7



the cache memory between them. A striking aspect of this solution is that, in some regimes,

it is better to store some less popular content without completely storing the more popular

content, even when cache memory is available. In contrast, in the single-user setup, we show

that merging the most popular levels and giving them all the memory, leaving none for the

rest, is order-optimal; this is similar to a strategy proposed in [11, 12].

The chapter is organized as follows. Section 2.2 formulates the problem, describing precisely

the multi-user and single-user setups. We establish some background in Section 2.3, which enables

us to state the main results in Section 2.4. The caching and delivery strategy for the multi-user

setup, as well as corresponding lower bounds, are given in Section 2.5, while the single-user setup

is studied in Section 2.6. A brief discussion about the dichotomy between the two setups is given

in Section 2.7. Section 2.8 presents a discussion and some numerical evaluations to interpret the

results. Finally, Section 2.9 explores some practical considerations and presents results from a

working system that we have implemented. Many of the detailed proofs are given in Appendix A.

Related Work

Content caching has a rich history and has been studied extensively, see for example [16] and

references therein. More recently, it has been studied in the context of Video-on-Demand systems

where efficient content placement and delivery schemes have been proposed in [3, 17, 18, 19]. The

impact of content popularity distributions on caching schemes has also been widely investigated,

see for example [20, 21, 22].

Most of the literature has focused on wired networks and, as argued before, the solutions there

do not carry directly to wireless networks, which are the focus of this chapter. Recently, [23]

proposed a caching architecture for heterogeneous wireless networks, with the small-cell or WiFi

access points acting as helpers by storing part of the content. A content placement scheme is

formulated and posed as a linear program. However, the (information-theoretic) optimality of such

schemes was not examined in that work; in our work we develop new schemes, as well as results

showing their approximate optimality. Another aspect (also common to most of the papers in

the content caching literature) is that the delivery phase used independent unicasts to serve the

different users. The important observation to utilize broadcast to improve system performance
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by serving multiple users simultaneously was made in [5, 4]. They initiated the study of coded

caching where joint design of storage and delivery was considered for the case with a single level of

files and single cache access during delivery by proposing an order-optimal coded caching scheme.

These results have been extended to online caching systems in [24], heterogeneous cache sizes [25],

unequal file sizes [26], and improved converse arguments [27, 28]. Efficient coded caching schemes

have been devised in [29], and the effect of finite file sizes has been investigated in [30]. Content

caching and delivery has also been studied for hierarchical tree topologies [31], device to device

networks [32, 33], multi-server topologies [34], and heterogeneous wireless networks [14]. However,

most of these extensions have been for uniform popularity models.

Coded caching was extended to non-uniform popularity models in [10, 11, 12, 35], where the

setup considered a single user per cache requesting a file independently and randomly according to

some (arbitrary) probability distribution that represents content popularity. The trade-off between

memory and average delivery rate was studied in these works. The work in this chapter differs

from these as it uses a deterministic multi-level popularity model introduced in [13], enabling

a worst-case rather than average case analysis. We analytically characterize the order-optimal

splitting parameters for the memory-sharing scheme, even with user access to multiple caches. The

dichotomy of order-optimal schemes between having multiple users per cache and a single user per

cache is also demonstrated for this multi-level popularity model.

Other related work includes [36] which derives scaling laws for content replication in multihop

wireless networks; [37] which explores distributed caching in mobile networks using device-to-device

communications; [38] which studies the benefit of coded caching when the caches are distributed

randomly; and [39] which explores the benefits of adaptive content placement, using knowledge of

user requests.

2.2 Setup, Notation, and Formulation

2.2.1 Overview

Consider a content library (such as Netflix) containing files of size F bits and of varying popu-

larities. Over the course of, say, a day, users will request many files according to their popularity
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distribution: more popular files will be requested more often. In anticipation of these requests, we

place information about the files in the caches, of capacity MF bits, of APs that are close to the

users, during periods of low network traffic. We refer to this as the placement phase. Later, when

a large number of users request files during periods of high network traffic, they each connect to

one or more APs and access the contents of their caches. Since cache capacity is typically limited,

the caches cannot always fully serve all the requests, and a common broadcast message of size RF

bits is then sent to all users. The users can combine this broadcast message with the contents of

their caches to recover the files that they have requested. This phase is called the delivery phase.

It is important to stress that, while the file popularities are known during the placement phase, the

exact set of files that the users will request is not known until the delivery phase.

Clearly, there is a trade-off between M (the cache memory) and R (the broadcast rate): the

larger the value of M , the more information the caches can hold about the files, and thus the

smaller the value of R needed to serve all requests. In this chapter, we seek to characterize this

trade-off when the files in the content library follow a multi-level popularity model. Furthermore,

we capture the considerable effect that the total number of users has on the system by considering

two extremes, which we call the multi-user and the single-user setups. We also introduce a multi-

level access model, where users are required to connect to a certain number of APs based on the

popularity of the file they have requested. In the next few subsections, we will provide an informal

description and motivation for the above three aspects. The formal definitions and formulations

are presented in Section 2.2.5.

2.2.2 Multi-level popularity

In multi-media applications such as video-on-demand, we often find that a small number of files

are requested by many more users than the rest of the files. This difference in popularity can easily

influence the caching system described above. For example, when deciding what to store in the

(limited-capacity) caches, one would want to give more of the cache memory to the more popular

files, since they will be, on average, requested more often.

Different popularity models have been considered in the literature. The simplest model was

studied in [4, 5]. In this model, all files are equally popular, meaning that there is no preference
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Figure 2.1: Empirical popularities of some YouTube videos (based on number of views), with an approxi-
mating Zipf distribution.

among the users to choose one file over the others. The results were of a worst-case nature, i.e.,

they are true for all possible (valid) combinations of user demands. While this model allowed the

first approximate-optimality caching result and introduced the idea of coded caching, it is not an

accurate representation of typical multi-media data. There has since been a lot of work in the

literature on coded caching with non-uniform file popularities. Many use a probabilistic approach,

in which user demands are stochastic and follow some probability distribution, and in which the

focus is on average results rather than worst-case ones. There has been particular focus on Zipf

distributions [10, 11], which arise in examples such as YouTube videos (see Figure 2.1 based on

data from [40]), but also on arbitrary distributions [10, 12].

Typical popularity models have a “continuous” nature, such as with Zipf-distributed content

popularity. However, accurately estimating such popularities requires a large sample size of user

requests for content. This might be reasonable for the most popular content, but not for the less

popular content, especially when the content library can consist of tens of millions of files. It is

made even more difficult by the frequency of small changes in popularity over short periods of time.

Therefore, it is natural to estimate a “histogram” of this popularity distribution, by estimating the

total popularity of sets of files instead of individual files. This motivates the multi-level popularity

model, which we adopt in this chapter and which we have previously introduced in [13, 14, 15].

In this model, files are grouped into a certain (small) number L of popularity levels, such that all

files in the same level are equally popular. An added advantage of this model is that it allows a
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worst-case analysis of the problem. Furthermore, the schemes we develop for the multi-level model

can be adapted to any continuous popularity model by judiciously discretizing the popularities and

grouping files into levels of our choice. This observation is supported by (a) a numerical analysis

presented in Section 2.8, and (b) related work in the literature that analytically show that such a

discretization is useful in certain setups [12, 11], discussed in Section 2.6.3.

As mentioned above, our model assumes that files belong to L popularity levels, such that all

files in a single level are equally popular. The popularity of the files is reflected in the total number

of users in the system requesting files from each level. In the multi-level popularity model, this

number is assumed to be fixed and known to the designer a priori. For example, the designer

might know during the placement phase that, say, exactly 25 users will request a file from a specific

popularity level. However, the designer does not know which files from that level will be requested.

To motivate the determinism in this last point, consider the following example. Suppose there

are two popularity levels, and assume a stochastic-demands setup where each user is three times

as likely to request a file from the first level as he is from the second. If there are 40 users in the

network, then we would expect that about 30 of them will request a file from the first level, and

10 from the second. By the law of large numbers, when a large number of users is present in the

system, we expect a concentration of the number of users requesting files from each level around

their means. Because of this concentration, the stochastic-demands model will closely resemble the

determinism in the multi-level model that we adopt.

2.2.3 Number of users

In the example at the end of the previous section, we motivated our a priori knowledge of the

total number of users in the system requesting files level i, for each level i. In this section, we are

interested in a similar knowledge of the user requests at every cache. In particular, we want to

compare situations where we know the number of users per cache requesting a file from level i, for

all i, to situations where we lack this knowledge. We will use the phrase user profile to refer to this

knowledge. Specifically, the user profile is the number of users requesting a file from level i at cache

k, for every pair (i, k). Knowledge of the user profile is greatly dependent on the total number of

users as compared to the number of caches.
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· · ·
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Figure 2.2: Multi-user setup with K = 4 caches, and L = 2 levels with (U1, U2) = (2, 1) users per cache.
Both levels have an access degree of 1.

AP1 AP2 AP3 AP4

BS
1 N1

N2

· · ·

· · ·1

Figure 2.3: Single-user setup with K = 4 caches, and L = 2 levels with (K1,K2) = (3, 1) users.
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To illustrate, let us expand on the example from the previous section, where there are two

popularity levels such that 75% of all users, regardless of their total number, will request a file from

the first level and 25% from the second. Assume that there are four caches in the system, and that

the users are evenly distributed among them, regardless of their number. If the total number of

users is very large, say 400, then we know that 300 of them will request files from the first level and

100 from the second. More importantly, because these numbers are large compared to the number

of caches (four), then we can expect that every cache will have around 75 users for the first level

and 25 for the second (see Figure 2.2 for an illustration, albeit on a smaller scale). The designer can

hence a priori estimate the user profile with a reasonable degree of confidence. On the other hand,

consider what happens when the number of users is very small, say 4. Since we assume that the

users are evenly distributed among the caches, then we will have exactly one user at every cache.

One of these users will request a file from the second popularity level, while the other three will go

for the first level, as shown in Figure 2.3. It is thus impossible to determine a priori which cache

the level-2 user will connect to, and hence the user profile is unknown to the designer.

Because it is difficult to analyze the problem for a general number of users per cache, we restrict

ourselves to studying only the two extremes in order to bring out the key aspects affected by the

number of users. The first extreme, which we call the multi-user setup, is the one where the number

of users per cache is so large that the user profile is known and every level is represented equally

across caches, i.e., every cache has the same number Ui of users requesting files from level i. The

second extreme, which we call the single-user setup, is the one where there is exactly one user per

cache. In this setup, the user profile is unknown and the levels are not represented equally across

caches.

As we will show in this chapter, the equal representation of the levels across caches or lack

thereof gives rise to very different strategies that are suitable for each setup. Specifically, the

multi-user setup requires a strategy that completely separates the levels from each other, while the

single-user setup necessitates a strategy that merges certain levels into one super-level. Moreover,

the strategy suitable for one setup is inefficient for the other. We discuss this striking dichotomy

in detail in Section 2.7.2.
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Figure 2.4: Multi-user setup with K = 4 caches, and L = 2 levels with (U1, U2) = (2, 1) users per cache,
and access degrees of (d1, d2) = (1, 2).

2.2.4 Multi-level access

In this wireless setting, and with the high density of access points, it is inevitable that users will

have many APs in their vicinity. This in turn means that every user can potentially connect to

several APs, which could effectively increase the amount of cache memory available at the user for

the same value of M , thus lowering the broadcast rate R needed.

In this chapter, we incorporate this multiple-access aspect into the caching problem by allowing

certain users to connect to a certain number of caches. In order to keep this incorporation simple,

we assume that all users requesting files from the same level i are required to access the same

number of caches di. We call di the access degree of level i, and we refer to this multiple-access

model as the multi-level access model. Furthermore, we assume also for simplicity that the caches

are arranged linearly and that users connect to di consecutive caches, with a cyclic wrap-around

for symmetry. To be more precise, if we number the caches from 1 to K, then any arbitrary user

requesting a file from level i will connect to caches {k, k + 1, . . . , k + di − 1} for some integer k (if

k+ di− 1 > K, then the user will connect to caches {k, k+ 1, . . . ,K, 1, 2, . . . , k+ di− 1−K}). The

multi-level access is illustrated in Figure 2.4, with two levels of access degrees d1 = 1 and d2 = 2.

While this one-dimensional arrangement assumption is simplistic, it does provide an interesting

first analysis of the combination of coded caching with multiple access. Furthermore, the setup

and the ideas behind our strategies can be extended to a (more realistic) scenario where caches are

arranged in a two-dimensional lattice.
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Note that while the values of the access degrees could be chosen by the designer, we here assume

that they are given and fixed. In other words, our goal is to design efficient schemes given any

choice of di’s. This choice could be limited by the network topology such as the density of APs,

as well as by practical considerations such as the overhead associated with connecting to a larger

number of APs.

Finally, in this chapter, we restrict the multi-level access model to the multi-user setup only.

All users in the single-user setup connect to exactly one cache each.

2.2.5 Problem formulation

While the previous subsections motivated the problem setup, this subsection describes the problem

formally.

A content library contains files that obey a multi-level popularity model. Specifically, there are

L levels of files, numbered 1 through L. Every level i ∈ {1, . . . , L} consists of Ni files of size F bits

each. There are K caches in the system, each of capacity MF bits, or, equivalently, of memory M .

Multi-user setup (Figure 2.4)

In the multi-user setup, for every level i, there are exactly KUi users, each connecting to di caches

and requesting a file from level i. More specifically, for each k ∈ {1, . . . ,K}, there are exactly Ui

users connected to caches {k, 〈k + 1〉, . . . , 〈k + di − 1〉} and requesting files from level i, where

〈m〉 =


m if m ≤ K;

m−K if m > K.

(2.1)

Single-user setup (Figure 2.3)

In the single-user setup, there are exactly Ki users requesting a file from level i, for every i. More

specifically, the K caches can be partitioned into L subsets of sizes K1, . . . ,KL, such that each

cache from subset i has exactly one user connected to it, and that user requests a file from level

i. While the {Ki}i values are known to the designer, the partition itself (which is in fact the user

profile) is unknown during the placement phase. Each user connects to only a single cache (no
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multi-level access).

In both setups, content related to the files is placed in the caches during the placement phase,

before the specific user requests are revealed. After each user requests one arbitrary file (in ac-

cordance with the multi-level popularity model), the delivery phase occurs in which a broadcast

message of size RF bits (i.e., of rate R) is sent to all users, so that every user can recover the

requested file by combining the broadcast message with the contents of the cache(s) that they can

access.

A pair (R,M) is said to be achievable if there exists a placement-and-delivery strategy that uses

caches of memory M and transmits, for any possible combination of user requests (valid within the

multi-level popularity model), a broadcast message of rate at most R that satisfies all said requests

with vanishing error probability as the file size F grows. More formally, for any finite file size F , let

Pe(F, S) be the worst-case probability that some user is unable to recover their requested file using

strategy S, where “worst-case” is over all possible valid user requests. Then, (R,M) is achievable

if there exists a sequence of strategies S(F ) for increasing F such that Pe(F, S(F ))→ 0 as F →∞.

Our goal is to find all such achievable pairs. In particular, we wish to find the optimal rate-

memory trade-off,

R∗(M) = inf {R : (R,M) is achievable} ,

where the minimization is done over all possible strategies.

The problem of finding an exact characterization of the rate-memory trade-off is difficult even

for the simplest cases [4]. Therefore, in this chapter, we will instead consider approximate charac-

terizations. In particular, we wish to find a strategy that achieves a rate-memory trade-off R(M)

such that:

cR(M) ≤ R∗(M) ≤ R(M),

where c is some constant. We say that such a strategy is order-optimal.

We allow c to depend on only one parameter: the maximum access degree D = maxi di. Ac-

cessing multiple APs can be costly, both because of the overhead required for the user to establish

a connection with multiple APs, as well as the reduced rate of communication with the farther APs

that the user must now access. Thus in practice we do not expect that one user will be required to
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access a large number of caches, and so D would be quite small. However, c must be independent

of all other parameters.

2.2.6 Regularity conditions

We assume the following two regularity conditions. First, for every popularity level i, there are

more files than users. In the multi-user setup, this means:

∀i, Ni ≥ KUi. (2.2)

In the single-user setup, we would write:

∀i, Ni ≥ Ki. (2.3)

Consider for example a video application such as Netflix, where “files” would be video segments

of a few seconds to a few minutes. Borrowing an example from [31], if a content library has 1000

popular movies (from the same popularity level) of length 100 minutes, and each movie is divided

into files (segments) of one minute each, the result is 100,000 files in one popularity level. The

above regularity condition states that no more than 100,000 users will be watching one of those

1000 movies (i.e., one of the 100,000 segments, or files) at any given moment.

Second, in the multi-user setup only, we assume that no two levels have very similar popularities.

The popularity of a level can be written as the number of users per file of the level, i.e., as Ui/Ni.

Hence, if i is a more popular level than j, the regularity condition states:2

√
Ui/Ni

Uj/Nj
≥ D

β
= 198D, (2.4)

where β = 1/198 is called the level-separation factor. The reasoning behind this condition is that,

if it did not hold for some levels i and j, then we can think of them as essentially one level with

Ni +Nj files and Ui + Uj users per cache. The resulting popularity (Ui + Uj)/(Ni +Nj) would be

2As we will see in later sections, many calculations will involve the square roots of Ui and Ni. For this reason,
phrasing the regularity condition using the square roots is more useful.
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Table 2.1: Notation

All setups

K # of caches

L # of popularity levels

Ni # of files in level i

F file size

R broadcast rate

M cache memory

R∗(M) optimal rate-memory trade-off

Multi-user setup

Ui # of users per cache for level i

di access degree of level i

D maximum access degree

β = 1/198 level-separation factor

Single-user setup

Ki total # of users for level i

close to both Ui/Ni and Uj/Nj .

2.2.7 Notation table

For reference, we present in Table 2.1 all the notation that we use in this chapter.

2.3 Preliminaries

Traditional caching only uses multiple-unicast transmissions from the server to the users. As

a result, the total transmission size was proportional to the number of users, for any value of

the cache memory. Coded caching, initially introduced in [4], brought a drastic improvement by

eliminating the dependence of the transmission size on the number of users (except for very small

cache memory). This technique was shown to be approximately optimal in [4] (a centralized version)

and in [5] (a decentralized version), under a setup with a single level of popularity and a single

user at every cache, with a single-access structure. We will refer to this setup as the Basic Setup,

because it will form the basis of our main analysis.

The scheme for the Basic Setup, in its decentralized form (on which will we henceforth focus)
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consists in placing a random sampling of bits from all files in every cache, independently. Conse-

quently, there will be some overlap, but also some differences, in the bits present in every cache.

The BS then transmits linear combinations of these bits, taking advantage of the overlaps as well

as the differences, so that the same linear combination can be useful for multiple users at once.

The resulting rate-memory trade-off is given in the following Lemma.

Lemma 1 (Rate for the Basic Setup [5, Theorem 1]3). For a single-level caching system with K

caches, N ≥ K files, a single user per cache with an access degree of 1, and a cache memory of

M ∈ [0, N ], the following rate is achievable:

R0(M,K,N) = min

{
N

M
,K

}
·
(

1− M

N

)
,

and R0(M,K,N) = 0 if M > N . Furthermore, this rate is within a constant of the optimum.

Notice that, when M > N/K, then the rate becomes (N/M − 1), removing all dependence on

the number of users. Under traditional caching, the rate would have been K(1−M/N).

2.3.1 Generalizing to multi-user, multi-access

As we will see in Section 2.5, our strategy for the multi-user setup of the multi-level problem is to

isolate the levels, giving each a portion of the memory, and then applying independent caching-and-

delivery strategies for each level. We thus divide the multi-level problem into multiple single-level

problems. These single-level problems are still more general than the Basic Setup, because they

allow multiple users per cache as well as an access degree that is larger than one. Therefore, our

first step is to generalize the strategy of the Basic Setup to the case where there are U ≥ 1 users per

cache and an access degree of d ≥ 1. Specifically, caches {k, 〈k+ 1〉, . . . , 〈k+ d− 1〉} are connected

to exactly U users, for any k ∈ {1, . . . ,K}, where 〈m〉 is defined in (2.1). Figure 2.5 illustrates such

a setup, and Theorem 1 gives the rate achieved by the generalized strategy. Note that the Basic

Setup is obtained when U = d = 1.

3The expression of RD(M) in [5, Theorem 1] can be upper-bounded by the expression we give here in Lemma 1
by simply noting that N ≥ K and (1−M/N)K ≥ max{0, 1−KM/N}.
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Figure 2.5: Generalized single-level setup with U = 3 users per cache, and an access degree d = 2.

Theorem 1 (Single-level rate-memory trade-off). Given a single-level caching system, with N files,

K caches, U users at each cache with access degree d, such that N ≥ KU and d divides K, and a

cache memory of M ∈ [0, N/d], the following rate is achievable:

RSL(M,K,N,U, d) = U ·min

{
N

M
,K

}
·
(

1− dM

N

)
. (2.5)

Furthermore, RSL(M,K,N,U, d) = 0 if M > N/d. When d does not divide K, we can achieve four

times the expression in (2.5).

Theorem 1 is proved later in the section.

The rate achieved in Theorem 1 is actually order-optimal, in the sense defined in Section 2.2.5.

More specifically, RSL(·) is at most a factor of cd times the optimal rate, where d is the access

degree and c is some constant independent of all parameters. We do not need to directly prove

the order-optimality of RSL(·), because the single-level setup is a special case of the multi-level

multi-user setup, and hence the order-optimality follows from Theorem 4, presented in Section 2.4.

Notice from (2.5) that RSL(M,K,N,U, d) = U · RSL(M,K,N, 1, d). This is because we can

divide users into groups of U , such that all U users in the same group are connected to the exact

same set of d caches, and hence share the same side information. Since the single-level strategy

relies heavily on sending multiple coded multicast messages, and since coding opportunities arise

only when users have different side information, there are no coding opportunities to be gained

when considering a multicast to users connected to the same set of caches. As a result, these
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U users have to be handled with U separate messages, and thus the achievable rate is directly

proportional to U .

The behavior of RSL with d is more interesting. While, in the single-access case, a cache

memory M < N implied a non-zero transmission rate, adding the multi-access aspect results in a

zero achievable rate for the smaller memory value of N/d. Intuitively, at M = N/d, we effectively

apply an erasure-correcting code on all the files and spread it across the caches, such that any d

caches can reproduce all files. Both these insights are brought out in the proof of Theorem 1 below.

Proof of Theorem 1. For convenience, we will focus on the case when d divides K. This allows

us to achieve exactly the rate expression in (2.5). As mentioned in the theorem statement, when

d does not divide K, a rate that is four times the one in (2.5) can be achieved. This is briefly

discussed after this proof.

The key difference between the general single-level problem and the Basic Setup is that there

are now many users who have caches in common. This additional overlap in side information is

problematic because coded caching works best when the side information available to different users

can be designed independently. As an extreme example, if two users connect to the exact same

set of caches (which happens when U > 1), then the same side information is available to both of

them, and no network coding can be done to benefit them both at the same time.

The strategy we propose gets around this issue by partitioning the users into groups, such that

no two users in the same group share any cache, with the goal of multicasting coded messages to

users in the same group. To maximize the coding gains, these groups have to be as large as possible,

in this case dU groups of size K/d users each. This can be done as follows. Let ui,k denote the i-th

user connected to caches {k, . . . , 〈k+ d− 1〉}, where i ∈ {1, . . . , U} and k ∈ {1, . . . ,K}. We let the

groups be

Ui,j = {ui,k : k ≡ j mod d} ,

for all i ∈ {1, . . . , U} and j ∈ {1, . . . , d}. To show that users in the same group do not share caches,

consider two distinct users ui,j+dt and ui,j+dt′ in the same group Ui,j . Since they both have the

same index i, we must have j + dt 6= j + dt′, i.e., t 6= t′. Then, ui,j+dt is connected to caches

{j + dt, . . . , 〈j + d(t+ 1)− 1〉} and ui,j+dt′ is connected to caches {j + dt′, . . . , 〈j + d(t′ + 1)− 1〉}.
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Figure 2.6: An illustration of the scheme used on the example from Figure 2.5. Caches are colored into
d = 2 colors, and the files are divided and colored with the same colors. In parallel, the users are divided
into dU = 6 groups, where users from the same group have no overlapping caches.

These two sets of caches are disjoint because t 6= t′ and d divides K.

Next, we choose d colors and we color cache k with color k mod d. The result is that every

user will be connected to exactly one cache of every color. In parallel, we split every file into d

equal subfiles, and color each subfile using the same d colors used on the caches. The end result is

illustrated in Figure 2.6.

Consider now one group-color pair. It represents a subsystem of N subfiles of size F/d bits

each, K/d caches, and exactly one user connected to each cache and not to any other cache of the

same color. This observation allows us to reduce the problem into d2U subproblems similar to the

Basic Setup, as described below.

In the placement phase, consider each of the d colors separately, and perform a random place-

ment (the same as in the Basic Setup) of the subfiles of that color in the caches of the same color.

Since each subfile is of size F/d bits, then every cache can hold dM subfiles.

In the delivery phase, each of the d2U group-color pairs is considered separately. For every

group and every color, we have a subsystem where K/d users are each requesting a subfile of size

F/d bits from one like-colored cache of size dM subfiles. Because the same placement of the Basic

Setup was done in the placement phase, we can send the same broadcast message as in the Basic

Setup to these K/d users. The total broadcast size is thus:

RF = d2U ·R0(dM,K/d,N) · (F/d) bits.
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Note that the memory given to the R0 function is dM , since the “unit” for each subsystem is a

subfile (of size F/d bits), and each cache can hold dM subfiles.

The expression of RSL(·) can be obtained by combining the above equation with Lemma 1.

While the above proof focused on d being a divisor of K, we note that the expression for RSL(·)

in Theorem 1 can still be achieved up to a constant factor when d does not divide K. Specifically,

RSL(M,K,N,U, d) ≤ 4U min

{
N

M
,K

}(
1− dM

N

)
(2.6)

is true for all values of d ≤ K. The corresponding strategy uses a (K, d) erasure-correcting code for

M = N/d, while for M ≤ N/2d it ignores multi-access and instead uses a placement and delivery

scheme that assumes d = 1. Finally, we time-share between the two schemes for N/2d < M < N/d.

The results presented in this section will be key to our solution to the multi-level caching

problem. Indeed, in all that will follow, we use the above-described coded caching scheme as a

black box that gives a rate RSL(M,K,N,U, d) for input parameters M , K, N , U , and d.

2.3.2 A small multi-level example with exact characterization

In order to illustrate the general multi-level problem, we will here present a small example that

combines both multi-level popularity and multi-level access. We give, for this example, an exact

characterization of the rate-memory trade-off.

Consider the setup in Figure 2.7. The server holds files from L = 2 popularity levels. The first

level has N1 = 2 files called {W 1
1 ,W

1
2 }, and the second level has N2 ≥ 4 files called {W 2

1 , . . . ,W
2
N2
}.

There are two APs, each equipped with a cache of memory (i.e., size normalized by file size) M .

There is one user accessing each cache and requesting a file from level 1 (users 1 and 2, requesting

files W 1
r1 and W 1

r2 respectively), and a third user accessing both caches and requesting a file from

level 2 (user 3, requesting file W 2
r3).

Theorem 2 (Exact characterization for the small example). For the setup shown in Figure 2.7,

the optimal rate-memory trade-off is plotted in Figure 2.8 and is characterized by:

R∗(M) = max

{
3− 2M,

5

2
−M, 2− 1

2
M, 1− M − 2

N2/2
, 0

}
.
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Figure 2.7: Small example that illustrates multi-level popularity and access.
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Figure 2.8: Optimal rate-memory trade-off R∗(M) for the small example.

The proof of Theorem 2 is given in Appendix A.3. However, for illustration and to gain intuition

about the general problem, we will here briefly discuss the achievability scheme for two values of

the cache memory M : M = 1 (for which R = 3/2 is achievable) and M = 1/2 (for which R = 2 is

achievable).

Suppose that M = 1, so that each cache can hold the equivalent of one file. We first split each

file in level 1 into two equal parts: W 1
n = (W 1

n,a,W
1
n,b), for n = 1, 2. Now, each cache exclusively

stores one half of each popular file, and stores nothing from level 2. Thus the first cache will contain

(W 1
1,a,W

1
2,a) and the second cache will contain (W 1

1,b,W
1
2,b). When the users make their requests,

the BS transmits W 2
r3 completely for user 3, and sends a coded transmission (W 1

r1,b
⊕W 1

r2,a) for

users 1 and 2 together. Combining the transmission with the contents of their respective caches,
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each of users 1 and 2 can recover the file that they have requested. In total, the BS would have

transmitted one complete file (W 2
r3), plus the equivalent of one half-file (the linear combination),

for a total rate of R = 3/2.

Suppose now that M = 1/2, i.e., each cache can only hold the equivalent of half a file. We again

split the two level-1 files just like in the previous case. However, this time the first cache stores

(W 1
1,a ⊕W 1

2,a) while the second cache stores (W 1
1,b ⊕W 1

2,b). When the users make their requests,

the BS again transmits W 2
r3 to serve user 3, but also sends W 1

r1,b
and W 1

r2,a for users 1 and 2. This

allows them to recover the file that they have requested by combining the transmission with the

side-information available at their caches. Since the BS has transmitted one complete file and two

half-files, the total rate is R = 2.

While, in this small example, an exact characterization of the rate-memory trade-off was found,

this is difficult in general. For this reason, we focus our attention on order-optimality results as

stated in Section 2.2.5.

2.4 Main Results

In this section, we provide the approximately optimal rate-memory trade-off for each of the two

setups (multi-user and single-user). We discuss how each such trade-off is achieved.

2.4.1 Multi-user setup

The placement-and-delivery strategy that we adopt for the multi-user setup is a memory-sharing

strategy. It consists of dividing the cache memory between all the L levels, and then treating each

level as a separate caching sub-system, with the reduced memory. In other words, we give level i

a memory αiM , where αi ∈ [0, 1] and
∑

i αi = 1, and we then apply a single-level placement-and-

delivery strategy for this level on this αiM memory, separately from the other levels. The total

rate for this scheme is thus

RMU (M,K, {Ni, Ui, di}i) =

L∑
i=1

RSL(αiM,K,Ni, Ui, di), (2.7)
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where RSL(·) is defined in (2.5).

By optimizing the overall rate over the memory-sharing parameters {αi}i (subject to αi ∈ [0, 1]

for all i and
∑

i αi = 1), we establish a memory allocation which we will show is order-optimal. At

a high level, this allocation is done by partitioning the popularity levels into three sets that we call

H, I, and J . The levels in H have such a small popularity that they will get no cache memory. On

the opposite end of the spectrum, the most popular levels are assigned to J and are given enough

cache memory to completely store all their files in every cache. Finally, the rest of the levels, in

the set I, will share the remaining memory among themselves, obtaining some non-zero amount of

memory but not enough to store all of their files.

Our choice of the (H, I, J) partition and corresponding memory assignments are discussed in

Section 2.5.1. This choice results in the following achievable rate.

Theorem 3. Given a multi-user caching setup, with K caches, L levels, and, for each level i, Ni

files and Ui users per cache with access degree di, and a cache memory of M , the following rate4 is

achievable:

RMU(M) ≈
∑
h∈H

KUh +

(∑
i∈I
√
NiUi

)2
M −∑j∈J Nj/dj

−
∑
i∈I

diUi,

where (H, I, J) is a particular type of partition of the set of levels called an M -feasible partition.5

This partition is dependent on the value of M .

Intuitively, since a level h ∈ H receives no cache memory, all requests from its KUh users must

be handled directly from the broadcast. Since, by regularity condition (2.2), we have Ni ≥ KUi

for all levels i, then in the worst case a total of KUh distinct files must be completely transmitted

for the users requesting files from level h. The users in set J require no transmission as the files

are completely stored in all the caches; however, it does affect the rate by reducing the memory

available for levels in I. This is apparent in the expression M −∑j∈J Nj/dj . Finally, the levels

in I, having received some memory, require a rate that is inversely proportional to the effective

memory and that depends on the level-specific parameters Ni, Ui, and di.

The structure of the (H, I, J) partition—whose value depends on the value of the cache memory

4This expression of the rate is a slight approximation that we use here for simplicity as it is more intuitive. An
exact and complete description of the achievable rate is given in Section 2.5.1.

5This type of partition is defined in Definition 1 and elaborated upon in Section 2.5.1.
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M—that we have chosen allows us to efficiently compute it for all values of M . Indeed, we provide

an algorithm in Section 2.5.1 that can find this partition and its corresponding memory-sharing

parameters αi, for all values of M , in Θ(L2) running time. Briefly, as M is increased, levels get

“promoted” from the set H to I to J . The sequence of these promotions is directly determined by

the popularity of the levels.

We now discuss the order-optimality of the memory-sharing scheme in the multi-user setup.

We develop new, non-cut-set lower bounds on the optimal rate, which use sliding-window entropy

inequalities [41], and show that the scheme achieves a rate that is within a constant factor of the

optimal. Note that this constant is independent of all the problem parameters except the largest

AP access degree D.

Theorem 4. For all valid values of the problem parameters K, L, {Ni, Ui, di}i, and M , we have:

RMU(M)

R∗(M)
≤ cD,

where RMU(M) is the rate achieved by memory-sharing, R∗(M) is the optimal rate over all strate-

gies, D is the largest AP access degree D = maxi di, and c is a constant (independent of all problem

parameters).

The above theorem holds for all values of di, although the computed value of c differs depending

on the divisibility of K by the di’s. When di divides K for all i, then c = 9909. When not all di’s

divide K, it follows from (2.7), (2.6), and Theorem 1 that the achievable rate increases by a factor

of 4. Since the same converse results hold in both cases, that means that c is four times as large

when some di does not divide K.

The gap between the rate achieved by the memory-sharing strategy and the optimal rate is

linear in D. As we have argued earlier, we would not expect a situation where one user connects to

too large a number of APs, and so D can be thought of as a constant. Furthermore, the constant

c in Theorem 4 is rather loose so as to simplify the analysis. Numerics show that, in practice,

this constant is much smaller. For example, if we have K = 20 caches, L = 3 popularity levels

consisting of (N1, N2, N3) = (200, 20 000, 800 000) files, (U1, U2, U3) = (10, 5, 1) users per cache, and

access degrees of (d1, d2, d3) = (1, 1, 1), then the gap is less than 6.8.
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The lower bounds needed to prove Theorem 4 have to include the effect of all the popularity

levels on the transmission rate. However, these effects can be very different, especially when some

files are much more popular than others, something that cut-set bounds alone cannot account for.

Using sliding-window subset entropy inequalities [41], we can combine multiple cut-set bounds that

correspond to the different levels, without making any assumptions on the achievability scheme.

The resulting bounds bring out the necessity for memory-sharing.

2.4.2 Single-user setup

In the single-user setup, the scheme that we propose is quite different. Instead of separating the

levels, we cluster a subset of them into a super-level that will be treated as essentially one level.

Specifically, we partition the levels into two subsets: H ′ and I ′. The set I ′ will be clustered into

one super-level, and all of the memory M will be given to it, while H ′ will be given no memory.

To understand how to choose H ′ and I ′, consider the following rough analysis. Suppose that all

levels except one (let’s call it j) have been split into H ′ and I ′. Then, the rate, using Theorem 1,

would be:

R = RSL(0,
∑

h∈H′ Kh,
∑

h∈H′ Nh, 1, 1)

+RSL(M,
∑

i∈I′ Ki,
∑

i∈I′ Ni, 1, 1)

≈
∑
h∈H′

Kh +

∑
i∈I′ Ni

M
.

If we were to add level j to H ′, that would result in the addition of a Kj term, since all Kj requests

would be completely served by the broadcast. On the other hand, if it is added to I ′, then we would

get an additional Nj/M term, since the total number of files in I ′ would increase by Nj . Clearly,

it is beneficial to choose the smaller of the two quantities.

Though the above analysis is rough, its main idea still holds. In general, we choose the partition

(H ′, I ′) as follows:

H ′ =
{
h ∈ {1, . . . , L} : M <

Nh

Kh

}
; I ′ = (H ′)c. (2.8)

Then, by giving all of the memory to I ′, we can apply a single-level caching-and-delivery scheme
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to obtain the rate in the following theorem.

Theorem 5. Consider the multi-level, single-user setup with L levels, Ni files and Ki users for

each level i, and cache memory M . Then, the following rate is achievable:

RSU(M) =
∑
h∈H′

Kh + max

{∑
i∈I′ Ni

M
− 1 , 0

}
,

where H ′ and I ′ are as defined in (2.8).

This scheme turns out to be order-optimal, as we state in the next theorem.

Theorem 6. The rate achieved by the clustering strategy in Theorem 5 is within a constant mul-

tiplicative factor of the information-theoretic optimum:

RSU(M)

R∗(M)
≤ 72,

where RSU(M) is the rate achieved by clustering, and R∗(M) is the information-theoretically optimal

rate.

Unlike in the multi-user case, cut-set bounds are sufficient to show order-optimality in this case.

Indeed, a single cut-set bound allows us to capture the fact that the user profile (i.e., the level of

the file requested at each cache, as defined in Section 2.2.2) is not determined beforehand. At the

same time, it brings out the necessity of clustering levels by mixing their demands. As before,

however, these bounds do not make any assumptions on the achievability strategy.

The scheme suggested in Theorem 5 is similar to the results in [11] for Zipf popularity distri-

butions and in [12] for arbitrary distributions. However, this is done for the multi-level popularity

model, and Theorem 6 establishes a universal approximation for worst case rate, rather than average

rate.

2.4.3 Comparison with Greedy Level Placement

A simple and natural caching strategy for the multi-level popularity model is one that places the

most popular levels in every cache, as many as the cache can hold, and performs an uncoded
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Figure 2.9: Comparison of the memory-sharing scheme with GLP, in the multi-user setup.

delivery. We refer to this strategy as Greedy Level Placement (GLP). To be specific, GLP places

the most popular files that the caches can fully store. This leaves the next most popular level,

which can only be partially stored; GLP stores a fraction of every file from that level. The delivery

phase of GLP is uncoded and consists of multiple-unicast. We give an example for each of the two

setups, to show how the respectively chosen schemes are superior to GLP in each context.

Multi-user example

Consider two levels (L = 2), with K = 30, (N1, N2) = (600, 1000), (U1, U2) = (20, 10), and

(d1, d2) = (1, 1). The rates achieved by the memory-sharing strategy and GLP are plotted against

memory M in Figure 2.9. Memory-sharing performs up to 29 times better than GLP in this

example.

Single-user example

Consider two levels (L = 2), with (N1, N2) = (500, 1000) and (K1,K2) = (30, 15). The rates

achieved by the clustering strategy and GLP plotted against memory M in Figure 2.10. Clustering

performs up to 22 times better than GLP in this example.
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Figure 2.10: Comparison of the clustering scheme with GLP, in the single-user setup.

2.5 The Multi-User Setup

2.5.1 Caching-and-delivery strategy: memory-sharing

In this section, we describe the strategy used to achieve the rate approximated by the expression

in Theorem 3. Moreover, we will give an exact upper bound on the achieved rate.

We will proceed in two steps. First, we will discuss the (H, I, J) partition of the set of levels as

first described in Section 2.4.1. This will be accompanied by an explanation of the memory-sharing

parameters αi, which indicate what fraction of memory each level gets. Second, we analyze the

individual rate achieved by every level i, after allocating αiM memory to it, and combine all levels

to produce the total rate achieved by the scheme.

While we actually define the (H, I, J) partition based on the problem parameters, and then

choose the αi values accordingly, in this paragraph we will proceed in the opposite order so that

we expose the intuition behind the choices. As discussed in Section 2.4.1, the strategy involves

finding a good partition (H, I, J) of the set of levels, such that levels in H are given no memory,

levels in J are given maximal memory, and levels in I share the rest. Thus, for all levels h ∈ H,

we will assign αhM = 0. Similarly, every level j ∈ J will receive αjM = Nj/dj , since that is the

amount of memory needed to completely store level j and hence to require no BC transmission

(i.e., RSL = 0; see Theorem 1). What is left is to share the remaining memory
(
M −∑j∈J Nj/dj

)
among the levels in I. More popular files should get more memory, and the popularity of a level i
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is proportional to Ui/Ni. Thus, we choose to give level i a memory roughly αiM ∝ Ni ·
√
Ui/Ni

(hence the memory per file is proportional to
√
Ui/Ni).

6

Intuitively, we want to choose H, I, and J such that the above values of αi are valid, i.e.,

αi ∈ [0, 1] for all i. Based on the intuition, we get the partition described below.

Definition 1 (M -feasible partition). For any cache memory M , an M -feasible partition (H, I, J)

of the set of levels is a partition that satisfies:

∀h ∈ H, M̃ <
1

K

√
Nh

Uh
;

∀i ∈ I, 1

K

√
Ni

Ui
≤ M̃ ≤

(
1

di
+

1

K

)√
Ni

Ui
;

∀j ∈ J,
(

1

dj
+

1

K

)√
Nj

Uj
< M̃,

where M̃ = (M − TJ + VI)/SI , and, for any subset A of the levels:

SA =
∑
i∈A

√
NiUi; TA =

∑
i∈A

Ni

di
; VA =

∑
i∈A

Ni

K
.

We stress again that, while we used our own αi values to determine (H, I, J), this was done

only for the intuition behind the choice. The partition itself is defined solely based on the problem

parameters, and not on our strategy.

Notice in Definition 1 how the different sets are largely determined by the quantity
√
Ni/Ui,

for each level i. This matches the idea that the most popular levels (i.e., those with the smallest

Ni/Ui) will be in J , while the least popular levels (those with the largest Ni/Ui) will go to the set

H.

After choosing an M -feasible partition, we share the memory among the levels using the fol-

6The square root comes from minimizing an inverse function of αi.
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lowing (precise) values of αi:

∀h ∈ H, αhM = 0;

∀i ∈ I, αiM =
√
NiUi · M̃ −Ni/K;

∀j ∈ J, αjM = Nj/dj . (2.9)

For completeness, the following proposition states the validity of this choice of memory-sharing

parameters.

Proposition 1. The values of the memory-sharing parameters defined in (2.9) satisfy:

1. αi ≥ 0 for all i;

2.
∑

i αi = 1;

3. αiM ≤ Ni/di for all i.

Note that points 1 and 2 imply αi ∈ [0, 1].

Proof. Points 1 and 3 trivially follow from (2.9) for levels in H and J . For levels in I, they follow

from applying the inequalities of Definition 1 on M̃ in (2.9). Point 2 follows from (2.9) and the

definition of M̃ in Definition 1.

The structure of the solution described above allows us to efficiently compute the αi values.

Indeed, Algorithm 1 finds αi for all levels i and for all memory values M in Θ(L2) running time,

where L is the total number of levels. While a detailed description and analysis of the algorithm

is given in Appendix A.1.3, we briefly go over it in this section. It proceeds in three main steps.

In the first step, the algorithm identifies the sequence of (H, I, J) partitions that will occur as M

increases, using only the problem parameters. For example, if there are two levels, there are two

possible sequences, denoted below as S1 and S2:
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M = 0 large M

H {1, 2} {2} ∅ ∅ ∅

S1 I ∅ {1} {1, 2} {2} ∅

J ∅ ∅ ∅ {1} {1, 2}

H {1, 2} {2} {2} ∅ ∅

S2 I ∅ {1} ∅ {2} ∅

J ∅ ∅ {1} {1} {1, 2}

Notice that the M -feasible partition is the same throughout an entire interval of values for M .

In fact, there are only 2L non-trivial intervals: each interval is distinguished from the previous one

by the “promotion” of a level from H to I or from I to J . As a result, computing only 2L intervals

(actually, (2L+ 2) intervals, to include the boundary cases) is enough to determine the M -feasible

partition for all values of M ≥ 0.

While Step 1 determines which of the above two sequences (S1 and S2) will occur, it does not

determine the boundaries of the different regimes, i.e., the memory values at which the (H, I, J)

partition changes (except for trivial boundaries like M = 0). The second step computes these

boundaries, using not only the problem parameters, but also the partitions themselves.

For every M , the corresponding M -feasible partition is determined by the algorithm based on

the boundaries calculated in Step 2. For example, suppose the algorithm decided that sequence S1

should be in use, and that the boundaries of (H, I, J) = (∅, {1, 2}, ∅) are some values m1 and m2.

Then, any M ∈ [m1,m2] has (∅, {1, 2}, ∅) as its M -feasible partition.

The following lemma presents two important properties of M -feasible partitions. It will be

proved in Appendix A.1.3.

Lemma 2. For any cache memory M , an M -feasible partition (H, I, J) always exists. Furthermore,

the set I is never empty as long as M ≤ ∑iNi/di, i.e., as long as individual caches do not have

enough memory to store everything.

To properly analyze the achievable rate, we need to look more closely at the set I. In the

single-level, single-access scenario in [4, 5], three regimes were identified, and they were analyzed

separately. Generalizing to the single-level, multi-access case, these regimes are: when M < N/K,
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Algorithm 1 An algorithm that constructs an M -feasible partition for all M .

Require: Number of caches K and parameters {Ni, Ui, di}i for i = 1, . . . , L.
Ensure: An M -feasible partition for all M .

1: for all i ∈ {1, . . . , L} do
2: m̃i ← (1/K)

√
Ni/Ui

3: M̃i ← (1/di + 1/K)
√
Ni/Ui

4: end for
5: (x1, . . . , x2L)← sort(m̃1, . . . , m̃L, M̃1, . . . , M̃L).
6:

7: Step 1: Determine (H, I, J) for each interval (xt, xt+1).
8: Set H0 ← {1, . . . , L}, I0 ← ∅, J0 ← ∅.
9: for t← 1, . . . , 2L do

10: if xt = m̃i for some i then
11: Promote level i from H to I
12: Ht ← Ht−1 \ {i}
13: It ← It−1 ∪ {i}
14: Jt ← Jt−1

15: else if xt = M̃i for some i then
16: Promote level i from I to J
17: Ht ← Ht−1

18: It ← It−1 \ {i}
19: Jt ← Jt−1 ∪ {i}
20: end if
21: end for
22:

23: Step 2: Compute the limits of the intervals as [Yt, Yt+1).
24: for all t ∈ {1, . . . , 2L} do
25: Yt ← xt · SIt + TJt − VIt
26: end for
27: Y2L+1 ←∞ . For convenience
28:

29: Step 3: Determine the M -feasible partition for all M .
30: for all t ∈ {1, . . . , 2L} do
31: Set (Ht, It, Jt) as the M -feasible partition of all M ∈ [Yt, Yt+1)
32: end for
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when M > cN/d for some constant c ∈ (0, 1), and the intermediate case. We identify three similar

regimes for each level in i. Formally, define:

I0 =

{
i ∈ I : M̃ <

2

K

√
Ni

Ui

}
;

I1 =

{
i ∈ I : M̃ >

(
β

di
+

1

K

)√
Ni

Ui

}
;

I ′ = I \ (I0 ∪ I1), (2.10)

By choosing the αi values in (2.9), these definitions are equivalent to: I0 is the set of levels i such

that αiM < Ni/K; I1 is such that αiM > βNi/di for all i ∈ I1, where β is the level-separation

factor as defined in Regularity Condition (2.4); and I ′ consists of the remaining levels.

When K ≥ D/β, then I0, I ′, and I1 are mutually exclusive and form a partition of I. For

convenience, we call the resulting partition (H, I0, I
′, I1, J) a refined M -feasible partition.

What follows is an important statement regarding the set I1.

Proposition 2 (Size of I1). In any refined M -feasible partition (H, I0, I
′, I1, J) as defined in Def-

inition 1 and (2.10), the set I1 contains at most one element.

Proof. Suppose that there exist two levels i, j ∈ I1 (and possibly others). We will show that this

violates regularity condition (2.4).

Suppose without loss of generality that i is more popular than j. Since i, j ∈ I1, then, by

Definition 1 and (2.10):

(
β

dj
+

1

K

)√
Nj

Uj
< M ≤

(
1

di
+

1

K

)√
Ni

Ui
.

However, this means: √
Ui/Ni

Uj/Nj
<

1/di + 1/K

β/dj + 1/K
<

dj
βdi
≤ D

β
,

which contradicts regularity condition (2.4).

Using the definition of a refined M -feasible partition, and the values of {αi}i, we give upper

bounds on the rates achieved individually for each level.
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Lemma 3. Given a refined M -feasible partition (H, I0, I
′, I1, J), the individual rates of the levels

are upper-bounded by:

∀h ∈ H, Rh(M) = KUh;

∀i ∈ I0 ∪ I ′, Ri(M) ≤ 2SI
√
NiUi

M − TJ + VI
;

∀i1 ∈ I1, Ri1(M) ≤ 1

β
di1Ui1

(
1− M − TJ

Ni1/di1

)
+

1

β
di1Ui1

SI0 + SI′√
Ni1Ui1

;

∀j ∈ J, Rj(M) = 0.

The total achieved rate is then: R(M) =
∑L

i=1Ri(M).

We relegate the proof of Lemma 3 to Appendix A.1.3. What follows is a brief explanation of

the individual rates.

• Since levels h ∈ H get no memory, no information about their files can be stored in the

caches. Hence, the server will have to transmit a complete copy of every file requested by the

KUh users in level h. Therefore, Rh(M) = KUh in the worst case.

• Since levels j ∈ J get maximal memory, any file requested from j can be fully recovered using

the caches. Thus there is no need for the server to send anything for j, and hence Rj(M) = 0.

• Finally, the levels i ∈ I get enough of the remaining memory M − TJ so that they behave as

in Theorem 1. However, since αiM ≈
√
NiUi/SI · (M − TJ), we get a rate of:

Ri(M) ≈ NiUi
αiM

− diUi ≈
SI
√
NiUi

M − TJ
− diUi.

Notice how Ri(M) is inversely proportional to the memory remaining after storing J . This

behavior is captured in the expressions for I0 ∪ I ′. However, for the levels in i1 ∈ I1, which

get almost, but not quite, maximal memory, the individual rate Ri1(M) behaves more closely

to a linear function of the memory.
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2.5.2 Outer bounds

In the single-level setup introduced in [4], cut-set lower bounds on the optimal rate were sufficient

for proving order-optimality of the scheme. The idea was to choose cuts that include a certain

number of caches s, as well as enough broadcast messages to decode almost all files when combined

with the s caches. The choice of s depended most importantly on the size of the memory M . For

example, for very large M , the bounds would reflect the fact that a single cache should contain

enough information so that it need only be combined with a small broadcast message to decode

one file. In contrast, for small M , the bounds would instead show that a large broadcast message

is needed to serve all s users.

In our multi-level situation, the goal of our lower bounds is to show that different popularity

levels require different amounts of memory, ranging from zero to maximal memory. However, a

single cut-set bound would force all levels to abide by the same number of caches s, a choice that

would not reflect the plurality of memory allocation. New lower bounds were thus required.

The lower bounds that we use allow choosing for each level i the number of caches si that

corresponds to the amount of memory we expect it to get. In essence, each level i will exclusively

be part of a cut-set bound with si caches, which will give a lower bound that loosely corresponds

to the individual rate Ri for this level.

The challenge is to incorporate all of these cut-set bounds together, such that the same caches

appear in cut-set bounds for all levels. This process is described next. We start with a cut-set

bound for the level with the smallest si. Using Fano’s inequality, we can derive lower bounds on

its individual rate. We then proceed to lower-bound the current quantity using a cut-set bound for

the level with the next smallest si, and repeat the process. The transition from one cut-set bound

to the next can be achieved using sliding-window subset entropy inequalities [41, Theorem 3].7

Lemma 4 (Sliding-window subset entropy inequality [41, Theorem 3]). Given K random variables

(Y1, . . . , YK), we have, for every s ∈ {1, . . . ,K − 1}:

1

s

K∑
i=1

H
(
Yi, . . . , Y〈i+s−1〉

)
≥ 1

s+ 1

K∑
i=1

H
(
Yi, . . . , Y〈i+s〉

)
,

7For these inequalities to work, we have to take not just one cut-set bound per level, but an averaging of K similar
cut-set bounds that ends up including all caches an equal number of times.
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where we define 〈i〉 = i if i ≤ K and 〈i〉 = i−K if i > K.

The resulting lower bounds, in their final form, are given in the following lemma.

Lemma 5. Consider the multi-level, multi-user caching setup. Let b ∈ N+ and t ∈ {1, . . . ,K}.

Furthermore, for every level i, let si ∈ N+ such that sit ∈ {di, . . . , bK/2c}. Then, for every memory

M , the optimal rate can be bounded from below by:

R∗(M) ≥
L∑
i=1

λi ·min

{
(sit− di + 1)Ui ,

Ni

sib

}
− t

b
M,

where λi is a constant (introduced for technical reasons) defined as λi = 1 if sit = di and λi = 1
2 if

sit > di.

The full proof of Lemma 5 is given in Appendix A.1.1. However, we will here give a brief

intuition behind the expression shown above. Every term in the sum corresponds to a level i.

Consider a single level i. Roughly, if we ignore all the other levels in the summation, and assuming

di = 1 for simplicity, then the inequality can be rearranged approximately as follows:

sibR+ sitM ≥ min {sit · sib · Ui , Ni} .

This expression is essentially a cut-set bound, saying that, with sit caches and sib broadcast mes-

sages, up to sit · sib ·Ui files from level i can be decoded (since there are Ui users per cache for this

level), unless this number exceeds the total number of files Ni.

2.5.3 Approximate optimality

In order to prove order-optimality of the memory-sharing scheme, we must use Lemma 5 with

appropriate parameters. Our goal is to get a resulting lower bound on the optimal rate R∗(M) such

that the ratio between the achievable rate and R∗(M)—henceforth called the gap—is minimized.

More specifically, the result we seek is a constant upper bound on the gap.

For technical reasons, several cases need to be considered for which different values are chosen

for the parameters in Lemma 5. In particular, the values of choice in one case would violate the
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conditions imposed on them in another case. In this section, we will illustrate the proof methodology

by approximating one of these cases. The complete and rigorous proof is given in Appendix A.1.2.

Recall the refined M -feasible partition introduced in Definition 1 and in (2.10). As previously

mentioned, this partition only depends on the problem parameters, not on the achievability strategy.

The cases of interest for the proof of order-optimality are:

• Case 1a: I1 = ∅ and J 6= ∅;

• Case 1b: I1 = ∅ and J = ∅;

• Case 2: I1 6= ∅.

There is also a special Case 0 for when K is small (specifically, K < D/β). All the other cases

assume K is large.

The case that we will focus on in this section is Case 1a. Note that I1 = ∅ =⇒ I = I0 ∪ I ′.

For simplicity, we will assume that di = 1 for all i. Furthermore, most of the analysis will be

approximate.

By Lemma 3, the achievable rate in Case 1a can be upper-bounded by:

R(M) ≤
∑
h∈H

KUh +
2S2

I

M − TJ
, (2.11)

since SI =
∑

i∈I
√
NiUi (see Definition 1). Now consider Lemma 5 with the following parameters:

t = 1;

∀h ∈ H, sh ≈
1

2
K;

∀i ∈ I, si ≈
√
Ni/Ui

2M̃
;

∀j ∈ J, sj = 1;

b ≈ 4M̃2,

where, as in Definition 1, M̃ = (M − TJ + VI)/SI ≈ (M − TJ)/SI . The values of the si’s are very

similar to those used in the single-level setup in [4]. Indeed, the levels with the smallest memory
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(h ∈ H) are handled using cut-set bounds that consider a fraction of the total number of caches,

while the levels with the largest memory (j ∈ J) are handled with bounds that consider only one

cache. Thus, the lemma lower-bounds the optimal rate by:

R∗(M) ≥
∑
h∈H

min

{
shUh,

Nh

shb

}
+
∑
i∈I

min

{
siUi,

Ni

sib

}
+
∑
j∈J

min

{
sjUj ,

Nj

sjb

}
− M

b
.

Substituting the values of the parameters, and utilizing the inequalities on M̃ that define the refined

M -feasible partition, we get:

R∗(M) ≥
∑
h∈H

1

2
KUh +

∑
i∈I

√
NiUiSI

2(M − TJ)
+
∑
j∈J

Nj

b
− M

b

=
∑
h∈H

1

2
KUh +

S2
I

2(M − TJ)
− M − TJ

b

=
∑
h∈H

1

2
KUh +

S2
I

2(M − TJ)
− (M − TJ)S2

I

4(M − TJ)2

=
∑
h∈H

1

2
KUh +

S2
I

4(M − TJ)

(a)

≥ 1

8
·R(M).

The last inequality (a) is due to (2.11).

Thus, the result is a constant multiplicative gap (8 in this example) between the achievable rate

and the optimal rate for this regime. The full proof in Appendix A.1.2 derives such gaps for each

one of the four regimes mentioned above (Cases 0, 1a, 1b, and 2), and finally combines them into

one multiplicative gap that holds for all cases.

2.5.4 Comparison with different memory-sharing strategies

The proposed memory-sharing scheme relies on a very specific division of the memory among the

levels, i.e., a very specific choice of the {αi}i parameters. While this (rather complex) choice is

approximately optimal, a natural question that arises is if it is necessary. In other words, could
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a simpler memory-sharing achieve approximately the same results? In this section, we compare

the performance of our strategy with that of the following two different, simpler memory-sharing

schemes.

• Greedy Memory-Sharing (GMS): This scheme gives as much memory as possible for the

most popular levels.

• Uniform Memory-Sharing (UMS): This scheme ignores all popularities and gives the

same amount of memory to all files.

We note that these two schemes employ the same coded delivery phase as ours; the only difference

is in how to divide the memory between the levels.

The first thing to note is that GMS and UMS are both special cases of our memory-sharing

scheme—which we will call “Optimal Memory-Sharing” (OMS) in this section to distinguish

it from the other two. Indeed, if all levels have exactly the same popularities, then OMS will give

all files equal memory. On the other hand, when the level popularities are separated enough, then

OMS will end up always prioritizing the most popular levels, and thus it reduces to GMS. However,

OMS can provide benefits in the middle case that both other schemes lack. In fact, GMS and UMS

can perform arbitrarily worse than our memory-sharing strategy.

As an example, consider a setup with L = 2 levels, such that U1 =
√
KU2 and N2 =

√
KN1.

Suppose M = N1, and assume d1 = d2 = 1. Under our strategy, both levels would be in the set I,

and hence the rate would be

RMU ≈
(√
N1U1 +

√
N2U2

)2
N1

= 4
√
KU2.

GMS will completely store the first level, yielding a rate of

RGMS = KU2.
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Finally, UMS would give equal memory to both levels, effectively merging them, giving a rate of

RUMS ≈
N1U1

M ·N1/(N1 +N2)
+

N2U2

M ·N2/(N1 +N2)

=
(N1 +N2)(U1 + U2)

N1

=
(√

K + 1
)2
U2.

By comparing these schemes to our own, we see that RGMS/R
MU = Θ(

√
K) and RUMS/R

MU =

Θ(
√
K). Therefore, there are regimes where both GMS and UMS perform arbitrarily worse than

OMS.

2.6 The Single-User Setup

2.6.1 Caching-and-delivery strategy: clustering

Proof of Theorem 5. Recall from Section 2.4.2 how the memory is divided among the sets H ′ and

I ′, defined in (2.8): all of the available memory is given to levels in I ′, which is treated as one super-

level. As a result, all requests for files from H ′ must be handled by complete file transmissions

from the BS. Since there are
∑

h∈H′ Kh users making such requests, the result is the same amount

of transmissions in the worst case. Therefore, the message sent to all users requesting from a level

in H ′ has the following rate:

RH′ =
∑
h∈H′

Kh. (2.12)

For the set I ′, now considered as one super-level, we use the single-level strategy from [5].

Although only a subset of the caches is active in our setup, the same strategy still applies. Indeed,

the placement in [5] is a random sampling of the files in all the caches; we do the same placement

in this case. In the delivery phase, we now know the caches to which the users of I ′ connected. We

perform a delivery as in [5], assuming that only these caches were ever present in the system.

For illustration, suppose that there were K = 4 caches. Furthermore, assume the partition

(H ′, I ′) was performed such that 3 users will request files from the set of levels I ′. In the placement

phase, we store a random sample of the files in I ′ in each of the four caches. In the delivery phase,
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suppose the three users requesting files from I ′ connect to caches 1, 2, and 4. In this case, the BS

will send a complete file transmission for user 3 (since he requests a file from H ′), and will treat

users 1, 2, and 4 as though they were part of a single-level caching system with only three caches.

The rate required for I ′ can be directly derived from Lemma 1, using
∑

i∈I′ Ki caches,
∑

i∈I′ Ni

files, and 1 user per cache. In addition, we have, from (2.8), that M ≥ Ni/Ki for all i ∈ I ′. This

implies M ≥ (
∑

i∈I′ Ni)/(
∑

i∈I′ Ki), and hence the rate for I ′ is:

RI′ = max

{∑
i∈I′ Ni

M
− 1 , 0

}
. (2.13)

The maximization with zero is needed because it is possible to have M >
∑

i∈I′ Ni.

By combining (2.12) with (2.13), we get a total broadcast rate of:

R(M) = RH′ +RI′ =
∑
h∈H′

Kh + max

{∑
i∈I′ Ni

M
− 1, 0

}
.

This proves Theorem 5.

It will be helpful for the later analysis to refine the partition (H ′, I ′) as follows.

Definition 2. Define the following partition (G,H, I, J) of the set of levels:

G = {g : M < Ng/Kg and Kg ≤ 5 and M ≤ Ng/6} ;

H = {h : M < Nh/Kh and Kh ≥ 6} ;

I = {i : Ni/Ki ≤M ≤ Ni/6} ;

J = {j : M > Nj/6} .

We rewrite the achievable rate in terms of this new partition:

R(M) ≤ 5 · |G|+
∑
h∈H

Kh +

∑
i∈I Ni

M
+

[∑
j∈J Nj

M
− 1

]+

, (2.14)

where [x]+ = max{x, 0}, and keeping in mind that Kg ≤ 5 for g ∈ G. If we define NJ =
∑

j∈J Nj ,
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we can upper-bound the last term by:

[
NJ

M
− 1

]+

≤


NJ/M if M < NJ/6;

6 (1−M/NJ) if NJ/6 ≤M < NJ ;

0 if M ≥ NJ .

(2.15)

Effectively, the set J now behaves as a unit.

Much of what defines the above partition hinges on the following question: What happens if

we know the user profile a priori? If we do, we could imagine a strategy of total separation of the

levels: every level i is treated as a single-level system with Ki caches and users, and Ni files. Each

level can thus get the entirety of the memory of their specific Ki caches. Using Lemma 1, we can

calculate the total rate for this hypothetical situation as:

R′(M) =
L∑
i=1

min

{
Ki,

Ni

M

}(
1− M

Ni

)+

,

which can be approximated by:

R′(M) ≤ 5 · |G|+
∑
h∈H

Kh +
∑
i∈I

Ni

M
+ 6

∑
j∈J

(
1− M

Nj

)+

.

Interestingly, the G, H, and I terms in this rate expression are exactly the same as those in

(2.14). Therefore, except for levels j ∈ J where M > Nj/6, our scheme would not benefit from

prior knowledge of the user profile. However, the set J is in general limited by the lack of this

knowledge. Indeed, if M > Nj for all j ∈ J but M < NJ =
∑

j∈J Nj , then it is possible to store

any level in every cache, but it is not possible to store all levels in all caches. Thus knowing which

level is at which cache can bring the rate down to zero.

Finally, G and H, which are both subsets of H ′ (though not necessarily a partition; the definition

of J allows some of its levels to be in H ′ too) were separated because levels behave differently when

their number of caches is very small. Specifically, a level in H can transition into I as the memory

increases, but a level in G immediately jumps to J since Ng/Kg > Ng/6.
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2.6.2 Outer bounds and approximate optimality

As mentioned in Section 2.4.2, we use a cut-set bound to lower-bound the optimal rate. The idea

is to send a certain number b of broadcast messages X1, . . . , Xb that serve certain requests. We

choose these requests as follows. For every level i ∈ G ∪H ∪ I, consider a certain number si ≤ Ki

of caches. These caches are distinct across levels. For all the b broadcasts, the users connected to

these si caches will altogether request sib distinct files from level i if there are that many; otherwise

they request all Ni files. For the levels in the set J , we collectively consider some sJ caches (distinct

from the rest). The users at these sJ caches will use all b broadcasts to decode as many files from

the set J as possible, up to sJb files. Let nJ denote this number; it will be determined later.

If we let S =
∑

i 6∈J si+ sJ be the total number of caches considered, then, by Fano’s inequality:

bR+ SM ≥ H (Z1, . . . , ZS , X1, . . . , Xb)

≥
∑
i 6∈J

min {sib,Ni}+ nJ

R∗(M) ≥
∑
i 6∈J

si

(
min

{
1,
Ni

sib

}
− M

b

)
+ sJ

(
nJ
sJb
− M

b

)
=
∑
i 6∈J

vi + vJ . (2.16)

We will analyze each of the vi and vJ terms separately. We identify two cases for which the

analysis is slightly different.

The first case is when M < 1/6. Because of regularity condition (2.3), this implies M < 1/6 <

1 ≤ Ni/Ki for all levels i, and thus the achievable rate can be bounded by:

R(M) ≤
L∑
i=1

Ki. (2.17)

The second case, which is more interesting, is when M ≥ 1/6.

The details of the analysis are given in Appendix A.2. We will here give a brief outline of the

procedure, with approximations to avoid burying the essence of the argument under technicalities.
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The idea is to lower-bound each term vi or vJ to match the corresponding term in the rate expres-

sion. Let us focus on the case M ≥ 1/6, and suppose we choose b ≈ 6M ≥ 1. For simplicity, we

will only look at the sets H and I.

Consider a level h ∈ H, and let sh ≈ Kh/6. Then, by the definition of H:

Nh

shb
=

Nh

KhM
≥ 1.

As a result,

vh =
Kh

6

(
1− M

6M

)
=

5

36
·Kh,

which matches the corresponding achievable rate term in (2.14), up to the constant (5/36).

Now consider a level i ∈ I, and let si ≈ Ni/(6M). Then,

Ni

sib
=

Ni

(Ni/6M) · 6M = 1,

and hence:

vi =
Ni

6M

(
1− M

6M

)
=

5

36
· Ni

M
.

Again, this matches the corresponding achievable rate term in (2.14), up to the constant (5/36).

Applying a similar procedure for every level, we get matching lower bounds (up to a constant)

and thus prove Theorem 6.

2.6.3 Similarity to strategies in related work

As previously mentioned, our clustering scheme is similar to strategies discussed in the literature

for similar setups with stochastic demands [12, 11]. In these setups, users request files based on

a probability distribution, and the average rate is analyzed, as opposed to the worst-case rate in

our case. In both cases, the proposed strategy is to divide the files into two sets, based on some

threshold, and store only the most popular files.

Recall that our strategy clusters the levels i whose popularity is such that M ≥ Ni/Ki. The

popularity pi of a file of level i is proportional to Ki/Ni, and hence if we normalize so that the sum
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of popularities is 1, we get:

pi =
Ki/Ni∑L

j=1Nj ·Kj/Nj

=
Ki

KNi
.

Thus, the condition M ≥ Ni/Ki can be rewritten as pi ≥ 1/KM . This is exactly the threshold

used in [12] to determine which files to cluster and store in the caches, and which files to leave out

of the caches.

2.7 Comparison of the Two Setups

In this section, we first compare the memory-sharing and the clustering strategies, and we explore

the dichotomy among the two setups that is emphasized by the difference between strategies. We

will then discuss why such a dichotomy exists, and explain the need for different lower bounds

for each setup. Finally, we explore a new problem that combines both setups by including both

multi-user and single-user levels.

2.7.1 Comparing the two caching-and-delivery strategies

We have previously argued that memory-sharing is the best scheme to use in the multi-user case,

while clustering is the near-optimal strategy in the single-user case. However, could one (or both)

of these schemes be good enough for both situations? We will show, in this section, that it is not

the case: in the single-user setup, memory-sharing can give a gap between its rate and the optimum

that increases linearly with L; meanwhile, the rate achieved by clustering in the multi-user case

can be arbitrarily far from the optimal rate. We give examples of these two cases.

Consider a multi-user setup with two levels. Suppose that there is enough memory so that

both levels are to be partially stored in the caches. With the memory-sharing scheme, this means

I = {1, 2}, which would, by Theorem 3, give a rate of approximately:

R ≈
(√
N1U1 +

√
N2U2

)2
M

=
1

M

[
N1U1 +N2U2 + 2

√
N1U1N2U2

]
.

On the other hand, if we had clustered the two levels into one, then this super-level would have
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(N1 +N2) files and (U1 + U2) users per cache, resulting in the following rate:

R ≈ (N1 +N2)(U1 + U2)

M

=
1

M
[N1U1 +N2U2 +N1U2 +N2U1] .

However, we know that the geometric mean of any two numbers is always smaller than their

arithmetic mean. By considering the two numbers N1U2 and N2U1, we get:

2
√
N1U2N2U1 ≤ N1U2 +N2U1,

and specifically the ratio between them can get arbitrarily large when the popularities of the two

levels become significantly different (i.e., U2/N2 � U1/N1). Intuitively, if the two levels had similar

popularities, then memory-sharing gives them similar amounts of memory, effectively merging them.

However, if their popularities were very different, then they should be given drastically different

portions of the memory.

Consider now the single-user case with L levels, and suppose again that the memory is such

that all levels will be partially stored. Let us assume that N1 = · · · = NL. Using the clustering

scheme, we get the following approximate rate:

R ≈ N1 + · · ·+NL

M
=
LN1

M
.

However, with memory-sharing, we would get:

R ≈
(√
N1 + · · ·+√NL

)2
M

=
L2N1

M
,

which is larger by a factor of L. Essentially, we are sending L broadcasts, one per level, when we

could send just one broadcast for all L levels.
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2.7.2 Analysis of the dichotomy between the setups

The dichotomy between the two extremes is striking. They require different strategies, and the

strategy that is good for one setup is not so for the other. This suggests a fundamental difference

between the two setups.

To understand this difference, consider what happens when sending a coded broadcast message.

Each message targets a specific subset of users. If, in this subset, there exist two users that are

connected to the same cache, then these users have access to the exact same side information. As

a result, no coding can be done across these two users, and there is hence no benefit in including

them in the same broadcast.

There are in fact two opposing forces at work on the caching-and-delivery strategy. The first

is a popularity-centric force: it pushes on the strategy to allocate more memory to the more

popular files. The second force is coding-centric: it encourages increasing the number of coding

opportunities. These two forces are at odds, since coding across levels performs best when the files

in these levels are given the same memory, regardless of popularity.

With that in mind, consider again Figure 2.2 and Figure 2.3. Notice how, in the multi-user

setup, there are multiple rows of users, each of which consists of users from the same popularity

level. Each such row is a complete set of users with no common caches: any additional users we add

would have access to the same cache as some other user. Thus, it is sufficient to consider them in

a broadcast transmission that is separate from all other rows. Since, as a result, no two levels will

share the same broadcast message, it can only be beneficial to choose the best possible division of

the memory, based on popularities. In the single-user setup, however, there is only one row of users

that contains all the users from all the levels. It is hence possible to generate coding opportunities

across levels. Merging is thus a better option in this situation, and merging is most efficient when

all levels receive equal memory per file.

2.7.3 The difference in the lower bounds

Complementing the difference in the achievable strategies between the two setups, we see a difference

in the lower bounds to the optimal rate. In the multi-user case, we use a combination of cut-set
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bounds, one for each popularity level. However, we use a unified cut-set bound for all the levels in

the single-user case. We elaborate on this difference in this section.

In the single-level setup studied in [4], cut-set bounds were given to lower-bound the optimal

rate for every value of memory M . Depending on the value of M , a certain number of caches (and

hence users) were considered and used in the cut-set bounds. Roughly speaking, about M broadcast

messages are sent to the users at N/M distinct caches, allowing them to decode M · (N/M) = N

files in total. In the multi-level setups (both multi-user and single-user), the lower bounds retain

this idea. However, there are two crucial differences between the setups that force different choices

of lower bounds.

The first difference is in the role of each cache vis-à-vis the popularity levels. In both setups,

different levels are given different memory values. However, the same cache must be simultaneously

used for all levels in the multi-user setup; in the single-user setup each cache is bound to a single

level at any moment. As a result, a single cut-set bound can still encompass all levels in the

single-user setup, but will not be enough in the multi-user setup.

The second difference is in the uncertainty of the user profile. In the single-user setup, there

are situations where this uncertainty is significant enough to impact the achievable rate. This is

especially true for levels nearing their maximal storage (the set J in Definition 2), as described

in Section 2.6.1. The lower bounds should incorporate this notion by considering demands from

different levels at the same cache. As a result, a single cut-set bound unifying all levels (at least

the levels involved in this uncertainty) becomes necessary.

2.7.4 Mixing the setups

So far, we have looked at the two extremes: either all levels were represented at all the caches, or

none of them were. A natural problem arises: that of studying intermediate cases. The simplest

form such intermediate cases can take is one where levels of both types are present.

Specifically, there are two classes of popularity levels: F and G. The class F consists of levels

i that are represented by exactly Ui users at every cache. In contrast, there is exactly one row of

users that represents all the levels in the class G: each level i ∈ G is represented by Ki of those

users.
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The most natural strategy to employ in this situation would be to superpose the multi-user

and the single-user strategies. In particular, we divide the memory M into γM and (1− γ)M , for

some γ ∈ [0, 1]. We give the first part to F and the second part to G, and apply their respective

strategies on their part of the memory. We believe this to be the best strategy, but proving its

order-optimality requires developing new lower bounds that consider levels of both classes at the

same time; this is part of our on-going work.

2.8 Discussion and Numerical Evaluations

In the previous sections, we presented theoretical results for any given set of popularity levels

and associated user access structures. However, in practice, what is available is a “continuous”

popularity distribution over the entire set of N files, and it is up to the designer to choose: (a) the

number of popularity levels; (b) which files to assign to which level; and (c) the corresponding user

access degree for each popularity level. For each such choice, our theoretical results characterize the

minimum broadcast transmission rate, and we study, in this section, the impact of these choices on

the transmission rate. Furthermore, while our theoretical model assumed that, for each popularity

level, the number of users fixed, we relax this assumption here by allowing each user to randomly

connect to one of the K APs and request a file stochastically, according to the underlying popularity

distribution. Finally, we will also compare the performance of our scheme with that of a Greedy File

Placement (GFP) approach, as well as the information-theoretic lower bounds presented before.

These evaluations will only focus on the multi-user setup, as it is less discussed in the literature.

Since the single-user setup utilizes a scheme similar to what is already in the literature for arbitrary

distributions [12, 11], we do not feel it is necessary to include it in this discussion. However, we do

provide a brief comparison of the clustering scheme with the literature in Section 2.6.3

We use a YouTube dataset [40] for our evaluations. This dataset provides the number of views

of videos in a set of N ≈ 500 000, over some period of time. Thus, these views can be thought

of as approximating the popularity of the videos. Figure 2.1 shows the popularity distribution

of the videos (normalized number of views), which resembles a Zipf distribution similar to those

commonly observed for multimedia content [21].
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Figure 2.11: Rate achieved by the memory-sharing scheme vs. number of levels, for different values of cache
memory. For each L, we choose the L levels that minimize the achievable rate (using brute-force search).
For ease of comparison, the rate values have been normalized by the rate at L = 1.

When using the YouTube dataset in the following sections, we will often omit the total number

of users considered. This is because the total broadcast rate is always directly proportional to the

total number of users, when the fraction of users per level is fixed. In this situation, the fraction is

determined by the distribution in Figure 2.1 and the levels into which the files were split, thus the

total number of users will not affect the behavior of the system.

2.8.1 Discretizing a continuous popularity distribution

Our first step is to divide the files in the YouTube dataset into a certain number of levels, based

on the popularity profile in Figure 2.1. Let there be K = 75 caches. We consider small, moderate,

and large values of M/N (0.03, 0.2, and 0.7) and set the user access degree di = 1 for every level i,

so as to study the impact of the number of levels on the broadcast rate in isolation. For increasing

values of L, we find the division of the files into L levels that minimizes the rate achieved by the

memory-sharing scheme using a brute-force search. We plot the minimum achievable rate versus

L in Figure 2.11. As is easily apparent, while there is a significant gain in performance between

treating all files as one level and dividing them into two levels, the gain decreases with diminishing

returns as L increases. This shows the importance of dividing files into multiple levels, but also

suggests that 3–4 levels are sufficient to derive most of the benefits.

We remind the reader that the popularity profile in Figure 2.1 is purely empirical. It is based
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on the number of views of the videos in the dataset, collected over some period of time. By the

very nature of the data, if two videos have received, let’s say, 1000 and 1100 views, then this does

not really imply that the first file is more popular than the other. This is especially true of videos

with very small number of views. By grouping files into popularity classes, we acknowledge the

difference in popularity of very different files, while simultaneously not distinguishing between files

whose empirical popularities are close.

2.8.2 Impact of multi-access on the achievable rate

To study the effect of multi-access in isolation, we will fix the partition we use to divide the files

into different levels and then look at different multi-access structures. Suppose again K = 75, and

consider L = 2 levels, with N1 = 0.2N , and N2 = 0.8N files. We plot in Figure 2.12 the broadcast

rate of our scheme as a function of the normalized memory M/N , for four different access structures

(d1, d2): (1, 1), (1, 2), (2, 1), and (2, 2).

As one would expect, allowing for multi-access greatly improves the transmission rate. For

example, the rate for the multi-access system with (d1 = 2, d2 = 2) is smaller than the rate for

the single-access system with (d1 = 1, d2 = 1). The cases (d1 = 1, d2 = 2) and (d1 = 2, d2 = 1)

provide a more interesting comparison. For small memory size M , the former gives a lower rate

since the cache memory mainly contains files from level 1, and so giving higher access to level 1 is

more beneficial in reducing the rate. On the other hand, as M grows and files from level 2 start

occupying a significant portion of the memory, it becomes more efficient to give higher access to

level 2 since it has many more files than level 1.

While greater cache access helps reduce the rate, there is also a cost associated with it in

terms of the increased delay in establishing connections with multiple APs, as well as a reduced

communication rate as a user connects to farther APs. In general, for a given multi-level setup with

parameters L, K, {Ni, Ui}, and M , such a cost can be included in the rate optimization framework

as one or more inequalities of the form costj(K, {Ui, di}i) ≤ Cj , for some maximum cost Cj . The

above optimization problem can be numerically solved by a designer in order to identify the optimal

access structure for the multi-level system under consideration. However, to derive some intuition

about how the costs impact the optimal multi-access structure, let us consider a setup with L = 3
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Figure 2.12: Achievable rate vs. cache memory in a two-level setup, for different access structures.

Figure 2.13: Optimal access structure vs. memory, with dmax = 3, davg = 2.

levels, and with N1 = 0.04N , N2 = 0.13N , and N3 = 0.83N files in the three levels. Say we

want to include both a maximum degree constraint di ≤ 3 for each level i, as well as an average

degree constraint (
∑

i Uidi)/U ≤ 2. Then, Figure 2.13 plots the optimal access structure vs. the

normalized memory size. As before, when the memory is small, the optimal access structure is one

which satisfies d1 ≥ d2 ≥ d3, but this relation becomes reversed as the memory increases.

2.8.3 Stochastic variations in user profiles

The theoretical setup and results presented in the previous sections assumed a symmetric and

deterministic user profile across all the APs. In particular, exactly Ui users are assigned to each

AP to request files from level i. This section aims at evaluating the robustness of memory-sharing
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Figure 2.14: Comparison of the theoretical rate with the empirical rate, based on simulations of demands
over the YouTube dataset, with 5 caches and 100 total users. The theoretical rate is off by a factor of up to
2.8 from the empirical.

to asymmetry and stochasticity in the user profiles across caches.

We consider a setup where each of the KU users in the system randomly connects to one of

the K APs and requests a file stochastically, according to the YouTube popularity distribution in

Figure 2.1. The scheme we use here is a simple variation of the one for the worst-case setup: the files

are split into two levels, and the placement is done using memory-sharing based on their average

popularity. The delivery phase is almost identical to the worst-case delivery, with the exception

that, because of a lack of determinism in the user profile, not all caches will have the same number

of users per level. This is handled by simply trying to group as many users of the same level as

possible in each broadcast transmission.

We ran simulations for this setup using the above strategy, and we plot here the empirically

achieved rate against the cache memory in Figure 2.14. For comparison, we also show the rate

predicted by our theoretical model, which splits the files into two levels and assumes a symmetric

user profile across the caches. Clearly, the theory very closely predicts the empirical results for

a random user profile, thus demonstrating the robustness of our theoretical results to stochastic

variations across APs and justifying their utility in practice.
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Figure 2.15: Comparison of the memory-sharing scheme with GFP, simulated over the YouTube dataset.
The memory-sharing scheme achieves up to a factor-14.5 in gain over GFP.

2.8.4 Comparison with Greedy File Placement (GFP)

The Greedy File Placement (GFP) strategy is a natural strategy to use under a “continuous”

popularity distribution such as the YouTube one. GFP essentially stores only the most popular

files in every cache, as many as the cache can hold. For any memory size M , GFP fully stores the

M most popular files, so that requests for more popular files are completely served from the cache,

and requests for less popular files are fully handled by the BS transmission using multiple-unicast.

The results, given in Figure 2.15, show the superiority of memory-sharing when simulating the two

schemes with a stochastic-demands model based on the YouTube dataset.

2.8.5 Numerical gap

As discussed in Section 2.4, the multiplicative gap in Theorem 4 results from many generous

approximations in bounding the achievable rate. Numerical results suggest that this gap is in fact

much smaller. We here give a few examples of these results.

• If K = 10, L = 3, (N1, N2, N3) = (500, 1500, 8000), (U1, U2, U3) = (9, 5, 1), and (d1, d2, d3) =

(1, 3, 5), then we get a gap of approximately 6.

• Increasing the number of caches and files: ifK = 20, L = 3, (N1, N2, N3) = (200, 20 000, 800 000),

(U1, U2, U3) = (10, 5, 1), and (d1, d2, d3) = (1, 1, 1), then we get a gap of approximately 6.8.
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• The same setup as the previous point, with access degrees of (d1, d2, d3) = (1, 2, 3) gives a

gap of about 7.6.

In most examples we have tried, the gap was in the range 5–10, regardless of the access degree.

In the worst case, the largest gap our numerics have shown was about 45, in a situation with L = 3

and D = 5.

2.8.6 Extensions to the problem

There are several extensions and generalizations to the models considered in this chapter that might

be future research directions to explore. As discussed in [42], there are perhaps several practical

considerations that might be useful to incorporate into the models. Below are some such aspects

of the problem, to name a few, that are worth exploring in the context of caching for multi-level

popularity and access.

• Our work assumes that the broadcast transmission is made at the same rate to all users.

However, different users will have different channel qualities with the base station, and thus

the performance of common message broadcast will be limited by the weakest user. This

aspect has been partially studied in [43, 44] where users can have channels of different qualities.

• Another generalization of the problem is to consider finite file sizes. This can significantly

affect the caching strategies by limiting the number of multicasting opportunities, as explored

in [30].

• Finally, an important part of caching in general is to estimate the dynamic popularity dis-

tributions. Thus one possible generalization to our problem is to find methods of classifying

content into a small number of levels, dynamically over time, and regularly adapting the cache

placement accordingly. A different approach to dynamic content placement is done in [24].

2.9 Practical Considerations and Implementation

The work in this chapter is of a theoretical nature, and many practical considerations must be

addressed for a large-scale implementation of multi-level coded caching systems. Some such con-
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siderations are: computational efficiency, content delay-sensitivity, communication overhead, and

error correction. Some of these were addressed in [45], which studied a single-level caching system

with one user. The paper proposed an efficient algorithm for this setup that can handle asyn-

chronous user requests while both satisfying delivery time constraints for each user and preserving

much of the global caching gain. The authors implemented this algorithm in a working prototype

and showed that the gains were close to the simulated values.

In this section, we discuss a system that we have implemented in order to handle a multi-level

and multi-user setup. We give a high-level explanation of the workings of the system, evaluate its

performance, and discuss further challenges that it reveals to the implementation of such systems

on a large scale.

2.9.1 System Description

The system consists of three separate Java programs: one for the server, one for the caches, and

one for the users. The server program is run once, and an instance of the cache and user programs

is run for each cache and user, respectively. The processes can be on different machines altogether,

provided that each user knows the IP address of the cache it wants to connect to, and both the

users and caches know the IP address of the server.

After some preliminary processing, the server is ready to accept connections from the caches.

When a cache connects, it performs the (decentralized) placement phase, and then accepts file

requests from users and forwards them to the server. The file requests can be completely asyn-

chronous. If the files are video files, the users can start to stream them in real time even if the

server has not completed the transfer.

The system works with a multi-user, multi-level popularity model of the files, with single access.

Subdivision of Files

The system handles each file by subdividing it into smaller parts. This subdivision operates on

two levels. At the lowest level, a file is divided into small blocks. The system treats a block as

the smallest indivisible unit of a file. The placement and delivery schemes operate on the level of

a block. Each block consists of B bytes. At a higher level, a file is split into larger chunks. The
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chunks of each file are treated as though they are separate files. A request for a particular file

translates to sequential requests to each of its chunks, and each chunk must be delivered to its user

in full before the next chunk is considered. Each chunk is made up of C blocks.

The reason for these divisions is as follows. First, the blocks are needed because operating

directly on bits or bytes is practically inefficient. The placement and delivery phases operate

on individual blocks, and keeping track of and identifying each block requires some amount of

header/metadata. If the block size B is too small, the metadata becomes too large in comparison,

effectively negating coding benefits. However, B cannot be too large, otherwise there would be

fewer blocks in a chunk or file, which would reduce the number of coding opportunities and by

extension the coding gains. In practice, it seems that a B of about one kilobyte is sufficient.

Splitting the files into chunks is done for two (related) reasons. The first reason is to handle

delay-sensitive content such as video streaming. For a large video file, allowing coding between any

blocks in the file means that a user might have to download almost the entire video before being

able to play it. By chunking, this wait is limited to the chunk level. Indeed, chunking guarantees

that the server will serve the first chunk of the requested file to the user before starting with the

second chunk. We can hence reduce the user’s wait time by reducing the chunk size. The downside

is that a smaller chunk size means fewer coding opportunities and hence a smaller coding gain.

There is hence a balance to be achieved when choosing the right chunk size C.

The second reason for chunking the files is that it allows the creation of coding opportunities

across users in the presence of asynchronous demands, without having to wait for several users to

connect before their requests are served. More precisely, it enables the synchronization of requests

so that they can be served in the same coded delivery. To illustrate, suppose that every file is

split into four chunks, and let us denote the ith chunk of file Wn by Wn,i. Suppose that the server

was serving chunk W1,3 to user one and chunk W2,1 to user two. During this delivery period, if

the server receives requests from, say, two new users (users three and four requesting W3 and W4

respectively), then once the current delivery is completed the server can serve

W1,4,W2,2,W3,1,W4,1

61



W1,1 W1,2 W1,3

W2,1

W1,4

W2,2

W3,1 W3,2

W2,4W2,3

W3,3 W3,4

user 1

user 2

user 3

W4,1 W4,2 W4,3 W4,4user 4

time

Figure 2.16: Progression of chunk serving as user requests come in over time. In the figure, time flows
from left to right. The vertical top arrows indicate the arrival of requests from new users. Each rectangle
represents the server serving a particular chunk to its corresponding user indicated on the left. Rectangles
that share the same column are served at the same time using a coded delivery. Thus the asynchronous file
requests were transformed into synchronous chunk requests.

simultaneously to all four users. This is illustrated in Figure 2.16.

2.9.2 System Evaluation

In this section, we are interested in showing a proof-of-concept implementation of the system. Our

focus is mostly on the communication aspect: we seek to show that we can apply our memory-

sharing strategy and obtain gains over simpler methods even when the system operates in a practical

setting. In particular, we operate on a small number of users and on file sizes common for video

files. During evaluation, for a fair comparison the files used are created by randomly generating

bytes in order to have a fixed file size.

The file size considered here is 200 MB.8 We choose a block size of B = 1 kB and a chunk size of

C = 40 000 blocks. Since 1080p videos have a bit rate of approximately 3 to 6 megabits per second

[46], this corresponds to HD video files of about five minutes split into chunks of one minute each.

As in Section 2.5.4, we compare our Optimal Memory-Sharing (OMS) scheme with Greedy

Memory-Sharing (GMS) and Uniform Memory-Sharing (UMS). We create L = 2 popularity levels,

the second containing three times as many files as the first, N2 = 3N1.9 We create K = 10 caches,

and at each cache attach U1 = 3 users for level one and U2 = 1 user for level two. We set the cache

memory to be enough to store the first level completely, i.e., M = N1.

8In this section, we use the SI convention that the unit prefixes in kB and MB refer to powers of ten instead of
powers of two, i.e., 1 MB = 1000 kB = 106 B.

9The exact number of files is not important in the worst case as long as there are more chunks than users. Since
these evaluations were performed by running many caches and users on the same laptop, it was easier on the machine
to only create one file for level one and three files for level two, and to have the server pretend as though no two file
requests were the same. This gives the same performance as if there were many more files.
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Theoretically, the gains of OMS over both GMS and UMS should scale as Θ(
√
K) in this regime.

In fact, this is the regime where the gains of OMS over the better of GMS and UMS is maximized.

However, since the numbers involved were small, the gains were approximately 1.1 over GMS and

1.7 over UMS. Other memory regimes can give higher gains over each scheme individually.

While these numbers are not very large, they do show a proof-of-concept result. For larger

systems, with a greater number of caches and more powerful servers, the benefits of OMS can be

obtained over simpler methods such as GMS and UMS.

2.9.3 Challenges and Further Extensions

Currently, the system uses a näıve search for the best delivery message for any given set of simul-

taneous requests. This is computationally expensive and would not scale well. One improvement

can be to implement a similar algorithm to [45] and adapt it to the multi-user, multi-level model.

Another issue that comes up is the reliable transmission of the broadcast/multicast messages.

Since the goal of coded caching is to make use of broadcast, the server must transmit multicast

messages to the intended users without resorting to (unicast) TCP protocols. One way to resolve

this at the application layer is to apply a rateless error correction code on top of the UDP datagrams

sent in the broadcast.

In addition, currently the IP address of each cache is explicitly provided to the users. Imple-

menting this in a heterogeneous wireless network requires that the user discovers nearby caches and

connects to one, or to several in case of multi-level access.

Finally, the cache contents should be dynamic in order to account for changes in popularity

over time. The simplest way to do that would be for the caches to run the placement algorithm

periodically, for instance every few hours. A similar problem has been studied for the single-user

case in [24] (without a multi-level popularity model) for which a coded least-recently sent algorithm

is proposed and analyzed.
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Chapter 3

Adaptive Matching and Partial

Adaptive Matching

3.1 Introduction

In this chapter, we expand on the coded caching problem initiated in [4, 5] mainly by considering

the possibility of connecting to one of a number of caches. In [4] as well as many other works in

the literature [10, 11, 12, 6, 13], a key assumption is that users are pre-fixed to specific caches; see

also [47, 48] for a survey of related works. More precisely, each user connects to a specific cache

before it requests a file from the content library. This assumption was relaxed in [49, 50] where

the system is allowed to choose a matching of users to caches after the users make their requests,

while respecting a per-cache load constraint. In particular, after each user requests a file, any user

could be matched to any cache as long as no cache had more than one user connected to it. In this

adaptive matching setup, it was shown under certain request distributions that a coded delivery,

while approximately optimal in the pre-fixed matching case, is unnecessary. Indeed, it is sufficient

to simply store complete files in the caches, and either connect a user to a cache containing its file

or directly serve it from the server.

The above dichotomy indicates a fundamental difference between the system with completely

pre-fixed matching and the system with full adaptive matching. In this chapter, we consider a

“partial adaptive matching” setup, i.e., a setup where users can be matched to any cache belonging
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Figure 3.1: Illustration of the setup considered in this chapter. The squares represent K = 12 caches,
divided into three clusters of size d = 4 caches each, and the circles represent users at these clusters. Dashed
arrows represent the matching phase, and solid arrows the delivery phase. Unmatched users are in gray.

to a subset of caches, which we first studied in [51]. This can arise when, for instance, only some

caches are close enough to a user to ensure a potential reliable connection. To make matters simple,

we assume that the caches are partitioned into equal clusters, and each user can be matched to

any cache within a single cluster, as illustrated in Figure 3.1. This setup generalizes both setups

considered above: on one extreme, if each cluster consisted of only a single cache, then the setup

becomes the pre-fixed matching setup of [4]; on the other extreme, if all caches belonged to a single

cluster, then we get back the total adaptive matching setup from [49, 50].

In [51], we analyzed this setup in the case where all the files in the library were equally popular.

While this was useful for an initial understanding of the problem, such uniform popularity is rare

in practice. In this chapter, we focus on the more relevant case when the popularity obeys a power

law, specifically a Zipf law [21]. We analyze how the coded caching scheme, useful in the pre-fixed

matching case, and the adaptive matching scheme, useful in the full adaptive matching case, would

perform if adapted to this setup. We compare the two schemes with each other, characterizing the

regimes in which one is better than the other. We then compare them with information-theoretic

outer bounds, proving that the schemes are approximately optimal in certain regimes. Finally, for

a subclass of Zipf distributions, we introduce a hybrid scheme that generalizes ideas from both

schemes, thus combining the matching benefits with the coding gains, and that performs as well as

either scheme in most memory regimes.

The rest of this chapter is organized as follows. Section 3.2 precisely describes the problem

setup. We present the main results in Section 3.3, which include the rates achieved by the schemes

as well as statements of approximate optimality. Finally, Section 3.4 describes the hybrid scheme.
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Detailed proofs are given in Appendix B.

3.2 Problem Setup

Consider the system depicted in Figure 3.1. A server holds N files W1, . . . ,WN of size F bits each.

There are K caches of capacity MF bits, equivalently M files, each. The caches are divided into

K/d clusters of size d each, where d is assumed to divide K. For every n ∈ {1, . . . , N} and every

c ∈ {1, . . . ,K/d}, there are un(c) users accessing cluster c and requesting file Wn. We refer to the

numbers {un(c)}n,c as the request profile and will often represent the request profile as a vector u

for convenience.

As with standard coded caching setups, a placement phase occurs before the request profile

is revealed during which information about the files is placed in the caches, and a delivery phase

occurs after the request profile is known during which a broadcast message is sent to all users to

satisfy their demands. In our setup, in addition to the usual placement and delivery phases, there

is an intermediate phase that we call the matching phase. The matching phase occurs before the

delivery phase but after the request profile has been revealed. During the matching phase, each

user is matched to a single cache within its cluster, with the constraint that no more than one user

can be matched to a cache. If there are fewer caches than users in one cluster, then some users will

be unmatched.

In this chapter, we focus on the case where the numbers un(c) are independent Poisson random

variables with parameter ρdpn, where ρ ∈ (0, 1/2) is some fixed constant and p1, . . . , pN is the

popularity distribution of the files, with pn ≥ 0 and p1 + · · · + pN = 1. Thus pn represents the

probability that a fixed user will request file Wn. We particularly focus on the case where the files

follow a Zipf law, i.e., pn ∝ n−β where β ≥ 0 is the Zipf parameter. Note that the expected total

number of users in the system is ρK.

For a given request profile u, let Ru denote the rate of the broadcast message required to deliver

to all users their requested files. For any cache memory M , our goal is to minimize the expected

rate R̄ = Eu[Ru]. Specifically, we are interested in R̄∗ defined as the smallest R̄ over all possible

strategies. Furthermore, we assume that there are more files than caches, i.e., N ≥ K, which is the
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case of most interest. We also, for analytical convenience, focus on the case where the cluster size

d grows at least as fast as logK. More precisely, we assume

d ≥ [2(1 + t0)/α] logK, (3.1)

where α = − log(2ρe1−2ρ) and t0 > 0 is some constant. Note that α > 0. Other than analytical

convenience, the reason for such a lower bound on d is that, when d is too small, the Poisson

request model adopted in this chapter is no longer suitable. Indeed, if for example d = 1, then with

high probability a significant fraction of users will not be matched to any cache, leading to a rate

proportional to K even with infinite cache memory.

Finally, we will frequently use the helpful notation [x]+ = max{x, 0} for all real numbers x.

3.3 Main Results

The setup we consider is a generalization of the pre-fixed matching setup (when d = 1) and the

maximal adaptive matching setup (when d = K). From the literature, we know that different

strategies are required for these two extremes: one using a coded delivery when d = 1, and one

using adaptive matching when d = K.1 Therefore, there must be some transition in the suitable

strategy as the cluster size d increases from one to K.

The goal of this chapter is to gain some understanding of this transition. To do that, we

first adapt and apply the strategies suitable for the two extremes to our intermediate case. These

strategies will exclusively focus on one of coded delivery and adaptive matching, and we will hence

refer to them as “Pure Coded Delivery” (PCD) and “Pure Adaptive Matching” (PAM). In partic-

ular, PCD will perform an arbitrary matching and apply the coded caching scheme from [11, 12],

whereas PAM will apply a matching scheme similar to [49, 50] independently on each cluster and

serve unmatched requests directly, ignoring any coding opportunities. We then compare PCD and

PAM in various regimes and evaluate them against information-theoretic outer bounds.

1The request model used in the literature when d = 1 is usually not the Poisson model used here. Instead, a
multinomial model is used in which the total number of users is always fixed. As mentioned at the end of Section 3.2,
the Poisson model is not suitable in that case. However, the results from the literature are still very relevant to this
chapter.
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Regardless of the value β of the Zipf parameter, we find that PCD tends to perform better than

PAM when the cache memory M is small, while PAM is superior to PCD when M is large. The

particular threshold of M where PAM overtakes PCD obeys an inverse relation with the cluster

size d. Thus when d is small, PCD is the better choice for most memory values, whereas when d is

large, PAM performs better for most memory values. This observation agrees with previous results

on the two extremes d = 1 and d = K, and it is illustrated in Figure 3.2 and 3.4 and made precise

in the theorems that follow.

While most of the analysis assumes general values for K, N ≥ K, d (except for (3.1)), and M ,

it will nevertheless be useful to sometimes compare PCD and PAM under the restriction that these

parameters all scale as powers of K. This can provide some high-level insights into the different

regimes where PCD or PAM dominate, while ignoring sub-polynomial factors such as logN , thus

simplifying the analysis. During this polynomial-scaling-with-K analysis—which we will call poly-K

analysis as a shorthand—we will assume that N = Kν , d = Kδ, and M = Kµ, where

ν ≥ 1; δ ∈ (0, 1]; µ ∈ [0, ν].

To proceed, we will separately consider two regimes for the Zipf popularity: a shallow Zipf case

in which β ∈ [0, 1), and a steep Zipf case where β > 1.2

3.3.1 Shallow Zipf: β ∈ [0, 1)

In [51], we studied this problem when the files obeyed a uniform popularity, i.e., when β = 0. In

this chapter, we show that the case β ∈ [0, 1) is very similar to the uniform case. Indeed, the results

from [51] can be generalized to all β ∈ [0, 1) with only a constant-factor difference.

The next theorem gives the rate achieved by PCD.

Theorem 7. When β ∈ [0, 1), the PCD scheme can achieve for all M an expected rate of

R̄PCD = min
{
ρK,

[
N
M − 1

]+
+ K−t0√

2π

}
.

2The case β = 1 is a special case that usually requires separate handling. We skip it in this chapter, and analyzing
it is part of our on-going work.
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Theorem 7 can be proved by directly applying any suitable coded caching strategy [11, 12, 6]

along with an arbitrary matching phase. The additional K−t0 term represents the expected number

of users that will not be matched to any cache and must hence be served directly from the server.

The derivation of this term is done in Lemma 11 in Appendix B.1.

The next theorem gives the rate achieved by PAM.

Theorem 8. When β ∈ [0, 1), the PAM scheme can achieve an expected rate of

R̄PAM =


ρK if M = O(N/d);

min
{
ρK,KMe−zdM/N

}
if M = Ω(N/d),

where z = (1− β)ρh((1 + ρ)/2ρ) > 0 with h(x) = x log x+ 1− x.

Theorem 8 can be proved using a similar argument to [49]: the idea is to replicate each file

across the caches in each cluster, and match each user to a cache containing its requested file. The

detailed proof is given in Appendix B.2.

Notice that PAM can achieve a rate of o(1) when dM > Ω(N logN). Recall that we have

imposed a service constraint of one user per cache in our setup. If we instead allow multiple users

to access the same cache, then it can be shown that a rate of o(1) can be achieved if and only if

dM > (1− o(1))N . Consequently, the cache service constraint increases this memory threshold by

at most a logarithmic factor.

The rates of PCD and PAM are illustrated in Figure 3.2 for the β ∈ [0, 1) case. We can see

that there is a memory threshold M0, with M0 = Ω(N/d) and M0 = O((N/d) logN), such that

PCD performs better than PAM for M < M0 while PAM is superior to PCD for M > M0. Using

a poly-K analysis, we can ignore the logN term and obtain the following result, illustrated in

Figure 3.3.

Theorem 9. When β ∈ [0, 1), and considering only a polynomial scaling of the parameters with

K, PCD outperforms PAM in the regime

µ ≤ ν − δ,
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Figure 3.2: Rates achieved by PCD, PAM, and HCM when β ∈ [0, 1), along with information-theoretic
lower bounds. HCM is a hybrid scheme described in Section 3.4, and the lower bounds are presented in
Appendix B.4. This plot is not numerically generated but is drawn approximately for illustration purposes.

while PAM outperforms PCD in the opposite regime, where N = Kν , d = Kδ, and M = Kµ.

Note that in some cases PCD and PAM perform equally well, such as when µ = ν. However,

these are usually edge cases and most of the regimes in Theorem 9 are such that one scheme strictly

outperforms the other.

Interestingly, under the poly-K analysis, the memory regime where PAM becomes superior to

PCD is the regime where PAM achieves a rate of o(1), for any d.

So far, we have seen that the two memory regimes M < O(N/d) and M > Ω((N/d) logN)

require very different schemes: one focusing on coding and the other on matching. In Section 3.4,

we introduce a universal scheme for the shallow Zipf case that generalizes ideas from both PCD and

PAM. It is a Hybrid Coding and Matching (HCM) scheme that combines the benefits of adaptive

matching within clusters with the coded caching gains across clusters. We state the rate HCM

achieves in Theorem 14, and then show that it can perform at least as well as either of PCD and

PAM in most memory regimes, namely when M < O(N/d) or M > Ω((N/d) logK).

3.3.2 Steep Zipf: β > 1

When β > 1, we restrict ourselves to the case where d is some polynomial in K for convenience.

The following theorems give the rates achieved by PCD and PAM, illustrated in Figure 3.4.
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Figure 3.3: The scheme among PCD and PAM that performs better than the other when β ∈ [0, 1), in
terms of polynomial scaling in K. Here N = Kν , d = Kδ, and M = Kµ.

Theorem 10. When β > 1, the PCD scheme can achieve an expected rate of

R̄PCD =


K1/β if 0 ≤M < 1;[

(KM)1/β

M − 1
]+

+ K−t0√
2π

if 1 ≤M < Nβ/K;[
N
M − 1

]+
+ K−t0√

2π
if M ≥ Nβ/K.

Much like Theorem 7, Theorem 10 follows from directly applying the coded caching strategy

from [11, 12]. Again, the K−t0 term represents the expected number of unmatched users, derived

in Lemma 11 in Appendix B.1.

Theorem 11. When β > 1, the PAM scheme can achieve an expected rate of

R̄PAM =


O
(

min
{

K
(dM)β−1 ,K

1
β

})
if M = O(N/d);

o(1) if M = Ω
(
N logN

d

)
.

The proof of Theorem 11, given in Appendix B.3, follows along the same lines as [50] and

involves a generalization from d = K to any polynomial d = Kδ, 0 < δ ≤ 1. The idea is to replicate

the files across the caches in the cluster, placing more copies for the more popular files, and match

the users accordingly.
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Figure 3.4: Rates achieved by PCD and PAM in the β > 1 case. Again, this plot is not numerically
generated but is drawn approximately for illustration purposes.

As with the β ∈ [0, 1) case, we notice that PCD is the better choice when M is small, while PAM

is the better choice when M is large. In fact, by comparing the rate expressions in Theorems 10

and 11 using a poly-K analysis, we obtain the following theorem describing the regimes for which

either of PCD or PAM is superior to the other. The theorem is illustrated in Figure 3.5 and proved

at the end of this subsection.

Theorem 12. When β > 1, and considering only a polynomial scaling of the parameters with K,

PCD outperforms PAM in the regime

µ ≤ min {ν − δ, (1− βδ)/(β − 1)} ,

while PAM outperforms PCD in the opposite regime, where N = Kν , d = Kδ, and M = Kµ.

When comparing Theorems 9 and 12, we notice that the case β > 1 has the added constraint

µ < (1−βδ)/(β−1) for the regime where PCD is superior to PAM, indicating that there are values

of d for which PAM is better than PCD for a larger memory regime under β > 1 as compared

to β ∈ [0, 1). This is represented in Figure 3.5 by the additional line segment joining points

(1−ν(β−1), νβ−1) and (1/β, 0). As β approaches one from above, this line segment tends toward

the segment joining points (1, ν − 1) and (1, 0). With it, the regime in which PCD is better than

PAM grows until it becomes exactly the regime shown in Figure 3.3 for β ∈ [0, 1). In other words,
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Figure 3.5: The scheme among PCD and PAM that performs better than the other when β > 1 and
ν < 1/(β − 1), in terms of polynomial scaling in K. Here N = Kν , d = Kδ, and M = Kµ.

when β > 1 and as β → 1+, the regimes in which PCD or PAM are respectively the better choice

become the same regimes as in the β ∈ [0, 1) case. This seemingly continuous transition suggests

that, when β = 1, the system should behave similarly to β ∈ [0, 1), i.e., Figure 3.3, at least under

a poly-K analysis.

Proof of Theorem 12: Recall that we are only focusing on a poly-K analysis. We will define

σPCD and σPAM to be the exponents of K in R̄PCD and R̄PAM, respectively, i.e., R̄PCD = Θ(KσPCD
)

and similarly for PAM. Our goal is to compare σPCD to σPAM. We can break the proof down into

two main cases plus one trivial case. It can help the reader to follow these cases in Figure 3.5.

The trivial case is when the total cluster memory dM is large, specifically µ+δ > min{ν, 1/(β−

1)}. From Theorem 11, the PAM rate is then o(1), hence σPAM = 0. Therefore, PCD cannot

perform better than PAM in this case.

In what follows, we assume µ+ δ < min{ν, 1/(β− 1)}. We can write the exponents of the rates

of PCD and PAM as

σPCD = min {[1− (β − 1)µ]/β , ν − µ} ;

σPAM = min {1/β , 1− (β − 1)(δ + µ)} .

Notice that we always have σPCD ≤ [1 − (β − 1)µ]/β ≤ 1/β, and hence we only need to compare
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σPCD to the second term in the minimization in σPAM. We split the analysis into a small and a

large memory regimes, with the threshold µ ≶ νβ − 1.

Large memory: µ > νβ − 1 This case is only possible when ν < 1/(β − 1) because we always

have µ ≤ ν. Here, PCD achieves σPCD = ν − µ. The constraints on µ imply:

µ < ν − δ =⇒ 1− (β − 1)(δ + µ) > 1− ν(β − 1);

µ > νβ − 1 =⇒ ν − µ < ν − (νβ − 1) = 1− ν(β − 1).

Therefore, σPCD < σPAM.

Small memory: µ < νβ − 1 In this case, PCD always achieves σPCD = [1− (β − 1)µ]/β. Using

some basic algebra, we can show that [1− (β − 1)µ] /β < 1− (β − 1)(δ + µ), i.e., σPCD < σPAM, if

and only if µ < (1− βδ)/(β − 1).

3.3.3 Approximate Optimality

The previous sections have focused on a comparison of the PCD and PAM schemes with each

other. In this section, we compare the achievable rates of these schemes to information-theoretic

lower bounds and identify regimes in which PCD or PAM is approximately optimal. We say that a

scheme is approximately optimal if it can achieve an expected rate R̄ such that R̄ ≤ C · R̄∗ + o(1),

where C is some constant.

For β ∈ [0, 1), we show the approximate optimality of PCD in the small memory regime and

that of PAM in the large memory regime. When M > Ω((N/d) logN), it follows from Theorem 8

that R̄PAM = o(1), and thus PAM is trivially approximately optimal. The following theorem states

the approximate optimality of PCD when M < O(N/d).

Theorem 13. When β ∈ [0, 1) and M < (1 − e−1/2)N/2d, and for N ≥ 10, the rate achieved by

PCD is within a constant factor of the optimum,

R̄PCD

R̄∗
≤ C ∆

=
96

(1− β)ρ(1− e−1/2)2
.
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Note that the constant C is independent of K, d, N , and M .

Theorem 13 can be proved by first reducing the β ∈ [0, 1) case to a uniform-popularities setup,

and then applying the converse results from [51]. Proof details are given in Appendix B.4.

When β > 1 we know from Theorem 11 that R̄PAM = o(1) is achieved forM > Ω(min{N logN,K
1

β−1 }/d),

and thus PAM is trivially approximately optimal in that regime.

3.4 A Hybrid Coding and Matching Scheme

For β ∈ [0, 1), we propose a scheme that generalizes ideas from both PCD and PAM. It is a hybrid

scheme that we call Hybrid Coding and Matching (HCM). This hybrid scheme is a generalization of

the one we proposed in [51] for the uniform-popularities case (β = 0). Developing a hybrid scheme

for the β > 1 case is part of our on-going work.

The main idea of HCM is to partition files and caches into colors, and then apply a coded caching

scheme within each color while performing adaptive matching across colors. More precisely, each

color consists of a subset of files as well as a subset of the caches of each cluster. When a user

requests a file, the user is matched to an arbitrary cache in its cluster, as long as the cache has the

same color as the requested file. For each color, a coded transmission is then performed to serve

all the matched users requesting a file from said color. Unmatched users are served directly by the

server. This allows us to take advantage of adaptive matching within each cluster as well as obtain

coded caching gains across the clusters.

The rate achieved by HCM is given in the following theorem. It is illustrated in Figure 3.2

along with the rates of PCD and PAM for comparison.

Theorem 14. For any β ∈ [0, 1), HCM can achieve a rate of

R̄HCM =


min

{
ρK, NM − χ+ K−t√

2π

}
if M ≤ bN/χc;

K−t√
2π

if M ≥ dN/χe,

where χ = bαd/(2(1 + t) logK)c, for any t ∈ [0, t0].

While the expression for R̄HCM given in the theorem is rigorous, we can approximate it here for
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clarity as

R̄HCM ≈ min

{
ρK,

[
N
M −Θ

(
d

logK

)]+
+ o(1)

}
.

The proof of Theorem 14 is given in detail in Appendix B.5, where we provide a rigorous

explanation of the HCM scheme.

We will next compare HCM to PCD and PAM. Notice from Figure 3.2 that HCM is strictly

better than PCD for all memory values. In fact, there is an additive gap between them of about

d/ logK for most memory values, and an arbitrarily large multiplicative gap when M > (N/d) logK

where HCM achieves a rate of o(1). Consequently, HCM is approximately optimal in the regime

where PCD is, namely when M < N/2d.

Furthermore, HCM is significantly better than PAM in the M < N/d regime: there is a

multiplicative gap of up to about K/d between their rates in that regime. Moreover, HCM achieves

a rate of o(1) when M > (N/d) logK. It is thus trivially approximately optimal in that regime,

which includes the regime where PAM is.
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Chapter 4

Cache-Aided Gaussian Interference

Networks

4.1 Introduction

Traditional communication networks focus on establishing a reliable connection between two fixed

network nodes and are therefore connection centric. With the recent explosion in multimedia

content, network usage has undergone a significant shift: users now want access to some specific

content, regardless of its location in the network. Consequently, network architectures are shifting

towards being content centric. These content-centric architectures make heavy use of in-network

caching and, in doing so, redesign the protocol stack from the network layer upwards [52].

A natural question to ask is how the availability of in-network caches can be combined with the

wireless physical layer and specifically with two fundamental properties of wireless communication:

the broadcast and the superposition of transmitted signals. Recent work in the information theory

literature has demonstrated that this combination can yield significant benefits. This information-

theoretic approach to caching was introduced in the context of the noiseless broadcast channel in [4],

where it was shown that significant performance gains can be obtained using cache memories at the

receivers. In [53], the noiseless broadcast setting was extended to the interference channel, which is

the simplest multiple-unicast wireless topology capturing both broadcast and superposition. The

authors presented an achievable scheme showing performance gains using cache memories at the
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Figure 4.1: Caching in a wireless interference network. Caches (in red) are placed at all network nodes.

transmitters.

In this chapter, we continue the study of the cache-aided wireless interference network, but we

allow for caches at both the transmitters and receivers as shown in Figure 4.1. The main result of

this chapter (Theorem 15, Section 4.3) is a complete constant-factor approximation of the degrees of

freedom (DoF) of this network. The result is general, in that it holds for any number of transmitters

and receivers, size of content library, transmitter cache size (large enough to collectively hold the

entire content library), and receiver cache size. Moreover, our converse holds for arbitrary caching

and transmission functions, and imposes no restrictions as done in prior work.

Several architectural and design insights emerge from this degrees-of-freedom approximation.

1. Our achievable scheme introduces a novel separation of the physical and network layers,

thus redesigning the protocol stack from the network layer downwards. From the order-wise

matching converse, we hence see that this separation is approximately optimal.

2. Once the transmitter caches are large enough to collectively hold the entire content library,

increasing the transmitter memory further can lead to at most a constant-factor improvement

in the system’s degrees of freedom. In particular, and perhaps surprisingly, this implies that

transmit zero-forcing is not needed for approximately optimal performance.

3. There is a trade-off between the number of transmitters needed for (approximately) maximal
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system performance and the amount of receiver cache memory. As the receiver memory

increases, the required number of transmitters decreases, down to a constant when the memory

is a constant fraction of the entire content library.

There are three seemingly natural network-layer abstractions for this problem. The first network-

layer abstraction treats the physical layer as a standard interference channel and transforms it into

non-interacting bit pipes between disjoint transmitter-receiver pairs. This approach is inefficient.

The second network-layer abstraction treats the physical layer as an X-channel and transforms it

into non-interacting bit pipes between each transmitter and each receiver. The third network-layer

abstraction treats the physical layer as multiple broadcast channels: it creates a broadcast link from

each transmitter to all receivers. The last two approaches turn out to be approximately optimal

in special circumstances: the second when the receivers have no memory, and the third when they

have enough memory to each store almost all the content library. In this chapter, we propose a

network-layer abstraction that creates X-channel multicast bit pipes, each sent by a transmitter

and intended for a subset of receivers whose size depends on the receiver memory. This abstraction

generalizes the above two approaches, and we show that it is in fact order-optimal for all values of

receiver memory.

Our solution to this problem requires solving a new communication problem at the physical

layer that arises from the proposed separation architecture. This problem generalizes the X-channel

setting studied in [54] by considering multiple multicast messages instead of just unicast. We focus

on the symmetric case and provide a complete and exact DoF characterization of this symmetric

multiple multicast X-channel problem, by proposing a strategy based on interference alignment and

proving its optimality (see Theorem 16, Section 4.4).

Finally, while most of the chapter is focused on the high-SNR regime, we conclude the chapter

with an analysis of the low-SNR regime and derive energy-efficiency gains of caching for the inter-

ference channel. We use a similar separation architecture and show that, contrary to the high-SNR

regime, a large transmitter memory can have a significant impact by enabling a beamforming gain.

We also use a separation architecture, with a different physical-layer scheme more suited to the

low-SNR regime, and show that it is approximately optimal in two extreme cases: the case when

there is a single transmitter (Gaussian broadcast channel) and the case when there is a single
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receiver (Gaussian multiple-access channel).

The remainder of this chapter is organized as follows. Section 4.2 introduces the problem setting

and establishes notation. Section 4.3 states the chapter’s main results. Section 4.4 presents the

separation architecture in detail; Section 4.5 gives the interference alignment strategy used at the

physical layer. Section 4.6 proves the order-optimality of our strategy. Section 4.7 explores an

interesting variant of the separation architecture. Section 4.8 discusses extensions to the problem

as well as relation to some works in the literature. Section 4.9 analyzes the low-SNR regime and

compares it with the high-SNR regime. We defer additional proofs to Appendix C.

Related Work

The information-theoretic framework for coded caching was introduced in [4] in the context of the

deterministic broadcast channel. This has been extended to online caching systems [24], systems

with delay-sensitive content [45], heterogeneous cache sizes [25], unequal file sizes [26], and improved

converse arguments [27, 28]. Content caching and delivery in device-to-device networks, multi-

server topologies, and heterogeneous wireless networks have been studied in [32, 34, 23, 13, 14].

This framework was also applied to hierarchical (tree) topologies in [31], and to non-uniform content

popularities in [10, 11, 12, 35, 13, 14]. Other related work includes [36], which derives scaling laws

for content replication in multihop wireless networks, and [37], which explores distributed caching

in mobile networks using device-to-device communications. The benefit of coded caching when the

caches are randomly distributed was studied in [38], and the benefits of adaptive content placement

using knowledge of user requests were explored in [39].

More recently, this information-theoretic framework for coded caching has been extended in [53]

to interference channels with caches at only the transmitters, focusing on three transmitters and

three receivers. The setting was extended in [55] to arbitrary numbers of transmitters and receivers

and included a rate-limited fronthaul. Interference channels with caches both at transmitters and

at receivers were considered in [56, 57, 8], all of which have a setup similar to the one in this

chapter. However, each of these three works has some restrictions on the setup. The authors in

[56] focus on one-shot linear schemes, while [57] prohibits inter-file coding during placement and

limits the number of receivers to three. Our prior work [8] studies the same setup but with only
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Figure 4.2: The caching problem, with Kt = 2 transmitters and Kr = 4 receivers. The server holds a
content library of N files. Information about these files is placed in the transmitter caches of size Mt and in
the receiver caches of size Mr during a placement phase (indicated by dashed lines). During the subequent
delivery phase (indicated by solid lines), each user requests one file, and all the requested files have to be
delivered over the interference network.

two transmitters and two receivers. The work in this chapter differs from those above in that it

considers an arbitrary number of transmitters and receivers and proves order-optimality using outer

bounds that assume no restrictions on the scheme.

4.2 Problem Setting

A content library contains N files W1, . . . ,WN of size F bits each. A total of Kr users will each

request one of these files, which must be transmitted across a Kt × Kr time-varying Gaussian

interference channel whose receivers are the system’s users. We will hence use the terms “receiver”

and “user” interchangeably. Our goal is to reliably transmit these files to the users with the help

of caches at both the transmitters and the receivers.

Example 1. The setup is depicted in Figure 4.2 for the case with Kt = 2 transmitters, Kr = 4

receivers, and N = 4 files in the content library. We will use this setting as a running example

throughout the paper.

The system operates in two phases, a placement phase and a delivery phase. In the placement

phase, the transmitter and receiver caches are filled as an arbitrary function of the content library.

The transmitter caches are able to store MtF bits; the receiver caches are able to store MrF bits.

We refer to Mt and Mr as the transmitter and receiver cache sizes, respectively. Other than the
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memory constraints, we impose no restrictions on the caching functions (in particular, we allow the

caches to arbitrarily code across files). In this chapter, we consider all values of Mr ≥ 0, but we

restrict ourselves to the case where the transmitter caches can collectively store the entire content

library,1 i.e.,

Mt ≥ N/Kt. (4.1)

The delivery phase takes place after the placement phase is completed. In the beginning of

the delivery phase, each user requests one of the N files. We denote by u = (u1, . . . , uKr) the

vector of user demands, such that user i requests file Wui . These requests are communicated to

the transmitters, and each transmitter j responds by sending a codeword xj = (xj(1), . . . , xj(T ))

of block length T into the interference channel. We impose a power constraint over every channel

input xj ,

1

T
‖xj‖2 ≤ SNR, ∀j = 1, . . . ,Kt.

Note that each transmitter only has access to its own cache, so that xj only depends on the contents

of transmitter j’s cache and the user requests u. We impose no other constraint on the channel

coding function (in particular, we explicitly allow for coding across time using potentially nonlinear

schemes).

Receiver i observes a noisy linear combination of all the transmitted codewords,

yi(τ) ,
Kt∑
j=1

hij(τ)xj(τ) + zi(τ),

for all time instants τ = 1, . . . , T , where the zi(τ)’s are independent identically distributed (iid)

unit-variance additive Gaussian noise, and hij(τ) are independent time-varying random channel

coefficients obeying some continuous probability distribution. We can rewrite the channel outputs

in vector form as

yi =

Kt∑
j=1

Hijxj + zi, (4.2)

where Hij is a diagonal matrix representing the channel coefficients over the block length T .

1To achieve any positive DoF, the minimum requirement is that KtMt + Mr ≥ N , i.e., that all the transmitter
caches and any single receiver cache can collectively store the entire content library. We impose the slightly stronger
requirement KtMt ≥ N since it is the regime of most practical interest, and since it simplifies the analysis.
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For fixed values of Mt, Mr, and SNR, we say that a transmission rate R = F/T is achievable if

there exists a coding scheme such that all the users can decode their requested files with vanishing

error probability. More formally, R is achievable for demand vector u if

max
i∈{1,...,Kr}

Pr
(
Ŵi 6= Wui

)
→ 0 as T →∞,

where Ŵi indicates the reconstruction of file Wui by user i. Note that R is fixed as T , and hence

F , go to infinity. We say R is achievable if it is achievable for all demand vectors u.

We define the optimal transmission rate R?(SNR) as the supremum of all achievable rates for

a given SNR (and number of files, cache sizes, and number of transmitters/receivers). In the

remainder of this chapter we will focus on the degrees of freedom (DoF) defined as

DoF , lim
SNR→∞

R?(SNR)
1
2 log SNR

. (4.3)

While the DoF is useful for presenting and interpreting the main results in the next section, we

will also often work with its reciprocal 1/DoF because it is a convex function of (Mt,Mr).

4.3 Main Results

The main result of this chapter is a complete constant-factor approximation of the DoF for the

cache-aided wireless interference network. In order to state the result, we define the function

d(N,Kt,Kr,Mt,Mr) through

1

d(N,Kt,Kr,Mt,Mr)
,
Kt − 1 + min

{
Kr
κ+1 , N

}
Kt

·
(

1− κ

Kr

)
, (4.4)

for any N , Kt, Kr, Mt, and Mr = κN/Kr with κ ∈ {0, 1, . . . ,Kr}, and the lower convex envelope

of these points for all other Mr ∈ [0, N ].

Theorem 15. The degrees of freedom DoF of the Kt ×Kr cache-aided interference network with
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Figure 4.3: Approximate reciprocal DoF of the 2×4 cache-aided interference network with 4 files, introduced
in Example 1, as a function of receiver cache size Mr, for any Mt ≥ N/Kt.

N files, transmitter cache size Mt ∈ [N/Kt, N ], and receiver cache size Mr ∈ [0, N ] satisfies

d(N,Kt,Kr,Mt,Mr) ≤ DoF ≤ 13.5 · d(N,Kt,Kr,Mt,Mr).

The approximate (reciprocal) DoF is illustrated in Figure 4.3 for the setup in Example 1.

In terms of the rate R?(SNR) of the system, Theorem 15 can be interpreted using (4.3) as

d(·) · 1

2
log SNR− o (log SNR) ≤ R?(SNR) ≤ 13.5 · d(·) · 1

2
log SNR + o (log SNR) ,

when SNR grows, where we have used d(·) instead of d(N,Kt,Kr,Mt,Mr) for simplicity.

The constant 13.5 in Theorem 15 is the result of some loosening of inequalities in order to

simplify the analysis. We numerically observe that the multiplicative gap does not exceed 4.16 for

N,Kt,Kr ≤ 100.

The coding scheme achieving the lower bound on DoF in Theorem 15 uses separate network and

physical layers. The two layers interface using a set of multicast messages from each transmitter

to many subsets of receivers. At the physical layer, an interference alignment scheme (generalizing

the scheme from [54]) delivers these messages across the interference channel with vanishing error

probability and at optimal degrees of freedom. At the network layer, a caching and delivery

strategy generalizing the one in [4] is used to deliver the requested content to the users, utilizing

the non-interacting error-free multicast bit pipes created by the physical layer. The matching upper
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bound in Theorem 15 shows that this separation approach is without loss of order optimality. This

separation architecture is described in more detail in Section 4.4.

In order to better understand the behavior of the system, we decompose the approximation

of the sum degrees of freedom KrDoF provided by Theorem 15 into three components, or gains.2

These are: an interference alignment (IA) gain gIA, a local caching gain gLC, and a global caching

gain gGC, forming

KrDoF ≈ Krd(N,Kt,Kr,Mt,Mr)
(a)
≈ KtKr

Kt +Kr − 1︸ ︷︷ ︸
gIA

· 1

1− Mr
N︸ ︷︷ ︸

gLC

· KrMr/N + 1
Mr
N

(
1
Kr

+ 1
Kt−1

)−1
+ 1︸ ︷︷ ︸

gGC

. (4.5)

Note that (a) holds with exact equality when KrMr/N is an integer. We point out that, for ease of

presentation, this decomposition is written for the case when the first term achieves the minimum

in (4.4), i.e., Kr/(κ + 1) ≤ N . This includes the most relevant case when the content library N

is larger than the number of receivers Kr. In fact, we focus on this case in most of the chapter,

particularly regarding the achievability and some of the intuition. A detailed discussion of the case

Kr/(κ+ 1) > N , including a decomposition similar to (4.5), is given in Appendix C.1.

The term gIA is the degrees of freedom achieved by communication using interference alignment

and is the same as in the unicast X-channel problem [54]. It is the only gain present when the

receiver cache size is zero. In other words, it is the baseline degrees of freedom without caching

(see for example Figure 4.3 when Mr = 0).

When the receiver cache size is non-zero, we get two improvements, in analogy to the two gains

described in the broadcast caching setup in [4]. The local caching gain reflects that each user

already has some information about the requested file locally in its cache. Hence, gLC is a function

of Mr/N , the fraction of each file stored in a single receiver cache. On the other hand, the global

gain derives from the coding opportunities created by storing different content at different users,

and from the multicast links created to serve coded information useful to many users at once. This

gain depends on the total amount of receiver memory, as is reflected by the KrMr/N term in the

numerator of gGC.

2Note that this decomposition arises from our interpretation of our approximately optimal strategy described in
Section 4.4.
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It is interesting to see how each of these gains scales with the various system parameters Kt,

Kr, Mt/N , and Mr/N . In order to separate the different gains, we work with the logarithm

logKrDoF ≈ log gIA + log gLC + log gGC

of the sum degrees of freedom. By varying the different parameters, we can plot how both the sum

DoF and its individual components evolve.

Scaling with transmitter memory Mt

Notice in Theorem 15 that the DoF approximation does not involve the transmitter memory Mt.

Thus, once Mt = N/Kt, just enough to store the entire content library between all transmitters,

any increase in the transmit memory will only lead to at most a constant-factor improvement in

the DoF.

The strategy used to achieve the lower bound in Theorem 15 (see Section 4.4 for details)

stores uncoded nonoverlapping file parts in each transmit cache. This is done regardless of the

transmitter memory Mt and the receiver memory Mr. Since this is an order-optimal strategy, we

conclude that the transmitters do not need to have any shared information. Consequently, and

perhaps surprisingly, transmit zero-forcing is not needed for order-optimality and cannot provide

more than a constant-factor DoF gain. Moreover, given that the value 13.5 of the constant gap is

close to and was obtained using similar arguments to the value of 12 derived in [4] for the error-free

broadcast case, we conjecture that most of the improvements on the constant would not come from

sharing information among transmitters or from any transmit zero-forcing, but rather from tighter

converse arguments.

Scaling with receiver memory Mr

Figure 4.4 depicts the decomposition of the approximate sum degrees of freedom Krd ≈ KrDoF

as a function of the receiver cache size Mr. As expected, the interference alignment gain gIA does

not depend on the receiver cache size and is hence constant. The local caching gain gLC increases

slowly with Mr and becomes relevant whenever each receiver can cache a significant fraction of the
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Figure 4.4: DoF gains as a function of receiver cache size characterized by Mr/N .
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Figure 4.5: DoF gains as a function of number of receivers Kr.

content library, say Mr/N ≥ 0.5. The global caching gain gGC increases much more quickly and is

relevant whenever the cumulative receiver cache size is large, say KrMr/N ≥ 1.

Scaling with number of receivers Kr

Figure 4.5 depicts the decomposition of the approximate sum degrees of freedom Krd ≈ KrDoF as

a function of the number of receivers Kr. The local caching gain gLC is not a function of Kr and is

hence constant as expected. In the limit as Kr →∞, the interference alignment gain gIA converges

to Kt. The global caching gain gGC, on the other hand, behaves as

gGC ≈ KrMr/N + 1

(Kt − 1)Mr/N + 1
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for large Kr. In particular, unlike the other two gains, the global gain does not converge to a limit

and scales linearly with the number of receivers. Thus, for systems with larger number of receivers,

the global caching gain becomes dominant.

Scaling with number of transmitters Kt

As the number of receivers Kr or the receive memory Mr increase, the sum DoF grows arbitrarily

large. The same is not true as the number of transmitters Kt increases. In fact, as Kt → ∞, we

find that gIA → Kr, g
GC → 1, and the sum DoF converges to

lim
Kt→∞

KrDoF ≈
Kr

1−Mr/N
. (4.6)

This is not surprising, since, with a large number of transmitters, interference alignment effectively

creates Kr orthogonal links from each transmitter to the receivers, each of DoF approaching 1.

With the absence of multicast due to these orthogonal links, the global caching gain vanishes and

the only caching gain left is the local one.

An interesting question then is how large Kt has to be for the DoF to approach the limit in

(4.6). Specifically, for what values of Kt does the sum DoF become Θ
(
Kr/(1−Mr/N)

)
? When the

receiver cache memory is small, specifically Mr < N/Kr, the number of transmitters Kt must be

of the order of Kr (see Figure 4.6a). However, as Mr increases, we find that a smaller number of

transmitters is needed to achieve the same DoF (see Figs. 4.6b and 4.6c). In general, the limiting

value is reached (within a constant) when Kt = Ω(N/Mr − 1).3 In particular, if the receiver

caches can store a constant fraction of the content library, then we only need a constant number of

transmitters to achieve maximal benefits, up to a multiplicative constant. There is thus a trade-off

between the number of transmitters Kt and the amount of receiver cache memory Mr required for

maximal system performance (up to the local caching gain): the larger the receiver memory, the

fewer the required transmitters.

While the separation architecture discussed above (on which we focus in most of this chapter) is

3This comes from being able to write KrDoF ≈ Kt(κ+1)
Kt(κ+1)+Kr−κ−1

· Kr
1−Mr/N

, where κ = KrMr/N . The first factor

is a constant when Kt(κ + 1) = Ω(Kr − κ − 1), which leads to Kt = Ω( Kr
KrMr/N+1

− 1). When Kr is large, this

behavior becomes Kt = Ω( N
Mr
− 1).
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Figure 4.6: DoF gains as a function of number of transmitters Kt for various regimes of receiver cache size
(characterized by Mr/N).
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(b) Network-layer view.

Figure 4.7: The separation architecture applied to the setup in Figure 4.2 (i.e., Example 1) with multicast
size κ + 1 = 3. The interface messages VSj at the physical layer can be abstracted as orthogonal error-free
multicast bit pipes at the network layer. Thus at the physical layer (a) we focus on transmitting the VSj ’s
across the interference channel, while at the network layer (b) we perform the caching and delivery strategies,
oblivious of the underlying physical channel, to deliver the requested files.

order optimal, one can still make some strict improvements, albeit no more than a constant factor,

by choosing a different separation architecture. In Section 4.7, we present an alternative separation

architecture for the case Kt = Kr = N = 2 that creates interacting error-free bit pipes as the

physical-layer abstraction. This architecture can achieve a strictly higher DoF than Theorem 15 in

some regimes.

4.4 Separation Architecture

Our proposed separation architecture isolates the channel coding aspect of the problem from its

content delivery aspect. The former is handled at the physical layer, while the latter is handled at

the network layer. The two layers interface using a set V of multiple multicast messages,

V = {VSj : j ∈ {1, . . . ,Kt},S ∈ S } , (4.7)
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where VSj denotes the message sent from transmitter j to the subset S of receivers, and S ⊆

2{1,...,Kr} is some collection of subsets of receivers. Notice that all transmitters have messages

for the same subsets of receivers, a natural design choice due to the symmetry of the problem.

The physical layer processing transmits these messages across the interference network, while the

network layer treats them as orthogonal error-free multicast bit pipes. Figure 4.7 illustrates this

separation for the setting in Example 1.

In order to motivate our choice of S (and hence of V ), it will be useful to give a brief overview of

the strategy used for the broadcast setup in [4]. Suppose that the receiver memory is Mr = κN/Kr,

where κ ∈ {0, 1, . . . ,Kr − 1} is an integer. The idea is to place content in the receiver caches such

that every subset of κ of them shares an exclusive part of every file (each file is thus split into(
Kr
κ

)
equal parts). During the delivery phase, linear combinations of these file parts are sent to

every subset of κ + 1 users such that each user can combine its received linear combination with

the contents of its cache to decode one part of their requested file. As a result, a total of

LBC(N,Kr,Mr) · F =
Kr − κ
κ+ 1

· F (4.8)

bits are sent through the network (see [4, Theorem 1]).

Notice that the broadcast strategy never really sends any broadcast message on a logical level

(except when κ + 1 = Kr). Instead, it sends many multicast messages, each intended for κ + 1

users, which just happen to be “overheard” by the unintended receivers. Inspired by this, we choose

the messages in V to reflect the multicast structure in [4]. Specifically, we choose to create one

multicast message from each transmitter to every subset of receivers of size κ+ 1. In other words,

S = {S ⊆ {1, . . . ,Kr} : |S| = κ+ 1} . (4.9)

For example, Figure 4.7 shows the separation architecture when κ+ 1 = 3. While (4.9) depicts the

choice of S that we make most of the time, it is inefficient in a particular regime, namely when

both the number of files and the receiver memory are small. Since that regime is of only limited

interest, we relegate its description to Appendix C.1.

Let R̃κ+1 be the rate at which we transmit these messages at the physical layer, i.e., VSj ∈
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[2R̃κ+1T ]. Further, let `κ+1 be the size (normalized by file size) of whatever is sent through each

multicast link at the network layer, i.e., VSj ∈ [2`κ+1F ]. Therefore, R̃κ+1T = `κ+1F . Let us

write R̃?κ+1 and `?κ+1 to denote the optimal R̃κ+1 and `κ+1, respectively, within their respective

subproblems (these will be defined rigorously in the subsections below). These quantities can be

connected to the rate R of the original caching problem. Indeed, since F = RT , then we can achieve

a rate R equal to

R =
R̃?κ+1

`?κ+1

, (4.10)

when Mr = κN/Kr, κ ∈ {0, 1, . . . ,Kr − 1}.4

The separation architecture has thus created two subproblems of the original problem. At the

physical layer, we have a pure communication subproblem, where multicast messages VSj must

be transmitted reliably across an interference network. At the network layer, we have a caching

subproblem with noiseless orthogonal multicast links connecting transmitters to receivers. In the

two subsections below, we properly formulate each subproblem. We give a strategy for each as well

as the values of R̃κ+1 and `κ+1 that they achieve.

4.4.1 Physical Layer

At the physical layer, we consider only the communication problem of transmitting specific messages

across the interference channel described in Section 4.2, as illustrated in Figure 4.7a. This is an

interesting communication problem on its own, and we hence formulate it without all the caching

details. The message set that we consider is one where every transmitter j has a message for every

subset S of σ receivers, where σ ∈ {1, . . . ,Kr} is given.5 We label such a message as VSj , and we

note that there are a total of Kt

(
Kr
σ

)
of them. For instance, in the example shown in Figure 4.7a,

message V134,2 (used as a shorthand for V{1,3,4},2) is sent by transmitter 2 to receivers 1, 3, and 4.

We call this problem the multiple multicast X-channel with multicast size σ, as it generalizes the

(unicast) X-channel studied in [54] to multicast messages. Note that, when σ = 1, we recover the

4The nature of the separation architecture implies that κ must always be an integer. Regimes where it is not
are handled using time and memory sharing between points where it is. Furthermore, we exclude the case κ = Kr

(equivalently, Mr = N) for mathematical convenience, but we can in fact trivially achieve an infinite rate when
Mr = N by storing the complete content library in every user’s cache.

5In the context of the caching problem, σ is chosen to be κ+ 1, as described earlier.
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unicast X-channel.

We assume a symmetric setup, where all the messages have the same rate R̃σ, i.e., VSj ∈ [2R̃σT ].

A rate is called achievable if a strategy exists allowing all receivers to recover all their intended

messages with vanishing error probability as the block length T increases. Our goal is to find the

largest achievable rate R̃σ for a given SNR, denoted by R̃?σ(SNR), and in particular its DoF

d̃?σ(Kt,Kr) , lim
SNR→∞

R̃?σ(SNR)
1
2 log SNR

.

One of the contributions of this chapter is an exact characterization of d̃?σ, and we next give an

overview of how to achieve it.

For every receiver i, there is a set of Kt

(
Kr−1
σ−1

)
desired messages {VSj : i ∈ S}, and a set of

Kt

(
Kr−1
σ

)
interfering messages {VSj : i /∈ S}. Using TDMA, all Kt

(
Kr
σ

)
messages can be delivered

to their receivers at a sum DoF of 1, i.e., d̃σ = 1/Kt

(
Kr
σ

)
. However, by applying an interference

alignment technique that generalizes the one used in [54], we can, loosely speaking, collapse the

Kt

(
Kr−1
σ

)
interfering messages at every receiver into a subspace of dimension

(
Kr−1
σ

)
(assuming

for simplicity that each message forms a subspace of dimension one), while still allowing reliable

recovery of all Kt

(
Kr−1
σ−1

)
desired messages. Thus an overall vector space of dimension Kt

(
Kr−1
σ−1

)
+(

Kr−1
σ

)
< Kt

(
Kr
σ

)
is used to deliver all Kt

(
Kr
σ

)
messages. This strategy achieves a DoF-optimal

rate, as asserted by the following theorem.

Theorem 16. The DoF of the symmetric multiple multicast X-channel with multicast size σ is

given by

d̃?σ(Kt,Kr) =
1

Kt

(
Kr−1
σ−1

)
+
(
Kr−1
σ

) .
The details of the interference alignment strategy are given in Section 4.5. The proof of optimal-

ity is left for Appendix C.4, since it does not directly contribute to our main result in Theorem 15.

It does however reinforce it by providing a complete solution to the physical-layer communication

subproblem.

The DoF shown in Theorem 16 is a per-message DoF. Since there are a total of Kt

(
Kr
σ

)
messages,
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we obtain a sum DoF of

Kt

(
Kr

σ

)
· d̃?σ(Kt,Kr) =

Kt

(
Kr
σ

)
Kt

(
Kr−1
σ−1

)
+
(
Kr−1
σ

) =
KtKr

(Kt − 1)σ +Kr
. (4.11)

When σ = 1, the sum DoF in (4.11) is KtKr/(Kt +Kr − 1), thus recovering the unicast X-channel

result from [54]. When σ = Kr, the problem reduces to a broadcast channel with multiple sources,

giving a sum DoF of 1.

4.4.2 Network Layer

The network layer setup is similar to the end-to-end setup, with the difference that the interference

network is replaced by the multicast links VSj from transmitters to receivers, as illustrated in

Figure 4.7b. As mentioned previously, each link VSj is shared by exactly |S| = κ+ 1 users, where

κ = KrMr/N is an integer. We again focus on a symmetric setup, where all links have the same

size `κ+1, called the link load. It will be easier in the discussion to use the sum network load Lκ+1,

i.e., the combined load of all Kt

(
Kr
κ+1

)
links,

Lκ+1 = Kt

(
Kr

κ+ 1

)
· `κ+1. (4.12)

A sum network load L is said to be achievable if, for every large enough file size F , a strategy

exists allowing all users to recover their requested files with high probability while transmitting no

more than LF bits through the network. Our goal is to find the smallest achievable network load

for every N , Kt, Kr, Mt, and Mr, denoted by

L?κ+1(N,Kt,Kr,Mt,Mr),

where κ = KrMr/N is an integer. Using a similar strategy to [4], we achieve the following sum

network load.

Lemma 6. In the network layer setup with a multicast size of κ+ 1, κ ∈ {0, 1, . . . ,Kr − 1}, a sum

network load of

L?κ+1(N,Kt,Kr,Mt,Mr) ≤
Kr − κ
κ+ 1
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can be achieved when Mr = κN/Kr.

Proof: We first divide every file Wn into Kt equal parts, Wn = (W 1
n , . . . ,W

Kt
n ), and store

the j-th part W j
n in the cache of transmitter j. Note that, while we allow Mt ≥ N/Kt as per the

regularity condition in (4.1), the above transmitter placement only stores exactly N/Kt files at

every transmitter irrespective of the value of Mt. The different transmitters are then treated as

independent sublibraries. Indeed, the receiver placement splits each receiver cache into Kt equal

sections, and each section is dedicated to one sublibrary. A placement phase identical to [4] is then

performed for each sublibrary in its dedicated receiver memory.

During the delivery phase, user i’s request for a single file Wui is converted into Kt separate

requests for the subfiles (W 1
ui , . . . ,W

Kt
ui ), each from its corresponding sublibrary (transmitter). For

every subset S of κ+ 1 receivers, each transmitter j then sends through the link VSj exactly what

would be sent to these receivers in the broadcast setup, had the other transmitters not existed.

This is possible since the VSj links were chosen by design to match the multicast transmissions in

the broadcast setup. Each transmitter will thus send (1/Kt) · LBC(N,Kr,Mr) files through the

network (with LBC as defined in (4.8)), for a total network load of (Kr − κ)/(κ+ 1).

4.4.3 Achievable End-to-End DoF

From (4.10) and using (4.12), we can achieve an end-to-end DoF of

DoF ≥ d̃?κ+1(Kt,Kr)

L?κ+1(N,Kt,Kr,Mt,Mr)
·Kt

(
Kr

κ+ 1

)
.

By combining Theorem 16 (with σ = κ+ 1) and Lemma 6,

1

DoF
≤ L?κ+1(N,Kt,Kr,Mt,Mr)

d̃?κ+1(Kt,Kr)
· 1

Kt

(
Kr
κ+1

)
≤ Kr − κ

κ+ 1
·
[
Kt

(
Kr − 1

κ

)
+

(
Kr − 1

κ+ 1

)]
· 1

Kt

(
Kr
κ+1

) .
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By writing

Kt

(
Kr − 1

κ

)
+

(
Kr − 1

κ+ 1

)
= (Kt − 1)

(
Kr − 1

κ

)
+

(
Kr − 1

κ

)
+

(
Kr − 1

κ+ 1

)
(a)
= (Kt − 1)

κ+ 1

Kr

(
Kr

κ+ 1

)
+

(
Kr

κ+ 1

)
=

(Kt − 1)(κ+ 1) +Kr

Kr
·
(
Kr

κ+ 1

)
,

where (a) is due to Pascal’s triangle, we conclude that

1

DoF
≤ Kr − κ

κ+ 1
· (Kt − 1)(κ+ 1) +Kr

KtKr
=
Kt − 1 + Kr

κ+1

Kt
·
(

1− κ

Kr

)
. (4.13)

This proves the achievability direction of Theorem 15 when Kr/(κ+1) ≤ N . The case Kr/(κ+1) >

N is discussed in Appendix C.1.

4.5 The Multiple Multicast X-Channel

The multiple multicast X-channel problem (with multicast size σ) that emerges from our separation

strategy is a generalization of the unicast (σ = 1) X-channel studied in [54]. We propose an

interference alignment strategy that generalizes the one in [54]. In this section, we give a high-level

overview of the alignment strategy in order to focus on the intuition. The rigorous explanation of

the strategy is given in Appendix C.2 as a proof of Lemma 7, which is presented at the end of this

section.

Consider communicating across the interference network over T time slots. Every transmitter

j beamforms each message VSj along some fixed vector of length T and sends the sum of the

vectors corresponding to all its messages as its codeword. Each message thus occupies a subspace

of dimension 1 of the overall T -dimensional vector space. The goal is to align at each receiver the

interfering messages into the smallest possible subspace, so that a high rate is achieved for the

desired messages.

When choosing which messages to align, we enforce the following three principles, which ensure

maximal alignment without preventing decodability of the intended messages. At every receiver i:
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1. Each desired message VSj with i ∈ S must be in a subspace of dimension 1, not aligned with

any other subspace.

2. Messages from the same transmitter must never be aligned.

3. All messages intended for the same subset S of receivers with i /∈ S must be aligned into one

subspace of dimension 1.

Principle 1 ensures that receiver i can decode all of its desired messages. To understand principle

2, notice that messages from the same transmitter go through the same channels. Therefore, if

two messages from the same transmitter are aligned at one receiver, then they were also aligned

during transmission, and are hence aligned at all other receivers, including their intended ones.

Thus principle 2 ensures decodability at other receivers. As for principle 3, it provides the maximal

alignment of the interfering messages without violating principle 2. Indeed, each aligned subspace

contains Kt messages, one from each transmitter. Any additional message that is aligned would

share a transmitter with one of them.

For every receiver, there are Kt

(
Kr−1
σ−1

)
desired messages. By principle 1, each should take up one

non-aligned subspace of dimension 1, for a total of Kt

(
Kr−1
σ−1

)
dimensions. On the other hand, there

are Kt

(
Kr−1
σ

)
interfering messages. By principle 3, every Kt of them are aligned in one subspace

of dimension 1, and hence all interfering messages fall in a subspace of dimension
(
Kr−1
σ

)
. These

subspaces can be made non-aligned by ensuring that the overall vector space has a dimension of

T = Kt

(
Kr − 1

σ − 1

)
+

(
Kr − 1

σ

)
.

Since each message took up one dimension, we get a per-message DoF of

1

T
=

1

Kt

(
Kr−1
σ−1

)
+
(
Kr−1
σ

) .
This is an improvement over TDMA, which achieves a DoF of 1/Kt

(
Kr
σ

)
.

In most cases, we do not achieve the exact DoF shown in Theorem 16 using a finite number of

channel realizations. We instead achieve an arbitrarily close DoF by using an increasing number of

channel realizations. The exact achieved DoF is given in the following lemma.
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Lemma 7. Let Γ = (Kr−σ)(Kt−1). For any arbitrary n ∈ N, we can achieve a DoF for message

VSj equal to

δ
(n)
j =

(n+ cj)
Γ(

Kr−1
σ−1

)
[(n+ 1)Γ + (Kt − 1)nΓ] +

(
Kr−1
σ

)
(n+ 1)Γ

,

where c1 = 1 and c2 = · · · = cKt = 0.

The proof of Lemma 7 is given in Appendix C.2.

Note that Lemma 7 achieves a slightly different DoF for VSj depending on j, which might seem

to contradict the symmetry in the problem setting. However, for a large n, we have (n+ 1)Γ ≈ nΓ,

and hence

lim
n→∞

δ
(n)
j =

1

Kt

(
Kr−1
σ−1

)
+
(
Kr−1
σ

) = d̃?σ(Kt,Kr)

for all j. Thus the symmetric DoF d̃?σ(Kt,Kr) is achieved in the limit.

4.6 Order-Optimality of the Separation Architecture

In this section, we give a high-level proof of the converse part of Theorem 15 by showing that

the DoF achieved by the separation architecture in Section 4.4 is order-optimal. We do this by

computing cut-set-based information-theoretic upper bounds on the DoF (equivalently, they are

lower bounds on the reciprocal 1/DoF). These bounds are given in the following lemma, whose

proof is placed at the end of this section in order not to distract from the intuition behind the

converse arguments. The rigorous converse proof is given in Appendix C.3.

Lemma 8. For any N , Kt, Kr, Mt ∈ [0, N ], and Mr ∈ [0, N ], the optimal DoF must satisfy

1

DoF
≥ max

s∈{1,...,min{Kr,N}}

s
(

1− Mr
bN/sc

)
min{s,Kt}

.

Lemma 8 is next used to prove the converse part of Theorem 15, i.e.,

DoF ≤ 13.5 · d(N,Kt,Kr,Mt,Mr),

where d(·) is defined in (4.4). The procedure is similar to the one used in [4]: we consider three
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main regimes (Regimes 1, 2, and 3) of receiver memory Mr and in each compare the expression d(·)

with the outer bounds. In addition, we consider a separate corner case (Regime 0) in which the

largest possible number of distinct file requests (i.e., min{Kr, N}) is small compared to the number

of transmitters.

Regime 0: min{Kr, N} ≤ 12.5Kt; (4.14a)

Regime 1: min{Kr, N} > 12.5Kt and 0 ≤Mr ≤ 1.1 max

{
1,
N

Kr

}
;(4.14b)

Regime 2: min{Kr, N} > 12.5Kt and 1.1 max

{
1,
N

Kr

}
< Mr ≤ 0.092

N

Kt
; (4.14c)

Regime 3: min{Kr, N} > 12.5Kt and 0.092
N

Kt
< Mr ≤ N. (4.14d)

Note that Regimes 1, 2, and 3 are unambiguous, since

min{Kr, N} > 12.5Kt =⇒ 0 < 1.1 max

{
1,
N

Kr

}
< 0.092

N

Kt
< N. (4.15)

Since Mr is the only variable that we will consistently vary, we will abuse notation for conve-

nience and write d(Mr) instead of d(N,Kt,Kr,Mt,Mr) for all Mr ∈ [0, N ]. Our goal is thus to

prove

1

DoF
≥ d−1(Mr)

13.5
. (4.16)

For ease of reference, we will rewrite the expression of d−1(Mr) here. For Mr = κN/Kr where

κ ∈ {0, 1, . . . ,Kr} is an integer,

d−1(κN/Kr) =
Kt − 1 + min

{
Kr
κ+1 , N

}
Kt

·
(

1− κ

Kr

)
, (4.17)

and d−1(Mr) is the lower convex envelope of these points for all Mr ∈ [0, N ]. Note that d−1(Mr)

is non-increasing and convex in Mr.
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Regimes 0 and 3

Interestingly, Regimes 0 and 3 behave quite similarly to each other. Indeed, notice that in both of

them we have Kt = Ω (min {Kr/(κ+ 1), N}). Using (4.17), this implies

d−1(Mr) ≈
Kt + min

{
Kr
κ+1 , N

}
Kt

·
(

1− Mr

N

)
= Θ

(
1− Mr

N

)
.

Conversely, we can apply Lemma 8 with s = 1 to get 1/DoF ≥ 1 −Mr/N . Thus in both regimes

the local caching gain is the only significant contribution to the DoF.

Regime 1

In Regime 1, the receiver memory is too small to have any significant effect. Therefore, using

12.5Kt < min{Kr, N}, we can write (4.17) as

d−1(Mr) ≈
Kt + min

{
Kr
κ+1 , N

}
Kt

· 1 ≤
(

1

12.5
+ 1

)
· min{Kr, N}

Kt
.

Conversely, by using Lemma 8 with s ≈ min{Kr, N}, we get

1

DoF
&
s · 1
Kt
≈ min{Kr, N}

Kt
.

Therefore, in this regime DoF ≈ Kt/min{Kr, N}. We can explain this in terms of the DoF gains in

(4.5): when the receiver memory is very small, the only relevant gain is the interference alignment

gain.

Regime 2

In Regime 2, the receivers combined can store all of the content library. As a result, the global

caching gain kicks in. We can upper-bound d−1(Mr) in (4.17) as follows:

d−1(Mr) ≤ 1 +
Kr

Kt(KrMr/N + 1)
≤ 1 +

N

KtMr
≤ 1.092

N

KtMr
,
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because Kt < 0.092N/Mr in Regime 2. Conversely, let us apply Lemma 8 using s ≈ N/2Mr:

1

DoF
&
s− s2Mr/N

Kt
≈ N

4KtMr
.

Therefore, DoF ≈ KtMr/N . This behavior is similar to what one would expect in the broadcast

setup in [4], with the exception of the additional Kt factor.

Since d−1(Mr) approximately matches the outer bounds in all four regimes and can also be

achieved as in Section 4.4, then it provides an approximate characterization of 1/DoF. The above

arguments are made rigorous in Appendix C.3.

Proof of Lemma 8: Consider s ∈ {1, . . . ,min{Kr, N}} users. We shall look at E = bN/sc

different request vectors, such that the combined number of files requested by all users after E

request instances is Ñ = sE = s bN/sc files. More specifically, we consider the request vectors

u1, . . . ,uE with

ue =
(
(e− 1)s+ 1, (e− 1)s+ 2, . . . , es︸ ︷︷ ︸

s

, 1 , . . . , 1︸ ︷︷ ︸
Kr−s

)
,

for each e = 1, . . . , E. Note that we only focus on the first s users; the remaining Kr − s users are

not relevant to our argument.

When the request vector is u, let xu
j and yu

i denote the inputs and outputs of the interfer-

ence network for all transmitters j and receivers i. For notational convenience, we write yu
[s] =

(yu
1 , . . . ,y

u
s ) and use a similar notation for xu

[Kt]
. Also, let Qi denote the contents of user i’s cache

(recall that the cache contents are independent of u). By Fano’s inequality,

H
(
W1, . . . ,WÑ

∣∣∣Q1, . . . , Qs,y
u1

[s] , . . . ,y
uE
[s]

)
≤ εT, (4.18)

since the s users should be able to each decode their bN/sc requested files using their caches and

101



channel outputs. Then,

ÑRT = H
(
W1, . . . ,WÑ

)
= I

(
W1, . . . ,WÑ ;Q1, . . . , Qs,y

u1

[s] , . . . ,y
uE
[s]

)
+H

(
W1, . . . ,WÑ

∣∣∣Q1, . . . , Qs,y
u1

[s] , . . . ,y
uE
[s]

)
(a)

≤ I
(
W1, . . . ,WÑ ;Q1, . . . , Qs,y

u1

[s] , . . . ,y
uE
[s]

)
+ εT

= I
(
W1, . . . ,WÑ ; yu1

[s] , . . . ,y
uE
[s]

)
+ I

(
W1, . . . ,WÑ ;Q1, . . . , Qs

∣∣∣yu1

[s] , . . . ,y
uE
[s]

)
+ εT

≤ I
(
W1, . . . ,WÑ ; yu1

[s] , . . . ,y
uE
[s]

)
+H (Q1, . . . , Qs) + εT

(b)

≤ I
(
xu1

[Kt]
, . . . ,xuE

[Kt]
; yu1

[s] , . . . ,y
uE
[s]

)
+ sMrRT + εT

(c)

≤ E · max
e∈{1,...,E}

I
(
xue

1 , . . . ,xue
Kt

; yue
1 , . . . ,yue

s

)
+ sMrRT + εT

(d)

≤ E · T
(

min {Kt, s} ·
1

2
log SNR + o(log SNR)

)
+ sMrRT + εT

= bN/scT ·
(

min {Kt, s} ·
1

2
log SNR + o(log SNR)

)
+ sMrRT + εT,

where (a) is due to inequality (4.18), (b) uses the data processing inequality, (c) follows from the

independence of the channel outputs when conditioned on all channel inputs, and (d) is the capacity

bound of the Kt × s MIMO channel over T time blocks.

Since Ñ = s bN/sc, and by taking T →∞ and ε→ 0, we obtain

R

(
1− Mr

bN/sc

)
≤ 1

s
·min{Kt, s} ·

1

2
log SNR + o(log SNR).

The DoF thus obeys

DoF ≤ min{Kt, s}
s
(

1− Mr
bN/sc

) .
Since s was arbitrary, the above is true for any s ∈ {1, . . . ,min{Kr, N}}, and thus the lemma is

proved.
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Figure 4.8: The 2×2 cache-aided interference channel with 2 files. The transmitter caches can hold exactly
one file each, and the receiver caches Mr ∈ [0, 2] files each. The zi’s are iid additive Gaussian unit-variance
noise.

4.7 An Alternative Separation Strategy

In this chapter, we have determined the approximate DoF of the general cache-aided interference

network. To do so, we have proposed a separation-based strategy that uses interference alignment

to create non-interacting multicast bit pipes from transmitters to receivers, and we have shown

that this strategy achieves a DoF that is within a constant multiplicative factor from the optimum.

However, this achieved DoF is only approximately optimal. In fact, many improvements can be

made, such as using transmit zero-forcing as has been discussed in previous work [53, 56, 57].

In this section, we explore a different approach, which lies within the context of interference

alignment described in Section 4.5: rather than ignoring the interference subspace, which contains

the aligned messages, we attempt to extract some information from it. Thus every receiver gains

additional information in the form of an alignment of the bit pipes available at other receivers: the

bit pipes would thus interact. We study this approach in a specific setup: the 2 × 2 interference

channel with a content library of two files, shown in Figure 4.8.

For this 2× 2 setup, by Theorem 15 the main strategy described in this chapter achieves

1

DoF
≤ max

{
3

2
−Mr, 1−

1

2
Mr

}
,

for Mr ∈ [0, 2], as shown by the solid line in Figure 4.9. However, the same figure shows an improved

inverse DoF, depicted by the dashed line, which is achieved using the interference-extracting scheme
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Figure 4.9: Inverse DoF achieved by the scheme from Section 4.5 (solid line), and the improved inverse
DoF achieved by extracting more information from the aligned interference (dashed line). The dash-dotted
line shows the information-theoretic lower bounds from Lemma 8.

discussed in this section. A factor-7/6 improvement is obtained over the main strategy. This result

is summarized in the following theorem.

Theorem 17. The following inverse DoF can be achieved for the 2 × 2 cache-aided interference

network with N = 2 files and transmitter memory Mt = 1:

1

DoF
≤ max

{
3

2
− 3

2
Mr,

9

7
− 6

7
Mr, 1−

1

2
Mr

}
,

for all values of Mr ∈ [0, 2].

It should be noted that the general converse stated in Lemma 8 can be applied here and results

in

1

DoF
≥ 1− 1

2
Mr,

which implies that our strategy is exactly optimal for Mr ≥ 4/5, as illustrated by the dash-dotted

line in Figure 4.9.

We will next give a high-level overview of the interference-extraction strategy. The proof of

Theorem 17, including the details of the strategy, are given in Appendix C.6. Consider what

happens when the main strategy is used in this 2× 2 setup with Mr = 0. The strategy creates one

unicast message from every transmitter to every receiver, and transmits them using interference
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(a) Physical-layer view.

V21

V11

V12

V22

V11 ⊕ V12

V21 ⊕ V22

2 files

caches Tx Rx caches

server

1 file Mr files

(b) Network-layer view.

Figure 4.10: Separation architecture with interference extraction in the 2×2 case with 2 files. The (unicast)
X-channel message set is used, but every receiver decodes, in addition to its intended messages, the sum of
the messages intended for the other reciever.
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alignment. Each receiver thus gets the two messages intended for it, plus an alignment of the

two messages intended for the other receiver. In the main strategy, this aligned interference is

simply discarded. However, we can design the scheme in a way that this alignment is a simple

sum of the two interfering messages. Each receiver can then decode, in addition to its intended

messages, the sum of the interfering messages, without suffering any decrease in the sum DoF of the

communicated messages. We hence obtain a new separation architecture, illustrated in Figure 4.10,

that we use for all Mr.

The scheme we propose in this section is very specific to the 2 × 2 interference network with

two files in the content library. An interesting direction for future work would be to extend this

interference-extraction strategy to more general settings.

4.8 Discussion

In this chapter, we have presented the approximate degrees of freedom of cache-aided interference

networks, with caches at both the transmitters and the receivers. While an exact characterization

of the DoF is certainly desirable, finding it is a more difficult problem since the exact rate-memory

trade-off is unknown even for the error-free broadcast case.

The DoF can be approximately achieved using the separation architecture described in Sec-

tion 4.4, which decouples the physical-layer transmission scheme from the network-layer coded

caching scheme. While this strategy is approximately optimal, some improvements can still be

made, albeit with no more than a constant-factor gain. We explored one such improvement in

Section 4.7 where the aligned subspaces that result from the physical-layer interference alignment

scheme are extracted and used as additional bit pipes at the receivers.

In the literature, a similar setting to the one in this chapter was recently studied in [56].

However, since [56] focuses on one-shot linear schemes, the interference alignment gain is not

achieved. This significantly reduces the achieved degrees of freedom, especially in the lower memory

regime when the number of receivers is large. In particular, if Mr = N/
√
Kr and Kt ≤

√
Kr, then

we can show that the DoF achieved by our scheme is larger than the one-shot linear scheme by a
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Figure 4.11: Largest ratio of the DoF achieved by our proposed scheme to the DoF achieved by the one-

shot linear scheme proposed in [56]. In this figure, the number of receivers Kr is scaled, while Kt = K
1/3
r .

The plot shows the maximum ratio between the DoFs over all possible receiver memory values Mr ∈ [0, N ].
The comparison is made for two values of the transmitter memory, Mt = N/Kt and Mt = N . Notice that
the gap increases arbitrarily with Kr.

multiplicative factor of at least

KtKr

(Kt +
√
Kr)2

≥ Kt

4
,

which can be arbitrarily large. A tighter comparison is numerically illustrated in Figure 4.11 for

Kt = K
1/3
r and Mt taking the values N/Kt and N .

Possible extensions to the problem include further improvements to the scheme, such as by

using transmit zero-forcing or by placing coded content in the caches; a derivation of tighter outer

bounds; and an exploration of the regime where the total transmitter memory is less than the size

of the content library, i.e., N−Mr ≤ KtMt < N . Several follow-up works have extended the results

in a few of these directions [58, 59]. Another interesting question is to find the (exactly) optimal

strategy when the problem imposes a restriction of uncoded cache placement, in a similar manner

to [60, 61] for the broadcast case.

4.9 Low-SNR Regime

The focus of this chapter, and indeed in most of the works in the literature, has been on the high-

SNR regime. In this section, we explore the energy-efficiency gains of caching by considering a

fast-fading Gaussian interference channel in the low-SNR regime with caches at transmitters and

107



receivers. We propose a separation-based strategy that uses the transmitter caches to enable a

transmit beamforming gain in addition to the usual multicasting gain (i.e., global caching gain)

and local caching gain. We find that there is a trade-off between the beamforming gain and the

multicasting gain and propose two variants of the strategy, each of which prioritizes one of the two

gains. We show the approximate optimality (in the low-SNR regime) of each variant in two extreme

cases: the variant prioritizing the beamforming gain is approximately optimal for the single-receiver

case (i.e., the Gaussian multiple-access channel), while the variant prioritizing the multicasting gain

is approximately optimal for the single-transmitter case (i.e., the Gaussian broadcast channel).

Since this is a large section, we split it into the following parts. Subsection 4.9.1 formally

describes the problem setting. Subsection 4.9.2 presents the main results of the section. The

achievable strategy is described in detail in Subsection 4.9.3, and Subsection 4.9.4 provides the proof

of approximate optimality for the multiple-access case. Proof details are relegated to Appendix C.7.

4.9.1 Problem Setting

A content library contains N files, denoted by W1 through WN , of size F bits each. The content

library is separated from its end users by a Gaussian interference network, whose receivers act as the

users. Let L denote the number of transmitters in the interference network and K the number of

receivers (i.e., users). Each transmitter is equipped with a cache of size MtF bits, and each receiver

is equipped with a cache of size MrF bits. The goal is to utilize the caches to help transmit files

requested by the receivers across the interference network. Two special cases that we will consider

later in the section are the single-transmitter (broadcast) case with L = 1 and the single-receiver

(multiple-access) case with K = 1.

The system operates in two phases. First, a placement phase occurs during which each cache is

filled with some function of the files. This is done before the user demands are known. Second, a

delivery phase occurs during which the user demands are revealed: each user k requests a file Wdk ,

where dk ∈ {1, . . . , N}. Each transmitter ` responds by sending a codeword x` = (x`(1), . . . , x`(T ))

of length T through the interference network. The codeword x` depends only on the user demands
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and the contents of transmitter `’s cache. Receiver k then observes at time τ

yk(τ) =
L∑
`=1

gk`(τ)x`(τ) + zk(τ),

where gk`(τ) are the iid complex channel gains, known causally at all transmitters and receivers, and

zk(τ) are iid additive white circulary-symmetric unit-variance complex Gaussian noise. We assume

the channel gains are uniform phase shifts, i.e., gk`(τ) = ejθk`(τ), where j is the imaginary unit

and θk`(τ) are iid uniform over [0, 2π). The channel inputs and outputs are also complex-valued.

Receiver k proceeds to decode its requested file from yk and the contents of its cache.

We impose a power constraint of P on the input, i.e.,

1

T
||x`||2 ≤ P, ∀` ∈ {1, . . . , L}.

The rate is defined as R = F/T . For a given P , we wish to find the largest rate R∗(P ) such that,

for all possible user requests (d1, . . . , dK),

max
k

Pr
{
Ŵk 6= Wdk

}
→ 0 as T →∞,

where Ŵk denotes the reconstruction of file Wdk by user k. In this paper we will focus on the

capacity per unit energy [62]

R̂∗ = lim
P→0+

R∗(P )

P
.

This allows us to study the energy-efficiency gains that caching can provide.

4.9.2 Main Results

Our main contribution is a separation-based communication strategy consisting of a physical layer

and a network layer. A message set is created from transmitters to receivers to serve as the

interface between the physical layer and the network layer. The physical layer transmits these

messages across the interference network, while the network layer uses these messages as error-free

bit pipes in order to deliver the requested files to the users. This idea is similar to the one described
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earlier in this chapter for the high-SNR regime.

We have shown in the previous sections of this chapter that, in the high-SNR regime, transmitter

co-operation is not necessary for approximately achieving the degrees-of-freedom. In contrast, in the

low-SNR regime, transmitter co-operation becomes essential as it enables the transmit beamforming

of signals to the receivers, yielding a power gain. We therefore use the transmitter caches to create

as much content overlap among the transmitters as possible, allowing them to co-operate and

beamform signals to the intended receivers, thereby obtaining a significant power gain. In general,

we are able to obtain maximal multicasting (and local caching) gains, as well as a significant

beamforming gain. However, in special cases where the number of distinct file requests is small

but the receiver memory is large, it is more beneficial to completely ignore the multicasting gain

in favor of maximizing the beamforming gain.

In fact, there is a trade-off between the multicasting gain and the beamforming gain. In order

to obtain maximal multicasting gain, the receivers need to cache distinct parts of the files in order

to increase the number of coding opportunities and thus enable the multicasting of coded messages.

Conversely, the beamforming gain can be improved by having all the receivers store common infor-

mation. This reduces the size of the total content that must be stored at the transmitters, which

allows for greater overlap at the transmitters for the same memory size at the cost of losing the

multicasting gain.

We therefore propose two different schemes, both of which utilize the separation-based approach:

a multicasting scheme and a beamforming scheme. The difference lies in the gain that each scheme

prioritizes: the former prioritizes the multicasting (MC) gain while the latter prioritizes the beam-

forming (BF) gain. Let R̂MC and R̂BF denote the bits per unit energy achieved by these schemes

respectively. By choosing the better of these two schemes in any given situation, we achieve

R̂∗ ≥ max
{
R̂MC, R̂BF

}
. (4.19)

The following two theorems provide the expressions for the bits per unit energy achieved by these

schemes.

Theorem 18. Let κ = KMr/N and λ = LMt/N . When κ ∈ {0, 1, . . . ,K} and λ ∈ {1, . . . , L}, the

110



multi-casting scheme achieves

R̂MC =
1

ln 2
· κ+ 1

K − κ · λ · L.

Theorem 19. Let λ̃ = min{LMt/(N −Mr), L}. When λ̃ ∈ {1, . . . , L}, the beamforming scheme

achieves

R̂BF =
1

ln 2
· 1

min{N,K}(1−Mr/N)
· λ̃ · L.

Note that we abuse notation when Mr = N (equivalently, κ = K), when we can achieve an

arbitrarily large rate.

Theorems 18 and 19 give the rate achieved at specific corner points of the transmitter and

receiver memories. Since the inverse of the rate is a convex function of Mr and Mt [53], we can

also achieve any linear combination of the inverse-rates of these points.

The next two subsections will analyze the two rate expressions and give a high-level overview of

the schemes that achieve them. At the end of the section, we discuss the approximate optimality

of each scheme in special cases.

The Multicasting Scheme

The multicasting scheme prioritizes the multicasting gain. To do so, it applies a receiver content

placement strategy similar to the one in [4], in which receivers store different content in a way that

maximizes coding opportunities. The transmitter content placement complements the receiver

content placement by having subsets of transmitters share content.

More precisely, if κ = KMr/N and λ = LMt/N are integers, then every set of κ receivers and λ

transmitters share some exclusive part of the content library. This creates opportunities for coded

messages to be multicast to κ + 1 receivers at a time [4] while simultaneously allowing every λ

transmitters to co-operate in order to beamform and produce a power gain.

The result is then a maximized multicasting gain and a significant, though not necessarily

maximized, beamforming gain. More specifically, from Theorem 18 the sum rate achieved by the
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multicasting scheme can be split into three main components:

KR̂MCP ≈
1

1−Mr/N︸ ︷︷ ︸
GLC

·
(
KMr

N
+ 1

)
︸ ︷︷ ︸

GMC

· LMt

N︸ ︷︷ ︸
GBF

·LP (4.20)

for P small enough. Here GLC is the local caching gain, GMC is the multicasting gain, and GBF

is the beamforming gain. In the equation, the LP term can be thought of as the total power

constraint on the transmitters.

Notice that the local caching gain and the multicasting (global caching) gain are at their maximal

value. Indeed, they are identical to those in [4], whose setup consists of a single transmitter and an

error-free broadcast link to all receivers. The beamforming gain is approximately LMt/N , which

is equal to the number of copies of the content library that the transmitters can collectively store.

In the multicasting scheme, every subset of LMt/N transmitters share information in their caches,

and they use this shared knowledge to co-operate and beamform messages to the receivers. In a

typical MISO channel, the beamforming gain is the number of co-operating antennas, and this is

similar to GBF ≈ LMt/N in (4.20).

The Beamforming Scheme

The beamforming scheme ignores the multicasting gain in favor of improving the beamforming

gain. This is done by having all receivers store the exact same content in their caches and having

transmitters co-operate and beamform the remaining part of the desired file individually to each

receiver (no multicasting). Since this makes a fraction of the content library available to all receivers,

it is no longer necessary to store it at the transmitters. This effectively reduces the size of the content

library that is “unavailable” to the receivers—and hence that must be stored at the transmitters—

down to NF ′ = (N−Mr)F bits. The transmitter memory can thus be expressed as Mt/(1−Mr/N)·

F ′ bits. Consequently, more overlap is made possible among the transmitters, thus increasing the

beamforming gain to its maximal value.

This scheme is particularly useful when the number of receivers is smaller than the number of

transmitters and the receiver memory is large compared to the transmitter memory. In particular,

it is approximately optimal when there is only one receiver, as discussed in Section 4.9.2 below.
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From Theorem 19 we can write the sum rate of the beamforming scheme approximately as

K̃R̂BFP ≈
1

1−Mr/N︸ ︷︷ ︸
GLC

·min

{
LMt/N

1−Mr/N
,L

}
︸ ︷︷ ︸

GBF

·LP (4.21)

for P small enough, where K̃ = min{N,K} is the worst-case number of distinct file requests.

Here GLC is the local caching gain and GBF is the beamforming gain. Note the absence of any

multicasting gain. In the equation, the LP term can again be thought of as the total power

constraint on the transmitters.

Note that, when Mt < N −Mr, the expression 1 −Mr/N normally associated with the local

caching gain appears squared. This is due to the double effect of a receiver’s local cache: on the

one hand it provides the local caching benefit to each receiver; on the other hand it reduces the size

of the part of the library “unavailable” to the receivers by a factor of 1−Mr/N , thus allowing for

greater content overlaps among the transmitters. Indeed, instead of sharing content between only

λ = LMt/N transmitters, we can now increase this number to λ̃ = min{LMt/(N −Mr), L} ≥ λ,

which explains the beamforming gain GBF in (4.21).

Approximate Optimality

The following theorems state that our separation-based approach is approximately optimal in the

low-SNR regime for two cases: the multiple-access case (K = 1) and the broadcast case (L = 1).

While the proof of approximate optimality for the broadcast case is a straightforward adaptation of

the converse proof of [4] to the Gaussian low-SNR setup, the converse proof for the multiple-access

case is more involved as it needs to capture the limits of possible co-operation among subsets of

transmitters.

Theorem 20. In the broadcast case, i.e., when L = 1 and Mt = N , the bits per unit energy

achieved by the multicasting scheme are approximately optimal,

1 ≤ R̂∗

R̂MC

≤ 12,
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for all N ≥ K and Mr ∈ [0, N ].6

The constant in Theorem 20 can be numerically sharpened to about 8.151 for N,K ≤ 100.

Theorem 21. In the multiple-access case, i.e., when K = 1, the bits per unit energy achieved by

the beamforming scheme are approximately optimal,

1 ≤ R̂∗

R̂BF

≤ 64,

for all N , L, Mr ∈ [0, N ], and Mt ∈ [(N −Mr)/L,N ].

The constant in Theorem 21 can be numerically sharpened to about 4.701 for N,L ≤ 100. Note

that Theorem 21 holds for the entire memory regime of interest.

Notice that, in both these cases, we can assume without loss of generality that all the channel

gains are one, i.e., all channel phase shifts are zero. Indeed, when K = 1, each transmitter can

multiply its transmitted signal by the appropriate phase shift without affecting the power constraint

or the (circularly symmetric) receiver noise. Similarly, when L = 1, each receiver can multiply its

received signal by the appropriate phase shift. For this reason, Theorems 21 and 20 apply for both

fading and static channels.

Finally, we conjecture that our separation-based approach is approximately optimal in the low-

SNR regime for fading channels for all values of K and L, and proving this is part of our on-going

work.

Comparison with the High-SNR Regime

We show in this section that, in the low-SNR regime, caching can provide three gains: the local

caching gain, the multicasting (global caching) gain, and the beamforming gain. In the high-SNR

regime, the first two gains are present, but instead of a beamforming gain there is an interference-

alignment gain, as discussed in the previous sections of this chapter. Notably, the interference-

alignment gain does not require transmitter co-operation for approximate optimality, contrary to

the beamforming gain in the low-SNR regime. An interesting open problem is hence to analyze

cache-aided communication in the transition regime from low to high SNR.

6The case N < K is handled in Appendix C.7.4.
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4.9.3 Achievable Strategy

We adopt a separation-based strategy as discussed in Section 4.9.2, separating the network layer

from the physical layer. The idea is to create a set V of messages from (subsets of) transmitters

and intended for (subsets of) receivers. This message set acts as an interface between the network

and physical layers: the physical layer transmits the messages across the interference channel, while

the network layer uses them as error-free bit pipes in order to apply a caching strategy that delivers

to each receiver its requested file.

Define [m] = {1, . . . ,m} for any integer m. Because of the symmetry in the problem, we will

always choose message sets of the form

Vpq , {VKL : K ⊆ [K], |K| = p,L ⊆ [L], |L| = q} , (4.22)

for some integers p ∈ [K] and q ∈ [L], where message VKL is to be sent collectively from the

transmitters in L to the receivers in K. In other words, the messages are always from every

subset of q transmitters to every subset of p receivers, for some p, q. The physical layer assumes

that message VKL is known to all the transmitters in L. At the network layer, we therefore need to

ensure that any bits sent through the bit pipe represented by VKL are shared by all the transmitters

in L.

Suppose that the physical layer is able to transmit all the messages in Vpq at a rate of R′pq each.

Suppose also that the network layer can send a total of vpqF bits through the messages (as bit

pipes) in order to achieve its goal of delivering every file to the user that requested it. Thus we

have R′pqT = vpqF . Since we also have R = F/T by definition, this implies

vpqF = R′pqT =⇒ vpqRT = R′pqT =⇒ R = R′pq/vpq. (4.23)

Therefore, by finding achievable values for vpq and R′pq for some pair (p, q), we obtain an achievable

rate R.

As previously mentioned, we propose two different schemes, the multicasting scheme and the

beamforming scheme. The difference in the two schemes lies in the network-layer strategy and
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the choice of p and q: the multicasting scheme chooses to maximize p, whereas the beamforming

scheme opts for maximizing q and setting p = 1. The physical-layer strategy on the other hand is

agnostic to the choice of schemes.

The physical-layer strategy is described below and in Appendix C.7.2 along with its achieved

rate R′pq. The network-layer strategies of the two schemes are provided in Appendix C.7.1 along

with their achieved values of vpq.

Physical-Layer Strategy

Fix p ∈ [K] and q ∈ [L]. We wish to transmit the messages Vpq across the network. Since we are

focusing on the low-SNR regime, our strategy will attempt to get the largest power gain.

Consider a specific message VKL ∈ Vpq. Since the transmitters in L all share the message

VKL, they can co-operate and beamform it to at least one user. The idea is to schedule this

message transmission when the channel is “favorable” for all the receivers in K, at which point the

transmitters can beamform to all receivers in K at once. By “favorable”, we mean that all the

receivers in K can get approximately the maximum benefit (power gain) from this beamforming.

The result is the following achievable rate.

Lemma 9. The message set Vpq can be transmitted across the interference network at a sum rate

of (
L

q

)(
K

p

)
R̂′pq ≥

Lq

ln 2

bits per unit energy, where R̂′pq = limP→0+ R′pq(P ).

Lemma 9 is proved in Appendix C.7.2, where we describe the above strategy in greater detail.

4.9.4 Approximate Optimality for the Multiple-Access Case

Recall that K = 1 in this case. Also recall that we can assume without loss of generality that all

the channel gains are one. In order to prove approximate optimality, we first derive the following

cut-set bounds on the optimal rate, proved in Appendix C.7.3.
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Lemma 10. For a single receiver (i.e., K = 1), the optimal rate must satisfy

R∗(P ) ≤ max
Q∈CL×L

Q�0, Q``≤P

min
L⊆{1,...,L}

(L−|L|)Mt<N−Mr

log2

(
1 + 1>QL|Lc1

)
1− Mr+(L−|L|)Mt

N

,

where 1 is the all-ones vector, and

QL|Lc = QL,L −QL,LcQ
−1
Lc,LcQLc,L.

We will now use Lemma 10 to prove Theorem 21, following a similar approach to [63]. The main

idea is to use properties of the objective function of the maximization in Lemma 10 to show that

one maximizing covariance matrix Q has a symmetric structure, thereby reducing the maximization

to just a single scalar variable.

We first swap the max over the covariance matrix Q and the min over the size of the subset L,

giving

R∗(P ) ≤ min
t∈[L]

Mr+(L−t)Mt<N

N

N −Mr − (L− t)Mt
max

Q
φt(Q),

where we have defined

φt(Q) = min
|L|=t

log2

(
1 + 1>QL|Lc1

)
.

By noticing that φt(·) is both concave and invariant under permutation, we show in Ap-

pendix C.7.3 that one covariance matrix that maximizes φt(·) must have the form

Q =
(

(1− ρ)I + ρ11>
)
· P (4.24)

for some ρ ∈ [−1/(L− 1), 1].

We can now rewrite the upper bound on R∗(P ) as

min
t∈[L]

L−t<N−Mr
Mt

max
ρ∈[ −1

L−1
,1]

t
(

1 + (t− 1)ρ− t(L−t)ρ2

1+(L−t−1)ρ

)
(

1− Mr+(L−t)Mt

N

)
(ln 2)

P, (4.25)

using log2(1+x) ≤ x/ ln 2 and after some algebra. By optimizing over ρ and t, we obtain the result
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of the theorem. For lack of space, we relegate this to Appendix C.7.3.
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Chapter 5

Open Problems

This thesis has focused on three main aspects of the coded caching problem, in particular as

it pertains to wireless heterogeneous networks (Figure 1.1). These are: non-uniform popularity,

multiple AP access, and interference. In this section, we discuss some interesting open problems

and possible future research directions.

The architectural insights presented in Chapter 4 hold for cache-aided Gaussian interference

networks. A natural next step would be to study more general networks. In particular, is the

separation architecture—which is approximately optimal in the Gaussian interference network—

also approximately optimal for more general networks?

In Chapter 3, we found that in an adaptive matching setup there is a dichotomy between a

coded delivery scheme (with a static matching) and a pure adaptive matching scheme (with uncoded

delivery). Indeed, each scheme dominated in certain regimes. When the content popularity was

close to uniform (i.e., when the Zipf parameter β < 1), we also showed the approximate optimality

of the schemes in most memory regimes, and we further developed a hybrid scheme that combined

elements of both schemes. The two most pertinent next questions are hence whether a hybrid can

be developed for the β > 1 setup and whether we can prove approximate optimality results.

Finally, there are practical considerations that are not yet fully understood. For instance, this

thesis has focused on communication efficiency, but many of the algorithms needed are not compu-

tationally efficient. Thus an interesting problem is finding computationally efficient algorithms that

can achieve comparable rates to the theoretical limits. Another assumption in these works is that
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of large file sizes. For example, many of the schemes require that files be split into an exponential

(in the number of caches) number of parts. Hence it is desirable to analyze the problem when the

file size is limited.

The above are only a few possible directions for further research. The relative recency and

timeliness of coded content caching make it a rich and exciting field with many more open problems.
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Appendix A

Detailed Proofs for Chapter 2

A.1 Proofs for the multi-user setup

A.1.1 Proof of Lemma 5

A small example for illustration

Before we give the full proof of Lemma 5, we will start with a simple example for illustration.

Consider a multi-level, multi-user caching system with K = 6 caches and L = 3 levels. Suppose

that U1 = U2 = U3 = 1, and let N1, N2, and N3 be some large numbers (their exact value

is not important for this example). Finally, assume a single-access structure for all users, i.e.,

d1 = d2 = d3 = 1.

As we have discussed in Section 2.5.2, the lower bounds on the optimal rate that we wish to

obtain are a sum of L cut-set bounds, each pertaining to a single level. A cut-set bound for level i

consists of a certain number of caches and broadcast messages, such that the users at these caches

can use the broadcast to cooperatively decode a set of files from level i. For example, if we consider

the sUi users of level i connected to some s caches, we can send b broadcast messages, tailored for

the correct user requests, so that the users can collectively decode min{sUi · b,Ni} files of level i.

Furthermore, we usually choose the values of s and b so that the final bound matches the achieved

individual rate of level i. Thus, they depend on value of the achieved rate and hence on the memory

available to the level.
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In our example, suppose that the memory we expect each level to receive dictates the following

number of caches to consider: a single cache for level 1; two caches for level 2; and three caches

for level 3. We define s1 = 1, s2 = 2, and s3 = 3 to be these numbers. In order to group

together the cut-set bounds of all the levels with their different numbers of caches, we resort to the

sliding-window subset entropy inequality presented in Lemma 4.

In this example, we will consider six separate broadcast messages. For simplicity, we will assume

that the messages are chosen so that, any time we encounter a group of p users and q messages, the

users are able to decode a total of pq messages. This relaxation will be discarded when we discuss

the general proof.

Let the caches be labeled with Z1, . . . , Z6 and the broadcast messages with X1, . . . , X6. We

start with the level with the smallest si, in this case level 1. Since s1 = 1, this means its cut-set

bound will consider a single cache. In fact, the cut-set bound should have the following form by

Fano’s inequality:

H(Z1, X1) ≥ H(Z1, X1|W1) + 1 · F,

where W1 represents the set of files of level 1 that got decoded. In this case, the single level-1 user

at cache Z1 can only decode one file when given just X1, hence the 1 · F term. However, to take

full advantage of the sliding-window entropy inequality, we will take the average over six cut-set

bounds for the same level, one for each cache:

RF +MF ≥ 1

6
[H(Z1, X1) + · · ·+H(Z6, X6)]

≥ 1

6

[
H(Z1, X1|W1) + · · ·+H(Z6, X6|W1)

]
+ 1 · F.

After completing the cut-set bound for level 1, we now attempt to transition to the cut-set

bound for level 2. Because we have taken the average of six instances of cut-set bounds, we can use

Lemma 4 to obtain 6 new cut-set bounds with s2 = 2 caches each (for ease of notation, we write
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Yk = (Zk, Xk)):

RF +MF ≥ 1

6

[
H(Y1|W1) +H(Y2|W1) +H(Y3|W1)

+H(Y4|W1) +H(Y5|W1) +H(Y6|W1)
]

+ 1 · F
(a)

≥ 1

6
· 1

2

[
H(Y1, Y2|W1) +H(Y2, Y3|W1)

+H(Y3, Y4|W1) +H(Y4, Y5|W1)

+H(Y5, Y6|W1) +H(Y6, Y1|W1)
]

+ 1 · F
(b)

≥ 1

6
· 1

2

[
H(Y1, Y2|W1,W2)

+H(Y2, Y3|W1,W2) +H(Y3, Y4|W1,W2)

+H(Y4, Y5|W1,W2) +H(Y5, Y6|W1,W2)

+H(Y6, Y1|W1,W2)
]

+ 1 · F +
4

2
· F.

Here, inequality (a) uses Lemma 4, while inequality (b) uses Fano’s inequality on the level-2 cut-set

bounds. Since each bound involves two users and two broadcast messages, the total number of files

decoded is 4, hence the 4 · F term. The set of decoded level-2 files is denoted by W2.

We proceed again with the transition from level 2 to level 3. Just like before, we first apply

Lemma 4 to obtain entropy terms with the correct number of caches s3, and then apply Fano’s
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inequality to decode files from level 3, labeled W3.

RF +MF ≥ 1

6
· 1

2

[
H(Y1, Y2|W1,W2)

+H(Y2, Y3|W1,W2) +H(Y3, Y4|W1,W2)

+H(Y4, Y5|W1,W2) +H(Y5, Y6|W1,W2)

+H(Y6, Y1|W1,W2)
]

+ 1 · F +
4

2
· F

(a)

≥ 1

6
· 1

3

[
H(Y1, Y2, Y3|W1,W2)

+H(Y2, Y3, Y4|W1,W2)

+ · · ·

+H(Y6, Y1, Y2|W1,W2)
]

+ 1 · F +
4

2
· F

(b)

≥ 1

6
· 1

3

[
H(Y1, Y2, Y3|W1,W2,W3)

+H(Y2, Y3, Y4|W1,W2,W3)

+ · · ·

+H(Y6, Y1, Y2|W1,W2,W3)
]

+ 1 · F +
4

2
· F +

9

3
· F.

Again, inequality (a) uses Lemma 4, and inequality (b) uses Fano’s inequality on level 3, which is

considering groups of 3 users and 3 broadcast messages, allowing the decoding of a total of 9 files.

Finally, by the non-negativity of entropy, the lower bound becomes:

RF +MF ≥
(

1 +
4

2
+

9

3

)
· F

R+M ≥ 6.
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The general proof

The process involved in the general case is similar to the one shown in the example above. We

start with the level with the smallest si and write an average of K cut-set bounds for this level,

one for each sequence of consecutive si caches. After applying Fano’s inequality, we use Lemma 4

to transition to the level with the next smallest si. In this discussion, the popularity of the levels

is not important, but the order of their si’s is. Specifically, if si < sj , it does not matter which of

i and j is more popular. Thus, we can assume without loss of generality that s1 ≤ · · · ≤ sL.

In the example, we started with cut-set bounds with a single cache each. For technical reasons,

this will not give us good enough bounds in general, and so the initial cut-set bounds will consist

of t caches, for a general t ∈ {1, . . . ,K}. In fact, every consecutive t caches will be clustered into

an inseparable group. The group consisting of the t caches that start with cache k is labeled as:

Ztk =
(
Zk, . . . , Z〈k+t−1〉

)
,

where 〈m〉 is defined for integers m as in Lemma 4, i.e., 〈m〉 = m if m ≤ K and 〈m〉 = m −K if

m > K. To every cache group Ztk, we associate a broadcast-message group X bk , which consists of b

messages serving different user demands.

Recall that a level-i user needs to connect to di consecutive caches in order to decode whichever

file he has requested. Applying Lemma 4 should hence keep only consecutive caches in the same

cut-set bounds, which will allow for the maximum number of users to be active in the decoding

of the files (and thus produce a larger number of files from the same cut-set bound). While this

was fairly simple to ensure in the example above, we must show that we can still do it even after

introducing the t-groups of caches. This is done in the next paragraph.

Let g be the GCD of t and K. Then, the following sequence:

(
Zt1,Zt〈t+1〉, . . . ,Zt〈(K/g)t+1〉

)
,

starts at cache 1 and ends at cache K. Each cache Zk appears exactly (t/g) times in the sequence.

Furthermore, every pair of caches that are consecutive in the sequence are also consecutive in the
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system. For example, suppose t = 4 and K = 6. Then their GCD would be g = 2, with K/g = 3,

and the sequence would be:

(
(Z1, Z2, Z3, Z4), (Z5, Z6, Z1, Z2), (Z3, Z4, Z5, Z6)

)
.

Notice that every cache appears in the sequence t/g = 2 times, and that consecutive caches remain

so in the sequence.

We are now ready to prove the lower bounds. Start with an average of K/g cut-set bounds

consisting of one group of t caches (and their associated broadcast messages) each:

bRF + tMF ≥ g

K

K/g∑
k=1

H
(
Zt(k−1)g+1,X b(k−1)g+1

)
.

This follows from bR+ tM ≥ H(Ztk,X bk ) for all k. Notice how all the indices [(k − 1)g + 1] are the

same modulo g. We can include all other caches to get:

bRF + tMF ≥ 1

K

K∑
k=1

H
(
Ztk,X bk

)
.

The first step is to use Lemma 4 to obtain cut-set bounds with s1t caches for level 1.

bRF + tMF

≥ 1

K

K∑
k=1

H
(
Ztk,X bk

)
≥ 1

K
· 1

s1

K∑
k=1

H
(
Ztk,Zt〈k+t〉, . . . ,Zt〈k+(s1−1)t〉,

X bk ,X b〈k+t〉, . . . ,X b〈k+(s1−1)t〉
)

Each entropy term in the sum now consists of s1t consecutive caches and s1b broadcast mes-

sages. For simplicity, we write it as Ĥk(s1t, s1b), for k ∈ {1, . . . ,K}, and its conditional version

as Ĥk(s1t, s1b|Q) for any random variable Q. Let W1 denote the set of level-1 files that can be

decoded in every cut-set bound in the sum, and let p1 be its size, to be determined later. For

technical reasons, we will only apply Fano’s inequality on a fraction of the cut-set bounds; the rest
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are simply lower-bounded by conditioning. The meaning and value of this fraction is discussed

below, but for now we will call it λ1. Then, we use Fano’s inequality to get:

bRF + tMF ≥ 1

K
· 1

s1

K∑
k=1

Ĥk(s1t, s1b)

≥ 1

K
· 1

s1

K∑
k=1

Ĥk(s1t, s1b|W1) +
λ1p1

s1
· F.

By applying Lemma 4 again, we obtain cut-set bounds pertaining to level 2. We lower-bound a

fraction λ2 of them in turn using Fano’s inequality, and repeat for all levels. Thus, we have:

bRF + tMF ≥ 1

K
· 1

s1

K∑
k=1

Ĥk(s1t, s1b|W1) +
λ1p1

s1
· F

(a)

≥ 1

K
· 1

s2

K∑
k=1

Ĥk(s2t, s2b|W1) +
λ1p1

s1
· F

(b)

≥ 1

K
· 1

s2

K∑
k=1

Ĥk(s2t, s2b|W1,W2)

+
λ1p1

s1
· F +

λ2p2

s2
· F

≥ · · ·

≥
L∑
i=1

λipi
si
· F. (A.1)

where the inequality marked with (a) uses Lemma 4 and the one marked with (b) uses Fano’s

inequality.

For any m < K consecutive caches, the number of level-i users that are connected to di of those

caches is exactly (m−di+1)Ui. Therefore, given sit < K consecutive caches and sib broadcast mes-

sages, the users at these caches should, in principle, decode up to pi = min {(sit− di + 1)Ui · sib,Ni}

files from level i. This requires choosing the broadcast messages for the correct user demands. How-

ever, consider a pair of broadcast message X ′ and user u that appears in multiple cut-set bounds.

In other words, the user u is expected to decode a file using the message X ′ on multiple occasions.

We must ensure that there are no contradictions, i.e., that the message X ′ always delivers the same

file to user u.

It turns out it is not always possible to do that and still be able to decode the maximal number
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of files at every cut-set bound. However, because sit ≤ K/2 (as constrained in the statement of

Lemma 5), we can get around this issue by “ignoring” half of the cut-set bounds. To understand

this, suppose we wish to determine, for each broadcast message to be sent, the set of user requests

that it must satisfy. Starting with Ĥ1(sit, sib): there are a total of (sit− di + 1)Ui relevant users,

and sib broadcasts. We can design these broadcasts to allow these users to decode all pi files. Next,

we move on to Ĥ2(sit, sib). In this entropy term, exactly tUi users from the previous term are

replaced by tUi brand new users; the other users are still the same. Thus, if the broadcast messages

serve the same files to the new users as they did to the old, the same total number of files can be

decoded. This can go on as long as every step introduces new tUi users, which is true for all but

the last (sit−di) steps. Indeed, the term ĤK−(sit−di)+1(sit, sib) re-introduces users that previously

appeared in Ĥ1(sit, sib). Thus, for every level i, only a fraction K−(sit−di)
K of the cut-set bounds

can decode all pi files using Fano’s inequality. We bound this fraction by:

K − (sit− di)
K

≥


1
2 if sit > di;

1 if sit = di,

and we define λi to be the right-hand side of the inequality.

By substituting pi for its value in (A.1), we get the final bounds:

bRF + tMF ≥
L∑
i=1

λi
si
·min {(sit− di + 1)Ui · sib,Ni} · F

R ≥
L∑
i=1

λi ·min

{
(sit− di + 1)Ui,

Ni

sib

}
− t

b
M,

which concludes the proof of Lemma 5.

A.1.2 Proof of approximate optimality (Theorem 4)

In this section, we will use the information-theoretic lower bounds determined in Lemma 5 to give

an upper bound on the ratio between the rate achieved by the memory-sharing scheme and the

optimal rate (the “gap”). In order to do that, we must consider a few different cases, in each of

which different values are chosen for the parameters b, t, and {si}i defined in Lemma 5. When
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these parameters are chosen, we will need to evaluate the minimization seen in the expression of

the lower bound, for every level. For simplicity, we define, for each level i:

Ai = min

{
(sit− di + 1)Ui ,

Ni

sib

}
. (A.2)

To find or bound the value of Ai, we must evaluate the following comparison:

bsi(sit− di + 1)
?
≶
Ni

Ui
. (A.3)

Before the main analysis, we consider the case where the number of caches is bounded. Specifi-

cally, we consider K < k0 = D/β, and we call this “Case 0”. Then, we consider the more interesting

case where K is unbounded, and divide that into two main regimes. The first, “Case 1”, is when

the set I1, defined in Definition 1 and (2.10), is empty; the second, “Case 2”, is when it is not

empty.

For convenience, we will assume, without loss of generality, that the levels are numbered from

most popular to least popular. In other words:

U1/N1 ≥ · · · ≥ UL/NL. (A.4)

Case 0: K < k0 = D/β

Recall the refined M -feasible partition described in Definition 1 and (2.10). By (2.9), we know that

the memory given to a level i0 ∈ I0 is at most:

αi0M < (2/K)
√
Ni0/Ui0 .
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However, if K < D/β, then, for any level i ∈ I ′:

αiM ≤
(

1

K
+
β

di

)√
Ni

Ui

=
1

K

(
1 +

βK

di

)√
Ni

Ui

<
1

K

(
1 +

D

di

)√
Ni

Ui

≤ D + 1

K

√
Ni

Ui

=
D + 1

2
· 2

K

√
Ni

Ui
.

This suggests that the memory given to a level in I ′ will not be much larger than that given to a

level in I0. As a result, levels in I ′ are expected to behave similarly to those in I0: they receive so

little memory that their impact on the overall transmission rate is not much different from that of

the levels in H, which get zero memory. The effective result is that the subset I1 “dominates” the

set I.

With these observations in mind, we next describe a near-equivalent formulation of the achiev-

ability scheme, which is more suitable for the case K < D/β. This formulation will emphasize the

fact that I1 is the dominant subset of I, by essentially reducing I to I1 and relegating I0 and I ′ to

H.

A more precise explanation follows. Find the (unique) level i∗ such that:

i∗−1∑
i=1

Ni

di
≤M ≤

i∗∑
i=1

Ni

di
.

Recall that the levels are numbered from most popular to least popular, as seen in (A.4).

Partition the set of levels into three sets (H, I, J), which will serve the same purpose as the

partition described in Definition 1. We set H = {i∗ + 1, . . . , L}, I = {i∗}, and J = {1, . . . , i∗ − 1}.

We then proceed as usual: the levels in J are fully stored in the caches; the levels in H are given

no memory; and the single level in I, i∗, is given the remaining memory M −TJ . The conventional

scheme is applied to each level and its corresponding memory, resulting in the following transmission
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rate:

R =
∑
h∈H

KUh +KUi∗

(
1− M − TJ

Ni∗/di∗

)

≤ k0

[∑
h∈H

Uh + Ui∗

(
1− M − TJ

Ni∗/di∗

)]
. (A.5)

For the lower bounds, consider Lemma 5, with t = 1, si = di for all i, and b = dNi∗/di∗Ui∗e.

Thus λi = 1 for all i. We will first analyze the comparisons in (A.3) for every level.

For i∗, we have:

bsi∗(si∗t− di∗ + 1) = bdi∗ ≥
Ni∗

Ui∗
.

For j ∈ J , we have:

bsj(sjt− dj + 1) = bdj ≥
Ni∗

Ui∗
· dj
di∗
≥ Ni∗

Ui∗D
≥ Nj

Uj
,

by regularity condition (2.4).

Finally, for h ∈ H, we have:

bsh(sh − dh + 1) = bdh ≤ 2
Ni∗

Ui∗
· dh
di∗
≤ Nh

Uh
,

again by the regularity condition (2.4).

Putting these together, we determine the value of Ai, defined in (A.2), for each i and get the

following lower bound on the optimal rate:

R∗(M) ≥
∑
h∈H

Uh +
Ni∗

di∗b
+
∑
j∈J

Nj

djb
− M

b

=
∑
h∈H

Uh +
Ni∗/di∗ − (M − TJ)

b

≥
∑
h∈H

Uh +
Ni∗/di∗ − (M − TJ)

2Ni∗/di∗Ui∗

≥ 1

2

[∑
h∈H

Uh + Ui∗

(
1− M − TJ

Ni∗/di∗

)]
. (A.6)
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By combining (A.5) with (A.6), we get the following bound on the gap:

R(M)

R∗(M)
≤ 2k0 = 2D/β = 396D. (A.7)

Case 1: I1 = ∅

When I1 = ∅, the rate achieved by the memory-sharing scheme is, according to Lemma 3:

R(M) ≤
∑
h∈H

KUh +
2S2

I

M − TJ + VI
. (A.8)

For technical reasons, the lower bounds analysis for this case has to be broken down into two

subcases, depending on whether or not the set J is empty.

Since we will be dealing with many floors and ceilings, here are a few remarks on these opera-

tions.

• If n ≥ 1 is an integer, then x ≥ n =⇒ bxc ≥ n;

• For all x > 0, bxc ≥ x− 1 and dxe ≤ x+ 1;

• If x ≥ 1, then bxc ≥ x/2 and dxe ≤ 2x;

• If a ≤ x ≤ b, then bac ≤ bxc ≤ bbc and dae ≤ dxe ≤ dbe.

Case 1a: J 6= ∅ Recall that M̃ = (M − TJ + VI)/SI . Consider Lemma 5, with the following

parameters:

t = 1;

∀h ∈ H, sh =

⌊
1

8
K

⌋
;

∀i ∈ I, si =

⌊√
Ni/Ui

8M̃

⌋
;

∀j ∈ J, sj = dj ;

b =
⌊
δM̃2

⌋
,

where δ = D/β. Notice that λj = 1 for all j ∈ J , and λi ≥ 1
2 for all other levels i.
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The first step is to verify that these parameters satisfy all of the constraints imposed on them

in Lemma 5. For ease of reference, we repeat the constraints here:

• t ∈ {1, . . . ,K};

• si ∈ N+ such that sit ∈ {di, . . . , bK/2c}, for any level i;

• b ∈ N+.

The parameters t and sj , j ∈ J , can be easily seen to satisfy theirs. Also, it follows from Definition 1

and from regularity condition (2.2) that, for some j ∈ J :

δM̃2 ≥ δ ·
(

1

dj
+

1

K

)2 Nj

Uj
≥ D/β ·

(
1

dj
+

1

K

)2

·K

≥ k0 ·
(

1

D

)2

· k0 =

(
k0

D

)2

≥ 1,

and therefore b ≥ 1.

As for sh, h ∈ H: we have sh ≤ bK/2c trivially, and sh ≥ dh is true because K ≥ k0 = D/β ≥

8dh.

Finally, consider i ∈ I. First, recall that I1 = ∅, and therefore i /∈ I1. Then, using Definition 1,

we have:

√
Ni/Ui

8M̃
≥ 1

8
· 1
β
di

+ 1
K

=
1

8(β + di/K)
· di

≥ 1

16β
· di ≥ di,

which implies si ≥ di. Also, we have:

si =

⌊√
Ni/Ui

8M̃

⌋
≤
⌊

1

8
· 1

1
K

⌋
≤ bK/2c .

Thus all the parameters satisfy their constraints.

Next, we will compute bounds on the Ai terms by evaluating the comparison (A.3) for all levels

i.
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For h ∈ H, the comparison (A.3) gives:

bsh(sht− dh+ 1) ≤ bs2
ht ≤ δM̃2 · 1

64
K2 ≤ δ

64
· Nh

Uh
.

Thus:

Ah ≥ min

{
1,

64

δ

}
· (sht− dh + 1)Uh

= min

{
1,

64β

D

}
· (sht− dh + 1)Uh

≥ 64β

D
·
(

1

8
K − dh

)
Uh

≥ 64β

D
·
(

1

8
− β

)
·KUh

≥ 8β

D
· (1− 8β) ·KUh.

Consider now i ∈ I. The comparison (A.3) gives:

bsi(sit− di + 1) ≤ bs2
i t ≤ δM̃2 · 1

64

Ni/Ui

M̃2
=

δ

64
· Ni

Ui
.

Therefore,

Ai ≥ min

{
1,

64

δ

}
· (sit− di + 1)Ui

=
64β

D
· (sit− di + 1)Ui

≥ 64β

D
·
(√

Ni/Ui

8M̃
− di

)
Ui

=
64β

D
·
(

1

8
− di ·

M̃√
Ni/Ui

)
·
√
NiUi

M̃

≥ 64β

D
·
(

1

8
−
(
β +

di
K

))
·
√
NiUi

M̃

≥ 64β

D
·
(

1

8
− 2β

)
·
√
NiUi

M̃

≥ 8β

D
· (1− 16β) ·

√
NiUi

M̃
.
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Finally, let us look at j ∈ J . The comparison in (A.3) gives:

bsj(sjt− dj + 1) = bdj

≥ 1

2
δM̃2 · dj

≥ 1

2
(D/β)

(
1

dj
+

1

K

)2 Nj

Uj
dj

≥ 1

2β
d2
j ·
(

1

dj

)2

· Nj

Uj

≥ Nj

Uj
.

Therefore:

Aj =
Nj

djb
.

We can now use the values of {Ai}i to lower-bound the optimal rate as in Lemma 5. Recall
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also the values of λi mentioned at the beginning of this section.

R∗(M) ≥
∑
h∈H

1

2
· 8β

D
· (1− 8β) ·KUh

+
∑
i∈I

1

2
· 8β

D
· (1− 16β) ·

√
NiUi

M̃

+
∑
j∈J

Nj

djb
− M

b

=
∑
h∈H

4β

D
· (1− 8β) ·KUh

+
4β

D
· (1− 16β) · SI ·

∑
i∈I
√
NiUi

M − TJ + VI

− M − TJ
b

≥
∑
h∈H

4β

D
· (1− 8β) ·KUh

+
4β

D
· (1− 16β) · S2

I

M − TJ + VI

− M − TJ + VI
1
2δ(M − TJ + VI)2/S2

I

=
∑
h∈H

4β

D
· (1− 8β) ·KUh

+

[
4β

D
· (1− 16β)− 2

δ

]
· S2

I

M − TJ + VI

=
∑
h∈H

β

D
· (4− 32β) ·KUh

+
β

D
(1− 32β) · 2S2

I

M − TJ + VI
. (A.9)

Combining (A.9) with (A.8), we get:

R(M)

R∗(M)
≤ D/β

1− 32β
≤ 237D. (A.10)

Case 1b: J = ∅ We know that I is never an empty set. Since J = ∅, then the most popular

level is in I. By (A.4), that level is level 1, and hence 1 ∈ I. Moreover, we note that TJ = 0 when

J = ∅, and thus M̃ = (M + VI)/SI .
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Consider again Lemma 5, and define the following parameters:

t =

⌊
1

32

√
N1/U1

M̃

⌋
;

∀h ∈ H, sh =

⌊
2

KM̃√
N1/U1

⌋
;

∀i ∈ I, si =

⌊
2

√
Ni/Ui
N1/U1

⌋
;

b =
⌊
8M̃
√
N1/U1

⌋
.

Thus, we can only say that λi ≥ 1
2 for all levels i.

As before, we must first verify that these parameters satisfy all their constraints. Let us start

with b:

8M̃
√
N1/U1 ≥ 8 · 1

K

√
N1/U1 ·

√
N1/U1 =

8N1

KU1
≥ 1,

by regularity condition (2.2), and therefore b ≥ 1.

Next, we will examine t and the {si}i. It suffices to show t ≥ 1, si ≥ 1, sit ≥ di, and sit ≤ bK/2c

for all i. We can see that t ≥ 1 because:

√
N1/U1

32M̃
≥ 1/32

β
d1

+ 1
K

≥ 1

64β
· d1 ≥ 1,

where the first inequality follows from 1 ∈ I \ I1 (recall I1 = ∅) and Definition 1 combined with

(2.10).

For h ∈ H, we have 2KM̃/
√
N1/U1 ≥ 1 directly from Definition 1, and thus sh ≥ 1. Moreover,

sht ≥
1

64
·
√
N1/U1

M̃
· KM̃√

N1/U1

=
K

64
≥ D ≥ dh,

and,

sht ≤
1

32
·
√
N1/U1

M̃
· 2 KM̃√

N1/U1

= K/16 ≤ bK/2c .

Consider now i ∈ I. Because level 1 is the most popular level, then Ni/Ui ≥ N1/U1 for all i,
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and hence si ≥ 1. Moreover:

sit ≥
√
Ni/Ui

64M̃
≥ 1/64

β
di

+ 1
K

≥ 1

128β
di ≥ di.

Finally,

sit ≤
√
Ni/Ui

16M̃
≤ K/16 ≤ bK/2c .

Thus, all the parameters satisfy their conditions.

We now move to the comparisons in (A.3) which allow us to give bounds on Ai for all i.

Consider h ∈ H. Note that:

bsh(sht− dh + 1)

≤ bs2
ht

≤ 8M̃
√
N1/U1 ·

[
2KM̃√
N1/U1

]2

·
√
N1/U1

32M̃

=
[
KM̃

]2

≤ Nh

Uh
.

Therefore,

Ah = (sht− dh + 1)Uh

≥
[(

KM̃√
N1/U1

)(√
N1/U1

32M̃
− 1

)
− (dh − 1)

]
Uh

≥
[(

1

32
− M̃√

N1/U1

)
− D − 1

k0

]
KUh

(a)

≥
[

1

32
−
(
β

d1
+

1

K

)
− D

k0
− 1

k0

]
KUh

(b)

≥
(

1

32
− 2β

)
·KUh.

Here, (a) uses Definition 1 with (2.10) and 1 ∈ I \ I1, and (b) uses d1 ≥ 1 and D/k0 = β.
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Now consider i ∈ I. We have:

bsi(sit− di + 1) ≤ bs2
i t

≤ 8M̃
√
N1/U1 · 4

Ni/Ui
N1/U1

·
√
N1/U1

32M̃

=
Ni

Ui

Therefore,

Ai = (sit− di + 1)Ui

≥
[√

Ni/Ui
N1/U1

·
(√

N1/U1

32M̃
− 1

)
− (di − 1)

]
Ui

=

[
1

32
− M̃√

N1/U1

− (di − 1) · M̃√
Ni/Ui

] √
NiUi

M̃

≥
[

1

32
−
(
β

d1
+

1

K

)
− (di − 1) ·

(
β

di
+

1

K

)] √
NiUi

M̃

=

[
1

32
− 2β −

(
1

d1
− 1

di

)
β

] √
NiUi

M̃

≥
(

1

32
− 3β

) √
NiUi

M̃
.

Finally, we will also give an upper bound to the following useful quantity:

tM

b
≤
√
N1/U1

32M̃
· 2

8M̃
√
N1/U1

·M

≤ S2
I

128(M + VI)2
· (M + VI)

=
S2
I

128(M + VI)
.
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Combining the Ai terms, along with the λi factors, we get the following lower bound:

R∗(M) ≥
∑
h∈H

1

2
·
(

1

32
− 2β

)
·KUh

+
∑
i∈I

1

2
·
(

1

32
− 3β

)
·
√
NiUi

M̃

− tM

b

≥
∑
h∈H

1

2
·
(

1

32
− 2β

)
·KUh

+
1

2
·
(

1

32
− 3β

)
· S2

I

M + VI

− S2
I

128(M + VI)

=
∑
h∈H

1

2
·
(

1

32
− 2β

)
·KUh

+

[
1

2
·
(

1

32
− 3β

)
− 1

128

]
· S2

I

M + VI
.

=
∑
h∈H

1

64
(1− 64β) ·KUh

+
1

256
(1− 192β) · 2S2

I

M + VI
. (A.11)

Combining (A.11) with (A.8):

R(M)

R∗(M)
≤ 256

1− 192β
= 8448. (A.12)

Case 2: I1 6= ∅

In this section, there exists at least one level in I1. However, by Proposition 2, the set I1 cannot

contain more than one level. Therefore, in this section we have I1 = {i1} for some level i1.

140



Using Lemma 3, we can write the achievable rate as follows:

R(M) ≤
∑
h∈H

KUh +
2SISI\I1

M − TJ + VI

+
1

β
di1Ui1

(
1− M − TJ

Ni1/di1

)
+

1

β
di1Ui1 ·

SI\I1√
Ni1Ui1

. (A.13)

Let γ1 = 2.965 and γ2 = 0.482. Consider Lemma 5 with the following parameters.

t = 1;

∀h ∈ H, sh = b2βKc ;

∀i ∈ I \ I1, si =

⌊
γ1β

√
Ni/Ui

M̃
+ γ2di1

√
Ui1/Ni1

Ui/Ni

⌋
;

si1 = di1 ;

∀j ∈ J, sj = dj ;

b =

⌈
Ni1

di1Ui1

⌉
.

Thus we have λi1 = λj = 1 for all j ∈ J , and λi, λh ≥ 1
2 for i ∈ I and h ∈ H.

Recall the following inequalities from Definition 1 regarding i ∈ I:

1

K

√
Ni

Ui
≤ M̃ ≤

(
1

K
+

1

di

)√
Ni

Ui
.

Thus, for any i, j ∈ I, we have: √
Ui/Ni

Uj/Nj
≤ K

di
+ 1.

Moreover, for h ∈ H and i1 ∈ I1:

(
1

K
+

β

di1

)
≤ M̃ ≤ 1

K

√
Nh

Uh
,

and hence: √
Ui1/Ni1

Uh/Nh
≥ β K

di1
+ 1.

141



We will now verify that the parameters satisfy their constraints. The parameters t, si1 , and

sj trivially satisfy all their constraints. Moreover, Ni1 ≥ KUi1 ≥ di1Ui1 , which implies b ≥ 1.

Regarding sh:

K/2 ≥ 2βK ≥ 2β ·D/β = 2D ≥ dh,

and hence dh ≤ sh ≤ bK/2c. We are hence only left with si.

Consider the following:

γ1β

√
Ni/Ui

M̃
+ γ2di1

√
Ui1/Ni1

Ui/Ni

≥ γ1β

√
Ni/Ui

M̃
≥ γ1β

β/di + 1/K

≥ γ1β

2β
di ≥ di,

and hence si ≥ di. Furthermore,

γ1β

√
Ni/Ui

M̃
+ γ2di1

√
Ui1/Ni1

Ui/Ni

≤ γ1βK + γ2di1

(
K

di1
+ 1

)
=

[
γ1β + γ2

(
1 +

di1
K

)]
K

≤ [γ2 + (γ1 + γ2)β]K

≤ K/2,

and hence si = sit ≤ bK/2c.

We will now evaluate the comparisons in (A.3) to give bounds on the Ai terms, for every i.
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Let us start with h ∈ H. We have bsh(sht− dh + 1) ≤ bs2
ht = bs2

h, and:

bs2
h ≤

(
Ni1

di1Ui1
+ 1

)
· 4β2K2

≤ Ni1

di1Ui1

(
1 +

di1
K

)
· 4β2K2

(a)

≤ Nh

di1Uh

1 + di1/K

(β + di1/K)2
· d

2
i1

K2
· 4β2K2

(b)

≤ Nh

Uh
· 1

β2
· di1 · 4β2

≤ 4D · Nh

Uh
.

The inequality labeled (a) comes from Definition 1 and (2.10), and:

(
β

di1
+

1

K

)√
Ni1

Ui1
< M ≤ 1

K

√
Nh

Uh
.

As for the inequality (b), it is due to:

∀x ≥ 0,
1 + x

(β + x)2
=

1

β + x
· 1 + x

β + x
≤ 1

β
· 1

β
,

because x→ 1+x
β+x is decreasing for x ≥ 0. Hence,

Ah ≥ min

{
1,

1

4D

}
· (sht− dh + 1)Uh

≥ 1

4D
· (2βK − dh)Uh

≥ 1

4D
· (2β − β)KUh

=
β

4D
·KUh.
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Now we consider i ∈ I \ I1. We have:

bs2
i

≤ Ni1

di1Ui1

(
1 +

di1
K

)(
γ1β

√
Ni/Ui

M̃
+ γ2di1

√
Ui1/Ni1

Ui/Ni

)2

≤ Ni1

di1Ui1
(1 + β)

(
γ1β

√
Ni1/Ui1

M̃
+ γ2di1

)2

· Ui1/Ni1

Ui/Ni

≤ Ni

di1Ui
(1 + β)

(
γ1β

β/di1 + 1/K
+ γ2di1

)2

≤ Ni

di1Ui
(1 + β)

(
γ1β

β
di1 + γ2di1

)2

=
Ni

di1Ui
(1 + β)d2

i1 (γ1 + γ2)2

≤ Ni

Ui
· 12(1 + β)D.

Therefore, if we define c = 1/12(1 + β)D, then:

Ai

≥ c · (sit− di + 1)Ui

≥ c ·
(
γ1β

√
Ni/Ui

M̃
+ γ2di1

√
Ui1/Ni1

Ui/Ni
− di

)
Ui

= c

[(
γ1β

√
Ni/Ui

M̃
− di

)
Ui + γ2di1

√
Ui1/Ni1

Ui/Ni
· Ui
]

= c

[(
γ1β − di

M̃√
Ni/Ui

) √
NiUi

M̃
+ γ2di1Ui1

√
NiUi√
Ni1Ui1

]

≥ c
[

(γ1β − 2β)

√
NiUi

M̃
+ γ2di1Ui1

√
NiUi√
Ni1Ui1

]

= c

[
(γ1 − 2)β

√
NiUi

M̃
+ γ2di1Ui1

√
NiUi√
Ni1Ui1

]

≥ c ·min

{
1

2
γ1 − 1, γ2

}
· β

·
[

2
√
NiUi

M̃
+

1

β
di1Ui1

√
NiUi√
Ni1Ui1

]

= 0.482cβ ·
[

2
√
NiUi

M̃
+

1

β
di1Ui1

√
NiUi√
Ni1Ui1

]
.
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Finally, we have:

bsi1(si1t− di1 + 1) = bdi1 ≥
Ni1

Ui1
,

and, likewise for j ∈ J :

bsj(sjt− dj + 1) = bdj ≥
dj
di1

Ni1

Ui1
≥ Nj

Uj
,

because of the regularity condition (2.4). Thus:

Ai1 =
Ni1/di1

b
; Aj =

Nj/dj
b

.

Combining the Ai terms, and keeping in mind the λi terms, we get:

R∗(M)

≥
∑
h∈H

1

2
· β

4D
·KUh

+
∑
i∈I\I1

1

2
· 0.482β

12(1 + β)D
·
[

2
√
NiUi

M̃
+

1

β
di1Ui1

√
NiUi

Ni1Ui1

]

+
Ni1/di1 +

∑
j∈J Nj/dj −M
b

≥
∑
h∈H

β

8D
·KUh

+
0.241β

12(1 + β)D

[
2SISI\I1

M − TJ + VI
+

1

β
di1Ui1

SI\I1
Ni1Ui1

]
+
Ni1/di1 +

∑
j∈J Nj/dj −M

2Ni1/(di1Ui1)

=
∑
h∈H

β

8D
·KUh

+
0.241β

12(1 + β)D

[
2SISI\I1

M − TJ + VI
+

1

β
di1Ui1

SI\I1
Ni1Ui1

]
+

1

2
Ui1

(
1− M − TJ

Ni1/di1

)
. (A.14)

Combining (A.14) with (A.13), we get:

R(M)

R∗(M)
≤ max

{
8D

β
,
12(1 + β)D

0.241β
,
2D

β

}
≤ 9909D. (A.15)
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Final gap

By combining the inequalities from all the cases above, i.e., inequalities (A.7), (A.10), (A.12), and

(A.15), we get the following final result:

R(M)

R∗(M)
≤ 9909 ·D,

which concludes the proof of Theorem 4.

A.1.3 Proofs of some useful results

Proof of Lemma 3. We will prove the lemma for each of the five sets in the refined M -feasible par-

tition. First, recall that the achievable rate RSL(·) for the single-level setup is defined in Theorem 1.

For h ∈ H:

Rh(M) = RSL(0,K,Nh, Uh, dh) = KUh.

For i ∈ I0:

Ri(M) = RSL(αiM,K,Ni, Ui, di)

≤ RSL(0,K,Ni, Ui, di)

= KUi

≤ 2

M̃

√
Ni

Ui
· Ui

=
2SI
√
NiUi

M − TJ + VI
.
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∆ =

(
1− αiM

Ni/di

)
−
(

1− M − TJ
Ni/di

)
=

1−
√
NiUi
SI

(M − TJ + VI)− Ni
K

Ni/di

− (1− M − TJ
Ni/di

)

=
M − TJ
Ni/di

−
√
NiUi(M − TJ)

SINi/di
−
√
NiUiVI
SINi/di

+
di
K

=
M − TJ
Ni/di

(
1−
√
NiUi
SI

)
−
√
NiUiVI\I1
SINi/di

−
√
NiUi · NiK
SINi/di

+
di
K

=
M − TJ
Ni/di

·
SI\I1
SI
−

diVI\I1√
Ni/UiSI

+
di
K

(
1−
√
NiUi
SI

)
=

di
Ni

(M − TJ)
SI\I1
SI
−

diVI\I1√
Ni/UiSI

+
di
K
·
SI\I1
SI

(a)

≤ di
Ni

[(
1

K
+

1

di

)√
Ni

Ui
SI − VI

]
SI\I1
SI
−

diVI\I1√
Ni/UiSI

+
di
K
·
SI\I1
SI

=

(
di
K

+ 1

)
SI\I1√
NiUi

−
diVISI\I1
NiSI

−
diVI\I1

√
NiUi

NiSI
+
diSI\I1
KSI

=

(
di
K

+ 1

)
SI\I1√
NiUi

−
di

(
VI\I1 + Ni

K

)
SI\I1

NiSI
−
diVI\I1

√
NiUi

NiSI
+
diSI\I1
KSI

=

(
di
K

+ 1

)
SI\I1√
NiUi

−
diVI\I1SI
NiSI

−
diSI\I1
KSI

+
diSI\I1
KSI

=
di
K
·
SI\I1√
NiUi

−
diVI\I1
Ni

+
SI\I1√
NiUi

=
di
K

∑
i∈I\I1

(√
NiUi√
NiUi

− Ni

Ni

)
+

SI\I1√
NiUi

=
di
K

∑
i∈I\I1

√
NiUi +Ni

√
Ui/Ni√

NiUi
+

SI\I1√
NiUi

=
di
K

∑
i∈I\I1

Ni

(√
Ui/Ni −

√
Ni/Ui

)
√
NiUi

+
SI\I1√
NiUi

(b)

≤
SI\I1√
NiUi

. (A.16)

For i ∈ I ′:

Ri(M) = RSL(αiM,K,Ni, Ui, di)

≤ Ui ·
Ni

αiM
·
(

1− αiM

Ni/di

)
≤ NiUi
αiM

=
NiUi√

NiUi · M̃ −Ni/K

≤ NiUi√
NiUi · M̃ − 1

2

√
NiUi · M̃

=
2SI
√
NiUi

M − TJ + VI
.
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For i ∈ I1:

Ri(M) ≤ Ui ·
Ni

αiM
·
(

1− αiM

Ni/di

)
≤ 1

β
diUi

(
1− αiM

Ni/di

)
,

since i ∈ I1 =⇒ αiM ≥ βNi/di (follows from (2.10)).

Consider the following difference:

∆ =

(
1− αiM

Ni/di

)
−
(

1− M − TJ
Ni/di

)
.

We can show that:

∆ ≤
SI\I1√
NiUi

.

The full derivation is given in (A.16). In the calculations in (A.16), (a) is due to the definition of

I1, while (b) is due to the fact that the (unique) level in I1 is more popular than any other level in

i′ ∈ I, and thus: √
Ui′

Ni′
≤
√
Ui
Ni
.

Using the bound on ∆, we can rewrite Ri(M) as follows:

Ri(M) ≤ 1

β
diUi

(
1− αiM

Ni/di

)
=

1

β
diUi

(
1− M − TJ

Ni/di
+ ∆

)
≤ 1

β
diUi

(
1− M − TJ

Ni/di

)
+

1

β
diUi ·

SI0 + SI′√
NiUi

.

Finally, for j ∈ J :

Rj(M) = RSL(Nj/dj ,K,Nj , Uj , dj) = 0.

This completes the proof of the lemma.

Proof of Lemma 2. We prove the existence of an M -feasible partition by construction. In fact,

we will use Algorithm 1 presented in Section 2.5.1 as the proof. In what follows, we prove the

correctness of the algorithm, and then conclude the proof of Lemma 2.

The idea behind the algorithm is as follows. When the memory is 0, all levels are in the set H.1

1Technically, there will be exactly one level in the set I, but it will still get zero memory so this distinction is
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∅ ∅ ∅
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∅∅∅

∅ ∅

Figure A.1: Two examples of how an M -feasible partition (H, I, J) could evolve when there are two levels
{1, 2}. In the second case, it will turn out that M ′2 = M ′3. The reasoning behind this is that between M ′2
and M ′3, all levels have a fixed memory: level 2 has memory 0 while level 1 has memory N1/d1. Thus an
increase in the overall memory between M ′2 and M ′3 would be wasted. Moreover, M1 = M ′1 = 0 for similar
reasons, and M4 = M ′4 = N1/d1 + N2/d2 because that is the point at which both levels can be completely
stored.

As the memory is increased, levels will start moving from H to I as they gain more memory, and

then finally from I to J as they get completely stored in the caches. Thus, the range of memory

values [0,∞) can be divided into 2L + 1 intervals; in each interval, the partition (H, I, J) will be

the same. The boundaries of these intervals are the memory values at which levels switch from one

set to the next. Figure A.1 shows two examples of how the (H, I, J) partition might evolve with

two levels.

The algorithm operates in three main steps. In the first step, the sequence of (H, I, J) partitions

is determined. For instance, we determine which of the two cases illustrated in Figure A.1 holds.

In the second step, the values of the boundaries between the different intervals are calculated; in

Figure A.1, those would be {M1,M2,M3,M4} or {M ′1,M ′2,M ′3,M ′4}. Finally, the third step consists

in determining the M -feasible partition (H, I, J) based on steps 1 and 2, and based on the value

of any given memory M . For example, if we are in the first case in Figure A.1 and we are given a

memory value between M3 and M4, then we know that (H, I, J) = (∅, {2}, {1}).
irrelevant.
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Recall from Definition 1 that the M -feasible partition is defined by the relation of (M − TJ +

VI)/SI to the two values (1/K)
√
Ni/Ui and (1/di + 1/K)

√
Ni/Ui, for every level i. As long as the

same relations are maintained, the same partition is chosen as the M -feasible partition. Thus, the

values of the boundary ranges must be of one of two forms:

mI,J
i =

1

K

√
Ni

Ui
· SI + TJ − VI ;

M I,J
i =

(
1

di
+

1

K

)√
Ni

Ui
· SI + TJ − VI ,

for the appropriate partition (H, I, J). In fact, this partition has to be the one defined by either

of the intervals that this boundary divides. For example, M2 in Figure A.1 is the boundary where

level 2 moves from H to I. Thus, it is of the form mI,J
2 , where (H, I, J) = (∅, {1, 2}, ∅), or

(H, I, J) = ({2}, {1}, ∅). As it turns out, both choices give the same result.

Let us suppose we are looking at a particular interval with some (H, I, J) partition, and we

wish to know its upper boundary. We know that it has to be either mI,J
h , h ∈ H, or M I,J

i , i ∈ I.

Specifically, it has to be the smallest of these values. Since I and J are fixed, this is equivalent to

determining the smaller of:

m̃h =
1

K

√
Nh

Uh
;

M̃i =

(
1

di
+

1

K

)√
Ni

Ui
.

But these values do not depend on the chosen partition (H, I, J)! Thus, the sequence of (H, I, J)

can be uniquely determined solely by these m̃i and M̃i values.

For what follows, we refer the reader to Algorithm 1 for the various symbols (xt, Yt). It is worth

mentioning the following two points. First, the ordering between xt and Yt is preserved. That is,

xt < xt′ =⇒ Yt < Yt′ . This is ensured by the observation made above that the ordering does

not depend on the partition (H, I, J). Second, as mentioned earlier, when applying the function

x 7→ x · SI + TJ − VI on some x = m̃i or x = M̃i, it does not matter whether we take the (H, I, J)

partition whose interval x lower-bounds or upper-bounds.

Any interval in which I is set to be empty automatically becomes an empty interval. To prove
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M̃j m̃i M

Yt Yt+1

Figure A.2: The only situation where Algorithm 1 results in an interval with I = ∅. Here, the sets A, B,
{i}, and {j} are disjoint and together form the entire set of levels.

this, we will show that I = ∅ implies that its upper and lower boundaries match. This is done as

follows. Consider the aforementioned interval, and notice that it can only occur if some level moved

from I to J at the lower boundary, and another level moved from H to I at the upper boundary. See

the bottom case of Figure A.1 for an example, interval (M ′2,M
′
3). Thus, the sequence of (H, I, J)

partitions that occurs is of the form shown in Figure A.2.

Let us compute the interval boundaries Yt and Yt+1. Because of our previous observations, we

can use (H, I, J) = (A ∪ {i}, ∅, B ∪ {j}) for both. Then,

Yt = M̃j · SI + TJ − VI = TJ = TB +Nj/dj .

Similarly,

Yt+1 = m̃i · SI + TJ − VI = TJ = TB +Nj/dj .

Thus, Yt = Yt+1 and the interval is empty.

This concludes the proof of the lemma.

A.2 Proof of approximate optimality for the single-user setup

(Theorem 6)

As discussed in Section 2.6.2, we prove Theorem 6 by lower-bounding the optimal rate with ex-

pressions of the form shown in (2.16). Two cases must be considered.
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Case M < 1/6

When M is this small, we choose b = 1 broadcast message. Recall that, because of regularity

condition (2.3), we have Ni/Ki ≥ 1 > 1/6 > M . The achievable rate in this case can be upper-

bounded by the expression in (2.17).

Consider now any level i. Let si = Ki. Then,

vi = si

(
min

{
1,
Ni

sib

}
− M

b

)
= Ki

(
min

{
1,
Ni

Ki

}
−M

)
≥ (5/6)Ki. (A.17)

We can combine (2.17) with (A.17) and (2.16) to get:

R(M)

R∗(M)
≤ 6

5
. (A.18)

Case M ≥ 1/6

We will now choose b = d6Me ≥ 1.

Bound for g ∈ G Consider sg = 1. Then,

vg = min

{
1,

Ni

d6Me

}
− M

d6Me
≥ 1

2
− M

6M

=
1

3
, (A.19)

because sgb = d6Me ≤ 2 · 6M ≤ 2Ng.

Bound for h ∈ H Consider sh = dKh/6e ≥ 1. Then,

vh ≥
Kh

6

(
min

{
1,

Nh

4KhM

}
− M

6M

)
=

1

72
·Kh, (A.20)
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because shb = dKh/6e · d6Me ≤ 4KhM ≤ 4Nh.

Bound for i ∈ I Consider si = dNi/6Me. Then,

vi ≥
Ni

6M

(
min

{
1,

Ni

4Ni

}
− M

6M

)
=

1

72
· Ni

M
, (A.21)

because sib = dNi/6Me · d6Me ≤ 4Ni.

Bound for J First, if M ≥ NJ , then the set J contributes nothing to the upper bound on the

rate in (2.14); see (2.15). Thus we can ignore it, i.e., choose sJ = 0 and thus nJ = 0 and vJ = 0.

So the interesting case is M < NJ . Here, we must decode files from multiple levels collectively.

Consider sJ = dNJ/6Me, where NJ =
∑

j∈J Nj . Notice that there are enough users and broadcasts

to decode all files, because:

sJb ≥
NJ

6M
· 6M = NJ .

However, we must take care that no broadcast considers more than Kj users at a time for any

j ∈ J . This can be ensured: since there are b = d6Me broadcasts, and b ≥ Nj for all j ∈ J , then

every broadcast need only consider at most one user per level. Hence, all of the NJ files can be

decoded, and nJ = NJ .

If M < NJ/6, we have:

vJ =
NJ − sJM

b

≥ 1

12M

(
NJ −

NJ

12M
·M
)

≥ 144

11
· NJ

M
. (A.22)

If NJ/6 ≤M < NJ , then sJ is actually equal to 1, and:

vJ =
NJ −M

b

≥ NJ −M
12M

≥ 1

12

(
1− M

NJ

)
. (A.23)
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Multiplicative gap

By combining (A.19), (A.20), (A.21), (A.22) and (A.23) with (2.14) and (2.15), and also taking

into account (A.18), we get:

R(M)

R∗(M)
≤ 72,

which concludes the proof of Theorem 6.

A.3 Complete characterization for the small example (Theorem 2)

This appendix proves Theorem 2 in two parts. The first part presents the achievability scheme,

and the second part gives the information-theoretic outer bounds.

The rate-memory curve shown in Figure 2.8—which we are trying to prove is both achievable

and optimal—can be described using the following equation:

R = max

{
3− 2M ,

5

2
−M , 2− 1

2
M , 1− M − 2

N2/2
, 0

}
. (A.24)

We would like to remind the reader that, in the example considered, the number of less popular

files is N2 ≥ 4.

It will be useful in this discussion to define the request vector r to be a length-3 vector identifying

the three files requested by the three users. Specifically, we write r = (r1, r2, r3) to denote that

users 1, 2, and 3 request files W 1
r1 , W 1

r2 , and W 2
r3 respectively.

A.3.1 Achievable scheme

To prove the achievability of the piece-wise linear curve in Figure 2.8 and in (A.24), we need only

show the achievability of the corner points, as the rest can be achieved using a memory-sharing

scheme between every pair of points. These (M,R) points are:

(0, 3) ;

(
1

2
, 2

)
;

(
1,

2

3

)
; (2, 1) ; and

(
2 +

N2

2
, 0

)
.
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Point (M,R) = (0, 3)

When M = 0, we do not place any content in the caches, and instead broadcast all the requested

files to the users. Since these can be three different files, the peak rate is R = 3.

Point (M,R) = (2 + N2
2 , 0)

On the other extreme, when M = 2 + N2
2 , the caches are large enough to each store all the popular

files, and complementary halves of the unpopular files. Thus, a user can recover any popular file by

solely accessing any cache, and can recover any unpopular file by accessing both caches. Therefore,

no broadcast is needed, and thus R = 0 is achievable.

Point (M,R) = (2, 1)

In this case, each cache can hold up to two files. Our strategy is to dedicate this memory to the

two popular files. Thus, each cache contains all the popular files, but no information about the

unpopular files. Therefore, users 1 and 2 can recover their respective requested files without relying

on any broadcast, whereas user 3 requires a full broadcast of his requested file. As a result, the

rate R = 1 is achievable.

Point (M,R) = (1, 3
2)

Let us split each of the popular files into two parts of equal size: W 1
1 = (W 1

1a,W
1
1b) and W 1

2 =

(W 1
2a,W

1
2b). We place these in the caches as follows. The first cache contains the first half of each file:

Z1 = (W 1
1a,W

1
2a), whereas the second cache contains the second half of each file: Z2 = (W 1

1b,W
1
2b).

When the user requests are revealed, the BS sends a common message with two parts: Xr =

(Xr
1 , X

r
2). The first part directly serves user 3 by giving him the full file he requested: Xr

1 = W 2
r3 .

The second part will be Xr
2 = W 1

r1b
⊕W 1

r2a, which, along with the AP cache content accessed by

each of users 1 and 2, allows them to recover their respective file. The BS had to transmit one full

file, plus a linear combination of two half files, and, as a result, the total broadcast rate is R = 3
2 .
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Point (M,R) = (1
2 , 2)

This case is slightly different in that it requires storing coded content in the caches. We again split

the popular files into two halves as before. However, we this time store the following: Z1 = W 1
1a ⊕

W 1
2a; and Z2 = W 1

1b⊕W 1
2b. The BS will transmit the following broadcast: Xr =

(
W 2
r3 ,W

1
r1b
,W 1

r2a

)
.

This will serve all the requests of the users. The broadcasts message consists of a full file and two

half-files, and thus the total rate is R = 2.

A.3.2 Outer bounds

We will now prove that the above scheme is optimal with respect to information-theoretic bounds.

We do that by showing that the rate is larger than each one of the expressions in the maximization

in (A.24). The inequality R ≥ 0 is trivial.

In all of the following, inequalities marked by (∗) are due to Fano’s inequality, and the εF term

that arises along with these inequalities is a term that decays to zero as F →∞.

First expression

Let the request vector be r = (1, 2, 1), and consider both caches along with the broadcast Xr.

Then, for all F ,

RF + 2MF ≥ H (Z1, Z2, X
r)

= H
(
Z1, Z2, X

(1,2,1)
∣∣W 1

1 ,W
1
2 ,W

2
1

)
+ I

(
W 1

1 ,W
1
2 ,W

2
1 ;Z1, Z2, X

(1,2,1)
)

(∗)
≥ 3F (1− εF )

R+ 2M ≥ 3(1− εF ).

By taking F →∞, we get:

R ≥ 3− 2M.
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Second expression

Consider the two request vectors r1 = (1, 2, 1) and r2 = (2, 1, 2).

2 (RF +MF )

≥ H (Z1, X
r1) +H (Z2, X

r2)

= H
(
Z1, X

r1
∣∣W 1

1

)
+ I

(
W 1

1 ;Z1, X
r1
)

+H
(
Z2, X

r2
∣∣W 1

1

)
+ I

(
W 1

1 ;Z2, X
r2
)

(∗)
≥ H

(
Z1, Z2, X

r1 , Xr2
∣∣W 1

1

)
+ 2F (1− εF )

= H
(
Z1, Z2, X

r1 , Xr2
∣∣W 1

1 ,W
1
2 ,W

2
1 ,W

2
2

)
+ I

(
W 1

2 ,W
2
1 ,W

2
2 ;Z1, Z2, X

r1 , Xr2
∣∣W 1

1

)
+ 2F (1− εF )

(∗)
≥ 5F (1− εF )

2R+ 2M ≥ 5(1− εF ).

By taking F →∞, we get:

R ≥ 5

2
−M.
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Third expression

Consider the following four request vectors: r1 = (1, 2, 1), r2 = (2, 1, 2), r3 = (1, 2, 3), and r1 =

(2, 1, 4). For clarity, define X = (Xr1 , Xr2 , Xr3 , Xr4) and W2 = (W 2
1 ,W

2
2 ,W

2
3 ,W

2
4 ).

2(2RF +MF ) ≥ H (Z1, X
r1 , Xr2) +H (Z2, X

r3 , Xr4)

= H
(
Z1, X

r1 , Xr2
∣∣W 1

1 ,W
1
2

)
+ I

(
W 1

1 ,W
1
2 ;Z1, X

r1 , Xr2
)

+H
(
Z2, X

r3 , Xr4
∣∣W 1

1 ,W
1
2

)
+ I

(
W 1

1 ,W
1
2 ;Z2, X

r3 , Xr4
)

(∗)
≥ H

(
Z1, Z2,X

∣∣W 1
1 ,W

1
2

)
+ 2 · 2F (1− εF )

= H
(
Z1, Z2,X

∣∣W 1
1 ,W

1
2 ,W2

)
+ I

(
W2;Z1, Z2,X

∣∣W 1
1 ,W

1
2

)
+ 4F (1− εF )

(∗)
≥ 8F (1− εF )

4R+ 2M ≥ 8(1− εF ).

By taking F →∞, we get:

R ≥ 2− 1

2
M.

Fourth expression

Consider the N2 request vectors r1, . . . , rN2 , such that:

rk = (1, 2, k) ∀k ≤
⌊
N2

2

⌋
,

rk = (2, 1, k) ∀k ≥
⌊
N2

2

⌋
+ 1.
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Define X e = {Xrk : k is even} and X o = {Xrk : k is odd}. Thus, each of X e and X o contains

at least one broadcast Xrk such that rk = (1, 2, k), and one broadcast Xrl such that rl = (2, 1, l).

Furthermore, define, for clarity, W2 = (W 2
1 , . . . ,W

2
N2

). Then,

N2RF + 2MF ≥ H (Z1,X e) +H (Z2,X o)

= H
(
Z1,X e

∣∣W 1
1 ,W

1
2

)
+ I

(
W 1

1 ,W
1
2 ;Z1,X e

)
+H

(
Z2,X o

∣∣W 1
1 ,W

1
2

)
+ I

(
W 1

1 ,W
1
2 ;Z2,X o

)
(∗)
≥ H

(
Z1, Z2,X e,X o

∣∣W 1
1 ,W

1
2

)
+ 4F (1− εF )

= H
(
Z1, Z2,X e,X o

∣∣W 1
1 ,W

1
2 ,W2

)
+ I

(
W2;Z1, Z2,X e,X o

∣∣W 1
1 ,W

1
2

)
+ 4F (1− εF )

(∗)
≥ (4 +N2)F (1− εF )

N2R+ 2M ≥ (4 +N2)(1− εF ).

By taking F →∞, we get:

R ≥ 4 +N2 − 2M

N2
= 1− M − 2

N2/2
.
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Appendix B

Detailed Proofs for Chapter 3

B.1 Expected Number of Unmatched Users

In this appendix, we will derive upper bounds on the expected number of unmatched users when

using PCD, stated in Lemma 11 below. The proof of this lemma requires Lemma 12, also stated

below, which gives a more general result on the number of unmatched users. Lemma 12 is also

used in Appendix B.5 to bound the number of unmatched users in HCM, which is used to prove

Theorem 14.

Lemma 11. When using PCD, the expected number of unmatched users is no greater than K−t0/
√

2π.

Before we prove Lemma 11, we will state the following general result on the expected number

of unmatched users.

Lemma 12. If Y ∼ Poisson(γm) users must be matched with m ≥ 1 caches, where γ ∈ (0, 1), then

the expected number of unmatched users U = [Y −m]+ is bounded by

E[U ] ≤ 1√
2π
·m ·

(
γe1−γ)m .

Lemma 12 is proved at the end of the appendix.

Proof of Lemma 11: In PCD, at each cluster c we are attempting to match a number of

users Y (c) ∼ Poisson(ρd) to exactly d caches. Let U(c) denote the number of unmatched users at
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cluster c, and let U0 =
∑

c U(c) be the total number of unmatched users. The matching in PCD is

arbitrary, and so any user can be matched to any cache. Consequently, U(c) = [Y (c)− d]+ and we

can apply Lemma 12 directly to obtain

E[U0] =

K/d∑
c=1

E[U(c)]

≤ K

d
· 1√

2π
· d ·

(
ρe1−ρ)d

=
1√
2π

exp
{

logK + d log
(
ρe1−ρ)} . (B.1)

Note that the function x 7→ xe1−x is strictly increasing for x ∈ (0, 1). Since ρ ∈ (0, 1/2), we thus

get

log
(
ρe1−ρ) < log

(
2ρe1−2ρ

)
= −α < log(1) = 0.

Applying this to (B.1), we obtain

E[U0] ≤ 1√
2π

exp
{

logK + d log
(
2ρe1−2ρ

)}
(a)

≤ 1√
2π

exp {logK − (1 + t0) logK}

=
1√
2π
K−t0 ,

where (a) uses (3.1). This concludes the proof.

Before we prove Lemma 12, we need another lemma that pertains to Poisson variables in general.

Lemma 13. Let Y be a Poisson random variable with parameter λ, and let m ≥ λ. Define

U = [Y −m]+, i.e., U = 0 if Y < m and U = Y −m if Y ≥ m. Then,

E[U ] ≤ mPr{Y = m}.

Proof: Define V such that V = 0 if Y < m and V = 1 if Y ≥ m. Using the tower property
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of expectation,

E[U ] = E [E [U |V ]]

= Pr{V = 0}E [U |V = 0] + Pr{V = 1}E [U |V = 1]

(a)
= 0 + Pr{V = 1}E [Y −m|V = 1]

= Pr{Y ≥ m}E [Y −m|Y ≥ m]

= Pr{Y ≥ m} (E[Y |Y ≥ m]−m)

(b)
= Pr{Y ≥ m} (mPr{Y = m|Y ≥ m}+ λ−m)

(c)

≤ Pr{Y ≥ m} ·mPr{Y = m|Y ≥ m}

= mPr{Y = m},

where (a) uses the definition of U given the different values of V , (b) uses [51, Proposition 1],1 and

(c) uses λ ≤ m.

We can now prove Lemma 12.

Proof of Lemma 12: By using Lemma 13 with λ = γm, we have

E[U ] ≤ mPr{Y = m} = m · (γm)me−γm

m!
.

Using Stirling’s approximation, we have

m! ≥
√

2πmm+ 1
2 e−m ≥

√
2πmme−m,

which yields

E[U ] ≤ m · (γm)me−γm√
2πmme−m

=
1√
2π
·m ·

(
γe1−γ)m ,

thus concluding the proof.

1This proposition appears in the appendix in the extended version of [51].
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B.2 Details of PAM Scheme for β ∈ [0, 1) (Proof of Theorem 8)

First, note that it is always possible to unicast from the server to each user the file that it requested.

Since the expected number of users is ρK, we always have R̄PAM ≤ ρK.

In what follows, we focus on the regime M = Ω(N/d). Recall that the number of requests for

file n at cluster c is un(c), a Poisson variable with parameter ρdpn.

In the placement phase, we perform a proportional placement. Specifically, since each cache

can store M files and each cluster consists of d caches, we replicate each file Wn on dn = pndM

caches per cluster.

In the matching phase, we first construct a fractional matching of users to caches, and then

show that this implies the existence of an integral matching. We construct the fractional matching

by dividing each file Wn into dn equal parts, and then mapping each request for file Wn to dn

requests, one for each of its parts. Each user now connects to the dn caches containing file Wn and

retrieves one part from each cache. This leads to a fractional matching where the total data served

by a cache k in cluster c is less than one file if

∑
Wn∈Wk

un(c)

dn
≤ 1, (B.2)

where Wk is the set of files stored on cache k. Let h(x) = x log x+ 1− x be the Cramér transform

of a unit Poisson random variable. Using the Chernoff bound and the arguments used in the proof

of [49, Proposition 1], we have that

Pr

 ∑
Wn∈Wk

un(c)

dn
> 1

 ≤ e−zdM/N , (B.3)

where z = (1− β)ρh(1 + (1− ρ)/2ρ) > 0.

To find a matching between the set of requests and the caches, we serve all requests for files

that are stored on caches for which (B.2) is violated via the server. For the remaining files, there

exists a fractional matching between the set of requests and the caches such that each request is

allocated only to caches in the corresponding cluster, and the total data served by each cache is not
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more than one unit. By the total unimodularity of adjacency matrix, the existence of a fractional

matching implies the existence of an integral matching [64]. We use the Hungarian algorithm to

find a matching between the remaining requests and the caches in the corresponding cluster.

Let τn be the probability that at least one of the caches storing file Wn does not satisfy (B.2).

By the union bound, it follows that

τn ≤
KM

N
e−zdM/N .

By definition,

R̄PAM ≤
N∑
n=1

τn ≤ KMe−zdM/N , (B.4)

which concludes the proof of the theorem.

While the above was enough to prove the theorem, we will next provide an additional upper

bound on the PAM rate, thus obtaining a tighter expression.

Let Gc be the event that the total number of requests at cluster c is less than d, and let

G =
⋂
cGc. Using the Chernoff bound, we have

E[G] ≥ 1− K

d
e−zd,

where z is as defined above. Conditioned on Gc, the number of files that need to be fetched from

the server to serve all requests in the cluster is at most d. The rest of this proof is conditioned on

G.

Let Ec be the event that all caches in cluster c satisfy (B.2). Using (B.3) and the union bound,

we have that

Pr{Ec|G} ≥ Pr{Ec} ≥ 1− de−zdM/N ,

where z is as defined above. Conditioned on Ec, all the requests in cluster c can be served by the

caches. Therefore,

E[R|G] ≤
K/d∑
c=1

d · Pr
{
Ec
∣∣G} ≤ Kde−zdM/N ,

where A denotes the complement of A for any event A.
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It follows that

E[R] = E[R|G] Pr{G}+ E[R|G] Pr{G}

≤ E[R|G] +N Pr{G}

≤ Kde−zdM/N +
NK

d
e−zd. (B.5)

Using (B.4) and (B.5), we obtain

R̄PAM ≤ min

{
KMe−zdM/N , Kde−zdM/N +

NK

d
e−zd

}
,

which is a tighter bound on the PAM rate and implies Theorem 8.

B.3 Details of PAM Scheme for β > 1 (Proof of Theorem 11)

At a high level, the PAM strategy consists in storing complete files in the caches, replicating the

files across different caches, and then matching the users to the cache that contains their requested

file. Users that cannot be matched to a cache containing their file are served directly from the

server.

The above describes PAM strategies very generally; there are many possible schemes for place-

ment and matching within this class of strategies. In this chapter, we adopt for β > 1 a strategy

that performs a knapsack storage (KS) placement phase that is based on the knapsack problem,

and a match least popular (MLP) matching phase in which matching is done for the least popular

files first. We refer to this PAM scheme as KS+MLP.

B.3.1 Excess Users

Whatever the strategy, if there are more than d users at a particular cluster, then the excess users

must be unmatched. From Lemma 12, we know that the expected total number of these excess

users across all caches is O(K−t0), which is o(1). For the proof of Theorem 11, we will generally use

asymptotic notation for the expected rate. Thus by always serving these users directly from the

server, their contribution to the rate is always o(1). For this reason, we will make the simplifying
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assumption in what follows that there are no more than d users at each cluster.

B.3.2 Placement Phase: Knapsack Storage

We split the KS policy into two parts. In the first part, we determine how many copies of each file

will be stored per cluster. In the second part, we determine which caches in each cluster will store

each file.

KS Part 1

The first part of the knapsack storage policy determines how many caches in each cluster store each

file by solving a fractional knapsack problem. The parameters of the fractional knapsack problem

are a value vn and a weight wn associated with each file Wn, defined as follows.

• The value vn of file Wn is the probability that Wn is requested by at least one user in a

cluster,

vn = 1− (1− pn)d .

• The weight wn of file Wn represents the number of caches in which Wn will be stored, should

the policy decide to store it. If we decide to store a file, we would like to make sure that all

requests for that file can be served by the caches, so that it need not be transmitted by the

server. To ensure this, we fix wn to be large enough so that, with probability going to one as

K → ∞, the number of requests for Wn is no larger than wn. We thus choose the following

values for wn:

wn =



d if n = 1;⌈(
1 + p1

2

)
ρdpn

⌉
if 2 ≤ n ≤ N1;⌈

4p1(log d)2
⌉

if N1 < n ≤ N2;

1 if N2 < n ≤ N ,
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where N1 and N2 are defined as

N1 =
d1/β

p1(log d)2/β
; (B.6a)

N2 = d(1+1/β)/2. (B.6b)

Using the above parameters vn and wn, we solve the following knapsack problem:

maximize
x1,...,xN

N∑
n=1

vnxn

subject to
N∑
n=1

wnxn ≤ dM ;

0 ≤ xn ≤ 1,∀n. (B.7)

Then, the number of copies of file Wn that will be present in each cluster is cn = bxncwn. Note

that cn is hence either zero or wn.

KS Part 2

The second part of the knapsack storage policy is to determine which caches store each file. We

will focus on one arbitrary cluster, but the same placement is done in each cluster. To do that,

define the multiset S containing exactly cn copies of each file index n. Let us order the elements of

S in increasing order, and call the resulting ordered list (n1, . . . , nbdMc). Then, for each r, we store

file Wnr in cache ((r − 1) mod d) + 1 of the cluster.

B.3.3 Matching and Delivery Phases: Match Least Popular

In the matching phase, we use the Match Least Popular (MLP) policy, the key idea of which is to

match users to caches starting with the users requesting the least popular files. Algorithm 2 gives

the precise description of MLP.

At the end of Algorithm 2, some users will be unmatched, particularly those for which the

condition on line 6 fails. Any file requested by an unmatched user will be broadcast directly from

the server.
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Algorithm 2 The Match Least Popular (MLP) matching policy for a fixed cluster.

Require: Number of requests un for file Wn, for each n, at the cluster
Ensure: Matching of users to caches

1: Set Kn ⊆ {1, . . . , d} to be the set of caches containing file Wn, for each n
2: Loop over all files from least to most popular:
3: for n← N,N − 1, . . . , 1 do
4: Loop over all requests for file n:
5: for v ← 1, . . . , un do
6: if Kn 6= ∅ then
7: Pick k ∈ Kn uniformly at random
8: Match a user requesting file Wn to cache k
9: Cache k is no longer available:

10: for all n′ ∈ {1, . . . , N} do
11: Kn′ ← Kn′ \ {k}
12: end for
13: end if
14: end for
15: end for

B.3.4 Expected Rate Achieved by KS+MLP

Lemma 14. Let X be a Poisson random variable with mean µ, and let ε ∈ (0, 1) be arbitrary.

Then,

Pr {X ≥ (1 + ε)µ} ≤ e−µh(1+ε),

where h(x) = x log x+ 1− x.

Proof: The lemma follows from the Chernoff bound.

Lemma 15. Recall that un(c) denotes the number of users requesting file Wn from cluster c.

Consider an arbitrary cluster c. Let E1 denote the event that

un(c) ≤
(

1 +
p1

4

)
dpn for all 1 ≤ n ≤ N1; and

un(c) ≤ 2p1(log d)2 for all N1 < n ≤ N2,

where N1 and N2 are as defined in (B.6). Then,

Pr {E1} = 1−Ne−Ω((log d)2).
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Proof: In what follows, we will ignore for simplicity the index c when it is clear from the

context, e.g., we will write un = un(c). Recall that un is a Poisson random variable with mean

ρdpn.

• For n ≤ N1, we have dpn ≥ p1(log d)2. Therefore, using Lemma 14, we have for n ≤ N1

Pr
{
un >

(
1 +

p1

4

)
dpn

}
≤ e−Ω(dpn) ≤ e−Ω((log d)2).

• For N1 < n ≤ N2, we have dpn < p1(log d)2. By defining ũ to be a Poisson variable with

parameter ρp1(log d)2 > ρdpn, we obtain

Pr
{
un > 2p1(log d)2

} (a)
< Pr

{
ũ > 2p1(log d)2

}
(b)

≤ e−Ω((log d)2),

In the above, (a) uses the fact that the function λ 7→ Pr{X(λ) > a} defined on λ ∈ [0, a),

where X(λ) is a Poisson variable with parameter λ, is an increasing function of λ, and (b)

follows from Lemma 14.

The statement of the lemma is then obtained by a union bound over all the files.

Lemma 16. Let R = {n : xn = 1}, where xn is the solution to the fractional knapsack problem

solved in Appendix B.3.2. Let E2 denote the event that, in a given cluster, the MLP policy matches

all requests for all files in R to caches. Then,

Pr{E2} = 1−Ne−Ω((log d)2).

Proof: Since the MLP policy matches requests to caches starting from the least popular

files, we first focus on requests for files less popular than file WN2 . Because the files follow a Zipf

distribution, we can write

pN2 = p1N
−β
2 =

p1

d(β+1)/2
.

Every file less popular than N2 is stored at most once across all the caches in the cluster.

Therefore, under MLP, a request for a file n > N2 will remain unmatched only if the cache storing
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that file is matched to another request for another file n′ > N2. Under the KS placement policy,

the cumulative popularity of all files no more popular than file N2 stored on a particular cache is

less than

pN2 + pN2+d + pN2+2d + · · · = O
(
p1d
−β+1

2

)
.

Each unmatched request for file n > N2 corresponds to the event that there are at least two

requests for the M files less popular than WN2 stored on a cache. Therefore, by the Chernoff

bound (Lemma 14), the probability that a particular request for a file n > N2 remains unmatched

is at most e−Ω(d). By the union bound, the probability that at least one request for file n ∈ R such

that n > N2 is not matched by the MLP policy is at most de−Ω(d).

Next, we focus on the files n ∈ {2, . . . , N2}. Note that if the KS policy decides to store file n,

it stores it on wn caches. Therefore,

N2∑
n=2

xnwn ≤
N1∑
n=2

⌈(
1 +

p1

2

)
dpn

⌉
+

N2∑
n=N1+1

⌈
4p1(log d)2

⌉
≤

N1∑
n=2

[(
1 +

p1

2

)
dpn + 1

]
+

N2∑
n=N1+1

[
4p1(log d)2 + 1

]
≤
(

1 +
p1

2

)
d(1− p1) + 4p1(log d)2N2 +N2

≤
(

1 +
p1

2

)
d(1− p1) + Θ

(
d(1+1/β)/2(log d)2

)
≤ d,

for d large enough. Therefore, if files are stored according to KS Part 2, each cache stores at most

one file from the set {2, . . . , N2}.

Let Kn be the set of caches storing file n in a given cluster. Let E3,k be the event that cache

k ∈ Kn is matched to a user requesting a file n > N2. A cache will be matched to a user requesting

a file less popular than N2 only if at least one of the files that it stores, among those that are less

popular than N2, is requested at least once. Since there are at most M such files on each cache,

Pr{E3,k} ≤ 1−
(

1−O
(
d−(β+1)/2

))d
.
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For a given constant 0 < ε < 1, there exists a d(ε) such that Pr{E3,k} ≤ ε for all d ≥ d(ε).

For each file n, N1 < n ≤ N2, let E4,n denote the event that more than 2p1(log d)2 of the⌈
4p1(log d)2

⌉
caches in Kn are matched to users requesting some file n′ > N2. By the Chernoff

bound for negatively associated random variables [64],

Pr{E4,n} = e−Ω((log d)2).

From Lemma 15, we know that with probability at least 1−Ne−Ω((log d)2), there are less than

(1+p1/4)dpn requests for each file 2 ≤ n ≤ N1. Therefore, with probability at least 1−Ne−Ω((log d)2),

all requests for files in R such that 2 ≤ n ≤ N1 are matched to caches by the MLP policy.

Finally, we now focus on the requests for the most popular file W1. Recall that if the KS policy

decides to store this file, it will be stored on all caches in each cluster. Since we are assuming that

the total number of requests at each cluster is no greater than d, then even if all the users requesting

files other than W1 are matched, the remaining caches can still be used to serve all requests for

W1.

B.3.5 Expected Rate

From Lemma 16, we know that, for d large enough, with probability at least 1−Ne−Ω((log d)2), in

a given cluster all requests for the files cached by the KS+MLP policy are matched to caches. Let

Ñ be the number of files not in R (i.e., that are not cached) that are requested at least once. By

the union bound over the K/d clusters,

R̄PAM ≤ E[Ñ ] +
K2

d
(1− Pr{E2})

≤ E[Ñ ] +
NK2

d
e−Ω((log d)2).

After solving the fractional knapsack problem, defined in (B.7), as a function of N , K, d, β,

and M , we can determine the set R. For a given R, we then have

E[Ñ ] =
∑
n/∈R

(
1− (1− pn)K

)
.

171



We hence obtain the following bound on the expected rate:

R̄PAM ≤
∑
n/∈R

(
1−

(
1− n−β

AN

)K)
+
NK2

d
e−Ω((log d)2).

When N and d are polynomial in K, then the second term is o(1), and solving the fractional

knapsack problem yields the result of Theorem 11.

B.4 Approximate Optimality (Proof of Theorem 13)

In this section, we focus on the case β ∈ [0, 1) to prove Theorem 13. The key idea here is to show

that this case can be reduced to a uniform-popularities case.

First, notice that the popularity of each file is

pn ≥ pN =
N−β

AN

(a)

≥ (1− β)N−β

N1−β =
1− β
N

, (B.8)

where AN is defined in Lemma 17 stated below, and (a) follows from the lemma.

Lemma 17. Let m ≥ 1 be an integer and let β ∈ [0, 1). Define Am =
∑m

n=1 n
−β. Then,

m1−β − 1 ≤ (1− β)Am ≤ m1−β.

Lemma 17 is proved at the bottom of this appendix.

Consider now the following relaxed setup. Suppose that, for every file n, there are ũn(c) users

requesting file n from cluster c, where

ũn(c) ∼ Poisson

(
(1− β)ρd

N

)
.

Since (1− β)ρd/N ≤ pnρd for all n by (B.8), the optimal expected rate for this relaxed setup can

only be smaller than the rate from the original setup. Indeed, we can retrieve the original setup by

simply creating Poisson ((pn − (1− β)/N)ρd) additional requests for file n at each cluster.

Our relaxed setup is now a uniform-popularities setup. It is in fact identical to the one in [51]
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except that ρ is replaced by ρ′ = (1−β)ρ, which is still a constant. Consequently, the information-

theoretic lower bounds obtained in [51, Lemma 2] and the inequalities that follow can be directly

applied here, giving the following lemma.

Lemma 18. When N ≥ 10, the optimal expected rate R̄∗ can be lower-bounded by

R̄∗ ≥ (1− β)ρ(1− e−1/2)

48
min

{
(1− e−1/2)N

M
− d,K

}
.

When M < (1− e−1/2)N/2d, the bound in Lemma 18 can be further lower-bounded by

R̄∗ ≥ (1− β)(1− e−1/2)2ρ

96
·min

{
N

M
, ρK

}
. (B.9)

Furthermore, the rate achieved by PCD is upper-bounded by

R̄PCD ≤ min

{
ρK,

N

M
− 1 +

K−t0√
2π

}
≤ min

{
ρK,

N

M

}
. (B.10)

Consequently, combining (B.9) with (B.10) gives us the result of Theorem 13.

Proof of Lemma 17: To prove the lemma, we will relate the sum Am =
∑

n n
−β with the

corresponding integral, which can be evaluated as a closed-form expression.

Let f be any decreasing function defined on the interval [k, l] for some integers k and l. Then,

we can bound the integral of f by

l∑
n=k+1

f(n) ≤
∫ l

k
f(x) dx ≤

l−1∑
n=k

f(n).

Rearranging the inequalities, we get the equivalent statement that

f(l) +

∫ l

k
f(x) dx ≤

l∑
n=k

f(n) ≤ f(k) +

∫ l

k
f(x) dx. (B.11)

Recall that Am =
∑m

n=1 n
−β. Thus we can apply (B.11) with f(x) = x−β, k = 1, and l = m.

Since we know that ∫ m

1
x−β dx =

m1−β − 1

1− β ,
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this implies, using (B.11),

m−β +
m1−β − 1

1− β ≤ Am ≤ 1 +
m1−β − 1

1− β
m1−β − 1

1− β ≤ Am ≤
m1−β

1− β ,

which concludes the proof.

B.5 Details of HCM Scheme (Proof of Theorem 14)

In this section, we are mostly interested in the case where K is larger than some constant. Specif-

ically, we assume

logK ≥ 2gα, (B.12)

where g = (31−β − 1)/41−β > 0 is a constant. In the opposite case, we can achieve a constant rate

by simply unicasting to each user the file that it requested.

Let t ∈ [0, t0], and let χ = bαgd/(2(1 + t) logK)c. We will partition the set of files into χ colors.

For each color x ∈ {1, . . . , χ}, define Wx as the set of files colored with x. We choose to color the

files in an alternating fashion. More precisely, we choose for each x ∈ {1, . . . , χ}

Wx = {Wn : n ≡ x (mod χ)} .

Notice that |Wx| = bN/χc or dN/χe. We can now define the popularity of a color x as

Px =
∑

Wn∈Wx

pn.

The following proposition, proved at the end of the section, gives a useful lower bound for Px.

Proposition 3. For each x ∈ {1, . . . , χ}, we have Px ≥ g/χ.

The significance of the above proposition is that the colors will essentially behave as though

they are all equally popular.

Next, we partition the caches of each cluster into the same χ colors. We choose this coloring
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in such a way that the number of caches associated with a particular color is proportional to the

popularity of that color. Specifically, exactly bdPxc caches in every cluster will be colored with x.

This will leave some caches colorless; they are ignored for the entirety of the scheme for analytical

convenience.

We can now describe the placement, matching, and delivery phases of HCM. Consider a partic-

ular color x. This color consists of |Wx| files and bdPxcK/d caches in total. The idea is to perform

a Maddah-Ali–Niesen scheme [4, 5] on each color separately, while matching each user to a cache of

the same color of its requested files. The scheme can be described more formally with the following

three steps.

• In the placement phase, for each color x we perform a Maddah-Ali–Niesen placement of the

files Wx in the caches colored with x.

• In the matching phase, each user is matched to a cache in its cluster of the same color as the

file that the user has requested. Thus if the user is at cluster c and requests a file from Wx,

it is matched to an arbitrary cache from cluster c colored with color x. For each cluster-color

pair, if there are more users than caches, then some users must be unmatched.

• In the delivery phase, for each color x we perform a Maddah-Ali–Niesen delivery for the

users requesting files fromWx. Next, each unmatched user is served with a dedicated unicast

message. The resulting overall message sent from the server is a concatenation of the messages

sent for each color as well as all the unicast messages intended for unmatched users.

Suppose that the broadcast message sent for color x has a rate of Rx. Suppose also that the

number of unmatched users is U0. Then, the total achieved expected rate will be

R̄HCM = min

{
ρK,

χ∑
x=1

E[Rx] + E[U0]

}
, (B.13)

since ρK can always be achieved by simply unicasting to every user its requested file.

From [5], we know that we can always upper-bound the rate for color x by

Rx ≤
[ |Wx|
M
− 1

]+

,
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for all M > 0. Because |Wx| = bN/χc or dN/χe for all x, we obtain

∑
x

Rx ≤



N
M − 1 if M ≤ bN/χc;

0 if M ≥ dN/χe;

(N mod χ)
(
dN/χe
M − 1

)
otherwise.

(B.14)

All that remains is to find an upper bound for E[U0]. Let Y (c, x) represent the number of users

at cluster c requesting a file from color x. Since there are bdPxc caches at cluster c with color x,

then exactly U(c, x) = [Y (c, x)− bdPxc]+ users will be unmatched. Thus we can write U0 as

U0 =

K/d∑
c=1

χ∑
x=1

U(c, x).

Notice that Y (c, x) ∼ Poisson(ρd · Px), and that the Y (c, x) users must be matched to bdPxc.

For convenience, we define Ỹ (c, x) ∼ Poisson(2ρ · bdPxc) and Ũ = [Ỹ (c, x) − bdPxc]+. Since we

have

ρdPx ≤ 2ρ bdPxc ,

i.e., the Poisson parameter of Ỹ (c, x) is at least the Poisson parameter of Y (c, x), then

E[U(c, x)] =
∞∑

y=bdPxc
y · Pr{Y (c, x) = y}

(a)

≤
∞∑

y=bdPxc
y · Pr{Ỹ (c, x) = y}

= E[Ũ(c, x)],

where (a) uses the fact that the function λ 7→ Pr{Poisson(λ) = m} is increasing in λ as long as

λ < m; see [51, Proposition 2].2

This allows us to apply Lemma 13 on Ỹ (c, x) and Ũ(c, x) in order to upper-bound the expec-

2This proposition appears in the appendix in the extended version of [51].
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tation of U(c, x) by

E[U(c, x)] ≤ E[Ũ(c, x)] ≤ 1√
2π
· bdPxc ·

(
2ρe1−2ρ

)bdPxc
.

Consequently, we get the upper bound on E[U0],

E[U0] =

K/d∑
c=1

χ∑
x=1

E[U(c, x)]

≤
K/d∑
c=1

χ∑
x=1

1√
2π
bdPxc

(
2ρe1−2ρ

)bdPxc
=

1√
2π

χ∑
x=1

K

d
· bdPxc

(
2ρe1−2ρ

)bdPxc
≤ 1√

2π

χ∑
x=1

Px ·K
(
2ρe1−2ρ

)bdPxc
.

Isolating part of the term in the sum,

K
(
2ρe1−2ρ

)bdPxc
= exp

{
logK + log

(
2ρe1−2ρ

)
bdPxc

}
= exp {logK − α bdPxc}

≤ exp

{
logK − αdPx

2

}
(a)

≤ exp

{
logK − αdg

2χ

}
(b)

≤ exp

{
logK − αdg

2
· 2(1 + t)

αdg
logK

}
= exp {logK − (1 + t) logK}

= K−t,

where (a) uses Proposition 3, and (b) uses the definition of χ combined with byc ≤ y. We obtain

the final upper bound on the expected number of unmatched users,

E[U0] ≤ 1√
2π

χ∑
x=1

PxK−t =
K−t√

2π
. (B.15)

Finally, we combine (B.14) and (B.15) in (B.13) to obtain the rate expression in Theorem 14,
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thus completing its proof.

Proof of Proposition 3: Choose any x ∈ {1, . . . , χ}. Starting with the definition of Px, we

have

Px =
∑

Wn∈Wx

pn

=
1

AN

|Wx|−1∑
k=0

(kχ+ x)−β

≥ 1

AN

|Wx|−1∑
k=0

(kχ+ χ)−β

=
χ−β

AN

|Wx|−1∑
k=0

(k + 1)−β

= χ−β ·
A|Wx|
AN

(a)

≥ χ−β · |Wx|1−β − 1

N1−β
(b)

≥ χ−β · (N/χ− 1)1−β − 1

N1−β

=
1

χ
·
[(

1− χ

N

)1−β
−
( χ
N

)1−β]
(c)

≥ 1

χ

[(
1− gα

2 logK

)1−β
−
(

gα

2 logK

)1−β]
(d)

≥ 1

χ

[(
1− 1

4

)1−β
−
(

1

4

)1−β]
=

g

χ
,

where (a) uses Lemma 17, (b) uses the fact that |Wx| ≥ bN/χc ≥ N/χ − 1 for all x, (c) uses the

definition of χ as well as N ≥ d and t ≥ 0, and (d) uses (B.12).
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Appendix C

Detailed Proofs for Chapter 4

C.1 Special Case: Small Number of Files

Recall that the separation architecture creates a set of messages V as an interface between the

physical and network layers,

V = {VSj : j ∈ {1, . . . ,Kt},S ∈ S }

for some S ⊆ 2{1,...,Kr}, as seen in (4.7). In this chapter, we have so far focused on the choice

of messages described by S in (4.9), in which every transmitter has a message for every subset

of exactly κ + 1 receivers, where κ = KrMr/N is an integer. While this is order-optimal in most

cases, it is insufficient when both the receiver memory and the number of files is small.

To illustrate, consider the case with only a single file in the content library (N = 1) and without

receiver caches (Mr = 0). Furthermore, assume that there is just one transmitter (Kt = 1) but

many receivers (Kr is large). Seeing as there is only one file, all receivers will request that same

file, and hence the obvious strategy is for the transmitter to broadcast the file to all receivers, thus

achieving a DoF of 1. However, under the separation architecture described by (4.9), we create

one message from the transmitter for every individual receiver, and then send that file separately

as Kr different messages. This is clearly inefficient since the same file is being sent Kr times, thus

achieving a much worse DoF of 1/Kr.
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The reason the usual separation architecture is inefficient in this example is that it inherently

assumes that all users request different files in the worst case. This is true when there are more files

than users. However, if there are so few files that many users will inevitably request the same file,

then the previous assumption fails. In this appendix, we handle that case by providing a different

separation interface. We exclusively work with the case Mr = 0 and compute an achievable DoF

for it. Specifically, we show that

1

DoF
≤ Kt + min{Kr, N} − 1

Kt
. (C.1)

Since we also know that 1/DoF, which is convex in Mr, is zero when Mr = N , then we can

achieve any linear combination of the two reciprocal DoFs between these two points, using time-

and memory-sharing. Specifically, we achieve

1

DoF
≤ Kt + min{Kr, N} − 1

Kt
·
(

1− Mr

N

)
. (C.2)

The expression of the reciprocal DoF in (C.2) can be decomposed into two gains, in a similar

way as in (4.5). Since the strategy that achieves (C.2) is relevant when N < Kr, we can write the

two gains as

NDoF ≈ KtN

Kt +N − 1︸ ︷︷ ︸
gIA

· 1

1− Mr
N︸ ︷︷ ︸

gLC

.

Note that NDoF is the sum DoF here since the total number of requested files is N < Kr in the

worst case.

The most striking difference with (4.5) is that there is no global caching gain. Indeed, the

strategy makes no use of any coding or multicasting opportunities, as we will see below. On the

other hand, the local caching gain is present and is the same as before. The interference alignment

gain is slightly different: it is the interference alignment gain of a Kt ×N unicast X-channel, not

Kt ×Kr. The reason for this is that, when N < Kr, then the total number of distinct requested

files is N in the worst case. The strategy thus only needs to account for N distinct demands, and

uses methods from the compound X-channel [65, 66] to serve them.
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We proceed with the strategy for Mr = 0 that achieves (C.1). Since Mr = 0, we cannot store

anything in the receiver caches. In the transmitter caches, we place the same content as previously

described, i.e., every file Wn is split into Kt parts, and transmitter j stores the j-th part of Wn,

called W j
n, for every n. In the delivery phase, we partition the set of users into subsets such that

all the users in the same subset request the same file. Specifically, let u denote the request vector,

and let Un = {i : ui = n} be the set of users requesting file Wn. Our goal is to create a multicast

message from every transmitter to all users that are requesting the same file. In other words, we

set

S = {Un : n ∈ {1, . . . , N} s.t. Un 6= ∅}

Note that S is a partition of the entire set of users. We denote its size by Ñ = |S |, which is

equivalent to the total number of distinct requested files. Our separation interface V is thus a set

of messages from every transmitter to Ñ non-overlapping subsets of receivers,

V = {VUnj : Un 6= ∅ and j = 1, . . . ,Kt} .

We focus on transmitting these messages across the interference channel at the physical layer. At

the network layer, we use these messages as error-free bit pipes to deliver the requested files to the

users at the network layer.

C.1.1 Physical Layer

At the physical layer, the problem is equivalent to the compound X-channel problem, described

in [65, 66]. In the Kt × Kr compound X-channel, every transmitter has a message for every

receiver. However, the channel of every receiver i can be one of some finite number Ji of states,

and transmission has to account for all possible states. The optimal sum DoF in this problem is

KtKr/(Kt +Kr − 1), i.e., 1/(Kt +Kr − 1) per message, as stated in [65, Theorem 4].

If the receiver is able to decode its messages regardless of which of the Ji realizations the channel

has taken, then this is equivalent to replacing the single receiver with Ji channel realizations by

Ji different receivers with each a single possible channel realization, such that all Ji receivers want

the same messages. This is exactly the problem statement we have at the physical layer. Our
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problem is therefore equivalent to a Kt × Ñ compound X-channel with |Un| channel realizations

for every receiver n. Therefore, if R̃Ñ denotes the rate of each message, and d̃Ñ its DoF, then [65,

Theorem 4] implies that the optimal DoF is

d̃Ñ (Kt,Kr) =
1

Kt + Ñ − 1
. (C.3)

C.1.2 Network Layer

Let the link load `Ñ denote the size of each VUnj in units of files. The strategy at the network layer

is straightforward. For every subset Un of users, each transmitter j sends the part of the file that

they requested through VUnj . Mathematically, we set

VUnj = W j
n,

for all j = 1, . . . ,Kt and n such that Un 6= ∅. This allows every user to decode its requested file.

Since every multicast link VUnj carries one file part W j
n, then the link load is

`Ñ (N,Kt,Kr,Mt, 0) =
1

Kt
. (C.4)

C.1.3 Achievable End-to-End DoF

Note that the same VUnj has a size of R̃ÑT at the physical layer and `ÑF at the network layer.

Since F = RT , we get R = R̃Ñ/`Ñ , and by combining that with (C.3) and (C.4), we achieve a DoF

of

d̃Ñ (Kt,Kr)

`Ñ (N,Kt,Kr,Mt, 0)
=

Kt

Kt + Ñ − 1
.

In the worst case, the largest number of distinct files are requested, i.e., Ñ = min{Kr, N}. There-

fore,

DoF ≥ Kt

Kt + min{Kr, N} − 1
,

when Mr = 0.

Since 1/DoF is convex in Mr, and 1/DoF = 0 when Mr = N , then, for all intermediate values
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of Mr, we can achieve

1

DoF
≤ Kt + min{Kr, N} − 1

Kt
·
(

1− Mr

N

)
. (C.5)

For any Mr ∈ [0, N ], we can choose whichever of the two separation interfaces yields the higher

DoF. Therefore, combining (C.5) with (4.13) yields

1

DoF
≤ min

{
Kt + min{Kr, N} − 1

Kt
·
(

1− κ

Kr

)
,
Kt − 1 + Kr

κ+1

Kt
·
(

1− κ

Kr

)}

=
Kt + min

{
Kr
κ+1 , N

}
− 1

Kt
·
(

1− κ

Kr

)
,

when Mr = κN/Kr with κ being an integer, and the lower convex envelope of these points for all

Mr ∈ [0, N ]. This concludes the achievability proof of Theorem 15.

C.2 Proof of Lemma 7

Let Γ be defined as in the statement of the lemma, and let n ∈ N be arbitrary. Define Tn as

Tn =

(
Kr − 1

σ − 1

)[
(n+ 1)Γ + (Kt − 1)nΓ

]
+

(
Kr − 1

σ

)
(n+ 1)Γ.

We will show that a DoF of δ
(n)
j can be achieved for message VSj over a block length of Tn. We

first describe how to (maximally) align the interference at each receiver, and then show that the

receiver’s desired messages are still decodable. The proof will rely on two lemmas from [54]: the

alignment part will use [54, Lemma 2], while the decodability part will rely on [54, Lemma 1].

For ease of reference, we have rephrased the two lemmas in Appendix C.5 as Lemmas 19 and 20,

respectively.

Alignment Describe each message VSj as a column vector of (n+cj)
Γ symbols vSj = [vmSj ]

(n+cj)
Γ

m=1 ,

where cj is as defined in the statement of the lemma. Each symbol is beamformed along a length-Tn
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vector amSj , so that transmitter j sends the codeword

xj =
∑
S:|S|=σ

(n+cj)
Γ∑

m=1

vmSja
m
Sj ,

over the block length Tn. We can alternatively combine all the amSj vectors into one matrix ASj =

[a1
Sj , . . . ,a

(n+cj)
Γ

Sj ], and write

xj =
∑
S

ASjvSj .

Receiver i then observes

yi =

Kt∑
j=1

Hijxj + zi =

Kt∑
j=1

Hij

∑
S

ASjvSj + zi. (C.6)

Recall that zi is the iid additive Gaussian unit-variance noise, and Hij is a Tn×Tn diagonal matrix

representing the independent continuously-distributed channel coefficients over block length Tn, as

defined in Section 4.2. In other words, the τ -th diagonal element of Hij is hij(τ). Moreover, the

dimensions of ASj are Tn × (n+ cj)
Γ, and the length of vSj is (n+ cj)

Γ.

In the expression for yi in (C.6), it will be convenient to separate the messages intended for i

from the interfering messages,

yi =
∑
S:i∈S

Kt∑
j=1

HijASjvSj +
∑
S:i/∈S

Hi1AS1vS1 +

Kt∑
j=2

HijASjvSj

+ zi.

Our goal is to collapse each term inside the second sum (i.e., for each S such that i /∈ S) into a single

subspace, namely the subspace spanned by Hi1AS1.1 This should be done for all i ∈ {1, . . . ,Kr}.

Specifically, we want to choose the ASj ’s such that they satisfy the following conditions almost

surely:

HijASj ≺ Hi1AS1, ∀i = 1, . . . ,Kr, ∀j = 2, . . . ,Kt, ∀S s.t. i /∈ S,

where P ≺ Q denotes that the vector space spanned by the columns of P is a subspace of the one

spanned by the columns of Q.

1This is why we choose vS1 to be a longer vector than vSj , j ≥ 2: this choice makes Hi1AS1 the larger subspace,
which allows us to align the other subspaces with it using Lemma 19.

184



First, we set AS2 = · · · = ASKt for all subsets S. Thus we have reduced the problem to finding

matrices AS1 and AS2 for all subsets S such that, almost surely,

H−1
i1 HijAS2 ≺ AS1, ∀i /∈ S, ∀j = 2, . . . ,Kt. (C.7)

Note that H−1
i1 exists almost surely since each diagonal element of Hi1 follows a continuous distri-

bution and is thus non-zero with probability one.

For every S, the matrices AS1 and AS2 are constrained by a total of (Kr − σ)(Kt − 1) = Γ

subspace relations. We hence have Γ relations GgAS2 ≺ AS1, g = 1, . . . ,Γ, where Gg are Tn × Tn
diagonal matrices. We can write all the diagonal elements of these matrices as forming the set

G =

{
hij(τ)

hi1(τ)
: i /∈ S, j ∈ {2, . . . ,Kt}, τ ∈ {1, . . . , Tn}

}
.

Importantly, each element of G follows a continuous distribution when conditioned on all the others,

i.e.,

hij(τ)

hi1(τ)

∣∣∣∣{hi′j′(τ ′)hi′1(τ ′)
: (i′, j′, τ ′) 6= (i, j, τ)

}
∼ a continuous distribution.

Furthermore, the dimensions of AS2 are Tn × nΓ, and the dimensions of AS1 are Tn × (n + 1)Γ,

with Tn > (n+ 1)Γ.

Let P be some continuous probability distribution with a bounded support. For every S ⊆

{1, . . . ,Kr} such that |S| = σ, we generate a Tn× 1 column vector bS = (bS(1), . . . , bS(Tn))>, such

that all the entries of all
(
Kr
σ

)
vectors {bS}S are chosen iid from P . We can now invoke Lemma 19

in Appendix C.5 to construct with probability one, for each S and using bS , full-rank matrices

AS1 and AS2 that satisfy the subspace relations in (C.7) almost surely. Furthermore, the entries

of the τ -th rows of both AS1 and AS2 are each a multi-variate monomial in the entries of the τ -th

rows of bS and Gg, g = 1, . . . ,Γ, i.e.,

bS(τ) and
hij(τ)

hi1(τ)
, i /∈ S, j = 2, . . . ,Kt. (C.8)

Note that the monomial entries of AS1 are distinct; the same goes for the monomial entries of AS2.
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We have thus ensured alignment of the interfering messages. In the remainder of the proof we

show that the desired messages are still almost surely decodable at every receiver.

Decodability Recall that the total dimension of the vector space, i.e., the block length, is

Tn =

(
Kr − 1

σ − 1

)[
(n+ 1)Γ + (Kt − 1)nΓ

]
+

(
Kr − 1

σ

)
.

Let us fix a receiver k. For this receiver, we have:

•
(
Kr−1
σ−1

)
subspaces Hk1AS1, k ∈ S, of dimension (n + 1)Γ each, carrying the length-(n + 1)Γ

vectors vS1 that must be decoded by receiver k;

• (Kt − 1)
(
Kr−1
σ−1

)
subspaces HkjAS2, k ∈ S and j = 2, . . . ,Kt, of dimension nΓ each, carrying

the length-nΓ vectors vS2 that must also be decoded by receiver k;

•
(
Kr−1
σ

)
subspaces corresponding to Hk1AS1, k /∈ S, of dimension (n + 1)Γ each, collectively

carrying all the interference at receiver k.

Our goal is to show that the above subspaces are non-aligned for every receiver k, which implies

that the desired messages are decodable with high probability for a large enough SNR.

Define matrices Dk and Ik representing the subspaces carrying the desired messages and the

interference, respectively, by horizontally concatenating the subspaces:

Dk =

[
Hk1AS1 Hk2AS2 · · · HkKtAS2

]
S:k∈S

; (C.9a)

Ik =

[
Hk1AS1

]
S:k/∈S

. (C.9b)

Therefore, decodability at receiver k is ensured if the Tn × Tn matrix

Ψk =

[
Dk Ik

]

is full rank almost surely. We prove that this is true with the help of Lemma 20 in Appendix C.5.

To apply Lemma 20, we need to show that the following two conditions hold.
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1. Two distinct rows of Ψk consist of monomials in disjoint sets of variables. In other words,

the variables involved in the monomials of a specific row are exclusive to that row.

2. Within each row, each entry is a unique product of powers of the variables associated with

that row.

To show that the first condition holds, consider the τ -th row of Ψk. This row consists of

monomial terms in the variables {bS(τ)}S and {hij(τ)}i,j . This is true because the τ -th row of any

submatrix HkjASj of Ψk is equal to hkj(τ) multiplied by the τ -th row of ASj , whose entries are

monomials in the variables listed in (C.8). Therefore, the variables involved in a row of Ψk are

exclusive to that row.

Before we prove that the second condition holds, we emphasize two remarks regarding the

monomials that constitute the entries of the τ -th row of Ψk.

Remark 1. All the entries in the τ -th row of submatrix HkjASj are distinct monomials from one

another. This is true because the τ -th row of HkjASj is equal to the τ -th row of ASj, whose entries

are distinct monomials by construction (using Lemma 20), multiplied by hkj(τ).

Remark 2. It follows from (C.8) that the entries of the τ -th row of submatrix HkjASj are mono-

mials in which only the variables in a set BSj(τ) appear (with non-zero exponent), where BSj(τ)

obeys:

bS(τ) ∈ BSj(τ) and bS′(τ) /∈ BSj(τ), ∀S ′ 6= S; (C.10a)

and k ∈ S =⇒ BSj(τ) = {bS(τ), hkj(τ)} ∪ {hi1(τ), . . . , hiKt(τ) : i /∈ S} . (C.10b)

Note that when k /∈ S, we cannot be sure if BSj(τ) contains hkj(τ) because the latter is present in

the monomials of both Hkj and ASj, and can hence be canceled out in their product.

Remark 1 states that monomials in the same submatrix are distinct. Therefore, all that remains

is to show the same for monomials in the τ -th rows of different submatrices. However, by Remark 2

the same variables appear with non-zero exponent in all entries in the τ -th row of any submatrix

(albeit with different powers). It is therefore sufficient to prove that the τ -th rows of two different
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Table C.1: Exponents of variables in monomials of the τ -th row of Ψk for an arbitrary receiver k. The
subsets S1, S ′1, S2, and S ′2 are arbitrary such that k ∈ S1∩S ′1 and k /∈ S2∪S ′2. The transmitters j and j′ are
also arbitrary. A cell will contain a check mark (X) if the variable in the corresponding row appears with
non-zero exponent in the monomials of the τ -th row of the submatrix in the corresponding column. The cell
will be empty if the variable does not appear in those monomials. It will contain a question mark (?) if the
variable may or may not appear. Not all variables and submatrices are shown; only a representative few are
used. Finally, recall that ASj = AS2 for j ≥ 2.

Ik Dk

Hk1AS21 Hk1AS′21 HkjAS1j HkjAS′1j Hkj′AS1j′ Hkj′AS′1j′

bS1(τ) X X
bS′1(τ) X X
bS2(τ) X
bS′2(τ) X

hkj(τ) ? ? X X
hkj′(τ) ? ? X X

submatrices HkjASj and Hkj′AS′j′ are functions of different sets of variables. Specifically, we show

that there is a variable that appears with non-zero exponent in all the entries of the τ -th row of

one submatrix but in none of the entries of the τ -th row of the other. We will prove below that

this claim is true using Remark 2, with the aid of Table C.1 for visualization.

For convenience, define r>Sj to be the τ -th row of matrix HkjASj , and similarly define r>S′j′ to

be the τ -th row of matrix Hkj′AS′j′ . To show that the entries of these rows are monomial functions

of distinct variables, we isolate two cases: case S 6= S ′ and case S = S ′, j 6= j′.

1. Suppose S 6= S ′. Then, by (C.10a), r>Sj is a function of bS(τ) but not bS′(τ) while the opposite

is true of r>S′j′ .

2. Suppose now that S = S ′ but j 6= j′. Crucially, two such matrices are relevant at receiver k

only if k ∈ S, as evidenced by (C.9). Therefore, by (C.10b), row r>Sj is a function of hkj(τ)

but not hkj′(τ), and the reverse is true of r>S′j′ .

Combining the above two points, it follows that the entries of the two rows are monomials in a

different set of variables. We can conclude that the entries in the τ -th row of Ψk are distinct

monomials, and specifically that the matrix Ψk is of the form seen in the statement of Lemma 20.

Therefore, by Lemma 20, the matrix Ψk is full rank almost surely, and thus all receivers are able

to decode their desired messages almost surely.
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In conclusion We were able to transmit all the messages VSj , represented by length-(n + cj)
Γ

vectors vSj , over a block length of Tn. Hence, the degrees of freedom achieved for each VSj is

(n+ cj)
Γ

Tn
=

(n+ cj)
Γ(

Kr−1
σ−1

)
[(n+ 1)Γ + (Kt − 1)nΓ] +

(
Kr−1
σ

)
(n+ 1)Γ

= δ
(n)
j ,

which concludes the proof of Lemma 7.

C.3 Detailed Converse Proof of Theorem 15

A high-level overview of the converse proof of Theorem 15 was given in Section 4.6. In this appendix,

we will give the rigorous proof. In particular, we will prove (4.16), i.e.,

1

DoF
≥ d−1(Mr)

13.5

by analyzing the four regimes described in (4.14).

Regime 0: min{Kr, N} ≤ 12.5Kt

In this regime, the number of transmitters is at least of the order of the total number of different

requested files. As described in Section 4.3, this implies that 1/DoF ≈ 1− Mr
N . More precisely, by

convexity of d−1(Mr) we have

d−1(Mr) ≤ d−1(0)− d−1(0)− d−1(N)

N − 0
(Mr − 0) = d−1(0)

(
1− Mr

N

)

for all Mr ∈ [0, N ], where we have used that d−1(N) = 0. Moreover, we have

d−1(0) =
Kt − 1 + min{Kr, N}

Kt
≤ Kt + 12.5Kt

Kt
= 13.5,

which implies

d−1(Mr) ≤ 13.5

(
1− Mr

N

)
. (C.11)
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We now invoke Lemma 8 with s = 1, yielding

1

DoF
≥ 1− Mr

N

(a)

≥ d−1(Mr)

13.5
in Regime 0, (C.12)

where (a) follows from (C.11).

In all the following regimes, min{Kr, N} > 12.5Kt ≥ 12.5.

Regime 1: 0 ≤Mr ≤ 1.1max{1, N/Kr}

Since d−1(Mr) is non-increasing in Mr, we can upper-bound it by

d−1(Mr) ≤ d−1(0) =
Kt − 1 + min{Kr, N}

Kt
≤
(

1
12.5 + 1

)
min{Kr, N}
Kt

=
13.5

12.5
· min{Kr, N}

Kt
.

(C.13)

Let us now use Lemma 8 with s = b0.275 min{Kr, N}c ∈ {1, . . . ,min{Kr, N}}. Then, using

bN/sc ≥ N/s− 1,

1

DoF
≥ s

min{s,Kt}

(
1− s

1− s/N ·
Mr

N

)
≥ 1

Kt

(
s− s2

1− s/N ·
1.1 max{1, N/Kr}

N

)
=

1

Kt

(
b0.275 min{Kr, N}c −

b0.275 min{Kr, N}c2
1− b0.275 min{Kr, N}c /N

· 1.1 max{1, N/Kr}
N

)

≥ 1

Kt

(
0.275 min{Kr, N} − 1− (0.275 min{Kr, N})2

1− 0.275
· 1.1 max{1, N/Kr}

N

)
=

1

Kt

(
0.275 min{Kr, N} − 1− (0.275 min{Kr, N})2

0.725
· 1.1

min{Kr, N}

)
=

min{Kr, N}
Kt

(
0.275− 1

min{Kr, N}
− (0.275)2 · 1.1

0.725

)
≥ min{Kr, N}

Kt

(
0.275− 1

12.5
− (0.275)2 · 1.1

0.725

)
≥ 1

12.5
· min{Kr, N}

Kt

(a)

≥ d−1(Mr)

13.5
in Regime 1, (C.14)

where (a) uses (C.13).
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Regime 2: 1.1max{1, N/Kr} < Mr ≤ 0.092N/Kt

Let M̃r be the largest integer multiple of N/Kr that is no greater than Mr, and define κ̃ = KrM̃r/N .

Note that κ̃ is an integer. Hence,

0 ≤Mr −N/Kr < M̃r ≤Mr.

Since d−1(Mr) is non-increasing in Mr, we have:

d−1(Mr) ≤ d−1(M̃r)

=
Kt − 1 + min{ Krκ̃+1 , N}

Kt
·
(

1− κ̃

Kr

)
≤
Kt + Kr

κ̃+1

Kt

= 1 +
Kr

Kt(κ̃+ 1)
(C.15)

= 1 +
Kr

Kt(KrM̃r/N + 1)
(a)

≤ 1 +
Kr

Kt ·KrMr/N

=
N

KtMr

(
KtMr

N
+ 1

)
(b)

≤ 1.092
N

KtMr
, (C.16)

where (a) uses M̃r > Mr −N/Kr and (b) follows from Mr ≤ 0.092N/Kt.
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We now invoke Lemma 8 with s = b0.3N/Mrc ∈ {1, . . . ,min{Kr, N}}. Once again, we write:

1

DoF
≥ 1

min{s,Kt}

(
s− s2

1− s/N ·
Mr

N

)
≥ 1

Kt

(
0.3

N

Mr
− 1− (0.3N/Mr)

2

1− 0.3/Mr
· Mr

N

)
(a)

≥ 1

Kt

(
0.3

N

Mr
− 1− 0.32N/Mr

1− 0.3/1.1

)
=

N

KtMr

(
0.3− Mr

N
− 0.32

1− 0.3/1.1

)
(b)

≥ N

KtMr

(
0.3− 0.092− 0.32

1− 0.3/1.1

)
≥ 1.092

13.5
· N

KtMr

(c)

≥ d−1(Mr)

13.5
in Regime 2, (C.17)

where (a) is due to Mr ≥ 1.1 max{1, N/Kr} ≥ 1.1, (b) follows from M < 0.092N/Kt ≤ 0.092N ,

and (c) uses (C.16).

Regime 3: 0.092N/Kt < Mr ≤ N

By the convexity of d−1(Mr), we have for all Mr ∈ (0.092N/Kt, N ],

d−1(Mr) ≤ d−1(0.092N/Kt)−
d−1(0.092N/Kt)− d−1(N)

N − 0.092N/Kt
·
(
Mr − 0.092

N

Kt

)
(a)
= d−1(0.092N/Kt)

(
1− Mr − 0.092N/Kt

N − 0.092N/Kt

)
= d−1(0.092N/Kt)

(
N −Mr

N − 0.092N/Kt

)
=
d−1(0.092N/Kt)

1− 0.092/Kt

(
1− Mr

N

)
≤ d−1(0.092N/Kt)

0.908

(
1− Mr

N

)
, (C.18)

where (a) uses that d−1(N) = 0.

Let M̃r be the largest integer multiple of N/Kr that is no greater than 0.092N/Kt, and define

192



κ̃ = KrM̃r/N . Note that κ̃ is an integer. Then,

0
(a)

≤ 0.092N/Kt −N/Kr < M̃r ≤ 0.092N/Kt,

where (a) follows from (4.15). This implies that κ̃ + 1 ≥ 0.092Kr/Kt. Since d−1(Mr) is non-

increasing,

d−1(0.092N/Kt) ≤ d−1(M̃r)

(a)

≤ 1 +
Kr

Kt(κ̃+ 1)

≤ 1 +
Kr

Kt · 0.092Kr/Kt

=
1.092

0.092
, (C.19)

where (a) follows the same steps that led to (C.15). Combining (C.19) with (C.18),

d−1(Mr) ≤
1.092

0.092 · 0.908

(
1− Mr

N

)
≤ 13.1

(
1− Mr

N

)
. (C.20)

By applying Lemma 8 with s = 1 again, we obtain

1

DoF
≥ 1− Mr

N

(a)

≥ d−1(Mr)

13.5
in Regime 3, (C.21)

where (a) follows from (C.20).

Synthesis

The inequalities in (C.12), (C.14), (C.17), and (C.21) cover all possible regimes. Therefore, they

together give 1/DoF ≥ d−1(Mr)/13.5, or equivalently

DoF ≤ 13.5 · d (N,Kt,Kr,Mt,Mr) ,

for all N , Kt, Kr, Mt ∈ [0, N ], and Mr ∈ [0, N ]. This concludes the converse proof of Theorem 15.
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C.4 Communication Problem Outer Bounds (Converse Proof of

Theorem 16)

In Section 4.4 we have described the separation architecture and the communication problem that

emerges from it. We call the communication problem the multiple multicast X-channel problem.

We state its DoF d̃?σ(Kt,Kr) in Theorem 16 and show that it is achievable by interference alignment

in Section 4.5. In this appendix, we prove its optimality by deriving matching information-theoretic

outer bounds. Specifically, we want to prove

d̃?σ(Kt,Kr) ≤
1

Kt

(
Kr−1
σ−1

)
+
(
Kr−1
σ

) , (C.22)

for all Kt and Kr.

Consider the following subset of messages:

V = {VSj : 1 ∈ S or j = 1} . (C.23)

It will be convenient to split V into two disjoint parts,

Vr = {VSj : 1 ∈ S, j ∈ {1, . . . ,Kt}} ,

Vt = {VSj : 1 /∈ S, j = 1} .

In what follows, we will only focus on V. All other messages, collectively denoted by

V = {VSj : 1 /∈ S and j 6= 1} ,

are made available to everyone by a genie. Furthermore, we lower the noise at receiver one by a

fixed (non-vanishing) amount. Specifically, we replace y1 by

ỹ1 =

Kt∑
j=1

Hijxj + z̃1,
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where z̃1(τ) are independent zero-mean Gaussian variables with variance

var (z̃1(τ)) = min
i=1,...,Kr

(
h11(τ)

hi1(τ)

)2

. (C.24)

Note that var(z̃1(τ)) ≤ 1 since we can set i = 1 in (C.24). Hence all the above changes can only

improve capacity.

Consider all the receivers other than receiver one. Let a genie also give all of these receivers

the subset Vr. Again, this can only improve capacity. Hence, these receivers are given Vr ∪ V,

which consists of all the messages that receiver one should decode, as well as all the messages of

all transmitters other than transmitter one. Using this genie-given knowledge, every receiver can

compute xj for all j 6= 1, and subtract all of them out of their output yi. In other words, receiver

i 6= 1 can compute

y′i = yi −
∑
j 6=1

Hijxj = Hi1x1 + zi. (C.25)

Receiver i is still expected to decode some messages. Specifically, it must decode the subset of Vt

that is intended for it, i.e.,

Vti = {VSj : 1 /∈ S and i ∈ S and j = 1} .

Then, by Fano’s inequality,

H
(
Vti
∣∣yi,Vr,V) ≤ εT. (C.26)

We focus now on receiver one. From the problem requirements, it should be able to decode all

of Vr with high probability. After decoding Vr, it has access to all the messages that receiver i 6= 1

has, and hence it too can subtract out xj , j 6= 1, from its output,

ỹ′1 = ỹ1 −
∑
j 6=1

H1jxj + z̃1 = H11x1 + z̃1.

Since H11 is invertible almost surely, receiver one can then transform its output to get a statistical
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equivalent of the output of any other receiver. Indeed, it can compute

y̆
(i)
1 = Hi1H

−1
11 ỹ′1 = Hi1x1 +

(
Hi1H

−1
11

)
z̃1 = Hi1x1 + z̆

(i)
1 .

Since z̆
(i)
1 =

(
Hi1H

−1
11

)
z̃1 and the Hij matrices are diagonal, then the variables z̆

(i)
1 (τ) are indepen-

dent and have a variance of

var
(
z̆

(i)
1 (τ)

)
= var

(
hi1(τ)

h11(τ)
z̃1(τ)

)
=

(
hi1(τ)

h11(τ)

)2

· var (z̃1(τ)) ≤ 1,

by (C.24). As a result, receiver one has at least as good a channel output as y′i in (C.25), and can

thus decode anything that receiver i can. In particular, it can decode Vti for all i, i.e.,

H
(
Vti
∣∣ỹ1,Vr,V

)
≤ H

(
Vti
∣∣yi,Vr,V) ≤ εT, (C.27)

using (C.26).

All of the above can be mathematically expressed in the following chain of inequalities, for any

achievable R̃σ.

|V| · R̃σT = H (V)

(a)
= H

(
V
∣∣V)

= I
(
V; ỹ1

∣∣V)+H
(
V
∣∣ỹ1,V

)
= I

(
V; ỹ1

∣∣V)+H
(
Vr
∣∣ỹ1,V

)
+H

(
Vt
∣∣ỹ1,Vr,V

)
(b)

≤ I
(
V; ỹ1

∣∣V)+ εT +H
(
Vt
∣∣ỹ1,Vr,V

)
(c)

≤ I
(
V; ỹ1

∣∣V)+ εT +
∑
i 6=1

H
(
Vti
∣∣ỹ1,Vr,V

)
(d)

≤ I
(
V; ỹ1

∣∣V)+ εT +
∑
i 6=1

εT

(e)

≤ I
(
x1, . . . ,xKt ; ỹ1

∣∣V)+KrεT

(f)

≤ T ·
(

1

2
log SNR + o(log SNR)

)
+KrεT.
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In the above,

• (a) is due to the independence of the messages;

• (b) uses Fano’s inequality for receiver one;

• (c) follows from observing that Vt =
⋃
i 6=1 Vti ;

• (d) uses (C.27);

• (e) is due to the data processing inequality; and

• (f) is the MAC channel bound.

By taking T →∞ and ε→ 0, as well as SNR→∞, we obtain

d̃?σ(Kt,Kr) ≤
1

|V| =
1

|Vr|+ |Vt| =
1

Kt

(
Kr−1
σ−1

)
+
(
Kr−1
σ

) ,
thus proving (C.22) and the converse part of Theorem 16.

C.5 Lemmas from [54]

In our interference alignment strategy, we use two crucial lemmas from [54]. We present them here

for ease of reference.

Lemma 19 (from [54, Lemma 2]). Let G1, . . . ,GΓ be T × T diagonal matrices, such that Gg(τ),

the τ -th diagonal entry of Gg, follows a continuous distribution when conditioned on all other

entries of all matrices. Also let b be a column vector whose entries b(τ) are drawn iid from some

continuous distribution, independently of G1, . . . ,GΓ. Then, almost surely for any integer n such

that T > (n+ 1)Γ, there exist matrices A1 and A2, of sizes T × (n+ 1)Γ and T × nΓ respectively,

such that:

• Every entry in the τ -th row of A1 is a unique multi-variate monomial function of b(τ) and

Gg(τ) for all g (b(τ) and Gg(τ) appear with non-zero exponents in every entry), and the same

is true for A2;2 and

2To clarify: a monomial could appear in both matrices A1 and A2, but never twice in the same matrix.
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• The matrices satisfy the following conditions almost surely,

GgA2 ≺ A1, ∀g = 1, . . . ,Γ,

where P ≺ Q means that the span of the columns of P is a subspace of the space spanned by

the columns of Q.

Lemma 20 (from [54, Lemma 1]). Let x
(k)
i , i = 1, . . . , T and k = 1, . . . ,K, be random variables

such that each follows a continuous distribution when conditioned on all other variables. Let Ψ be

a T × T square matrix with entries ψij such that

ψij =

K∏
k=1

(
x

(k)
i

)p(k)
ij
,

where p
(k)
ij are integers such that

(
p

(1)
ij , . . . , p

(K)
ij

)
6=
(
p

(1)
ij′ , . . . , p

(K)
ij′

)
,

for all i, j, j′ such that j 6= j′. In other words, the entries ψij are distinct monomials in the variables

x
(k)
i . Then, the matrix Ψ is almost surely full rank.

C.6 Proof of Theorem 17

Theorem 17 gives an improved achievable DoF for the 2 × 2 cache-aided interference network. In

this appendix, we prove this result by describing and analyzing the interference-extraction scheme

introduced in Section 4.7 and illustrated in Figure 4.10, which achieves this DoF.

We describe the scheme in two steps. First, we focus on the physical layer to show how more

information can be extracted from the aligned interference at the receivers. Second, we show

how this additional information can be used at the network layer to achieve the inverse DoF in

Theorem 17.
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C.6.1 Physical Layer

In order to describe the interference-extraction scheme, let us first revisit the original separation

architecture used when Mr = 0. The message set used for this case is the one where every trans-

mitter has a message for every individual receiver, i.e., the unicast X-channel message set. In order

to achieve the optimal communication DoF of 1/3 per message, at every receiver, the two messages

intended for the other receiver are aligned in the same subspace. Let us study this alignment more

carefully.

Let Vij be the message intended for receiver i from transmitter j. Represent every message Vij

by a scalar vij , called a stream. By taking a block length of 3 and by beamforming message Vij

along some direction aij , we get channel inputs

xj = a1jv1j + a2jv2j ,

and channel outputs

y1 = H11 (a11v11 + a21v21) + H12 (a12v12 + a22v22) + z1; (C.28a)

y2 = H21 (a11v11 + a21v21) + H22 (a12v12 + a22v22) + z2. (C.28b)

Lemma 21. We can choose the aij’s in (C.28) such that

y1 = Ψ1


v11

v12

v21 + v22

+ z1;

y2 = Ψ2


v21

v22

v11 + v12

+ z2,

where the 3× 3 matrices Ψi are full-rank almost surely.

Proof: Recall that the Hij ’s are 3 × 3 diagonal matrices whose τ -th diagonal element is

hij(τ). Also recall that these hij(τ) are independent and continuously distributed, which implies
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that Hij is invertible almost surely. Assume this invertibility is the case in the following.

Choose the aij vectors as:

a11 =


1

1

0

 ; a12 = H−1
22 H21a11;

a21 =


1

0

1

 ; a22 = H−1
12 H11a21.

From (C.28), the received signals are then

y1 = H11a11v11 + H12H
−1
22 H21a11v12 + H11a21 (v21 + v22) + z1

=

[
H11a11 H12H

−1
22 H21a11 H11a21

]
v11

v12

v21 + v22

+ z1

=


h11(1) h12(1)h21(1)

h22(1) h11(1)

h11(2) h12(2)h21(2)
h22(2) 0

0 0 h11(3)


︸ ︷︷ ︸

Ψ1


v11

v12

v21 + v22

+ z1,

and, in a similar way,

y2 =


h21(1) h22(1)h11(1)

h12(1) h21(1)

0 0 h21(2)

h21(3) h22(3)h11(3)
h12(3) 0


︸ ︷︷ ︸

Ψ2


v21

v22

v11 + v12

+ z2.

Since the hij(τ) are independent continuously distributed variables, then the matrices Ψ1 and Ψ2

are full-rank almost surely.

Notice from Lemma 21 that each receiver can recover, in addition to its intended streams, the
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sum of the streams intended for the other receiver. By using a linear outer code over some finite

field, we can ensure that obtaining the sum of two streams, e.g., v21 + v22, yields the sum of the

two corresponding messages, e.g., V21 ⊕ V22, where ⊕ indicates addition over the finite field. For

simplicity, we assume that this field is GF(2), although any finite field gives the same result. In

other words, receiver one can decode V11, V12, and (V21⊕V22), and receiver two can decode V21, V22,

and (V11 ⊕ V12). Therefore, for the same per-message DoF of 1/3, we get the linear combinations

of the unintended messages for free.

C.6.2 Network Layer

Figure 4.10 illustrates the interface between the physical and network layers resulting from the

decoding of the aligned interference at each receiver. This aligned interference, while available for

free (no drawbacks in the communication DoF at the physical layer), becomes useful when the

receiver memory is non-zero. It provides a middle ground between pure unicast messages (as is

done at Mr = 0) and pure broadcast messages (which we use when Mr = 1).

Let ` denote the link load, i.e., the size of each message Vij , and let L = 4` be the sum network

load. For this specific separation architecture, we denote by L?(Mr) the smallest sum network load

as a function of receiver memory Mr, and by `? = L?/4 the smallest individual link load. Since each

message Vij (link) can be communicated across the physical layer using a DoF of 1/3 by Lemma 21,

then we can achieve an end-to-end DoF of

1

DoF
≤ `?

1/3
=

3

4
L?. (C.29)

Theorem 17 follows directly from combining (C.29) with the following lemma.

Lemma 22. For the separation architecture illustrated in Figure 4.10, we can achieve the following

sum network load:

L?(Mr) ≤ max

{
2− 2Mr,

12

7
− 8

7
Mr,

4

3
− 2

3
Mr

}
,

for Mr ∈ [0, 2].

Proof: In order to prove Lemma 22, it suffices to look at the following four (Mr, L) corner
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A3
B1 ⊕B3
B2 ⊕B3

B3
A1 ⊕A3
A2 ⊕A3

A3

B1 ⊕B3

A2 ⊕A3

B3

B1

A2

A3

B3

B1 ⊕B3

A2 ⊕A3

A1 ⊕B1

A2 ⊕B2B̂

Â

Figure C.1: Strategy for Mr = 1/3, when the user requests are (A,B).

Table C.2: Achievable strategy for Mr = 1/3.

Cache Content Rx

Tx 1 A3, B1 ⊕B3, B2 ⊕B3 N/A
Tx 2 B3, A1 ⊕A3, A2 ⊕A3 N/A
Rx 1 A1 ⊕B1 1
Rx 2 A2 ⊕B2 2

Demands (Rx1,Rx2)
Message (A,A) (A,B) (B,A) (B,B) Rx

V11 A3 A3 B2 ⊕B3 B1 ⊕B3 1
V21 A3 B1 ⊕B3 A3 B2 ⊕B3 2
V12 A1 ⊕A3 A2 ⊕A3 B3 B3 1
V22 A2 ⊕A3 B3 A1 ⊕A3 B3 2

V21 ⊕ V22 A2 B1 A1 B2 1
V11 ⊕ V12 A1 A2 B2 B1 2

points, as the rest can be achieved using time- and memory-sharing:

(0, 2) , (1/3, 4/3) , (4/5, 4/5) , (2, 0) .

The fourth corner point is trivial since Mr = 2 implies each user can cache the entire library, and

hence there is no need to transmit any information across the network. The first corner point can

be achieved by ignoring the aligned interference messages, which reduces to the original strategy.

Therefore, we only need to show the achievability of the second and third corner points. For

convenience, we will call the two files in the content library A and B.

Achieving point (Mr, L) = (1/3, 4/3) When Mr = 1/3, we split each file into three equal parts,

labeled A = (A1, A2, A3) and B = (B1, B2, B3).
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A5

B5 ⊕ S1

A5 ⊕ T3

B5

A5

B5

A5 ⊕ T3

B5 ⊕ S1

S1

T3
B̂

Â
A1, A2
B1, B2

A3, A4
B3, B4B5

A5 ⊕ T

A5
B5 ⊕ S

Figure C.2: Strategy for Mr = 4/5, when the user requests are (A,B).

Table C.2 shows the placement and delivery phases, for all possible user requests, and Figure C.1

illustrates the strategy when the demands are (A,B). Notice that the transmitter caches hold

exactly one file each (thus Mt = 1), the receivers cache one third of a file each (Mr = 1/3).

Furthermore, the messages Vij each carry the equivalent of one third of a file, which implies that

` = 1/3 is achieved, or, equivalently, a sum network load of L = 4` = 4/3.

Achieving point (Mr, L) = (4/5, 4/5) When Mr = 4/5, we split each file into five equal parts,

labeled A = (A1, . . . , A5) and B = (B1, . . . , B5). For convenience, we define

S1 = B2 ⊕A4, S2 = A1 ⊕B3, S3 = B1 ⊕B3, S4 = B2 ⊕B4,

T1 = A1 ⊕A3, T2 = A2 ⊕A4, T3 = B1 ⊕A3, T4 = A2 ⊕B4,

and write S = {S1, S2, S3, S4} and T = {T1, T2, T3, T4}.

Table C.3 shows the placement and delivery phases, for all possible user requests, and Figure C.2

illustrates the strategy when the demands are (A,B). Notice that the transmitter caches hold

exactly one file each (thus Mt = 1), the receivers cache four fifths of a file each (Mr = 4/5).

Furthermore, the messages Vij each carry the equivalent of one fifth of a file, which implies that

` = 1/5 is achieved, or, equivalently, a sum network load of L = 4` = 4/5.

By achieving all four corner points, we have proved Lemma 22.
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Table C.3: Achievable strategy for Mr = 4/5.

Cache Content Rx

Tx 1 A5, B5 ⊕ S1, B5 ⊕ S2, B5 ⊕ S3, B5 ⊕ S4 N/A
Tx 2 B5, A5 ⊕ T1, A5 ⊕ T2, A5 ⊕ T3, A5 ⊕ T4 N/A
Rx 1 A1, A2, B1, B2 1
Rx 2 A3, A4, B3, B4 2

Demands (Rx1,Rx2)
Message (A,A) (A,B) (B,A) (B,B) Rx

V11 A5 A5 B5 ⊕ S2 B5 ⊕ S3 1
V21 A5 B5 ⊕ S1 A5 B5 ⊕ S4 2
V12 A5 ⊕ T1 A5 ⊕ T3 B5 B5 1
V22 A5 ⊕ T2 B5 A5 ⊕ T4 B5 2

V21 ⊕ V22 T2 S1 T4 S4 1
V11 ⊕ V12 T1 T3 S2 S3 2

C.6.3 Optimality Within the Considered Separation Architecture

Within the separation architecture considered throughout this appendix and Section 4.7, i.e., the

one illustrated in Figure 4.10, we can show that the network-layer scheme is in fact exactly optimal.

Specifically, the sum network load achieved in Lemma 22 is optimal. This is summarized in the

following result.

Proposition 4. For all Mr, the optimal sum network load must satisfy

L?(Mr) ≥ max

{
2− 2Mr,

12

7
− 8

7
Mr,

4

3
− 2

3
Mr

}
.

While this does not contribute to the main result in Theorem 17, it does reinforce it by showing

that this is the best we can do within this separation architecture.

Proof: For the proof, it is more convenient to write the outer bounds in terms of the

individual link load `? = L?/4. Therefore, we will prove Proposition 4 by proving the following

three inequalities (which together constitute an equivalent result):

4`? + 2Mr ≥ 2;

7`? + 2Mr ≥ 3;

6`? + Mr ≥ 2.
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In the following, we refer to the two files as A and B. Let the cache contents of receivers one

and two be Q1 and Q2, respectively. We also write V ST
ij to denote the message Vij when user one

has requested file S and user two has requested file T , where S, T ∈ {A,B}. Furthermore, we use

VST to refer to all four messages when the requests are S and T , and write YSTi to denote the three

outputs at receiver i ∈ {1, 2} when the requests are S and T . Therefore,

VST =
(
V ST

11 , V ST
12 , V ST

21 , V ST
22

)
;

YST1 =
(
V ST

11 , V ST
12 , V ST

21 ⊕ V ST
22

)
;

YST2 =
(
V ST

21 , V ST
22 , V ST

11 ⊕ V ST
12

)
.

We will next prove each of the three inequalities.

First inequality

(4`? + 2Mr)F ≥ H
(
Q1, Q2,VAB

)
= H

(
Q1, Q2,VAB

∣∣A,B)+ I
(
A,B;Q1, Q2,VAB

)
= H

(
Q1, Q2,VAB

∣∣A,B)+H (A,B)−H
(
A,B

∣∣Q1, Q2,VAB
)

(a)

≥ H (A,B)− εF

= 2F − εF,

where (a) is due to Fano’s inequality. Therefore,

4`? + 2Mr ≥ 2.
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Second inequality

(7`? + 2Mr)F ≥ H
(
Q1,YAB1

)
+H

(
Q2,VBA

)
(a)

≥ H
(
Q1,YAB1

∣∣A)+H
(
Q2,VBA

∣∣A)+ 2H (A)− 2εF

≥ H
(
Q1, Q2,YAB1 ,VBA

∣∣A)+ 2H (A)− 2εF

(b)

≥ H
(
Q1, Q2,YAB1 ,VBA

∣∣A,B)+H (B) + 2H (A)− 3εF

≥ 3F − 3εF,

where (a) and (b) once again follow from Fano’s inequality. Therefore,

7`? + 2Mr ≥ 3.

Third inequality

(6`? +Mr)F ≥ H
(
Q1,YAA1 ,YBB2

)
(a)

≥ H
(
Q1,YAA1 ,YBB2

∣∣A,B)+H (A,B)− εF

≥ 2F − εF,

where (a) is again due to Fano’s inequality. Therefore,

6`? +Mr ≥ 2.

This concludes the proof of Proposition 4.

C.7 Proofs for the Low-SNR Regime (Section 4.9)

C.7.1 Network-Layer Scheme (Proof of Theorems 18 and 19)

In this appendix, we provide the details of the two network-layer strategies: the multicasting scheme

and the beamforming scheme. This includes choosing p and q and determining the corresponding

value of vpq that each scheme achieves, as introduced in Section 4.9.3. Combined with Lemma 9,
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these imply the achievable rate results in Theorems 18 and 19.

Network-Layer Strategy: The Multicasting Scheme (Proof of Theorem 18)

Suppose κ = KMr/N and λ = LMt/N are both integers. Collectively, the transmitters can hold

λ copies of the entire content library. To take advantage of that, we first split every file Wn into(
L
λ

)
equal subfiles {Wn,L}L, where the index L is over all subsets of transmitters of size λ. We can

thus create
(
L
λ

)
sublibraries: the sublibrary indexed by L contains the subfile Wn,L of every file Wn.

For the transmitter content placement, every transmitter ` stores all complete sublibraries indexed

by L such that ` ∈ L. The result is that every subset of transmitters of size λ shares exactly one

sublibrary.

For the receiver content placement, we first split each receiver cache into
(
L
λ

)
equal parts and

dedicate each part to one sublibrary. We have thus divided our original problem into
(
L
λ

)
subprob-

lems. In each subproblem, a subset L of transmitters shares a full sublibrary of N subfiles of size

F̃ = F/
(
L
λ

)
each. Each of the K receivers is equipped with a cache of size MrF/

(
L
λ

)
= MrF̃ bits,

equivalently Mr subfiles. Since κ = KMr/N , we can apply the strategy from [4] on this subprob-

lem, which requires that the transmitters send a common message to every subset K of size κ+ 1

receivers. We can enable that by choosing the message set Vpq with p = κ+ 1 and q = λ.

Each message VKL ∈ Vpq has size vpqF bits, which can be rewritten in terms of the subfile size

F̃ as vpqF =
(
L
λ

)
vpqF̃ bits. From [4], we know that the total number of bits that each subproblem

needs to transmit across the bit pipes is (K−κ)/(κ+1) · F̃ , shared equally among all the bit pipes.

Therefore, the total number of bits sent through the
(
K
κ+1

)
messages of each subproblem is

(
K

κ+ 1

)(
L

λ

)
vpqF̃ =

(
K

κ+ 1

)
vpqF =

K − κ
κ+ 1

F̃ .

Consequently, we achieve

vpq =
K − κ
κ+ 1

· 1(
L
λ

)(
K
κ+1

) (C.30)

at the network layer. By combining (C.30) with (4.23) and Lemma 9, we obtain the result of

Theorem 18 for κ and λ integers.
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Network-Layer Strategy: The Beamforming Scheme (Proof of Theorem 19)

Recall that the beamforming scheme is different from the multicasting scheme in that it completely

ignores any possible multicasting gain in favor of a larger beamforming gain.

Suppose λ̃ = min{LMt/(N −Mr), L} is an integer. The first step is to divide each file Wn into(L
λ̃

)
+ 1 parts,

Wn =
(
Wn,0,Wn,L : L ⊆ [L], |L| = λ̃

)
,

such that Wn,0 has size MrF/N bits and Wn,L has size (N −Mr)F/
(L
λ̃

)
for all L.

In the placement phase, every receiver stores Wn,0 for every n. Thus all receivers have exactly

the same side information in their caches. Each transmitter ` stores all parts Wn,L such that

` ∈ L. Note that this placement satisfies the memory constraints Mr and Mt on the receivers and

transmitters respectively.

During the delivery phase, every subset L of transmitters will beamform to each user k the

part of its requested file that these transmitters share. Therefore, the message set that we choose

is Vpq with p = 1 and q = λ̃, and if user k requests file Wdk then we set V{k}L = Wdk,L for all L.

Each message will as a result have a size of vpq = (N −Mr)/
(L
λ̃

)
. Substituting in (4.23) and using

Lemma 9, we obtain the rate achieved in Theorem 19.

C.7.2 Physical-Layer Scheme (Proof of Lemma 9)

Recall that we wish to transmit the messages Vpq from (4.22) across the interference network, for

some p ∈ [K] and q ∈ [L]. As previously mentioned, the idea is to wait until a “favorable” channel

occurs that allows some subset of transmitters to efficiently beamform some message to all its

intended receivers at once. In this proof, we focus on a particular p and a particular q.

Let us focus on one subset pair (K,L), where K is a subset of p receivers and L is a subset of

q transmitters. The most “favorable” channel to beamform message VKL occurs when the channel

gains from the transmitters in L to each receiver in K are identical up to a multiplication by a

scalar. To be precise, the channel vectors gkL = (gk`)`∈L have to be equal for all k ∈ K, up to a

multiplication by a scalar. However, since there are uncountably many values for each gain, the set

of perfect channels has a measure of zero. For this reason, we choose to divide the possible values
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of the channel gains into a finite number of bins β ≥ 8.

We will divide this proof into three parts: the first part presents the binning strategy, the

second part gives the beamforming strategy and the corresponding analysis, and the third part

analyzes the duty cycle, i.e., the fraction of time during which the channel is “favorable” for some

transmitters and receivers.

Binning strategy

Recall that the channel gains are phase shifts, gk`(τ) = ejθk`(τ), where θk`(τ) ∈ [0, 2π) uniformly.

For any angle θ ∈ [0, 2π), define the binning function B(θ) as the unique integer such that

θ − 2π

β
B(θ) ∈ [0, 2π/β).

Note that B(θ) ∈ {0, . . . , β − 1}. For each bin b, we define the representative phase of b as the

midpoint of all phases that are binned to b, i.e.,

Φ(b) = b · 2π/β + π/β.

This implies that |Φ(B(θ))−θ| ≤ π/β for all θ ∈ [0, 2π). The above-described binning is illustrated

in Figure C.3 for a choice of β = 8. For simplicity, we will define bk`(τ) = B(θk`(τ)) to be the bin

of the channel phase shift θk`(τ) and φk`(τ) = Φ(bk`(τ)) to be its representative phase.

We use these bins to determine which channels are “favorable” for a subset pair (K,L). Specif-

ically, we say that a channel is favorable for (K,L) if the corresponding channel vectors can be

mapped to the same bins. More formally, we say that the channel at time τ is favorable for (K,L)

if

bk`(τ) = bk′`(τ) ∀k, k′ ∈ K, ∀` ∈ L.

We define fK,L(τ) to be one if the channel is favorable for (K,L) at time τ , and zero otherwise.

For every time τ , we then define the set of pairs

B(τ) = {(K,L) : |K| = p, |L| = q, fK,L(τ) = 1}
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b = 4

b = 5 b = 6

b = 7

Figure C.3: The β = 8 bins and their representative phases Φ(b).

for which the channel is favorable.

Beamforming strategy

First, we encode each message VKL into a codeword vKL. For every time τ , we want to choose a

pair (K,L) for which the channel is favorable, if any exist. We denote this pair by (K(τ),L(τ)), but

we will ignore the τ index when it is obvious from context for clarity. We then let the transmitters

in L beamform a symbol vKL(τ) from vKL to the receivers in K.

More formally, write L = {`1, . . . , `q}. Let b̂(τ) = (b̂`1(τ), . . . , b̂`q(τ)) denote the vector of bins

that resulted in the choice of subset pair at time τ , i.e., b̂`(τ) = bk`(τ) for all k ∈ K and ` ∈ L.

Then, each transmitter ` ∈ L sends

x`(τ) = vKL(τ) · e−jΦ(b̂`(τ)),

and each receiver k ∈ K observes

yk(τ) =
∑
`∈L

ejθk`(τ) · e−jΦ(b̂`(τ))vKL(τ) + zk(τ)

= vKL(τ)
∑
`∈L

ej(θk`(τ)−Φ(B(θk`(τ)))) + zk(τ).
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The receiver SNR is then

|vKL(τ)|2 ·
∣∣∣∣∣∑
`∈L

ej(θk`(τ)−Φ(B(θk`(τ))))

∣∣∣∣∣
2

.

Because of the binning, we can find a good lower bound on the magnitude of the sum term. Let

δk`(τ) = θk`(τ)− Φ(B(θk`(τ))). Then,

∣∣∣∣∣∑
`∈L

ejδk`(τ)

∣∣∣∣∣
2

=

(∑
`∈L

ejδk`(τ)

)(∑
`∈L

e−jδk`(τ)

)

=
∑
`∈L

(
1 + 2

∑
`′>`

<
{
ej(δk`(τ)−δk`′ (τ))

})

=
∑
`∈L

(
1 + 2

∑
`′>`

cos(δk`(τ)− δk`′(τ))

)
.

Because δk`(τ) ∈ [−π/β, π/β), then

δk`(τ)− δk`′(τ) ∈ [−2π/β, 2π/β],

and hence, since β ≥ 8,

cos (δk`(τ)− δk`′(τ)) ≥ cos
2π

β
.

We can write cos 2π/β = (1− γ) for some γ > 0. Consequently,

∣∣∣∣∣∑
`∈L

ejδk`(τ)

∣∣∣∣∣
2

≥
∑
`∈L

(1 + (q − 1)(1− γ)) ≥ (1− γ)q2.

Supposing that |vKL(τ)|2 = P ′, and assuming that VKL is being transmitted during a fraction

α of the total block length, we conclude that we can achieve a rate of

R′pq ≥ α log2

(
1 + (1− γ)q2 · P ′

)
(C.31)

for message VKL.
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Duty cycle analysis and achievable rate

As mentioned previously, our strategy needs to wait for time instants τ such that B(τ) is not

empty. We refer to the expected fraction of time during which it is not empty as the duty cycle η,

defined as η = Pr{B 6= ∅}.

When selecting pairs (K,L) ∈ B(τ), it is possible to ensure that all pairs are selected equally

likely. For instance, if multiple pairs are possible for a specific τ , we can pick one of them uniformly

at random. Thus the duty cycle will be shared equally among all pairs, and the expected fraction

of time that any one message is being transmitted is α = η/
(
L
q

)(
K
p

)
. Since each transmitter is

active for exactly
(
L−1
q−1

)(
K
p

)
pairs out of the

(
L
q

)(
K
p

)
total, then every transmitter will be active for

a fraction

η · q
L

of the time in expectation. Consequently, it can scale its power by L/ηq during its duty cycle,

which means

P ′ =
L

ηq
P.

By appealing to the law of large numbers, it then follows from (C.31) that the set Vpq can be

transmitted at a sum rate of

(
L

q

)(
K

p

)
R′pq ≥ η · log2

(
1 +

(1− γ)Lq

η
P

)
.

When P ≤ σ · η/(1− γ)Lq for some σ > 0, we get

(
L

q

)(
K

p

)
R′pq ≥ (1− γ)Lq · log2(1 + σ)

σ
· P, (C.32)

by using x ∈ [0, x0] =⇒ log2(1 + x) ≥ x · log2(1 + x0)/x0 for any x0 > 0.

All that remains is to find a lower bound on the duty cycle η, in order to get a sufficient condition

for the critical power necessary for (C.32) to hold. Consider the probability that a single subset
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pair (K,L) gets a favorable channel at time τ . Recall that a channel is favorable for this pair if

bk`(τ) = bk′`(τ)

for all k, k′ ∈ K and ` ∈ L. Without loss of generality, we can assume that bk1(τ) = 0 for all

receivers k since each receiver can always multiply its channel output with the correct phase shift.

Therefore, the above happens at time τ with probability

Pr {fK,L(τ) = 1} = β−(p−1)(q−1).

Consequently,

η = Pr {B 6= ∅}

= Pr {∃(K,L) : fK,L(τ) = 1}
(a)

≥ Pr {fK0,L0(τ) = 1}

= β−(p−1)(q−1),

for some arbitrary pair (K0,L0). Note that the inequality (a) is quite loose; in practice the duty

cycle should be higher because of the possibility to schedule all the
(
L
q

)(
K
p

)
messages, and thus the

critical power required for this analysis is higher.

Using this in (C.32), we get that

(
L

q

)(
K

p

)
R′pq ≥ (1− γ)Lq · log2(1 + σ)

σ
· P

bits per channel use, whenever P ≤ β−(p−1)(q−1)σ/(1− γ)Lq.

Since 1 − γ = cos 2π/β, we can make γ arbitrarily small by increasing the number of bins β.

Similarly, we know that log2(1 + σ)/σ approaches 1/ ln 2 as σ approaches zero. Therefore, for any

ε > 0, we can choose particular values of β and σ so that, for a small enough P ,

(
L

q

)(
K

p

)
R′pq ≥ (1− ε) · LqP

ln 2
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bits per channel use. This concludes the proof of Lemma 9.

C.7.3 Approximate Optimality for the Single-Receiver Case (Proof of Theo-

rem 21)

First, we prove that there exists an optimal covariance matrix Q̃ of the form in (4.24), using the

two properties of φt: concavity and invariance under permutation.

Let Q∗ be a covariance matrix that maximizes φt. Define Q̃ = 1
L!

∑
π π>Q∗π. By the two

properties of φt, we have

φt(Q̃)
(a)

≥ 1

L!

∑
π

φt

(
π>Q∗π

)
(b)
= φt(Q

∗),

where (a) uses concavity of φt and (b) uses its invariance under permutation. Therefore, Q̃ also

maximizes φt. Moreover, we can see that π>Q̃π = Q̃ for any permutation π, which implies that

Q̃ must have the form

Q̃ =
(

(1− ρ)I + ρ11>
)
· P

for some ρ. In order for Q̃ to be positive semidefinite, we need ρ ∈ [−1/(L− 1), 1].

Using the structure of Q̃, we can simplify the analysis to the following. Recall from Section 4.9.4

and (4.25) that this simplifies the upper bound on the optimal expected rate to

R∗(P ) ≤ min
t∈[L]

(L−t)Mt+Mr<N

Ψ(t)

1− Mr+(L−t)Mt

N

· P
ln 2

(C.33)

bits per channel use, where

Ψ(t) = max
ρ∈[ −1

L−1
,1]
t

(
1 + (t− 1)ρ− t(L− t)ρ2

1 + (L− t− 1)ρ

)
.

Let us start with the maximization over ρ. We can focus on the function

f(ρ) = (t− 1)ρ− t(L− t)ρ2

1 + (L− t− 1)ρ
,
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which is the only part that depends on ρ. Differentiating f ,

f ′(ρ) = t− 1

− 2t(L− t)ρ (1 + (L− t− 1)ρ)− (L− t− 1)t(L− t)ρ2

[1 + (L− t− 1)ρ]2

= t− 1− t(L− t)ρ (2 + (L− t− 1)ρ)

[1 + (L− t− 1)ρ]2
.

The sign of f ′(ρ) is the same as the sign of

g(ρ) = (t− 1) [1 + (L− t− 1)ρ]2 − t(L− t)ρ (2 + (L− t− 1)ρ)

= (t− 1)
(
1 + 2(L− t− 1)ρ+ (L− t− 1)2ρ2

)
− t(L− t)ρ (2 + (L− t− 1)ρ)

= t− 1 + 2(t− 1)(L− t− 1)ρ+ (t− 1)(L− t− 1)2ρ2

− 2t(L− t)ρ− t(L− t)(L− t− 1)ρ2

= t− 1

+ 2 [t(L− t)− t− (L− t) + 1− t(L− t)] ρ

+
[
(t− 1)(L− t)2 − 2(t− 1)(L− t) + (t− 1)

− t(L− t)2 + t(L− t)
]
ρ2

= t− 1− 2(L− 1)ρ

+
[
−(L− t)2 − (t− 2)(L− t) + (t− 1)

]
ρ2

= t− 1− 2(L− 1)ρ− (L− 1)(L− t− 1)ρ2.

If t 6= L− 1, this is a quadratic with discriminant ∆ = 4t(L− 1)(L− t), which yields the roots

ρ =
2(L− 1)± 2

√
t(L− 1)(L− t)

−2(L− 1)(L− t− 1)
=
−1∓

√
t(L−t)
L−1

L− t− 1
.

Therefore, in the range ρ ∈ [−1/(L− 1), 1], the function f(ρ) reaches a maximum when

ρ∗ =
−1 +

√
t(L− t)/(L− 1)

L− t− 1
.
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The maximum is thus

max
ρ∈[−1/(L−1),1]

f(ρ) = f(ρ∗) =

[√
t(L− t)−

√
L− 1

L− t− 1

]2

.

If t = L− 1, then g(ρ) = 0 for ρ = (L− 2)/2(L− 1), yielding

f(ρ∗) =
(L− 2)2

4(L− 1)
.

We therefore get

Ψ(t) =


t

(
1 +

[√
t(L−t)−

√
L−1

L−t−1

]2
)

if t 6= L− 1;

L2/4 if t = L− 1.

We will now complete the proof of Theorem 21. Recall from Theorem 19 that, for K = 1 and

for a small enough P , we can achieve

R̂BF ≥
1

ln 2
· Lλ̃

1−Mr/N
· P

bits per unit energy, when λ̃ = min{LMt/(N −Mr), L} is an integer. For a general λ̃, we can

lower-bound the rate at λ̃ by the rate at
⌊
λ̃
⌋
, which yields

R̂BF ≥
1

ln 2
·

L
⌊
λ̃
⌋

1−Mr/N
· P

(a)

≥ 1

2 ln 2
· Lλ̃

1−Mr/N
· P, (C.34)

where (a) is due to λ̃ ≥ 1.

The rest of the proof is split into two cases: Mt ≥ (N −Mr)/4 and Mt < (N −Mr)/4.

Case 1. If Mt ≥ (N −Mr)/4, then λ̃ ≥ L/4, and hence (C.34) gives

R̂BF ≥
1

8 ln 2
· L2

1−Mr/N
· P. (C.35)
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Choosing t = L, which satisfies the condition (L−t)Mt+Mr < N , in (C.33), we get Ψ(L) = L2,

yielding the upper bound on the optimal rate

R∗(P ) ≤ L2

1−Mr/N
· P

ln 2
. (C.36)

Combining (C.35) with (C.36), we get

R̂∗

R̂BF

≤ 8. (C.37)

Case 2. If Mt < (N −Mr)/4, then λ̃ = LMt/(N −Mr) and (C.34) becomes

R̂BF ≥
1

2 ln 2
· L2Mt/N

(1−Mr/N)2
· P. (C.38)

We apply (C.33) using

t = L−
⌊
N −Mr

2Mt

⌋
.

This satisfies the condition (L− t)Mt +Mr < N . Furthermore, it implies t ≤ L− 2.

The denominator of (C.33) can be lower-bounded by

1− Mr + (L− t)Mt

N
≥ 1

2

(
1− Mr

N

)
,

which implies

R∗(P ) ≤ Ψ(t)
1
2(1−Mr/N)

· P
ln 2

.
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Because t ≥ 1 and t ≤ L− 2, we can upper-bound Ψ(t) by

Ψ(t) = t

1 +

[√
t(L− t)−

√
L− 1

L− t− 1

]2


(a)

≤ L

(
1 +

t(L− t)
(L− t)2(1− 1

L−t)
2

)

≤ L

(
1 +

4t

L− t

)
= L

(
1 + 4

L− b(N −Mr)/2Mtc
b(N −Mr)/2Mtc

)
= L

(
1 +

4L

b(N −Mr)/2Mtc
− 4

)
≤ 4L2

b(N −Mr)/2Mtc

≤ 16L2Mt

N −Mr
,

where (a) follows from the fact that t(L− t) ≥ L− 1 for all t ∈ [1, L− 1]. Therefore,

R∗(P ) ≤ 32L2Mt/N

(1−Mr/N)2
· P

ln 2
. (C.39)

Combining (C.38) with (C.39), we get

R̂∗

R̂BF

≤ 64. (C.40)

Together, (C.37) and (C.40) give the result of Theorem 21.

Proof of Lemma 10: Recall that all channel gains are one without loss of generality. We

consider N realizations of the problem, during each of which the user requests a new file. When it

requests file Wn, we denote the channel inputs by xn` and the channel output by yn1 . Furthermore,
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let U1 denote the cache of receiver 1, and V` denote the cache of transmitter `.

NRT = NF

= H (W1, . . . ,WN )

= I
(
W1, . . . ,WN ;U1,y

1
1, . . . ,y

N
1

)
+H

(
W1, . . . ,WN

∣∣U1,y
1
1, . . . ,y

N
1

)
(a)

≤ I
(
W1, . . . ,WN ;U1,y

1
1, . . . ,y

N
1

)
+ εT

≤ I
(
W1, . . . ,WN ; y1

1, . . . ,y
N
1

∣∣x1
Lc , . . . ,x

N
Lc
)

+ I
(
W1, . . . ,WN ; x1

Lc , . . . ,x
N
Lc
)

+H (U1) + εT

(b)

≤ I
(
x1
L, . . . ,x

N
L ; y1

1, . . . ,y
N
1

∣∣x1
Lc , . . . ,x

N
Lc
)

+H (VLc) +H (U1) + εT

(c)

≤ NI (xL; y1|xLc) + (L− |L|)MtRT +MrRT + εT

(d)

≤ NT log2

(
1 + 1>QL|Lc1

)
+ (L− |L|)MtRT +MrRT + εT,

where (a) uses Fano’s inequality, (b) follows from the data processing inequality, (c) applies the

memory constraints on the caches, and (d) is the MISO channel bound.

C.7.4 Approximate Optimality for the Broadcast Case (Proof of Theorem 20)

The statement of Theorem 20 as presented in Section 4.9.2 holds for N ≥ K for ease of exposition

and for lack of space. In this appendix, we prove the following stronger result.

Lemma 23. In the broadcast case, i.e., when L = 1 and Mt = N , we have

1 ≤ R̂∗

max{R̂MC, R̂BF}
≤ 12,

for all N , K, and Mr ∈ [0, N ].
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Note that Theorem 20 follows immediately from Lemma 23 since R̂MC ≥ R̂BF when L = 1 and

N ≥ K.

We now prove Lemma 23. As previously mentioned, the channel gains are assumed to be one

without loss of generality. This implies that all the channel outputs are statistically equivalent.

From Theorem 18, we know that we can achieve

R̂MC ≥
κ+ 1

K − κ ·
1

ln 2

bits per unit energy, when κ = KMr/N is an integer. Moreover, for completeness we use the

beamforming scheme in the case N < K. We know from Theorem 19 that we can also achieve

R̂BF ≥
1

min{N,K}(1−Mr/N)
· 1

ln 2
· P.

Thus by choosing the scheme that achieves the higher bits per unit energy, we can achieve

max{R̂MC, R̂BF} ≥
max{κ+ 1,K/N}

K − κ · P
ln 2

, (C.41)

when κ = KMr/N is an integer.

The upper bound is as follows. Let s ∈ {1, . . . ,K}. Denote by Uk the contents of the cache of

user k. We observe the system after bN/sc instances, such that users 1 through s request a new file

in each instance. Thus the total number of requested files will be Ñ = s bN/sc, labeled W1 through

WÑ . During instance i ∈ {1, . . . , bN/sc}, denote xi1 and yik the channel input of the transmitter

and channel output of receiver k, respectively.

Consider now the caches U1, . . . , Us and the channel output y1. Since all channel outputs are

statistically equivalent, these are enough to decode anything that users 1 through s can decode.
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Therefore,

s bN/scRT = s bN/scF

= H
(
W1, . . . ,WÑ

)
(a)

≤ I
(
W1, . . . ,WÑ ;U1, . . . , Us,y

1
1, . . . ,y

bN/sc
1

)
+ εT

≤ I
(
W1, . . . ,WÑ ; y1

1, . . . ,y
bN/sc
1

)
+H (U1, . . . , Us) + εT

(b)

≤ I
(
x1

1, . . . ,x
bN/sc
1 ; y1

1, . . . ,y
bN/sc
1

)
+H (U1, . . . , Us) + εT

(c)

≤ bN/sc · I (x1; y1) + sMrRT + εT

(d)

≤ bN/sc · T log2 (1 + P ) + sMrRT + εT

(e)

≤ bN/sc P

ln 2
T + sMrRT + εT,

where (a) uses Fano’s inequality, (b) uses the data processing inequality, (c) applies the mem-

ory constraints on the receiver caches, (d) uses the capacity bound for a point-to-point Gaussian

channel, and (e) uses ln(1 + x) ≤ x. Consequently,

R∗(P ) ≤ min
s∈{1,...,K}

1

s (1−Mr/ bN/sc)
· P

ln 2
. (C.42)

The upper and lower bounds in (C.41) and (C.42) are identical to their analogues in [4], up to

a multiplicative constant. Therefore, the same argument used in [4] proves that

R̂∗

max{R̂MC, R̂BF}
≤ 12.

This proves Lemma 23 and, by extension, Theorem 20.
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