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Abstract 

Given the global challenges of security, both in physical and 
cyber worlds, security agencies must optimize the use of their 
limited resources. To that end, many security agencies have 
begun to use "security game" algorithms, which optimally plan 
defender allocations, using models of adversary behavior that 
have originated in behavioral game theory. To advance our 
understanding of adversary behavior, this paper presents 
results from a study involving an opportunistic crime security 
game (OSG), where human participants play as opportunistic 
adversaries against an algorithm that optimizes defender 
allocations. In contrast with previous work which often 
assumes homogeneous adversarial behavior, our work 
demonstrates that participants are naturally grouped into 
multiple distinct categories that share similar behaviors.  We 
capture the observed adversarial behaviors in a set of diverse 
models from different research traditions, behavioral game 
theory, and Cognitive Science, illustrating the need for 
heterogeneity in adversarial models. 

Keywords: Human Behavioral Modeling, Opportunistic 
Security Game, Cognitive Models, Heterogonous Adversaries  

Introduction 

Given the global challenges of security, optimizing the use 

of limited resources to protect a set of targets from an 

adversary has become a crucial challenge. In terms of 

physical security, the challenges include optimizing security 

resources for patrolling major airports or ports, screening 

passengers and cargo, scheduling police patrols to counter 

urban crime (Tambe 2011; Pita et al., 2008; Shieh et al., 

2012). The challenge of security resource optimization 

carries over to cybersecurity (Gonzalez, Ben-Asher, 

Oltramari & Lebiere, 2015), where it is important to assist 

human administrators in defending networks from attacks. 

In order to build effective defense strategies, we need to 

understand and model adversary behavior and defender-

adversary interactions. For this purpose, researchers have 

relied on the insights from Stackelberg Security Games 

(SSGs) to provide ways to optimize defense strategies 

(Korzyk, Conitzer, & Parr, 2010; Tambe, 2011). SSGs model 

the interaction between a defender and an adversary as a 

leader-follower game (Tambe 2011). A defender plays a 

particular defense strategy (e.g., randomized patrolling of 

airport terminals) and then the adversary takes an action after 

having observed the defender’s strategy. Past SSG research 

often assumed a perfectly rational adversary in computing the 

optimal defense (mixed or randomized) strategy. Realizing 

the limitation of this assumption, recent SSG work has 

focused on bounded rationality models from behavioral game 

theory, such as the Quantal Response behavior model 

(McFadden 1976, Camerer 2003), but typically a 

homogeneous adversary population is assumed, and a single 

adversary behavior model is prescribed (Kar et al., 2015). 

In contrast to this previous work which often assumes a 

homogeneous adversary population with a single behavioral 

model, this paper focuses on the heterogeneity in adversary 

behavior. Our results are based on the study conducted in 

Opportunistic Security Games (OSGs). In that experiment, 

(Abbasi et al., 2015) evaluated behavioral game theory 

models assuming a homogeneous adversary population. 

However, our results show that adversaries can be naturally 

categorized into distinct groups based on their attack patterns. 

For instance, while one group of participants (about 20% of 

the population) is seen to be highly rational and taking reward 

maximizing action, another group (nearly 50%) is seen to act 

in a completely random fashion. We show through 

experiments that considering distinct groups of adversaries 

leads to interesting insights about their behavioral model, 

including the defender strategies being generated based on 

the learned model. 

There are two strands of previous work related to this 

paper. First, in behavioral game theory models in security 

games, mostly homogenous adversary models have been 

studied, but some recent research has considered the 

heterogeneity of human adversarial behavior. They have 

achieved it by either assuming a smooth distribution of the 

model parameters for the entire adversary population (Yang 

et al., 2014), such as a normal distribution or by utilizing a 

single behavioral model for each adversary (Haskell et al., 

2014; Yang et al., 2014). However, they have not categorized 

the adversaries into distinct groups based on their attack 

patterns. In this paper, we show that adversaries can be 

categorized into multiple distinct groups, and each such 

group can be represented by distinct degrees of rationality.  

The second strand of related work is with respect to the 

exploration of available options, which is an important aspect 

of decision making in many naturalistic situations (Pirolli & 

Card, 1999; Todd, Penke, Fasolo, & Lenton, 2007; Gonzalez 

& Dutt, 2011). In line with previous work (Hills & Hertwig, 

2010; Gonzalez & Dutt, 2012), in this paper, we show that 

there is a negative relationship between exploration behavior 

and maximization of rewards. However, in their work, they 

did not contrast behavioral models with cognitive models and 

did not provide insights for behavioral game theory models 

which we provide. In particular, we study the relationship 

between exploration and human reward maximization 

behavior by parameters of bounded rationality models of 
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human adversaries. Our observations are also with respect to 

the security games domain where this kind of relationship 

between exploration behavior and maximization of rewards 

has not been studied before. Furthermore, in our work 

participants were shown all relevant information, such as 

rewards about all the alternative choices, while in earlier 

work participants had to explore and collect information 

about various alternatives. 

To model the different categories of human behavior, we 

provide a family of behavioral game theory and cognitive 

models. In behavioral game theory models, we have explored 

models such as the popular Quantal Response (McKelvey & 

Palfrey 1995) and the Subjective Utility Quantal Response 

models (Nguyen et al., 2013). These models have been shown 

to successfully capture human rationality in decision making 

in the security games domain (Tambe, 2011). In addition, 

based on the tradition of Cognitive Science, we use a model 

derived from a well-known cognitive theory, the Instance-

Based Learning Theory (IBLT) (Gonzalez, Lerch, & Lebiere, 

2003), developed to explain human decision making behavior 

in dynamic tasks and used to detect adversarial behaviors 

(Ben-Asher, Oltramari, Erbacher & Gonzalez, 2015). This is 

the first such use of cognitive models in security games. In 

summary, in this paper we build on the existent literature of 

security games and adversary behavior modeling by: (i) 

investigating the heterogeneity of adversarial behavior in an 

experimental study designed for OSGs, by categorizing 

adversaries into groups based on their exploration patterns; 

(ii) comparing computational models and showing the impact 

of heterogeneity on future behavior prediction; and (iii) 

showing the impact of considering heterogeneity on the 

defender strategies generated. 

A behavioral study in an OSG 

To collect data regarding adversarial behavior from playing 

an OSG repeatedly, we used data collected from experiments 

by (Abbasi et al., 2015) using a simulation of urban crime in 

a metro transportation system with six stations (Figure 1).  

Methods 

Game Design. The players’ goal is to maximize their score 

by collecting rewards (represented by stars in Figure 1) while 

avoiding officers on patrol. Each player can travel to any 

station, including the current one, by train as represented by 

the dashed lines in Figure 1. 

There are two moving officers, each protecting three 

stations. The probability of their presence at each station or 

route, i.e. patrolling strategy, is determined beforehand using 

an optimization algorithm similar to the one presented in 

(Zhang et al., 2014). The algorithm optimizes defender 

strategies given an opportunistic adversary behavior model.  

The stationary coverage probabilities for each station and 

trains are revealed to the players. This means that players can 

see the percentage of the time that officers spend on average 

at each station and on the train, so they can determine the 

chance of encountering an officer at a station. However, 

during the game, the players cannot observe where officers 

are actually located unless they encounter the officer at a 

station. 

The game can finish either if the player uses up all the 100 

units of available time in each game, or the game is randomly 

terminated after a station visit, which may happen with a 10% 

probability after each station visit. The random termination 

encourages players to choose each action carefully, as there 

is a chance the game may terminate after each visit.  

The player’s objective is to maximize his total reward in 

limited time. Players must carefully choose which stations to 

visit, considering the available information about rewards, 

officers’ coverage distribution on stations and time to visit 

the station. 

Procedures. Each participant played eight games in total; 

starting with two practice rounds to become familiar with the 

game, followed by two validation rounds (two simple 

versions of the main games), in which the participants were 

presented with obvious choices to confirm they understood 

the rules and game’s objective, and finally, four main games 

from which we collect and use the data for our analyses. To 

ensure that the collected data is independent of the graph 

structure, the four main games were played on four different 

graphs, presented in a random order to the participants. Each 

graph had six stations with a different route structure and 

patrolling strategy.  

Participants. The participants were recruited from 

Amazon Mechanical Turk. They were eligible if they had 

previously played more than 500 games and had an 

acceptance rate of minimum 95%. To motivate the subjects 

to participate in the study, they were rewarded based on their 

total score ($0.01 for each gained point) in addition to a base 

compensation ($1). In total, 70 participants took part in the 

 

Figure 1. Game Interface 
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game and went through a validation test. Data from 15 

participants who did not pass validation were excluded.  

Human Adversarial Behavior 

Using data from all the main games, Figure 2 illustrates the 

distribution of attacks (i.e., moves) from all participants 

(black bars) on stations ranked by the participants’ expected 

utility (average earning per time)1, as well as attacks of five 

randomly selected individuals (P1 to P5). To normalize the 

utility scores among graphs, we have used the ranking of 

stations’ utility (utility rank) instead of its absolute value (the 

highest utility in a graph is ranked 1). The graph illustrates 

significant heterogeneity behavior among individuals (line 

charts), and comparison to the average behavior (bar chart). 

Given this heterogeneous behavior, we have applied the 

Hierarchical Clustering algorithm (Johnson, 1967) on 

different features related to an individuals’ exploration 

behavior and found that mobility score was the best feature to 

cluster the participants. The mobility score is a measure of 

exploration: it is a ratio of the number of movements between 

stations over the number of trials (total number of 

movements) by a participant in the game. Figure 5: % of 

participants based on the Mobility Score 

 shows the distribution of participants based on their 

mobility score for each graph. The mobility score varied 

widely (0% to 100%) with a significant proportion of 

participants at the two extremes. Informally, the exploration 

behavior seems to fall into three categories: (i) those who did 

no exploration; (ii) those who always explored and (iii) those 

who engaged in a middling level of exploration. Indeed, the 

clustering algorithm resulted in three groups of participants: 

participants whose mobility score is less than 10% belong to 

Cluster1, participants with 10% to 80% mobility score belong 

to Cluster2, and participants whose mobility score is greater 

than 80% belong to Cluster3. 

 

 
 

Figure 5: % of participants based on the Mobility Score 

                                                           
1 𝐸𝑈 =  (1 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) ∗ 𝑟𝑒𝑤𝑎𝑟𝑑/  𝑡𝑖𝑚𝑒 

 

Figure 3 shows the percentage of participants belonging to 

each cluster for four different graphs (Graph 1 to Graph 4). 

The percentage of participants belonging to each cluster is 

nearly consistent across all graphs: approximately, 20% in 

Cluster1, 30% in Cluster2 and 50% in Cluster3.  

In Figure 4, using the data from all the graphs per cluster, 

we show the distribution of utility ranks for each of the three 

clusters. Interestingly, mobility scores were highly correlated 

with the utility ranks of the attacked stations (𝑅2 = .85 & 𝑝 < 

.01). We observe that participants in Cluster1 (the lowest 

mobility scores), attacked stations with the highest utility 

(average utility rank of 1.04). In contrast, participants in 

Cluster3 (the highest mobility score), attacked stations that 

varied more widely in the utility rank (average utility rank of 

3.3). Participants in Cluster2 also attacked a variety of 

stations but were leaning (on average) towards higher utility 

rank stations (average utility rank of 1.7). These observations 

provide interesting insights for building defender strategies, 

as illustrated in Section Model Results. 

Models of Adversarial Behavior in OSG 

In what follows, we present a series of models that have been 

proposed recently to represent adversarial behavior. 

Quantal Response Model (QR) 

Quantal Response models the bounded rationality of a human 

player by capturing the uncertainty in the decisions made by 

the player (McKelvey & Palfrey 1995; McFadden 1976). 

Instead of maximizing the expected utility, QR posits that the 

decision-making agent chooses an action that gives high 

expected utility, with probability higher than another action 

which gives a lower expected utility. In the context of OSG, 

given the defender’s strategy 𝑠 (e.g., stationary coverage 

probability at station 𝑖 (𝑠𝑖) shown in Figure 1), the probability 

of the adversary choosing to attack target 𝑖 when he is in 

target 𝑗 and when the defender’s coverage is 𝑠, 𝑞𝑖,𝑗(𝑠), is 

given by the following equation: 

𝑞𝑖,𝑗(𝑠) =  
𝑒𝜆 ∗ 𝐸𝑈𝑖,𝑗(𝑠)

∑ 𝑒𝜆 ∗ 𝐸𝑈(𝑘,𝑗)(𝑠)
1≤𝑘≤6

 

where 𝜆 is his degree of rationality and 𝐸𝑈𝑖,𝑗(𝑠) is the 

expected utility of the adversary as given by: 

𝐸𝑈𝑖,𝑗(𝑠) =
𝑟𝑖

𝑡𝑖𝑚𝑒 (𝑖, 𝑗)
∗ (1 − 𝑠𝑖) 
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Figure 4: Utility Rank by Cluster 
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where 𝑟𝑖 is the number of stars at station 𝑖, 𝑡𝑖𝑚𝑒 (𝑖, 𝑗) refers 

to time taken to attack station 𝑖 when player is in station 𝑗 

Subjective Utility Quantal Response (SUQR) 

The SUQR model combines two key notions of decision 

making: Subjective Expected Utility, SEU, (Fischhoff et al., 

1981) and Quantal Response; it essentially replaces the 

expected utility function in QR with the SEU function 

(Nguyen et al., 2013). In this model, the probability that the 

adversary chooses station 𝑖 when he is at station j, when the 

defender’s coverage is 𝑠, is given by 𝑞𝑖,𝑗(𝑠). 𝑆𝐸𝑈𝑖,𝑗 (𝑠) is a 

linear combination of three key factors. The key factors are 

(a) 𝑟𝑖, (b) 𝑠𝑖, and (c) 𝑡𝑖𝑚𝑒𝑖,𝑗, 𝑤 = <𝑤𝑟 , 𝑤𝑠𝑡𝑎, 𝑤𝑡𝑖𝑚𝑒 > denotes 

the weights for each decision making feature: 

𝑞𝑖,𝑗(𝑠) =  
𝑒

𝑆𝐸𝑈𝑖,𝑗(𝑠)

∑ 𝑒
𝑆𝐸𝑈𝑖,𝑡(𝑆)

𝑡′∈𝑇

  where   

                     𝑆𝐸𝑈𝑖,𝑗(𝑠) =  𝑤𝑟 . 𝑟𝑖  + 𝑤𝑠𝑡𝑎 . 𝑠𝑖+ 𝑤𝑡𝑖𝑚𝑒 . 𝑡𝑖𝑚𝑒𝑖,𝑗 

Instance-Based Learning Model 

The IBL model of an adversary in the OSG makes a choice 

about the station to go to, by first applying a randomization 

rule at each time step: 

If draw form U(0,1) >= Satisficing threshold  

 Make a random choice 

Else;  

 Make a choice with the highest Blended value. 

This rule aims at separating highly exploratory choices 

from those made by the satisficing mechanism of the IBL, the 

Blended Value. Satisficing is a parameter of this model. The 

Blended value V represents value of attacking each station 

(option j ): 

𝑉𝑗 = ∑ 𝑝𝑖𝑗𝑥𝑖𝑗

𝑛

𝑖=1

 

where 𝑥𝑖𝑗  refers to the value (payoff) of each station (the 

number of stars divided by time taken) stored in memory as 

instance i for the station j, and 𝑝𝑖𝑗  is the probability of 

retrieving that instance for blending from memory (Gonzalez 

& Dutt, 2011; Lejarraga et al., 2012) defined as: 

𝑝𝑖𝑗 = 𝑒
𝐴𝑖
𝜏 ∑ 𝑒

𝐴𝑙
𝜏

𝑙
⁄  

where 𝑙 refers to the total number of payoffs observed for 

station 𝑗 up to the last trial, and 𝜏 is a noise value defined as 

𝜎 ∙ √2. The 𝜎 variable is a free noise parameter. The 

activation of instance i represents how readily available the 

information is in memory: 

𝐴𝑖 = 𝑙𝑛 ∑ (𝑡 − 𝑡𝑝)−𝑑

𝑡𝑝

𝜖 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

+ ∑ 𝑃(𝑀𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 − 1)
𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 

𝜖 𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛

+ 𝜎ln (
1 − 𝛾𝑖,𝑡

𝛾𝑖,𝑡

) 

Please refer to (Anderson & Lebiere, 1998) for a detailed 

explanation of the different components of this equation. The 

Activation is higher when instances are observed frequently 

                                                           
2 the average is over 288 entries, representing moves from any of 

6 stations to any other station, in four graphs, and for two cases 

where the player observes the officer or not 

and more recently. For example, if an unguarded nearby 

station with many starts (reward) is observed many times, the 

activation of this instance will increase, and the probability 

of selecting that station in the next round will be higher. 

However, if this instance is not observed often, the memory 

of such station will decay with the passage of time (the 

parameter d, the decay, is a non-negative free parameter that 

defines the rate of forgetting). The noise component  is a 

free parameter that reflects noisy memory retrieval. 

Model Results  

We aggregated the human data and divided the data set into 

two groups: training and test datasets. The data from the first 

three graphs played by the participants were used for training 

and the last graph played was used for testing the models. 

This resulted in 1322 instances in the training set and 500 

instances in the test data set.  

For comparison of different models, we use Root Mean 

Squared Error (RMSE) and Akaike Information Criterion 

(AIC) metrics. RMSE represents the deviation between 

model’s predicted probability of adversary’s attack (�̂�) and 

the actual proportion of attacks of participants from each 

station to others (p). 
 

 𝑅𝑀𝑆𝐸(�̂�) =√𝑀𝑆𝐸(�̂�) where MSE (�̂�) = 
1

𝑛
∑(�̂� − 𝑝)

2
 

AIC provides a measure of the relative quality of statistical 

models; the lower the value, the better the model. The metric 

rewards goodness of fit (as assessed by the likelihood 

function), and penalizes overfitting (based on a number of 

estimation parameters).  
 

𝐴𝐼𝐶 = 2 ∗ # 𝑚𝑜𝑑𝑒𝑙′𝑠 𝑝𝑟𝑎𝑚𝑡𝑒𝑟𝑠 − 2 ∗ ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) 

Table 1 shows the results on the full data set. The model 

parameters obtained from the training data set were used to 

make predictions on the test dataset. The prediction errors 

from all the models are relatively similar, even though they 

provide different perspectives. QR and SUQR predict the 

stable state transition probabilities of the attacker while the 

IBL is a process model that captures learning and decision 

dynamics over time. We also examine the parameter values 

and performance of the models for each cluster (Table 2). 

 

Table 1: Metrics and Parameter on the full data set 

 

Model Parameters RMSE2 AIC 

QR 0.4188 0.25 3962 

SUQR 32.55>-2.51,-<3.97, 0.23  3685 

IBL <1.4, 3.2,0.3>4 0.24 4359 

 

The value of λ (higher value of λ corresponds to higher 

rationality level) in the QR model decreases significantly 

from Cluster1 (high value of λ=1.81) to Cluster3 (λ=0). These 

findings are consistent with our observation of the utility 

3 𝑤 = <𝑤𝑟𝑒 , 𝑤𝑠𝑡𝑎, 𝑤𝑡𝑖𝑚𝑒 > 
4 <noise, decay, Satisficing threshold > 
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ranks of targets chosen by adversaries in each cluster, as 

shown in Figure 5. This is significant because past research 

has assumed that all participants either behave based on an 

average value of λ or that each individual's value of λ can be 

sampled from a smooth distribution. In this study, however, 

we show that a significant number of participants (70%: 20% 

in Cluster1 plus 50% in Cluster3) have values of λ which fall 

at two extreme ends of the spectrum, thus modeling perfectly 

rational and completely random adversaries respectively. 

Moreover, considering the fact that SUQR weights indicate 

the importance of each attribute to the decision maker, the 

results of SUQR parameter extraction for different clusters 

reveal some interesting points. First, the fact that Cluster1 has 

the largest weights for all attributes (in the absolute terms) 

implies that Cluster1 participants are very attracted to the 

stations with high rewards and highly repelled by high 

defender coverage; which conforms with the observed 

behavior of Cluster1 participants in maximizing the expected 

utility. Second, although SUQR outperforms QR overall and 

in Cluster2 and 3, QR has lower prediction error (statistically 

significant for paired t-test at t (288) =  02.34, p<0.01) on data 

for Cluster1. This is intuitive if participants are utility 

maximizers, this would be captured better when in the QR 

model. On the other hand, a model like SUQR, which reasons 

based on different features of the game capture better the 

propensity of the participants to switch between stations, and 

hence perform better on Clusters 2 and three where 

participants do not have a clear movement pattern. Therefore, 

identifying different groups of adversaries gives us valuable 

insight into the types of behavioral models that can be used 

in different scenarios to generate accurate future predictions 

 

Table 2: Metrics and Parameters on each Cluster 

 

 Model Parameters RMSE AIC 

C
lu

st
er

1
 

QR 1.81 0.01 52 

SUQR <7.16,-4.53, -13.43>3 0.06 67 

IBL <2.3, 0.9, 0.9>4 0.27 238 

C
lu

st
er

2
 

QR 0.6582 0.28 1023 

SUQR <5.63,-3.14 ,-4.16>3 0.27 927 

IBL <0.9, 1.4, 0.8>4 0.30 1821 

C
lu

st
er

3
 

QR 0 0.26 2188 

SUQR < 1.9,-1.1,0.13>3 0.23 2007 

IBL <0.01, 1.8, 0.1>4 0.27 2529 

 
The results from the IBL model suggest that the categories 

of adversaries found in this study do not emerge naturally 

from the learning process. Indeed, in this study participants 

had little opportunities to learn.  Instead, it appears that 

participants either use the information readily available to 

them in the OSG and attempt to maximize their gains, or they 

explore the choices randomly which may lead them to less 

optimal decisions. These two modes of behavior were 

captured in the IBL model by a meta-rule with a Satisficing 

parameter. This meta-rule is not part of the IBL model, but it 

helps to overpass the natural choice by Blending (similar to 

the Inertia meta-rule used in Gonzalez & Dutt, 2011). This 

meta-rule was added to explicitly account for random 

exploratory behavior observed in the OSG. Therefore, the 

Satisficing parameter helps in selecting between the two 

modes of behavior to form the different clusters. The 

Satisficing parameter is highest in Cluster1, lower in 

Cluster2, and lowest in Cluster3. Cluster1 results from most 

choices being made by the IBL’s Blending while Cluster3 

results from a random choice.  However, this parameter 

interacts with the IBL model’s decay and noise parameters. 

For example, in Cluster1, most decisions are made for the 

station with highest Blended value, and there is a need for a 

high noise value to introduce the variability found in human 

behavior. In contrast, choices in Cluster3 are mostly done 

randomly, but in the rare occasions when the model makes 

choices based on the highest Blended value, it attempts to 

benefit from recent past experiences (i.e., low decay) and 

with low noise to the decision processes. Therefore, 

identifying such meta-rules for accounting for explicit 

descriptive information in addition to the IBL model’s 

learning mechanisms is an important aspect of capturing 

adversary behavior in security games.  

It is interesting to observe that the behavioral game theory 

models provide a significantly better fit in Cluster1, 

compared to the IBL cognitive model, while the values of 

behavioral game theory models are comparable to those of 

the IBL model in Clusters 2 and 3. The IBL model, being a 

learning model, is poor at making highly accurate decisions 

with little or no experience as in the OSG study.  

Finally, to demonstrate the impact of considering distinct 

heterogeneous groups of adversaries, we consider one of the 

most recent works (Kar et al., 2015) which advocated the use 

of a homogeneous adversary model. We show on data 

collected from their domain that there is a significant 

difference between the defender strategies generated by a 

homogeneous (SUQR) and a heterogeneous model which 

considers three distinct clusters (Bayesian SUQR). The bar 

charts in Figure 6 shows the percentage of change in defender 

strategy, for example, for target 16, the change in coverage 

probability from defender strategy generated against a 

homogeneous to that against a heterogeneous model is 110%. 
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Figure 6: Strategy against homogenous & heterogeneous 

Conclusions 

Significant research has been conducted towards 

understanding adversary behavior in security games, which 

has led to several deployed real-world applications (Tambe 

2011), such as PROTECT for the protection of major ports in 
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the US (Shieh et al. 2012) and ARMOR for scheduling of 

police patrols at major airports such as LAX (Pita et al. 2008). 

Although researchers in security games have relied on 

modeling adversaries via a single homogeneous model, or a 

heterogeneous model with a smooth distribution over model 

parameters, in this paper, we showed the heterogeneity in 

adversary behavior by clustering adversaries into distinct 

groups based on their exploration patterns. Three clusters 

emerged based on the adversaries’ exploration patterns, two 

of which fall at two extreme ends of the parameter spectrum, 

capturing perfectly rational and completely random behavior. 

We also observed that in our OSG domain, exploration is 

negatively correlated with utility maximization. 

We demonstrate that accounting for the diversity of 

adversary behavior leads to different model parameters and 

can provide more accurate predictions of future behavior. 

Specifically, we show on data collected based on an 

Opportunistic Security Game that: (i) QR captures the 

behavior of utility maximizing adversaries much better than 

SUQR or IBL based models; (ii) the behavioral and cognitive 

models have similar prediction performance for adversaries 

who do not act in a perfectly rational fashion. Furthermore, 

we show that considering the heterogeneity in adversary 

behavior leads to different defender strategies being 

generated. The effectiveness of such strategies is an 

important area of future work.  
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