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ABSTRACT OF THE THESIS 

 

Estimation of River Depth from Remotely Sensed Hydraulic Relationships 

 

by 

 

Matthew King Mersel 

 

Master of Arts in Geography 

University of California, Los Angeles, 2012 

Professor Laurence Smith, Chair 

 

 The Surface Water and Ocean Topography (SWOT) radar interferometer satellite mission 

will provide unprecedented global measurements of water surface elevation (WSE) for inland 

water bodies. However, like most remote-sensing technologies SWOT will not observe river 

channel bathymetry below the water surface, thus limiting its value for estimating river 

discharge. This study explores the possibility of using remotely sensed observations of river flow 

width and WSE alone to estimate this unmeasured flow depth. Synthetic values of WSE and 

either cross-sectional flow width (w) or effective width (We, inundated area divided by reach 

length) are extracted from 1,495 surveyed channel cross-sections and 62 km of continuously 

acquired sonar data for the Upper Mississippi, Illinois, Rio Grande, and Ganges-Brahmaputra 

river systems. A method is presented which uses extrapolation of low-flow width-WSE 

relationships to estimate d, at locations where two distinct hydraulic relationships, one for 

moderate-to-high flows and one for low-flows, are identified (called the “Slope-break Method,” 
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owing to detection of two clearly different linear trends in width-WSE relationships at these 

locations). These slope-break relationships represent a subset of “optimal” locations where river 

flow width and WSE co-vary with relative predictably. Slope-breaks were discovered in all four 

river systems at 6 (.04%) to 242 (16%) of the 1,495 studied cross-sections for channel 

bathymetric exposures ranging from 20% to 95%, respectively. Depth estimates generated by the 

Slope-break Method produced root mean squared errors (RMSE) of less than 20% (relative to 

bankfull mean depth) for the Upper Mississippi, Illinois, Rio Grande, and Ganges-Brahmaputra 

river systems when channel exposure was >25%, >50%, >75%, and >75%, respectively. HEC-

RAS modeling for the Upper Mississippi and Rio Grande rivers suggests that these channel 

exposures occur at least ~25% and ~42% of the time, respectively, based on historic discharge 

records and steady-state discharge simulations. “Reach-averaging” (spatial averaging) of 

retrieved hydraulic variables reduces both RMSE and longitudinal variability in the derived 

depth estimates, especially at reach lengths of ~1000-2000 m. The findings presented here have 

positive implications for SWOT and other sensors attempting to estimate river flow depth and/or 

discharge solely from incomplete, remotely sensed hydraulic variables, and suggest that useful 

depth retrievals can be obtained even given the spatial and temporal constraints of spaceborne 

observations. 
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1. Introduction 

 Terrestrial runoff to rivers is a significant term in the global water balance and a principle 

source of fresh water for human and ecosystem use [Vorosmarty et al., 2010], yet global 

knowledge of the spatial and temporal dynamics of river flow is surprisingly poor [Alsdorf et al., 

2007b; Durand et al., 2010a]. Stream gages, the traditional method for measuring discharge, are 

in decline globally [Stokstad, 1999; Shiklomanov et al., 2002], and where gages do exist, the data 

are often unreliable or not publically released [Alsdorf et al., 2007b]. Furthermore, gages are 

inherently limited to providing information only at single points along a river and fail to capture 

three-dimensional dynamics of fluvial systems including overbank flow, flood waves, and 

multichannel flow. These limitations, combined with rising worldwide stress on river systems 

owing to industrialization, population growth, and climate change [World Water Assessment 

Programme, 2012] motivate development of new approaches for understanding river dynamics 

globally. 

 Remote sensing of rivers is a relatively immature but rapidly emerging subdiscipline 

within hydrology that is advancing new approaches to studying fluvial systems [Smith, 1997; 

Alsdorf et al., 2007b; Durand et al., 2010a; Marcus and Fonstad, 2010]. Furthermore, the unique 

spatial perspective afforded from satellites and aircraft allows for observation and understanding 

of rivers in ways both infeasible and fundamentally different from traditional ground-based 

methods. One approach is the use of profiling oceanographic radar altimeters to retrieve point 

measurements of water surface elevation (WSE) where orbit paths cross water bodies [e.g. 

Koblinsky et al., 1993; Birkett, 1998; Birkett et al., 2002; Frappart et al., 2005; Cretaux and 

Birkett, 2006; Calmant et al., 2008; Birkett and Beckley, 2010; Lee et al., 2011]. However, such 

techniques are generally limited to large rivers, lakes and reservoirs and, like stream gages, are 
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inherently point-based. Other studies have mapped spatial variations in river inundation area (A) 

as a proxy for changing stage or discharge, using visible/near-infrared or synthetic aperture radar 

(SAR) backscatter imagery [e.g. Smith et al., 1995, 1996; Prigent et al., 2001; Brakenridge et al., 

2005; Papa et al., 2006; Smith and Pavelsky, 2008; Khan et al., 2011]. However, these methods 

typically require ancillary data (e.g. from stream gages or digital elevation models (DEMs)) and 

are most effective for width-sensitive rivers (i.e. where discharge fluctuations are largely 

accommodated by changes in width). Furthermore, cloud and vegetation cover limits the use of 

optical sensors, while SAR backscatter techniques are limited by difficulties related to wind 

roughening of the water surface.  

 The preceding approaches measure either point-based WSE, or spatially-varying A, but 

not both. An exciting development in space-based remote sensing of river hydraulics is 3-D 

imaging, first advanced using repeat-pass interferometric SAR (InSAR) to measure relative 

changes in WSE over time and space [e.g. Alsdorf et al., 2000, 2001, 2007a; Lu et al., 2005; Jung 

and Alsdorf, 2010; Jung et al., 2010]. This approach can detect temporal changes in WSE to a 

vertical precision of several centimeters, but requires inundated vegetation for signal return and 

only measures relative changes (i.e. height anomalies, dWSE/dt) over time for a particular 

location. Hydraulic surface slopes, for example, cannot be mapped with this method. Therefore 

while repeat-pass InSAR, like profiling altimetry and inundation mapping, demonstrates the vast 

potential of remote sensing for studying 3-D river dynamics, no sensor currently exists to 

quantify terrestrial surface water elevations, storages, and fluxes globally over time and space 

[Alsdorf et al., 2007b; Durand et al., 2010b]. 

The NASA Surface Water and Ocean Topography (SWOT) satellite, planned for launch 

in 2019, has strong potential to overcome many of the aforementioned limitations to space-based 
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measurements of river systems. Using Ka-band wide-swath radar interferometry, SWOT will 

provide unprecedented worldwide measurements of terrestrial and coastal waters 

[swot.jpl.nasa.gov]. Through instantaneous detection of both WSE and A, SWOT will provide 

global 3-D imaging of river hydraulics, as well as topographic mapping of exposed river 

bathymetry (i.e. any portion of the river channel that happens be exposed above WSE at the time 

of a satellite overpass) and surrounding floodplains for rivers wider than ~100 m. Owing to very 

bright returns of near-nadir Ka band radar, global, repeated measurements of A and effective 

width (We, inundation area/reach length) will be obtained with repeat intervals ranging from 2 to 

11 days depending on latitude. Furthermore, because SWOT will have two radar antennas the 

requirement of repeat-pass interferometry is overcome, thus allowing instantaneous acquisition 

of spatial fields of WSE, from which water surface slopes can also be derived. 

While global measurements of terrestrial WSE and water surface slope will have 

numerous scientific and practical applications, they do not represent direct measurements of river 

discharge (m
3
/s). Global knowledge of discharge would, for instance, greatly improve the ability 

to quantify the availability and fluxes of surface water, especially in remote or developing 

regions. However, unless the full channel bathymetry is either independently known or observed 

(i.e. the river dries up completely) at least once over the SWOT mission lifetime, the depth of 

river flow below the free-water surface remains unknown. This unknown flow depth is a critical 

obstacle to estimating river discharge from SWOT or other remotely-sensed measurements. 

 Attempts to estimate river depth from remotely sensed information are few in number. 

Several studies have exploited the attenuation of bottom reflectance in optical imagery to 

estimate river bathymetry [e.g. Legleiter et al., 2004, 2009; Marcus and Fonstad, 2008; Legleiter 

and Roberts, 2009], but spectral scattering from suspended sediment limits this approach to 
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clear, shallow streams where channel bottom reflectance is evident. Others have explored data 

assimilation techniques that combine simulated measurements of WSE with a hydrodynamic 

model to solve for depth and discharge simultaneously [e.g. Andreadis et al., 2007; Durand et 

al., 2008; Biancamaria et al., 2011]. However, this approach requires both implementation of a 

hydrodynamic model and a priori estimates of input variables such as channel bathymetry and 

roughness that are not commonly available. Another approach [Durand et al., 2010b] estimates 

stream depth using an algorithm based on Manning’s equation, but this approach assumes an 

unrealistic rectangular cross-section and requires independent estimation of the Manning’s 

roughness coefficient from ancillary data.  

 Few studies have explored this depth-estimation problem from a purely 

geomorphological standpoint. Using a large dataset compiled from U.S. Geological Survey 

cross-sections, Bjerklie [2007] developed a simple regression equation to estimate bankfull mean 

depth (dbf, the mean depth at bankfull discharge) from observed values of bankfull width and 

channel slope. This equation produced a large standard error of ~58%, leading the authors to call 

for “improved methods to estimate bankfull depth from observed variables” [Bjerklie, 2007].  

 One such method (for estimating river depth solely from remotely sensed measurements) 

is to exploit empirical relationships between co-varying, interrelated hydraulic variables (i.e. 

WSE and We), where stable relationships can be found, to estimate a third variable (i.e. 

unobservable flow depth). Identification of these empirical relationships has been a central theme 

in fluvial geomorphology for decades, both at single locations (called “at-a-station hydraulic 

geometry”) and between different locations (“downstream hydraulic geometry”) along a river. 

Classic hydraulic geometry (HG) theory describes the empirical relationships of width (w), depth 

(d), and velocity (v) with discharge (Q) expressed as the simple power functions w=aQ
b
, d=cQ

f
, 
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and v=kQ
m
, where a, b, c , f, k, and m are empirical constants unique to a particular river cross-

section and/or downstream locations [Leopold and Maddock, 1953]. Because Q=wdv, the 

exponents b, f, and m essentially describe the “trade-offs” between flow width, depth, and 

velocity (i.e. b+f+m=1), caused mainly by the shape of a stream channel at a given location. 

Where stable HG relationships exist, they form the basis for stream gage discharge estimates 

through construction of an empirical WSE-discharge relationship (rating curve) relating 

occasional in situ measurements of discharge to continuous measurements of WSE. For locations 

that are depth-sensitive (i.e. where changes in discharge are significantly accommodated by 

adjustments in flow depth) and flows are normally confined within the channel banks, WSE thus 

becomes a reliable proxy for discharge.  

Stable at-a-station HG relationships have long been identified in field measurements, and 

it now appears possible to also observe them from space [Smith and Pavelsky, 2008]. This 

suggests that remotely sensed WSE and We may be useful for estimating certain hydraulic 

properties of river channels. In principle, even discharge could be retrieved for a few specific 

locations (where in situ measurements could be simultaneously collected for calibration) but 

numerous studies have documented the highly variable nature of HG relationships along a river 

course [e.g. Leopold and Maddock, 1953; Richards, 1973; Knighton, 1975; Park, 1977] meaning 

that such functions, once derived, are non-transferable to other locations. A major uncertainty in 

adapting at-a-station HG to a remote sensing context is determining how HG relationships, 

normally derived for river cross-sections, are influenced by “reach-averaging” (i.e. spatial 

averaging over some planimetric river area, called reach length) that is necessary when using 

image data [Smith and Pavelsky, 2008]. SWOT retrievals of WSE, in particular, will be spatially 

averaged over reach lengths of tens to hundreds of meters in order to improve the precision of its 



6 
 

WSE retrieval [Durand et al., 2010a]. The implications of this amount of reach-averaging for 

deriving empirical HG relationships from geospatial data are not well understood, with very few 

studies examining this question to date [Stewardson, 2005; Smith and Pavelsky, 2008; Fonstad 

and Marcus, 2010]. 

Even at a single location, variability in HG relationships is common, particularly for high 

versus low-flow conditions [Lewis, 1966; Richards, 1976; Jowett, 1998]. Indeed, Lewis [1966] 

highlights the substantial “slope-breaks” in HG power-law relationships that often occur at low-

flows, suggesting that HG relationships calibrated at moderate-to-high flow levels can thus lead 

to large errors when extrapolated to low-flows. Instead of a single stable power law relating each 

hydraulic variable (i.e. w, d, and v) to discharge, his study found that in-channel HG relationships 

can often be described by two different functions, one for moderate-to-high flows and one for 

low-flows. Thus, from a remote sensing perspective, a We-WSE relationship derived from 

observations of moderate-to-high in-channel flows might be expected to lead to large errors 

when extrapolated to low-flows. Likewise, if a sensor could selectively observe the We-WSE 

relationship for low-flows, such measurements might provide more useful information for 

estimating unobserved hydraulic parameters (e.g. flow depth) than the same location imaged 

during high-flows. For those locations along a river where a stable low-flow relationship 

between WSE and We could be detected (through repeat-pass observations of WSE and We), this 

relationship could then be extrapolated to the unobserved portion of the river channel to estimate 

the minimum channel elevation (zmin) and mean flow depth (d). 

 The objective of this study is to explore the feasibility of estimating unobservable river 

depth d from remotely sensed measurements of water surface elevation WSE, cross-sectional 

flow width w, and effective width We alone. To do this, we generate synthetic values of WSE, 
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and w through data extraction from 1,495 field-surveyed cross-sections compiled for the Ganges-

Brahmaputra, Rio Grande, Illinois, and Upper Mississippi river systems, and WSE and We from a 

continuously gridded sonar-derived bathymetric dataset for an overlapping 62 km reach of the 

Upper Mississippi. For the Rio Grande and Upper Mississippi rivers, synthetic values of WSE 

and w are also generated using the Hydraulic Engineering Center – River Analysis System 

(HEC-RAS) version 4.1.0 (http://www.hec.usace.army.mil/software/hec-ras/) 1-D hydraulic 

model, developed and distributed by the U.S. Army Corps of Engineers (USACE), thus allowing 

the results to be presented as a function of flow exceedance probability [Dingman, 2002]. These 

generated datasets of WSE vs. w (or We) are then used to explore two simple methods for 

estimating d from remotely sensed width-WSE relationships. The Linear Method extrapolates 

observed width-WSE relationships to estimate d at locations where a strong linear correlation 

between these two variables is observed. The Slope-break Method, motivated by Lewis [1966], 

extrapolates low-flow width-WSE relationships to estimate d only at locations where two strong 

linear correlations are observed, one for moderate-to-high and one for low-flows. These two 

methods are assessed for both the prevalence (i.e. number) of locations that are useable and the 

quality of the derived depth estimates for each approach. Finally, the effects of reach-averaging 

are studied using the continuously gridded dataset for the upper Mississippi River, to evaluate 

the utility of spatially-averaged We-WSE relationships that would be detected by SWOT and 

other remote sensing approaches. 
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2. Methods 

2.1 Data and Study Areas 

 A total of 1,495 previously collected field-surveyed cross-sections and one continuous 

gridded bathymetric dataset were compiled from various sources for six tributary rivers of the 

Ganges-Brahmaputra system, Bangladesh [www.iwmbd.org], and reaches of the Rio Grande 

River, USA [Tetra Tech, 2005], Illinois River, USA [U.S. Army Corps of Engineers, 2004], and 

Upper Mississippi River, USA [U.S. Army Corps of Engineers, 2004]. Viewed collectively, these 

four study areas represent a wide range of rivers in terms of their size (~50 m - 18,000 m wide) 

and discharge (~1 m/s
3
 – 50,000 m/s

3
). The locations of the datasets and study areas are shown in 

Figure 1. 

 Each cross-section in the database consists of a transect of x and z values (distance 

perpendicular to the direction of flow and distance above sea level, respectively) surveyed at a 

particular location along the river. A total of 224 cross-sections were surveyed by the Institute of 

Water Modeling (IWM) along seven tributary rivers of the Ganges-Brahmaputra system (the 

Brahmaputra, Ganges, Jamuna, Padma, Surma, Upper Meghna, and Lower Meghna rivers) in 

Bangladesh. The Ganges-Brahmaputra river system constitutes one of the largest in the world, 

with a mean discharge on the order of 40,000 m
3
/s and channel widths >10 km in places. Much 

of this river system is anastomosing, with wide, multi-threaded channels interspersed with 

permanent and shifting islands. A total of 150 cross-sections were surveyed by Tetra Tech, Inc. 

along ~172 km of the Rio Grande River from the Caballo Dam in southern New Mexico to the 

American Dam near the U.S./Mexico border. This section of the Rio Grande is located in a semi-

arid environment, surrounded primarily by farmland, and is regulated by the upstream Caballo 
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Dam and reservoir. Mean discharge for this stretch of the Rio Grande is ~20 to 30 m
3
/s and 

channel widths range from ~30 to 130 m. A total of 482 cross-sections were surveyed by the 

USACE over ~338 km of the Illinois River. The Illinois lies in a relatively temperate climate, 

surrounded mostly by farmland, and regulated by a series of locks and dams. Mean discharge 

along this reach ranges from roughly ~280 m
3
/s upstream to 1000 m

3
/s downstream, with 

channel widths ranging from ~70 to 3,300 m. A total of 639 cross-sections were surveyed by the 

USACE over ~315 km of the Upper Mississippi upstream of its confluence with the Ohio River. 

The Upper Mississippi has a temperate climate, is surrounded largely by farmland, and is 

regulated by a series of locks and dams. Discharge along this reach averages between ~6,000 and 

7,000 m
3
/s and channel widths range from ~200 to 2,300 m. An overlapping, continuously 

gridded (5 x 5 m) bathymetric dataset, obtained primarily from depth soundings and 

supplemented with manual measurements using a calibrated sounding pole was also obtained for 

a ~62 km river reach of this river [http://www.umesc.usgs.gov/aquatic/bathymetry/ 

download.html]. This continuously gridded bathymetric dataset was adjusted to a constant 

reference water surface by the developers of the dataset, thus removing water surface slope while 

preserving the shape of the channel [http://www.umesc.usgs.gov/documents/bathymetry/ 

methods.pdf]. 

2.2 Extraction of Synthetic Width and WSE Values 

 Synthetic values of water surface width w (for cross-sections) and effective width We (for 

gridded Upper Mississippi data) and WSE were extracted to test two methods for estimating d. 

All cross-sectional and bathymetric data were read into Matlab® version R2010a for extraction 

of data values. Cross-sections near bridges or dams were excluded from analysis. These synthetic 

values of w, We, and WSE were generated in three ways as follows. 
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 For each of the 1,495 cross-sections, values of w and WSE were extracted as a function of 

channel depth, corresponding to percentages of bank-full depth dbf ranging from 100% to 5% in 

increments of 5%, with dbf visually determined at each cross-section by selecting the highest 

surveyed elevation that could be confidently determined as in-channel. At locations where 

multiple channels were encountered along the same surveyed transect (primarily along the 

anastomosing Ganges-Brahmaputra river system) their widths were summed together. These 

synthetic values of w and WSE allow for exploration of width-WSE relationships as a function of 

percentage channel exposure (i.e. the percentage of the channel at a given location that is 

exposed to a passing sensor over time). 

 To estimate the probability that the necessary channel exposures might actually occur 

over a typical 3-5 year satellite mission lifetime, a second dataset of synthetic width-WSE 

observations was generated using HEC-RAS to simulate real-world discharges along the Rio 

Grande and Upper Mississippi rivers. The necessary inputs and parameters were previously 

defined for these particular rivers by their respective developers [Tetra Tech, 2005; U.S. Army 

Corps of Engineers, 2004]. For the Upper Mississippi River, this modeling was restricted to the 

downstream 430 of 639 cross-sections owing to excessive influence of man-made structures on 

the HEC-RAS simulations. For each river, a range of steady-state flows ranging from 80% to 5% 

exceedance probability was simulated and the corresponding values of w, d, and WSE extracted 

from the surveyed cross-sections. These exceedance probabilities were determined using ten 

years (2001 – 2010) of daily discharge records from four USGS gaging stations along the Upper 

Mississippi River and one along the Rio Grande River (Figure 1).  

 Synthetic reach-averaged values of We and WSE were extracted from the Upper 

Mississippi bathymetric dataset in order to study the effects of reach-averaging on remotely 
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sensed hydraulic relationships. For ease of processing the gridded data were first discretized into 

12,788 5 m sections using the USACE HEC-GeoRAS extension for ArcGIS®. Each section thus 

represents the average bathymetry of a 5 m reach length. Synthetic measurements of We and 

WSE were then extracted from these 12,788 sections in much the same manner as for the cross-

section database, except the reference dbf was defined as the highest recorded elevation for each 

section instead of from visual inspection (unlike the surveyed cross-sections, the bathymetric 

data do not extend onto the river floodplain). Synthetic values of We and WSE were extracted 

from each section at water levels corresponding to percentages of dbf ranging from 100% to 5%, 

then spatially averaged for reach-lengths of 50 m, 100 m, 500 m, and from 1000 m to 10,000 m 

in increments of 1000 m. Unlike traditional surveyed cross-sections, these synthetic, reach-

averaged We and WSE values derived from continuous geospatial bathymetric data enable 

assessment of how spatial averaging of remotely sensed observations may influence hydraulic 

width-WSE relationships in natural river systems. 

2.3 Linear Method for Depth Estimation  

 The simplest method for estimating river depth from remotely sensed width and WSE is 

linear extrapolation of the empirical width-WSE relationship, constructed using all available 

observations acquired above the lowest observed water level (WSEmin). This assumes a fixed 

correlation between flow width and mean depth as would occur in a perfectly triangular cross-

section (Figure 2, top row). It is also analogous to the classic at-a-station HG assumption of a 

stable power-law relationship between any of w, d, v, with Q at a given cross-section, except a 

linear model is used owing to no incorporation of Q. 
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 To test this simplest approach, the derivatives of WSE with respect to w (dWSE/dw) were 

first calculated between all simulated in-channel water surfaces above a given WSEmin for each 

cross-section in the compiled database. Those locations where all observed values of dWSE/dw 

were within +/- 0.015 of each other were flagged. This value was chosen in order to select for 

locations with strongly correlated width-WSE relationships, while still retaining a sufficient 

number of cross-sections from the sample pool for which to estimate depth. For all locations 

satisfying this criterion (“optimal locations”), the mean of the derivatives of WSE with respect to 

w (         for all water surfaces above WSEmin was extrapolated to compute the minimum 

channel elevation (zmin), the elevation at which w=0. Next, zmin was subtracted from WSEmin to 

compute the maximum depth (dmax) then halved to compute an estimate of d (dest) (given the 

perfectly linear relationship between width and WSE that this method assumes, dest = dmax/2 for 

any given WSE). An example of an optimal location detected by the Linear Method is displayed 

in Figure 3.  

The Linear Method was tested for all cross-sections in the compiled database. For those 

cross-sections satisfying the algorithm’s linear fit requirement (optimal locations), the resultant 

depth estimates dest were compared with true d (for a given WSEmin) to assess the accuracy of this 

approach. Repeating this process for a range of possible WSEmin values (i.e. from 80% to 5% of 

dbf), reveals how width-WSE relationships may vary as a function of river channel exposure. 

2.4 Slope-break Method for Depth Estimation 

 An obvious limitation of the Linear Method is that hydraulic relationships determined at 

moderate-to-high flows are not always appropriate for low-flows, owing to hydraulic geometry 

“slope-breaks” described earlier [Lewis, 1966]. This suggests that restricting the described linear 
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extrapolation only to low-flow width-WSE relationships, if they can be clearly discerned from 

moderate-to-high flow width-WSE relationships, may improve the derived estimates of zmin and 

dest. To test this idea, a second depth-estimation algorithm was developed that selects for slope-

break locations only where a distinct low-flow width-WSE relationship can also be detected, and 

then extrapolated to estimate zmin and dest. This assumes two stable width-WSE relationships at a 

given location along a stream channel such as would occur in a trapezoidal channel (Figure 2, 

bottom row). In this context, “slope-break” refers to the break in slope of a line fit through a 

scatterplot of width vs. WSE at locations where two distinct hydraulic relationships exist (e.g. 

Figure 4). This slope-break defines the WSE at which the set of hydraulic relationships defined 

for moderate-to-high flows is replaced by a new set of hydraulic relationships defined for low-

flows.  

 For each cross-section along each river, dWSE/dw values were first calculated from each 

cross-section in the database for all synthetic water surfaces above a given WSEmin.         

was calculated from four of the highest water surfaces at each cross-section (the number of 

observations for calculating         was arbitrarily chosen; this value had little effect on the 

results) and was then used to compare each subsequent (i.e. at lower elevation) value of 

dWSE/dw. If a subsequent value of dWSE/dw deviated sufficiently from         (a dWSE/dw 

value <0.3*       ), the cross-section was flagged as having a slope-break. Otherwise, 

        was recalculated to include the subsequent value of dWSE/dw and the process 

continued until all values were compared. Note that the value 0.3, which defines the threshold for 

what constitutes a slope-break, was chosen through simple trial and error, but the value of this 

threshold did not have much effect on results. For cross-sections where a slope-break was 

detected, dest was only estimated at those locations where all values of dWSE/dw below the 
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slope-break and above WSEmin remained consistent with each other (i.e. within +/- .015, as for 

the Linear Method). Extrapolation of         to w=0 below this break was then used to 

estimate zmin and dest as before. An example of an optimal location detected by the Linear Method 

is displayed in Figure 4. 

The Slope-break Method was tested for all cross-sections in the compiled database. For 

those cross-sections satisfying the algorithm’s criteria (optimal locations) resultant values of dest 

were compared with true d (for a given WSEmin) to assess the accuracy of this approach. As with 

the Linear Method, this process was repeated for a range of possible WSEmin values (i.e. from 

80% to 5% of dbf), to assess how width-WSE relationships may vary as a function of river 

channel exposure. Results were compared with those of the Linear Method for each river (Figure 

7). This initial comparison of the two methods made clear that the Slope-break Method 

outperformed the Linear Method for all rivers, thus further testing was limited to the Slope-break 

Method alone. The Slope-break Method was further tested on HEC-RAS-generated water surface 

profiles for reaches of the Rio Grande and Upper Mississippi rivers. Finally, the Slope-break 

method was tested on synthetic measurements extracted from the Upper Mississippi gridded 

bathymetric dataset for a range of reach-averaging length scales. 

 

3. Results 

3.1 Depth Estimations from Exposed Channel Cross-sections Using the Linear Method  

 Depth estimation errors from testing the Linear Method on all 1,495 surveyed cross-

sections are plotted log-linearly in Figure 5 as a function of the percentage of channel exposed 

over time. Each blue symbol represents the standard error of the derived dest (percent error 
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relative to dbf) at a particular optimal location detected for a given percentage of channel 

exposure. The full range of standard errors in dest, depending on the percentage of channel 

exposure (20% - 95%), is 0.02 – 2163%, 0.02 – 4024%, 11 – 3768%, and 0.005 – 604% for the 

Upper Mississippi, Illinois, Rio Grande, and Ganges-Brahmaputra river systems, respectively. 

The root mean squared error (RMSE) for all optimal locations detected for a given percentage of 

channel exposure is plotted in red and ranges from 11 – 302%, 18 – 377%, 760 - 1288%, and 7 – 

109% for the Upper Mississippi, Illinois, Rio Grande, and Ganges-Brahmaputra river systems, 

respectively, depending on the percentage of channel exposure (20% - 95%). For all four river 

systems, both dest RMSE and the number of optimal locations detected tend to decrease with 

increasing channel exposure. The reasons for this are discussed in section 4. For example, at 20% 

channel exposure 942 (63%) of the total 1,495 cross-sections were detected as optimal locations, 

while only 166 (11%) were detected as optimal locations at 95% channel exposure. Optimal 

locations were detected at all levels of channel exposure (20% - 95%) for all rivers except the 

Rio Grande, for which optimal locations were only detected at levels of channel exposure <70%. 

Thus, there were no cross-sections along the Rio Grande where dWSE/dw values remained 

adequately stable for channel exposures exceeding ~70%.  

3.2 Depth Estimations from Exposed Channel Cross-sections Using the Slope-break 

Method 

 Depth estimation errors from testing of the Slope-break Method on all 1,495 cross-

sections are plotted in Figure 6 as a function of the percentage of channel exposed over time. The 

full range of standard errors in dest, depending on the percentage of channel exposure (20% - 

95%), is 0.004 – 51%, 0.03 – 46%, 0.05 – 15%, and 0.25 – 87% for the Upper Mississippi, 

Illinois, Rio Grande, and Ganges-Brahmaputra river systems, respectively. The RMSE for all 
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optimal locations detected for a given percentage of channel exposure ranges from 3 - 20%, 4 – 

35%, 2 - 8%, and 4 – 65%, for the Upper Mississippi, Illinois, Rio Grande, and Ganges-

Brahmaputra river systems, respectively, depending on the percentage of channel exposure (20% 

- 95%). For comparison, the number of optimal locations detected and the RMSE values for both 

methods (Linear and Slope-break) are plotted together in Figure 7. Note the sharply reduced 

RMSEs and range of dest errors for a given percentage of channel exposure produced by the 

Slope-break Method as compared with the Linear Method. As with the Linear Method, RMSE 

values tend to improve with increasing channel exposure for all four river systems. Unlike the 

Linear Method, however, the number of optimal locations detected tends to increase with 

increasing channel exposure. For example, at 20% channel exposure only 6 (0.4%) of the 1,495 

cross-sections were detected as optimal locations, whereas 242 (16%) were detected as optimal 

locations at 95% channel exposure. Optimal locations were detected at all levels of channel 

exposure (20% - 95%) for both the Upper Mississippi and Ganges-Brahmaputra rivers and at 

levels of channel exposure > 30% for the Illinois River, but >80% channel exposure was 

required to detect optimal locations along the Rio Grande River. Thus, the required percentage of 

channel exposure can vary widely between different river systems 

3.3 Depth Estimations Using the Slope-break Method and HEC-RAS Simulated Water 

Surface Profiles 

 HEC-RAS simulated water surface profiles enabled study of the likelihood of slope-break 

exposure given historic discharge statistics. Depth estimation errors from testing of the Slope-

break Method on HEC-RAS simulated water surface profiles for the Upper Mississippi and Rio 

Grande rivers are plotted in Figure 8 as a function of exceedance probability. The full range of 

standard errors in dest, depending on the percentage of channel exposure (20% - 95%), is .08 – 
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86% and .01 – 3.60% for the Upper Mississippi and Rio Grande rivers, respectively. The RMSE 

for all optimal locations detected for a given exceedance probability ranges from 20 – 31% and 

0.75 – 2.25% for the Upper Mississippi and Rio Grande rivers, respectively, depending on the 

exceedance probability value. While RMSE values tend to decrease with increasing exceedance 

probability (corresponding to increasing channel exposure) for the Rio Grande, a slight trend of 

increasing RMSE values with increasing exceedance probability is found for the Upper 

Mississippi. Optimal locations were detected along the Upper Mississippi for all tested 

exceedance probabilities (40 – 99%), while only for exceedance probabilities >58% for the Rio 

Grande River. Much like the previous tests on the Rio Grande and Upper Mississippi, the 

number of optimal locations detected tends to increase with increasing channel exposure for both 

rivers. For the Rio Grande, while only 2 (1.3%) of the 150 cross-sections were detected at 58% 

exceedance probability, 6 (4.0%) were detected at 90% exceedance probability. For the Upper 

Mississippi, 14 (3.3%) of 430 cross-sections were detected as optimal locations at 40% 

exceedance probability, while 42 (9.8%) were detected at 99% exceedance probability.  

3.4 Depth Estimations Using the Slope-break Method and Synthetic Reach-averaged 

Values of Width and WSE 

 The continuous bathymetric dataset obtained for the Upper Mississippi River enabled 

study of how dest values derived from geospatial data compare with those derived from surveyed 

transects. Depth estimation errors from testing of the Slope-break Method on synthetic reach-

averaged values of width (in this case We) and WSE for 62 km of the Upper Mississippi River are 

plotted in Figure 9 as a function of the percentage of channel exposure. A comparison of how 

these errors vary with reach-averaging length is plotted in Figure 10. Optimal slope-breaks were 

not detected at any level of channel exposure for reach-averaging lengths >7000 m. As before, 
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both RMSE values and the range of errors for individual cross-sections tend to decrease with 

increasing channel exposure for all reach-averaging lengths at which slope-breaks were detected. 

Likewise, the number of optimal locations for a given reach-averaging length tends to increase 

with increasing channel exposure, as shown in Figure 10. As reach-averaging length increases, 

the number of optimal locations for a given percentage of channel exposure decreases, and a 

greater percentage of channel exposure is required in order for optimal slope-breaks to be 

detected. RMSE values for a given percentage of channel exposure remain relatively consistent 

at all reach-averaging lengths up to ~2000 m, but tend to increase somewhat at longer lengths. 

However, the range of errors for all optimal locations detected at a given percentage of channel 

exposure tends to decrease consistently with increasing reach-averaging length. 

 

4. Discussion and Summary 

 The findings of this study suggest that remotely sensed measurements of river flow width 

and WSE alone may be useful for estimating river depth, at select locations, if a sufficient 

number of observations are accumulated so as to identify stable empirical correlations between 

the two variables. Because moderate-to-high-flow hydraulic relationships often do not extend to 

low-flows, a sufficient portion of a river channel’s bathymetry should be observed (i.e. WSE 

must fall to sufficiently low levels) in order to identify hydraulic relationships that can be 

usefully extrapolated to estimate depth. The minimum amount of channel exposure necessary for 

the method to work varies between rivers and for different locations along the same river. 

Testing of the Linear Method, for example, shows that simple linear extrapolation of We-

WSE relationships observed at moderate-to-high flows can lead to highly inaccurate depth 
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estimates. In contrast, testing of the Slope-break Method shows that extrapolation of low-flow 

We-WSE relationships at locations where two distinct hydraulic relationships can be detected 

(one for moderate-to-high and one for low-flows) can substantially reduce this error. Indeed, the 

Slope-break Method showed considerable improvement in depth estimation compared to the 

Linear Method for all four rivers at all levels of channel exposure (Figure 7).  

Although the Linear Method detected more “optimal” locations with lesser amounts of 

channel exposure as compared with the Slope-break Method, this seeming benefit is offset by 

considerably larger errors in the derived depth estimates. Indeed, as channel exposure increases 

the Linear Method detects fewer optimal locations, as many locations displaying “stable” w-WSE 

relationships at moderate-to-high flow are revealed to have unstable w-WSE relationships as 

more of the channel is exposed (e.g. Figure 4). While a simple linear w-WSE relationship was 

preserved throughout the entire range of possible WSEs for a small number of cross-sections, 

such locations could not be identified in practice unless the river channel becomes fully exposed 

(i.e. the river dries up) for at least one satellite overpass. Therefore, despite its apparent appeal of 

identifying numerous candidate locations with low amounts of channel exposure, the Linear 

Method’s overly simplistic geomorphic assumptions (i.e. triangular channel behavior) yield poor 

depth-estimation results. 

The Slope-break Method mitigates this weakness by selecting for locations where two 

linear trends in the width-WSE relationship are revealed instead of one. While still simplistic, this 

more closely reflects real-world “trapezoidal” channel geometries associated with cut banks and 

alluvial bar formation, as well as field-based geomorphic observations of high vs. low flow 

hydraulic geometries [e.g. Lewis, 1966; Richards, 1976; Jowett, 1998]. This also plausibly 

explains why the Slope-break method, in contrast to the Linear Method, tends to detect more 
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optimal locations with increasing channel exposure, because as WSE falls and submerged slope-

breaks are revealed such locations become qualified for the former and disqualified for the latter. 

The detection of numerous slope-breaks even with channel exposures as low as 20% (e.g. the 

Upper Mississippi and Ganges-Brahmaputra river systems, Figure 6), is somewhat surprising 

given that slope-breaks were initially assumed to occur only at low-flow WSEs. Nonetheless, the 

overall conclusion drawn is that the Slope-break Method detects fewer optimal locations as 

compared with the Linear Method, but produced substantially smaller errors.  

Reach-averaging of width and WSE reduces the variability in depth estimates for a given 

percentage of channel exposure (Figure 9), a finding which has positive implications for 

remotely sensed retrievals of depth. Reach-averaging does not appear to break down hydraulic 

relationships and may actually make them more robust by smoothing out much of the spatial 

variability in retrieved hydraulic variables. This acts to reduce the total number of slope-breaks 

detected by the Slope-break Method while increasing the robustness of those slope-breaks which 

are detected. That is, where slope-breaks are detected at longer reach-averaging lengths they 

persist for longer distances and are more reliable. This is apparent in Figure 9, where the 

magnitude and number of outliers and the range of depth estimate errors for a given level of 

channel exposure decrease drastically with increasing reach-averaging length. This finding 

agrees with Smith and Pavelsky [2008], who found that remotely sensed HG b-exponents 

reached stable values at reach-averaging lengths ~2-3 times the valley width. Indeed the best 

results for the Upper Mississippi occur at ~1000-2000 m reach-averaging lengths, which is 

roughly 2-3 times the mean bankfull channel width along this river reach.  

The improvements in depth estimation resulting from reach-averaging of hydraulic 

variables is especially promising in the SWOT context, given the improvement in its WSE 
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measurement precision associated with greater spatial averaging of the returned radar echoes. 

Furthermore, the HEC-RAS simulations performed here for the Rio Grande and Upper 

Mississippi rivers suggest that the temporal sampling of most spaceborne sensors, including the 

planned 2-11 day return interval of SWOT, is more than sufficient to observe necessary amounts 

of channel exposure during a 3-5 year mission lifetime. Even for the Slope-break Method, 

realistic HEC-RAS simulations of typical flows on the Upper Mississippi and Rio Grande rivers 

suggest that their water levels are commonly low enough to expose slope-breaks approximately 

60% and 42% of the time (Figure 8). Thus, the findings of this study suggest that useful depth 

retrievals can be obtained even given the spatial and temporal constraints of spaceborne 

observations.  

 This study was limited by the availability of adequate data used to generate synthetic 

water surface observations. Cross-sections only provide an approximation of remotely sensed 

measurements, and only at discrete and relatively sparse locations. Furthermore, the bathymetric 

data used in this analysis were constrained by the removal of WSE slope and lack of bankfull 

coverage. Even the Slope-break Method can produce sizable errors in dest, varying with both 

channel exposure and location (Figure 6). Furthermore, it is important to point out that neither 

method (Linear or Slope-break) can possibly produce continuous depth estimates everywhere 

along a river. Instead, they identify a small subset of ideal channel locations where simple, linear 

correlations exist between a river’s flow width and mean flow depth. Even spatially intermittent 

retrievals of depth, however, would be extraordinarily useful for estimating river discharge, 

either directly or through data assimilation into a hydrodynamic model. 

 Future work should include remotely sensed rather than modeled river width and WSE 

observations, particularly from AirSWOT (http://swot.jpl.nasa.gov/Airswot/), and further 
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exploration of the variability in remotely sensed hydraulic relationships for additional river 

types. Finally, while our approach requires no bathymetric or floodplain DEM, a thorough 

assessment of how SWOT (or other sensor) width and WSE measurement precisions would 

propagate further uncertainty to the derived depth estimates is warranted. 

Despite these limitations, this study presents the first known method for estimating river 

flow depth solely from SWOT observations of effective width and water surface elevation. Its 

preliminary findings suggest that satellite observations of incomplete hydraulic information can 

be useful for remote estimation of river depth, and that classic HG principles have renewed 

relevance through adaptation for remote sensing purposes. The intermittent depth-retrievals 

presented here may also be useful for data assimilation to hydrodynamic models to constrain 

depth estimates elsewhere along a river course. Its relative simplicity is much of its appeal, and 

strong potential exists for using this or a similar approach as a first order river depth estimator on 

a global scale from satellite observations. 
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Figures 

 

 

Figure 1. Location map of datasets and study areas. Cross-sectional data was attained for those river reaches 

highlighted in red. A black box highlights the ~62km reach of the Upper Mississippi for which gridded bathymetric 

data was acquired. Blue symbols mark the locations of USGS stream gages used for calculation of flow statistics. 

 

 

Figure 2. Two hypothetical cross-sections (left) and their respective plots of width vs. WSE for a range of 

hypothetical flow levels (right). While a single consistent width-WSE relationship exists for the triangular cross-

section, two distinct relationships, one for moderate-to-high-flows and one for low-flows, exists for the trapezoidal 

cross-section. 
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Figure 3. Example of an optimal location detected by the Linear Method. The in-channel width-WSE relationship 

remains relatively consistent with depth at this location, and thus if observed above any water level can be 

extrapolated to estimate zmin and d with reasonable accuracy. 

 

 

 

 

  
 
Figure 4. Example of an optimal location detected by the Slope-break Method. The cross-sectional geometry at this 

location results in a slope-break in the plot of width vs. WSE that separates two distinct in-channel width-WSE 

relationships, one for moderate-to-high flows and one for low-flows. If water levels are sufficiently low such that the 

slope-break is observable above the water surface (>=70% channel exposure required at this location), the low-flow 

width-WSE relationship can be extrapolated to estimate zmin and d with reasonable accuracy. 
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Figure 5. Results from testing of the Linear Method on synthetic values of w and WSE extracted from cross-section 

for four rivers. The standard error represents the percent error in dest relative to dbf. Each blue symbol represents the 

standard error at single optimal location detected at a given level of channel exposure. The RMSE for all estimates 

for a given percentage of channel exposure is plotted in red. In all four cases, errors tend to improve and the number 

of optimal locations detected tends to decrease with increasing channel exposure.  
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Figure 6. Results from testing of the Slope-break Method on synthetic values of w and WSE extracted from cross-

section for four rivers. The standard error represents the percent error in dest relative to dbf. In all four cases, errors 

tend to improve and the number of optimal locations detected tends to increase with increasing channel exposure.  
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Figure 7. Comparison of the number of optimal locations detected (left column) and RMSEs (right column) for the 

Linear Method (red) and Slope-break Method (blue). Note the opposite trends in the number of optimal locations 

detected by each method, and that the Slope-break Method performed better than the Linear Method at all level of 

channel exposure. 
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Figure 8. Results from testing of the Slope-break Method on simulated water surface observations modeled in HEC-
RAS for a range of exceedance probabilities (i.e. the percentage of days a given flow is exceeded over some period 
of time) along two rivers. The standard error represents the percent error in dest relative to dbf, Slope-breaks are 
detected at flow-levels which are exceeded 40% and 58% of the time for the Upper Mississippi and Rio Grande 
rivers, respectively.  
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Figure 9. Results from testing of the Slope-break Method on synthetic values of We and WSE extracted along the 
Upper Mississippi as a function of channel depth and spatially averaged over a range of reach lengths. The standard 
error represents the percent error in dest relative to dbf. RMSE values tend to decrease with increasing channel 
exposure at all reach-averaging lengths. The range of errors for a given percentage of channel exposure decreases 
drastically with increasing reach-averaging length due to the decrease in spatial variability resulting from spatial 
averaging. 
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Figure 10. The percentage of cross-sections detected as optimal locations by the Slope-break Method (left) and the 
RMSEs for depth estimates (right) as they vary with percentage of channel exposure for a range of reach-averaging 
lengths. The percentage of cross-sections detected as optimal locations tends to increase with increasing channel 
exposure but decrease with increasing reach-averaging length. RMSE values for dest tend to decrease with increasing 
channel exposure; they remain fairly consistent up to reach-averaging lengths of 2000 m (except at 45% channel 
exposure), but tend to increase at longer reach-averaging lengths. 
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Appendix A: Datasets Used in Study 

 

Ganges-Brahmaputra River System Cross-section Dataset 

 Cross-sections were surveyed by the Institute of Water Modeling (IWM) – Bangladesh 

(www.iwmbd.org) in 2005 and made available through a five-year MOU between the IWM and 

Tennessee Technical University (TTU) [provided by Faisal Hossain (TTU) for the purposes of 

this study]. A total of 226 cross-sections for 7 tributaries of the Ganges-Brahmaputra river 

system (the Brahmaputra, Ganges, Jamuna, Padma, Surma, Upper Meghna, and Lower Meghna 

rivers) were acquired as a text file in HEC-RAS geometry format, as a series of point-transects 

along the rivers.  

 

Rio Grande River Cross-section Dataset 

 Cross-sections were surveyed by Tetra Tech Inc. from 2004 to 2005 in coordination with 

the USACE and International Boundary and Water Commission (IBWC) as part of the Rio 

Grande Canalization Project (RGCP) [provided by Edward Beighley (FM Global) for the 

purposes of this study]. A total of 150 cross-sections were acquired as a text file in HEC-RAS 

geometry format, as a series of point-transects along the river. The documentation for data 

collection can be found in a report titled “FLO-2D Model Development Below Caballo Dam 

URGWOM” (ftp://63.96.218.8/FLO2D_RGCP_RptOnly.pdf). 

 

Upper Mississippi and Illinois Rivers Cross-section Datasets 

 Cross-sections were surveyed by the USACE as part of the Upper Mississippi River 

System Flow Frequency Study [provided by Edward Beighley (FM Global) for the purposes of 

this study]. A total of 639 cross-sections for the Upper Mississippi River and 482 cross-sections 

for the Illinois River were acquired as a text file in HEC-RAS geometry format, as a series of 

point-transects along the river. 

 

Upper Mississippi Gridded Bathymetric Dataset 

 Bathymetric data was surveyed and developed by the USGS over many years starting in 

1989 as part of the Long Term Resource Management Project (LTRMP) for the Upper 

Mississippi river system. This data was acquired primarily from depth-soundings/chart 

recordings in coordination with a land-based GPS positioning system and augmented by manual 

measurements using a calibrated sounding pole where necessary (due to complications with 

shallow using the boat-based depth-sounder in shallow waters). The documentation and data can 

be downloaded from http://www.umesc.usgs.gov/ltrmp.html.  
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Appendix B: Matlab Code for Linear Method and Slope-break Method 

 

Linear Method 

clear all; close all; clc 

pcmac = 1; 

river = 1; 

para1 = .015; 

[D,RS,W,h,npro,nsta,wh,zmin,hb,Db,Wb] = load_output(pcmac,river); 

for lf = 4:npro-1 

    flagxs = zeros(1,1); 

    count = 1; 

    for i = 1:nsta 

        for ii = 2:lf 

            if wh(i,ii)>=wh(i,ii-1)-para1 && wh(i,ii)<=wh(i,ii-1)+para1,  

                if ii==lf, flagxs(count)=i; count=count+1; end 

            else 

                break;  

            end 

        end 

    end 

    if length(flagxs)==1 && flagxs==0, Derror(1,lf-3)=NaN; RMSE_Derror(lf-3)=NaN;  

        num_xs(lf-3)=NaN; perc_xs(lf-3)=NaN; continue; end 

    meanwh = zeros(1,1); 

    Derror1 = zeros(1,1); 

    for i = 1:length(flagxs) 

        xs(i,lf-3) = flagxs(i); 

        meanwh = mean(wh(flagxs(i),1:lf)); 

        Dest(i,lf-3) = (h(flagxs(i),lf+1) - (h(flagxs(i),lf+1) - W(flagxs(i),lf+1)*meanwh))/2; 

        Dtrue(i,lf-3) = D(flagxs(i),lf+1); 

        Ddiff(i,lf-3) = Dest(i,lf-3)-Dtrue(i,lf-3); 

        Derror(i,lf-3) = (abs(Ddiff(i,lf-3))/Db(flagxs(i)))*100; Derror1(i) = (abs(Ddiff(i,lf-3))/Db(flagxs(i)))*100; 

    end    

    SE = Derror1.^2; 

    RMSE_Derror(lf-3) = sqrt(sum(SE)/length(SE)); 

    num_xs(lf-3) = length(flagxs); 

    perc_xs(lf-3) = (num_xs(lf-3)/nsta)*100; 

end 

xs(xs==0)=NaN; Dest(Dest==0)=NaN; Dtrue(Dtrue==0)=NaN; Ddiff(Ddiff==0)=NaN; Derror(Derror==0)=NaN; 

Ddiff=fliplr(Ddiff); Derror=fliplr(Derror); Dest=fliplr(Dest); Dtrue=fliplr(Dtrue); 

RMSE_Derror=fliplr(RMSE_Derror); num_xs=fliplr(num_xs); xs=fliplr(xs); perc_xs=fliplr(perc_xs); 

if river==1, fname = 'zz_results_method1_Rio.mat'; end; if river==2, fname = 'zz_results_method1_Miss.mat'; end 

if river==3, fname = 'zz_results_method1_Ill.mat'; end; if river==4, fname = 'zz_results_method1_Bang.mat'; end 

save(fname, 'Derror','RMSE_Derror','xs','num_xs','perc_xs','Dest','Dtrue','Ddiff');  

fig1 = figure; ss = get(0,'ScreenSize'); set(fig1,'Position',[ss(1) ss(2) ss(3) ss(4)]) 

p1 = semilogy(Derror','+b','MarkerSize',38); 

hold on 

p2 = semilogy(RMSE_Derror,'.r','MarkerSize',70); 

% if river==1, t=title(' Rio Grande ', 'FontSize', 42); end; if river==2, t=title(' Upper Mississippi ', 'FontSize', 42); end;  

% if river==3, t=title(' Illinois ', 'FontSize', 42); end; if river==4, t=title(' Ganges-Brahmaputra ', 'FontSize', 42); end; 

% set(t,'Position',[8.5,2700,0]); 

% xlabel('Channel Exposure (%)','FontSize',42) 

% ylabel('Error Relative to D_b_f (%)','FontSize',42) 

leg = legend([p1(end) p2(end)],'Optimal Location','RMSE','Location','NorthWest'); 

set(leg,'Fontsize',30) 

xlim([0 npro-3]) 

ylim([10^-2 10^4]) 

set(gca,'XTick',1:1:npro-4); set(gca,'XTickLabel',95:-5:20); set(gca,'FontSize',32); 
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Slope-break Method 
 

clear all; close all; clc; tic 

pcmac = 2;                  % pc=1, mac=2 

river = 1;                  % 1=rio; 2=upper_miss; 3=bangladesh; 4=Illinois; 5=LTRMP_upper_miss  

initial_flows = 3;          % number of flows to take average wh from 

plot_yn = 1; plottype = 2;  % plot_yn: 1=yes, 0=no;  plottype: 1:% BF WSE/W 2=HEC WSE/W (for Rio and Miss) 

save_vars = 1;              % 1=yes; 0=no; 

threshold = .3; 

consistency = .015;  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

% for resample_length = [5 50 100 500 1000:1000:10000] 

% clearvars -except pcmac river initial_flows nflows plot_yn save_vars threshold consistency resample_length 

% [D,Q,RS,W,h,npro,nsta,wh,zmin,hb,Db,Wb] = load_resample(pcmac,resample_length);      

if river~=5, [D,RS,W,h,npro,nsta,wh,zmin,hb,Db,Wb] = load_output(pcmac,river); end 

nflows = npro-initial_flows-1;                                                                                         

for flow=1:nflows       

    lowflow = npro-flow; 

    [test1,zmin_guess,flag_xs,flag_pro] = flag(npro,nsta,W,h,wh,lowflow,initial_flows,threshold,consistency); 

    if test1==1, continue, end 

     [test2,xs,pro,depth_guess] = refine_guesses(h,lowflow,flag_xs,flag_pro,zmin_guess); 

    if test2==1, continue, end 

    num_xs(flow) = length(depth_guess); perc_xs(flow) = (num_xs(flow)/nsta)*100;   

    for i = 1:length(depth_guess) 

        D_true(i,flow)=D(xs(i),lowflow+1); Db_true(i,flow)=Db(xs(i));  

        flagxs(i,flow)=xs(i); D_est(i,flow)=depth_guess(i);       

    end 

    parameters(1,flow)=threshold; parameters(2,flow)=consistency; 

end 

flagxs(flagxs==0)=NaN; D_est(D_est==0)=NaN; D_true(D_true==0)=NaN; Db_true(D_true==0)=NaN;   

[D_diff,RMSE_diff,D_error,RMSE_error,AME,AMedE] = errors(river,D_est,D_true,Db_true); 

if save_vars==1 

    if river==5, fname = ['results_LTRMP_', num2str(resample_length), 'm', '.mat']; 

    else if river==1, fname = 'zHEC_results_Rio.mat'; end; if river==2, fname = 'zHEC_results_Miss.mat'; end 

         if river==3, fname = 'results_Ill.mat'; end; if river==4, fname = 'results_Bang.mat'; end 

    end 

        save(fname, 'river','initial_flows','nflows','flagxs','num_xs','perc_xs','parameters',... 

            'D_true','Db_true','D_est','D_diff','RMSE_diff','D_error','RMSE_error','AME','AMedE');  

end 

if plot_yn==1, Plot_Est(pcmac,river,npro,flagxs,D_diff,AME,AMedE,RMSE_diff,D_error,RMSE_error,plottype); end 

toc 

%end 

 

% pcmac; 1=PC; 2=Mac 

% river 1=Rio Grande; 2=Upper Mississippi; 3=Illinoi;; 4=Bangladesh; 5=LTRMP 

function [D,RS,W,h,npro,nsta,wh,zmin,hb,Db,Wb,x,z] = load_output(pcmac,river) 

HECyn = 0; 

if pcmac == 1 

    if HECyn==1 

        if river == 1, load('C:\Users\mmersel\Documents\My 

Dropbox\Research\Matlab\Depth_estimation\Outputs\Rio_output_HECEP.mat'); x=NaN; z=NaN; end 

        if river == 2, load('C:\Users\mmersel\Documents\My 

Dropbox\Research\Matlab\Depth_estimation\Outputs\Miss_output_HECEP.mat'); x=NaN; z=NaN; end 

    else 

        if river == 1, load('C:\Users\mmersel\Documents\My 

Dropbox\Research\Matlab\Depth_estimation\Outputs\Rio_output.mat'); end 

        if river == 2, load('C:\Users\mmersel\Documents\My 

Dropbox\Research\Matlab\Depth_estimation\Outputs\Miss_output.mat'); end 

    end 

    if river == 3, load('C:\Users\mmersel\Documents\My Dropbox\Research\Matlab\Depth_estimation\Outputs\Ill_output.mat'); 

end 

    if river == 4, load('C:\Users\mmersel\Documents\My 
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Dropbox\Research\Matlab\Depth_estimation\Outputs\Bang_output.mat'); end 

    if river == 5, load('C:\Users\mmersel\Documents\My 

Dropbox\Research\Matlab\Depth_estimation\Outputs\LTRMP_resample.mat'); end    

end 

if pcmac == 2 

    if HECyn==1 

        if river == 1, load('/Users/MKMersel/Dropbox/Research/Matlab/Depth_estimation/Outputs/Rio_output_HECEP.mat'); 

x=NaN; z=NaN; end 

        if river == 2, load('/Users/MKMersel/Dropbox/Research/Matlab/Depth_estimation/Outputs/Miss_output_HECEP.mat'); 

x=NaN; z=NaN; end 

    else 

        if river == 1, load('/Users/MKMersel/Dropbox/Research/Matlab/Depth_estimation/Outputs/Rio_output.mat'); end 

        if river == 2, load('/Users/MKMersel/Dropbox/Research/Matlab/Depth_estimation/Outputs/Miss_output.mat'); end 

    end 

    if river == 3, load('/Users/MKMersel/Dropbox/Research/Matlab/Depth_estimation/Outputs/Ill_output.mat'); end 

    if river == 4, load('/Users/MKMersel/Dropbox/Research/Matlab/Depth_estimation/Outputs/Bang_output.mat'); end 

    if river == 5, load('/Users/MKMersel/Dropbox/Research/Matlab/Depth_estimation/Outputs/LTRMP_resample.mat'); end 

end 

end 

 

%flag cross-sections that meet criteria 

function [test1,zmin_guess,flag_xs,flag_pro] = flag(npro,nsta,W,h,wh,lowflow,initial_flows,threshold,consistency) 

flag_xs = zeros(1,1); flag_pro = zeros(1,1); zmin_guess = zeros(1,1); xs = zeros(1,1); pro = zeros(1,1); 

for iiii=1 

    wh_init = mean(wh(:,1:initial_flows),2); 

    % select cross-sections with significant break in wh 

    count = 1; 

    for i = 1:nsta 

        for ii = (initial_flows+1):lowflow 

            if wh(i,ii) < threshold*wh_init(i) 

                xs(count) = i; 

                pro(count) = ii; 

                count = count+1; 

                break 

            else 

                wh_init(i) = mean(wh(i,1:ii)); 

            end 

        end 

    end 

    % if no XS are flagged, break out 

    test1 = 0;  

    fxs = xs; 

    if length(fxs(fxs~=0))==0    %#ok<ISMT> 

        test1 = 1; break 

    end 

    % select cross-sections with consistent dh/dw after break 

    count = 1; 

    for i = 1:length(xs) 

        marker = 0;  

        for ii = 1:(npro-pro(i)-1) 

            if wh(xs(i),pro(i)+ii)>=wh(xs(i),pro(i))-consistency &&... 

               wh(xs(i),pro(i)+ii)<=wh(xs(i),pro(i))+consistency 

                marker = 1; 

            else 

                marker = 0; 

                break 

            end 

            if ii == npro-pro(i)-1 && marker==1 

                flag_xs(count,1) = xs(i); 

                flag_pro(count,1) = pro(i)+1; 

                mean_wh(count,1) = mean(wh(xs(i),pro(i):lowflow)); 

                count = count+1; 
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            end 

        end 

    end 

    % if no XS are flagged, break out 

    test1 = 0; 

    fxs = flag_xs; 

    if length(fxs(fxs~=0))==0         %#ok<ISMT> 

        test1 = 1; break 

    end 

    % guess zmin 

    zmin_guess = h(flag_xs,lowflow+1) - W(flag_xs,lowflow+1) .* mean_wh; 

end 

end 

 
function [test2,xs,pro,D_est] = refine_guesses(h,lowflow,flag_xs,flag_pro,zmin_guess) 

D_est = zeros(1,1); 

D_init = (h(flag_xs,lowflow+1)-zmin_guess)./2; 

xs = zeros(1,1); 

pro = zeros(1,1); 

count = 1; 

for i = 1:length(D_init) 

    if D_init(i)<(mean(D_init)+.25*std(D_init)) %&& D_init(i)>0 

        xs(count,1) = flag_xs(i,end); 

        pro(count,1) = flag_pro(i,end); 

        D_est(count,1) = D_init(i,1); 

        count = count+1; 

    end 

end     

test2 = 0; 

if length(xs(xs~=0))==0, test2 = 1; end 

end 

 

function [D_diff,RMSE_diff,D_error,RMSE_error,AME,AMedE] = errors(river,D_est,D_true,Db_true) 

D_diff = D_true - D_est; 

for i = 1:length(D_diff(1,:)) 

    AME(i) = mean(abs(D_diff(isnan(D_diff(:,i))==0,i))); 

    AMedE(i) = median(abs(D_diff(isnan(D_diff(:,i))==0,i)));  

end 

for i = 1:length(D_diff(1,:)) 

    SE = D_diff(:,i).^2; 

    SE = SE(isnan(SE)==0); 

    RMSE_diff(1,i) = sqrt(sum(SE)/length(SE)); 

    clear SE 

end 

for i = 1:length(D_diff(1,:)) 

    D_error = (abs(D_diff)./Db_true)*100; 

end  

for i = 1:length(D_error(1,:)) 

    SE = D_error(:,i).^2; 

    SE = SE(isnan(SE)==0); 

    RMSE_error(1,i) = sqrt(sum(SE)/length(SE)); 

    clear SE 

end 

end 
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