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Abstract. Statistical bias correction is commonly applied
within climate impact modelling to correct climate model
data for systematic deviations of the simulated historical data
from observations. Methods are based on transfer functions
generated to map the distribution of the simulated histori-
cal data to that of the observations. Those are subsequently
applied to correct the future projections. Here, we present
the bias correction method that was developed within ISI-
MIP, the first Inter-Sectoral Impact Model Intercomparison
Project. ISI-MIP is designed to synthesise impact projections
in the agriculture, water, biome, health, and infrastructure
sectors at different levels of global warming.

Bias-corrected climate data that are used as input for the
impact simulations could be only provided over land areas.
To ensure consistency with the global (land + ocean) temper-
ature information the bias correction method has to preserve
the warming signal. Here we present the applied method that
preserves the absolute changes in monthly temperature, and
relative changes in monthly values of precipitation and the
other variables needed for ISI-MIP. The proposed method-
ology represents a modification of the transfer function ap-
proach applied in the Water Model Intercomparison Project
(Water-MIP). Correction of the monthly mean is followed by
correction of the daily variability about the monthly mean.

Besides the general idea and technical details of the ISI-
MIP method, we show and discuss the potential and limita-
tions of the applied bias correction. In particular, while the
trend and the long-term mean are well represented, limita-
tions with regards to the adjustment of the variability persist
which may affect, e.g. small scale features or extremes.

1 Introduction

Climate simulations of historical periods often show system-
atic deviations from the observed climate resulting, for exam-
ple, from imperfect model representations of the atmospheric
physics, incorrect initialisation of the model or errors in the
parameterisation chain (Ehret et al., 2012). These deviations
must be treated carefully in the context of climate impact
simulations, because the predicted impacts depend on the
statistical properties of the climate input. While considering
anomalies of impact projections with respect to a reference
period might provide a way out in case of a linear depen-
dence of impacts on climate input data, in many other cases
this is not appropriate, e.g. when impacts are activated when
certain absolute climatic thresholds are exceeded. Moreover,
impact models (e.g. crop models, hydrological models, etc.)
often require driving climate data that is statistically similar
to the observational datasets with which they were calibrated.

Bias correction methods are designed to bridge the gap be-
tween the information that is provided by the climate mod-
elling community and the climate data necessary for quanti-
tative climate impact projections. Basic bias correction meth-
ods include an adjustment of the mean value by adding a
temporally constant offset, or by applying an associated cor-
rection factor to the simulated data. This additive or multi-
plicative constant quantifies the average deviation between
the simulated and the observed time series over the histor-
ical period. Since the constant is time independent such a
method preserves the trend (in absolute terms for an addi-
tive approach and in relative terms for a multiplicative ap-
proach) whilst adjusting the mean value. However, it does
not necessarily correct the variability of the data. Hence, in
many cases differences in the variance or even higher mo-
ments of the simulated data are adjusted to the observations
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by parametric or non-parametric (empirical) quantile map-
ping (Boe et al., 2007; Piani et al., 2010; Themeßl et al.,
2011). Non-parametric methods have been shown to be very
successful in mapping simulations to the present climate ow-
ing to there flexibility (Gudmundsson et al., 2012). However,
to correct values that fall outside the calibration range addi-
tional assumptions have to be made. While this is less critical
as long as the correction is applied to historical simulations
it might be an oversimplification when it comes to its appli-
cation to future climate data, where a substantial portion of
the event distribution may be shifted outside the calibration
range. For this reason we prefer a parametric approach for
our application.

Bias correction, however, must not be confused with a spa-
tial downscaling. The correction of the misrepresented local
variability is limited, since a disaggregation of the simulation
data cannot be performed by a purely deterministic approach.
If the resolution of the simulations and observations are con-
siderably different high extremes are usually exaggerated
while low events are overcorrected (Maraun, 2013). More-
over, whilst adequately representing the mean state of the
observed period and the variability at a particular time scale,
these bias correction methods may change the climate signal,
or trend, arising from the climate simulations. The impact of
bias correction on the climate signal is only rarely explicitly
quantified and whether or not adjustment of the climate sig-
nal is advisable remains a topic of discussion (Ehret et al.,
2012). In any case bias correction is tantamount to introduc-
ing a new level of uncertainty comparable in magnitude to the
spread of the climate projections across the climate models
or with regards to the emission pathways (Hagemann et al.,
2011). The choice of an appropriate methodology depends
strongly on the context. A review of state-of-the-art bias cor-
rection methods is given byMaraun et al.(2010).

Statistical bias correction of simulation data is broadly ap-
plicable to the climate impacts research (Robock et al., 1993;
Berg et al., 2003; Ines and Hansen, 2006; Hagemann et al.,
2011; Dosio and Paruolo, 2011), since it offers crucial advan-
tages for impact modelling applications compared to using
raw climate model output:

1. Statistical bias correction methods facilitate the com-
parison of observed and simulated impacts during the
historical reference period and a continuous transition
into the future. Without such an adjustment of the mean
behaviour in the historical period, future impacts that
depend on the exceedance of critical absolute thresh-
olds of, for example, temperature (Rötter et al., 2011),
cannot be accurately described. Studying the change in
impacts starting from the reference level provided by
a climate model would in general result in a mistim-
ing of the threshold exceedance under global warming
scenarios.

2. Many bias correction techniques include an implicit
downscaling of the simulated data to the potentially
higher resolution of the observational data. While a sim-
ple interpolation to the finer grid would not account for
the increase in variability expected for the higher res-
olution data, an appropriate increase can be achieved
by a bias correction method that adjusts the variance.
In the general case, however, this adjustment will be
limited since the temporal structure is still determined
by the dynamics represented in the larger grid box and
do not describe local phenomenons, e.g. small scale
turbulence.

3. Bias correction also serves as a way to adjust the simu-
lated climate data to the more detailed altitude-stratified
information associated with observational data, so long
as changes in mean and variability are resolved in the
observational dataset.

On the other hand, there are several shortcomings of sta-
tistical bias correction:

1. Stationarity in the bias in the historical data with respect
to the future data is assumed when applying the bias
correction to future periods, which introduces additional
uncertainty (Raisanen and Raty, 2012; Maraun, 2012).

2. The quality of the bias-corrected simulation data is lim-
ited by both the observational dataset and the represen-
tation of physical processes within the climate model.

3. Statistical bias correction (e.g. by adding the mean de-
viation from the observed data to the simulated one)
often destroys the physical consistency of the differ-
ent climate variables. For example, after the application
of bias correction the temperature might be sub-zero,
whereas rainfall is not converted into snowfall.

While the second issue can be tackled to a certain extent
by testing the sensitivity to different sources of observational
data, differentiation between statistical and phenomenolog-
ical errors is not straightforward. With respect to the third
issue, bivariate parametric quantile mapping was recently in-
troduced byPiani and Haerter(2012) to provide consistency
between temperature and precipitation corrections (not im-
plemented in our present study). However, no multivariate
approach exists that preserves the consistency between more
than two variables.

In regional studies a way to overcome this third major
deficit is to use dynamical downscaling in addition to sta-
tistical bias correction. In this approach, physical consis-
tency is ensured by bias-correcting low resolution model data
(e.g. sea surface temperatures) in order to provide correct
boundaries. Subsequently this data is used to drive a higher
resolution regional climate model (RCM) or a global circu-
lation model (GCM) with locally enhanced resolution (Xu
and Yang, 2012; Holland et al., 2010; Patricola and Cook,
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2010; Cook and Vizy, 2008; Sato et al., 2007; Wu and Lynch,
2000). This does not necessarily solve the problem since the
RCM also has a bias, for example, caused by inconsistencies
between the physics of GCM and RCM, imperfect param-
eterisation or incorrect energy balance closure (Ehret et al.,
2012). However, the two-step procedure is expected to re-
duce the deviation between high-resolution simulations and
observations while ensuring physical consistency of different
climate variables as provided by the high resolution model
(Ehret et al., 2012).

The Inter-Sectoral Impact Model Intercomparison Project
(ISI-MIP) is designed to provide a consistent set ofglobal
impact simulations. Thus, within the ISI-MIP context a sim-
ilar regional approach is not feasible as the involved im-
pact models need climate input data that cover the entire
global land area. The project relies on the relatively low-
resolution GCM runs performed in the fifth phase of the Cou-
pled Model Intercomparison Project (CMIP5,Taylor et al.,
20121). In that context, the described advantages of bias cor-
rection are essential to the project, which is intended to syn-
thesise impact projections in multiple sectors at different lev-
els of global warming. However, a complete bias correction
directly from the simulations may not be advisable every-
where (Eden et al., 2012). There are regions where, e.g. the
simulated precipitation is so wrong that a statistical bias cor-
rection with a transfer function may result in an even worse
dataset as some extremes are very much amplified in order to
adjust the parameters of the distribution. Different thresholds
are incorporated in our bias correction algorithm to restrict
the modifications in such cases.

Moreover, the algorithm which we propose is designed to
preserve the long-term trend in the GCM data, and hence,
for example, its climate sensitivity. For some applications it
might be desirable to modify the trend of the GCM, however,
this introduces a new level of uncertainty that we would like
to avoid within the ISI-MIP context. For temperature (T ),
conservation of the absolute trend is essential in ensuring
consistency between the projected global mean temperature
change (land + ocean), based on the non-bias-corrected data,
and the bias-corrected warming signal over land areas that
is used as input by the impact models, since no bias correc-
tion is performed over oceans. As ISI-MIP intends to quan-
tify the climate change impacts and the related uncertainty at
different levels of global warming that aspect is particularly
important in the project’s context and relevant for decision
makers wishing to better quantify possible consequences of
specific temperature targets. In addition, modification of the
(local and) global temperature trend would also modify the
climate sensitivity, which would not be well founded based
on the available 40 yr observational dataset. More generally,
we choose to conserve the trend in other climate variables
in order to ensure a transparent method, with some control
over the GCM properties that are preserved. However, due

1cf. http://cmip-pcmdi.llnl.gov/cmip5/

to positivity constraints for some variables, we preserve the
relative rather than absolute trend in those cases. For the
same reason, other bias correction methods also applied mul-
tiplicative correction factors instead of additive constants to
correct, for example, precipitation data (Ines and Hansen,
2006). A multiplicative correction of the monthly precipita-
tion data (P ), and an additive correction of the temperature
data, conserve the hydrological sensitivity, i.e. the relative
change in precipitation [%] with respect to absolute temper-
ature changes [K] at each grid point.

In Sect.2 we describe the climate model and observa-
tional datasets which are relevant for the ISI-MIP project.
The details of the ISI-MIP bias correction are outlined in
Sect.3. We explain our methodology and describe the prop-
erties of the bias-corrected climate data exemplarily for the
HadGEM2-ES GCM.

In Sect.4 we demonstrate that the climate signal is pre-
served in comparison to the original method proposed by
Piani et al.(2010) and discuss how well the statistical mo-
ments of the bias-corrected data match the observations dur-
ing the reference period. In case of precipitation we compare
the ISI-MIP dataset with an updated version (ISI-MIP ex-
tended) where we improved the adjustment of the variability
of daily data about the monthly mean and corrected a bug in
the code. This issue affects the variability of the daily data,
but not the correction of the monthly means (cf. Sect.4.3
for the results of the extended algorithm compared to the
ISI-MIP precipitation).

2 Climate input data

The ISI-MIP dataset comprises bias-corrected daily data for
the variables2 listed in Table1.

Simuations

We use data from five GCMs from the CMIP5
archive as input: HadGEM2-ES, IPSL-CM5A-LR,
MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M.
These five models were selected based on the availability
of daily data for the required variables covering the period
from 1 January 1950 to 31 December 2099 – historical and
all Representative Concentration Pathway (RCP) scenarios
(Moss et al., 2010) – in the CMIP5 archive at the beginning
of the project.

The available climate model outputs are bi-linearly in-
terpolated in space to a 0.5◦

× 0.5◦ grid. The time series
are linearly interpolated to the standard Gregorian calendar
(365 days per year plus leap days) wherever necessary.

2Surface pressure is derived from sea-level pressure, tempera-
ture and height assuming adiabatic conditions, since no daily data
was available for surface pressure in the CMIP5 archive.
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Table 1.Bias-corrected variables in the ISI-MIP dataset.

variable name abbreviation symbol

average temperature1 tas T

minimum temperature3 tasmin Tm
maximum temperature3 tasmax –
total precipitation2 pr P

snowfall3 prsn S

shortwave radiation2 rsds –
longwave radiation2 rlds –
near-surface wind speed2 wind W

near-surface eastward wind3 uas K

near-surface northward wind3 vas –
surface pressure2 ps –

1 (additive),2 (multiplicative), and3 (indirect) according to the applied bias
correction approach. The last column refers to the symbols used in the
algorithmic description.

Observations

We use the WATCH Forcing Data (WFD,Weedon et al.,
2011) for the period from 1 January 1960 to 31 Decem-
ber 1999 (the reference period) as an observation-based ref-
erence dataset. It is a combination of the ERA-40 daily data,
the 40 yr reanalysis of the European Centre for Medium-
Range Weather Forecasts (ECMWF), and the Climate Re-
search Unit TS2.1 dataset (CRU), that provides observed
time series of month-by-month variations in the climate over
the last century on a high resolution grid (0.5◦). The ERA-40
dataset provides day-to-day variations but on a lower resolu-
tion grid (2.5◦). Both datasets overlap for the 40 yr reference
period.

The WFD are available on the 0.5◦ grid over land area
points using the land-sea mask from the CRU, excluding
Antarctica. It approximates the daily variability of different
climate variables. A correction for the elevation differences
between ERA-40 and CRU is included in the WFD. Addi-
tionally, the monthly mean for precipitation is corrected with
the Global Precipitation Climatology Centre full dataset ver-
sion 4 (GPCC) to account for the systematic underestimation
of precipitation measurements in the WFD (cf.Hagemann
et al., 2011). Thus, the WFD combines the daily statistics of
ERA-40 with the monthly mean characteristics of CRU and
GPCC datasets and represents a complete gridded observa-
tional dataset for bias correction of global climate data over
land.

3 The trend-preserving bias correction method

In the following we describe our bias correction method,
which preserves the long-term absolute (relative) trend of
the simulated temperature (precipitation, pressure, radiation,
wind) data. The method modifies the daily variability of the

simulated data about their monthly means to match the ob-
served daily variability. The monthly variability and mean
are corrected only using a constant offset or multiplicative
correction factor that corrects for long-term differences be-
tween the simulated and observed monthly mean data in the
historical period. In this way the absolute or relative trend of
the simulation data is preserved.

We present and discuss the properties of the bias-corrected
temperature in the ISI-MIP dataset, and compare the results
of two versions of the multiplicative algorithm exemplarily
for precipitation: a basic version that was used to produce the
ISI-MIP climate input (hereafter denoted ISI) and a corrected
and extended version (hereafter denoted ISIe) that overcomes
several limitations in adjusting the daily variability. We fo-
cus on the extended version, whilst noting crucial departures
from the basic version (cf. Table2 for comparison of the ex-
tended algorithm with the ISI-MIP dataset and the WATCH
approach – on which the ISI-MIP method is based).

The correction of the daily variability is described by
calendar-month and grid-cell-specific transfer functions that
are applied to the daily simulated data. In what follows we
select the April values for the grid cell corresponding to
55.75◦ N, 68.25◦ W (hereafter referred to as “example grid
cell”) for illustration of the method. Similar results can be
obtained for other months and regions. We will not index
the grid cell or the selected month for which the transfer
function is created. Thus, letXdata

ij denote the April value
for year i and dayj at one particular grid cell of the sim-
ulated (data = GCM) or observational (data = WFD) time se-
ries, whereX =T for daily average temperature andP for
precipitation. In addition,Xdata

i describes the monthly mean
at that grid cell. Residual data is denoted by1Xdata

ij , while

δXdata
ij refers to normalised data. Bias-corrected simulation

data is denoted̃XGCM
ij (daily) or X̃GCM

i (monthly).

3.1 Correction of monthly mean data

The first step, is to adjust for the long-term differences be-
tween the simulated and observed monthly mean data during
the historical period. The daily variability about the monthly
mean remains unchanged at this stage.

3.1.1 Temperature: additive correction

For temperature we add to the entire time series a constant
offsetC that is equal to the average difference between the
observations and the simulations during the 40 yr reference
period,

C =

(
m=40∑
i=1

T WFD
i −

m=40∑
i=1

T GCM
i

)/
40 , (1)

as is demonstrated in Fig.1. The corrected temperature is
then

T̃ GCM
ij = C + T GCM

ij , (2)

Earth Syst. Dynam., 4, 219–236, 2013 www.earth-syst-dynam.net/4/219/2013/
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Table 2.Comparison of bias correction algorithm for precipitation (multiplicative approach), main algorithmic steps.

WATCH ISI-MIP FAST-TRACK ISI-MIP extended

define dry months WFD threshold WFD threshold WFD threshold
GCM threshold GCM threshold

define dry days WFD threshold WFD threshold WFD threshold
GCM threshold GCM threshold GCM threshold

define outlier days WFD and GCM WFD and GCM none
outside 99 % (Gauss) outside 99 % (Gauss)

redistribute no no uniformly over
precipitation drizzle wet days (additive)

normalise daily values no using mean of all days using mean of wet days
of the month of the month

select values rank ordered rank ordered rank ordered
for fitting timeseries timeseries normalised
based on timeseries

criteria for predefined predefined convergence of
choice of parameter parameter nonlinear fit
fitting thresholds thresholds
algorithm or convergence or convergence

of nonlinear fit of nonlinear fit

hierarchy of 1. linear fit 1. linear fit 1. exponential fit
possible 2. exponential fit 2. exponential fit initialized with identity line
transfer initialized with linear fit initialized with linear fit 2. exponential fit
functions 3. exponential fit 3. exponential fit initialized with linear fit
g(x) initialized with linear fit initialized with linear fit 3. linear fit

fixed slope fixed slope
cf. Fig. 6 4. only multiplicative 4. only multiplicative
red curve monthly mean correction monthly mean correction

5. only additive 5. only additive
monthly mean correction monthly mean correction

fit function no no yes
and application based
on the same set of data

preserve relative no yes yes
trend

adjust long-term with transfer with with
mean function mean ratioc mean ratioc

(mixture of time scales) (0≤ c ≤ 10) (0.1≤ c ≤ 10)

adjust variability with transfer partially with transfer
function function
(mixture of time scales)

truncation at no yes yes
upper bound

which preserves the absolute change in temperature in the
simulations, i.e.

T̃ GCM
ij − T̃ GCM

0 = T GCM
ij − T GCM

0 , (3)

whereT GCM
0 and T̃ GCM

0 are the uncorrected and corrected
reference temperatures.

The method is the most basic temperature correction
regularly applied in impact studies (e.g. called “unbiasing
method” inDeque, 2007). It preserves the absolute trend, and
the variability of the simulated data at all time scales.

3.1.2 Precipitation: multiplicative correction

Given the positivity constraints on precipitation data, a sim-
ilar additive approach is not appropriate. Instead we correct
the monthly mean precipitation values using a multiplicative
factor, which is defined:

c =

m=40∑
i=1

P WFD
i

/
m=40∑
i=1

P GCM
i . (4)
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Fig. 1. April temperature means for the example grid cell during
the reference period. The offset between observational and simu-
lated data,C, in the reference period is illustrated, together with
the shifted GCM data. The horizontal lines refer to the associated
long-term means.

The precipitation time series is then

P̃ GCM
ij = c · P GCM

ij , (5)

which maps the 40 yr mean of the GCM data to the obser-
vational one as demonstrated in Fig.2. We impose an upper
bound of 10 onc, in order to avoid unrealistically high pre-
cipitation values. This is justified by the fact that a very high
c indicates a large discrepancy between the model and the ob-
servations. Possible reasons might be that the available time
series is too short to well approximate the statistical prop-
erties or crucial physical processes are not included in the
model. In those cases correcting the time series with the es-
timated values might lead to nonphysical values which we
seek to avoid by truncation ofc. In addition, in the extended
version of the algorithmc is also truncated at the lower end
following the same line of reasoning. This allows for the pos-
sibility that the model output in very dry regions can still get
wetter in the future, sincec cannot be zero over the reference
period anymore.

The proposed multiplicative approach, modifies the simu-
lated absolute precipitation change, but preserves the relative
change in precipitation,

P̃ GCM
ij − P̃ GCM

0

P̃ GCM
0

=
P GCM

ij − P GCM
0

P GCM
0

, (6)

whereP GCM
0 and P̃ GCM

0 are the uncorrected and corrected
reference precipitation values.

1960 1970 1980 1990 2000
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6
7

time [yr]

P
i [

m
m

/d
ay

]

GCM
WFD
c ⋅ GCM

Fig. 2.April precipitation means for the example grid cell during the
reference period. WFD (red), uncorrected (black) and scaled GCM
(green) data are shown. The horizontal lines refer to the associated
long-term means.

3.2 Correction of daily variability

The second step, is to correct the daily variability of the sim-
ulated data to that of the observational dataset. This step
is crucial for a proper representation of many impacts that
depend on changes in both the mean and variability of the
data: in this way, extreme weather events are better repre-
sented in the corrected data, although a careful analysis re-
quires better understanding this important topic. Adjustment
of daily variability also plays an important role when the cli-
mate data are interpolated to a finer grid before use by the
impact model, which is often the case. Simple interpolation
cannot account for the enhanced temporal variability that is
expected at smaller spatial scales. Bias-correcting the vari-
ability of the interpolated data can alleviate this problem.

In the following section, we present a method to adjust the
daily variability of the residual temperature

1T GCM
ij = T GCM

ij − T GCM
i , (7)

and the normalised precipitation data

δP GCM
ij = P GCM

ij

/
P GCM

i . (8)

Note that this means that a specific correction value will re-
fer to an anomaly instead of an absolute value. Thus, the
same correction value for temperature is applied to different
absolute temperatures and consequently to different weather
situations, which may exhibit systematic differences in vari-
ability. Generally the variations of the temperatures are not
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expected to be very large as the correction is done on a
calendar-month specific basis. Nevertheless, any dependence
of the daily variances on the monthly mean values evident in
the model or observed data are not perpetuated by the bias
correction. In order to characterise this dependence, we have
calculated the mean and the variance over each month in the
reference period and estimated the coefficient of determina-
tion (R-squared) from the linear Pearson correlation between
mean and variance at each grid point. For temperature the
R-squared values are low for the entire global land area, in-
dicating that the application of a common variance correc-
tion factor is consistent with both the observational and GCM
data. For temperature, variance is based on the residual tem-
perature, whilst for precipitation variances are calculated af-
ter normalising the daily data with the monthly mean. In the
Supplement we show that for temperature and precipitation
the R-squared values in this case are small at each grid point
for both an exemplary GCM run and the WFD (cf. Fig. S1).
This indicates that the residual and relative variance respec-
tively over a month is almost independent from the related
monthly mean. We therefore conclude that considering the
anomalies instead of absolute values should not greatly im-
pair the performance of the bias correction.

Moreover, in the case of precipitation, special care must
be taken to account for low-precipitation (hereafter referred
to as “dry”) months. The correction of the daily variability
comprises two steps: (1) correction of the frequency of dry
days and (2) correction of the intensity of precipitation on
rainy days. The proposed correction of the variability in daily
data extends the method described byPiani et al.(2010) and
applied in Water-MIP (Hagemann et al., 2011).

3.2.1 Temperature: linear regression

In order to correct the variability of the daily average tem-
perature values to the observational data, we adjust the resid-
ual distribution of the GCM (cf. Eq.7 for the definition of
the residuals) to that of the WFD using a parametric quan-
tile mapping. In general temperature values are considered
to follow a normal distribution. This means the distribution
is expected to be well described by only two moments (mean
and standard deviation). For that reason a linear fit is con-
sidered an appropriate approximation in most cases and has
thus been chosen to map the simulated to the observational
temperature values.

Histograms of example time series from the WFD and
GCM are shown in Fig.3 for the April values at the example
grid cell. We derive a transfer function

f
(
1T GCM

)
= B · 1T GCM (9)

whereB is the slope of a linear regression on the rank or-
dered WFD (1T WFD) and GCM data (1T GCM) for a given
calendar-month over the 40 yr reference period (as plotted as
black points in Fig.4). An analogous procedure is described

in Haerter et al.(2011), except that they allow for an addi-
tional offset, which we set here to zero, since the residual
values have zero mean by definition.

3.2.2 Precipitation: nonlinear regression

In the case of precipitation we consider normalised values
(cf. Eq.8) to adjust the variability about the monthly mean,
where both datasets should be described by the same distri-
bution function. As in previous bias correction applications
(e.g. in Water-MIP), we assume that the observational and
simulated datasets are well approximated by a gamma distri-
bution (excluding the days with zero precipitation). Follow-
ing that assumption, we must correct the frequency and the
intensity of precipitation separately, since the gamma distri-
bution is not defined at zero. We perform a parametric quan-
tile mapping with three parameters to adjust the intensity
of precipitation, where a nonlinear fitting algorithm based
on the gradient-expansion method adapted fromMarquardt
(1963) is used.

In dry months (zero mean or very small, i.e. in the range
of measurement noise) a normalisation by the monthly mean
is not possible. To solve this dry month problem we define
threshold values for the monthly means,

εm = max

[
P GCM

k

∣∣∣∣(P WFD
k ≤ 0.01, P GCM

k ≤ 0
)]

, (10)

to classify the months into dry and wet, where the daily vari-
ability is only adjusted for the wet ones. The variablesP WFD

k

andP GCM
k represent the rank ordered sets of monthly pre-

cipitation valuesP data
i . A similar procedure was described

by Piani et al.(2010) for dry days.
Months with mean precipitation below 0.01 mm day−1 in

the WFD (roughly 3.6 mm yr−1, which approximates aver-
age precipitation in desert areas) are denoted as dry. Then
we consider two cases: (i) if there are more dry months in
the WFD than months with zero precipitation in the GCM,
months are excluded in order of increasing monthly mean
precipitation until the desired number (i.e. number of dry
months in the WFD) is met, starting from the driest GCM
month. (ii) If the number of months with zero precipitation in
the GCM is larger than the number dry months in the WFD,
only the months with zero precipitation in the GCM are clas-
sified as dry in the GCM. By applying Eq. (10) we ensure that
the same number of months from the GCM and the WFD set
are omitted. In both cases, the mean precipitation of the last
month to be excluded in the GCM defines the thresholdεm
for the simulated monthly time series.

All daily data associated with a dry month (i.e.
P GCM

ij |(P GCM
i ≤ εm)) are excluded from the estimation of

the transfer function. The variability of the daily data be-
longing to these dry months is not modified. For the remain-
ing wet months the bias correction proceeds in two stages:
(i) increasing the frequency of dry days where needed.
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Fig. 3. Observational and simulated daily April temperature values during the reference period (left) and associated residual values (right)
for example grid cell are shown as normalised cumulative sum. The vertical lines refer to related mean (solid) and mean± standard deviation
(dashed). Horizontal bars are for comparison of the standard deviation.
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Fig. 4. Rank ordered residual observational versus simulated tem-
perature values for all April days during the reference period for the
example grid cell. The uncorrected GCM data are shown in black
with the fitted regression curve overlaid (red). Statistically identical
data would lie on they =x curve (grey). The bias-corrected GCM
data are plotted in green.

(ii) Adjusting the precipitation intensity for wet days. We use
a similar approach as proposed byPiani et al.(2010).

Correction of the frequency of dry days

Correction of the frequency of dry days is derived from the
wet months of the reference period. In many cases there are
artificially large amounts of drizzle in GCMs, i.e. days with
low precipitation, while the observations suggest a larger
number of dry days (i.e. zero precipitation). In order to cor-
rect for that discrepancy, we determine the number of ob-
served dry days,Ndry, during the reference period by count-
ing the occurrence ofP WFD

ij < 1 mm day−1 from the WFD
daily data associated with wet months. The threshold value
1 mm day−1 was used already in earlier studies and is related
to measurement noise. The same number of days (beginning
with those having the lowest precipitation values) is set to
zero in the GCM daily data and excluded from the dataset

used to generate the transfer function for the correction of
the intensity of precipitation.

In this way low-precipitation, or drizzle, in the GCM is
truncated if the intensity of the precipitation is below a
threshold

εd = 0.5 · P GCM
ij

∣∣∣∣(P GCM
i > εm, P GCM

ij ≤ P GCM
l

[
Ndry

])
+0.5 · P GCM

ij

∣∣∣∣(P GCM
i > εm, P GCM

ij > P GCM
l

[
Ndry

])
. (11)

The variablePl represents the rank ordered simulated precip-
itation values in wet months, starting from the lower end.

Since precipitation values smaller thanεd are set to zero,
the frequency of dry days (i.e. those without measurable pre-
cipitation) can be increased in the model data. If there are
more days with zero precipitation in the GCM than in the
observational datasetNdry is chosen equal to that number of
days in order to calculate the threshold (cf. Eq.11), i.e. no
additional dry days are introduced in this case. Additional
wet days are never introduced, since this could lead to cru-
cial physical inconsistencies (e.g. rain without clouds).

Exclusion of drizzle days can modify the monthly means,
which must be avoided if the long-term trend is to be pre-
served. An appropriate normalisation can ensure this. How-
ever, if identical normalisation for construction and applica-
tion cannot be ensured in any case (as in the approach applied
for the ISI-MIP dataset) this limits the capacity to adjust the
daily variability, since multiplying the data with any factor
different from one modifies the width of the probability dis-
tribution. Thus, in the extended approach, for each month we
redistribute the amount of precipitation in dry days uniformly
among the wet days. This is achieved by an additive constant
mdata

i which is the total amount of precipitation from dry days
(drizzle) divided by the number of wet days. It is calculated
for each year and month separately. Redistribution of the pre-
cipitation leads to new values
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Fig. 5. Normalised cumulative sums of daily observational and simulated April precipitation values during the reference period for the
example grid cell. Dry days and months are omitted. For all wet days of the reference period uncorrected values before and after the
redistribution of drizzle (left panel), and normalised values (right panel) are shown. The vertical lines refer to related mean (solid) and
mean + standard deviation (dashed). Horizontal bars are for comparison of the standard deviation.

P̂ data
ij =

{
P data

ij + mdata
i if wet

0 if dry
. (12)

The mean over all wet days in a particular month,P̂ WFD
i and

P̂ GCM
i , is used for normalisation (cf. Fig.5):

δP̂ data
ij =

P̂ data
ij

P̂ data
i

. (13)

Correction of the precipitation intensity of wet days

Correction of the precipitation intensity of wet days by fitting
a transfer function is performed, if there are more than 80 wet
days in the whole reference period (1960–1999) and the
monthly mean is above 0.01 mm day−1. The cut-off value 80
is motivated by sensitivity studies performed in WaterMIP.

In general a transfer functiong(δP̂ GCM) is derived using
nonlinear regression on the rank ordered setsδP̂ WFD and
δP̂ GCM, which are the sets of normalised wet days in wet
months over the 40 yr reference period (cf. Fig.6). The low-
est wet precipitation value in that period,δP̂ GCM

min , is a param-
eter of the transfer function

g
(
δP̂ GCM

)
=

[
a + b ·

{
δP̂ GCM

− δP̂ GCM
min

}]
×

[
1 − exp

{
−

δP̂ GCM
− δP̂ GCM

min

τ

}]
. (14)

The offseta and slopeb of the linear part of the function, as
well as the decay constantτ of the exponential part must be
fitted.

In the extended algorithm this nonlinear regression is pref-
erentially applied. Only if the nonlinear fitting procedure (it-
eration according to gradient-expansion method) does not
converge for two different sets of initial values, is a linear
transfer function,

g
(
δP̂ GCM

)
=

[
a + b · δP̂ GCM

]
, (15)

with offseta and slopeb applied. For the ISI-MIP dataset we
used a different set of selection rules for the transfer function
(adopted from the Water-MIP procedure). However, for our
normalised values these selection rules omitted the nonlinear
fit in many cases. In addition, the frequency and variability of
the precipitation were at multiple grid points not adjusted at
all, because insufficient points were selected to be included in
the fit due to the bug in the code or the fitted parameters were
too extreme. Those issues have been solved in the extended
version of the algorithm in order to improve the correction of
daily variability. The resulting differences will be discussed
in Sect.4.3.

In both versions of the algorithm, where there are less than
80 wet days in the whole reference period (1960–1999), or
the long-term monthly mean is below 0.01 mm day−1, the
daily variability of the precipitation is not adjusted due to
a shortage of statistical information. In this case we consider
a linear transfer function with zero offseta = 0 and unit slope
b = 1 (cf. Eq.15).

In the Supplements we provide month-specific maps
which show the areas where the daily variability is not ad-
justed, where a linear and where a nonlinear transfer function
is applied (cf. Fig. S2).

3.3 Application of the bias correction

In the following sections, we present how the values that
were derived during the reference period are applied to bias-
correct the simulation data in the past, present and future (ap-
plication period 1950 to 2099). To adjust both the monthly
mean and the daily variability of the data, we combine the
two approaches described in Sects.3.1and3.2.

3.3.1 Temperature

We calculate the residual daily average temperature values
from the GCM for the whole application period in the same
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Fig. 6. Rank ordered normalised observational and simulated pre-
cipitation values of all wet April days during the reference period
for the example grid cell (black). The associated regression curve
(red) and the bias-corrected normalised data (green) are presented
in addition. The identity linex =y is shown in grey.

way as before for the reference period (cf. Eq.7). The lin-
ear transfer functionf (cf. Eq. 9) is then applied to adjust
the daily variability. In order to avoid discontinuities at the
transition between months, weighting factors for the previous
(indexm), present (index 0) and following month (indexp)

dm = 0.5 · (|d| − d), (16)

d0 = 1 − |d|, (17)

dp = 0.5 · (|d| + d) (18)

are evaluated depending on the day of the monthiday and the
number of days in that monthnday, with

d =
iday − 1

nday − 1
− 0.5. (19)

Thus, for the first (second) half of the month the slope of the
linear transfer function of the previous (following) monthBm

(Bp) is taken into account. The weighted sum of the slopes

B = dm Bm + d0B + dp Bp (20)

is then applied to the residual daily average temperature val-
ues, which leads to bias-corrected residual values

1T̃ GCM
ij = B · 1T GCM

ij . (21)

Together with this equation the correction suggested in
Eq. (2) can be extended to

T̃ GCM
ij = C + T GCM

i + 1T̃ GCM
ij . (22)

This successfully preserves the long-term absolute temper-
ature change in the simulations, whilst adjusting the daily
variability about the monthly mean (ifB =B). The constant
C arises from the monthly mean correction of temperature
(Eq. 1) and assures the agreement between the long-term
monthly means of the observed and the corrected simulated

data. The monthly values ofC are interpolated to daily ones,
C, using the same weighting approach as for the slopeB

(cf. Eq. 20), thus preventing jumps in the time series at the
transitions between months. ForC ≈ C the trend is, except
for very small deviations, preserved.

3.3.2 Precipitation

In the case of precipitation, similar interpolation (cf. Eq.20)
of the monthly correction factor,c (Eq. 4), to daily values
is less appropriate since the derived value can vary strongly
from month to month (because of the high variability at dif-
ferent time scales). The same applies to the parameters of the
transfer function (a, b andτ in Eqs.14 and15). However,
the continuity at the crossover between two months is not
as problematic as for temperature. Therefore, we retain the
individual monthly values forc, a, b andτ .

We use the thresholdsεm andεd (Eqs.10 and11) defined
previously for the reference period (cf. Sect.3.2) in order to
distinguish dry days and months from wet ones in the appli-
cation period.

For all days in dry months, we apply only the multiplica-
tive factor c for the long-term mean correction (cf. Eqs.4
and5).

In wet months the frequency of dry days is adjusted by
setting all values below the dry day thresholdεd to zero

P̂ GCM
ij = 0, if

(
P GCM

ij ≤ εd

)
and

(
P GCM

i > εm

)
. (23)

Following the same line of reasoning as in Sect.3.2, we
redistribute the total precipitation from these dry days uni-
formly amongst the wet days of the month (cf. Eq.12). The
obtained precipitation values are normalised by the mean
over the wet days (cf. Eq.13), and the transfer functiong
(Eqs.14 and15) is applied to these normalised values. For
application to the reference period (where the transfer func-
tion was derived) this procedure ensures that corrected pre-
cipitation values are not negative. However, this does not
necessarily hold for all time periods, since the lowest pre-
cipitation value in the non-bias-corrected GCM data might
be belowδP̂ GCM

min (although those exceptions are rare). Thus,
negative values arising from the correction process are set to
zero. However, such a truncation modifies the monthly mean.
In order to avoid this change in monthly mean precipitation,
a correction factor is used to ensure that the mean of the cor-
rected normalised wet days is unity in each month and year.
In this way conservation of̂P GCM

i is ensured, i.e. the mean
over the wet days of the month after the redistribution of the
drizzle but before the normalisation. In addition, the variabil-
ity adjustment is preserved. The correction factor can be ap-
plied since the new monthly mean is already close to unity
by construction, and thus this multiplication does not signif-
icantly affect the width of the probability distribution. The
latter could not be assumed for the redistribution of drizzle,
therefore an additive approach was used in that case.
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Finally, the correction in Eq. (5) can be extended to

P̃ GCM
i,j = c · P̂ GCM

i · δP̃ GCM
i,j . (24)

With the addition of the dry day and dry month conditions,
redistribution of drizzle, and normalisation of corrected val-
ues, Eq. (24) preserves the relative precipitation change in
the simulations. The correction factorc is taken from the
monthly mean correction of precipitation (cf. Eq.4) and
maps the long-term monthly mean of the simulated data to
the observational one. Additionally, applying Eq. (24) adjusts
the frequency of dry days and the variability about the mean.

An upper bound for precipitation (400 mm day−1) was in-
troduced to avoid single extremes blown up to nonphysically
high precipitation values. This final truncation may slightly
change the mean. However, this rare case is an accepted con-
sequence.

3.4 Correction of other climate variables

Often there are also biases in other variables than tempera-
ture and precipitation, e.g. radiation or wind speed (Hadde-
land et al., 2012), most of which must not become negative.
Within ISI-MIP we use a similar multiplicative approach as
described for precipitation to adjust surface pressure, long-
and shortwave radiation and wind speed (cf. Table1). Mod-
ifications to the algorithm described earlier are made with
regards to the selection of thresholds for pressure and radi-
ation (εd was set to 0). Moreover, the final truncation of the
bias-corrected values for pressure, radiation and wind speed
plays no important role, since the threshold values were set
very high (75 m s−1 for wind, 1420 W m−2 for short wave
radiation, 1000 W m−2 for longwave radiation, and 1200 hPa
for pressure, cf. precipitation 400 mm day−1).

In addition, daily minimum (maximum) temperature cor-
rection is derived from the correction of daily average tem-
perature. We calculate the mean distance to the average tem-
perature value over the reference period for both observations
and simulations:

κ =

m=40∑
i=1

(
T WFD

m,ij − T WFD
ij

)
m=40∑
i=1

(
T GCM

m,ij − T GCM
ij

) , (25)

whereTm refers to the daily minimum (maximum) tempera-
ture. In the application of the correction

T̃ GCM
m,ij = κ ·

(
T GCM

m,ij − T GCM
ij

)
+ T̃ GCM

ij (26)

the original distance to the daily average temperature is
scaled with the factorκ and the result is added to the bias-
corrected daily average temperature.

For snowfall the portion of snow (SGCM
ij ) from the total

precipitation (P GCM
ij ) in the uncorrected model data is cal-

culated at each grid cell. Application to the bias-corrected
precipitation leads to bias-corrected snowfall data

S̃GCM
ij =

SGCM
ij

P GCM
ij

· P̃ GCM
ij . (27)

The same procedure applies to the wind components, i.e.

K̃GCM
ij =

KGCM
ij

WGCM
ij

· W̃GCM
ij , (28)

whereWGCM
ij refers to the total wind speed (bias-corrected

in the same way as precipitation according to Eq.24) and
KGCM

ij represents the eastward (northward) wind component.
The wind components are scaled in the same way as the to-
tal wind speed to obtain the bias-corrected components. The
wind direction is preserved in that way.

4 Evaluation of the methodology

In this section we present the bias-corrected temperature and
precipitation data of the HadGEM2-ES April climate.

We demonstrate that bias correction alters several statis-
tical properties of the data in the desired fashion, but also
discuss its limitations.

4.1 Sensitivity study

Due to the limited availability of observational data a val-
idation of the applicability of the statistical bias correction
setting which we applied earlier is in general not straightfor-
ward. However, strong evidence for applicability arises from
the consideration of short sensitivity studies (Piani et al.,
2010). Thus, in a first step, we study global maps of different
statistical quantities of uncorrected and bias-corrected GCM
data for a period 1980 to 1999. In this setup the parameters
are derived only from a 20 yr reference period 1960 to 1979
in order to avoid an overlap of the “training” and the “valida-
tion” dataset.

As described earlier, the first step of our bias correction
(cf. Sect.3.1) adjusts the long-term monthly mean. Thus, this
average is the first statistical quantity to be considered. Fur-
thermore, the second step of the bias correction (cf. Sect.3.2)
modifies the width and in case of a nonlinear fit also higher
moments of the distribution. Those parameters of the proba-
bility distribution are, for example, represented by the lower
(50–10 %) and upper (90–50 %) inter-percentile range. Devi-
ations between GCM and WFD in the three mentioned sta-
tistical quantities, as well as the improvement by our trend-
preserving bias correction, are shown in Fig.7 for (a) tem-
perature and (b) precipitation.

The bias correction based on the reference period 1960 to
1979 yields a significant improvement of the matching of the
long-term mean for the period 1980 to 1999 in most areas of
the globe (cf. Fig.7 upper row). There are only a few areas
where the matching between the WFD and the bias-corrected
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Fig. 7. The anomalies (i.e. simulation – observation) of statistical properties in raw (GCM) and bias-corrected (ISI and ISIe) model data are
shown. The trend-preserving ISI-MIP methodology was applied to the period 1980 to 1999 for bias correction based on a 20 yr reference
period (1960 to 1979). In case of precipitation we present the results of the extended algorithm. The long-term mean, lower inter-percentile
range and upper inter-percentile range of the April daily(a) temperature and(b) precipitation from 1980 to 1999 are shown. The 50–10 %
percentile refers to the lower inter-percentile range, while 90–50 % percentile denotes the upper inter-percentile range. Colours refer to
(a) temperature values in K and(b) precipitation values in mm day−1.

GCM data is slightly worse than for the uncorrected temper-
ature and precipitation data. Deviations occur particularly for
temperature, for example, in northern Scandinavia or south-
ern US. They are, however, small compared to the maximum
values of departure that occur around the globe when we con-
sider the uncorrected data, and could be related to variability
on a time scale that is not properly sampled within the 20-yr
reference period. Moreover, we find a general improvement
of the matching of the inter-percentile ranges, although the
deviations that persist after bias correction are more extended
than in the case of the long-term mean. This affects mainly
North America and Asia for temperature and the equatorial
region for precipitation.

Note that the 20-yr reference period in the sensitivity study
is comparatively short, and thus the bias correction parame-
ters estimated from this period are likely to be less robust
than in the actual application where we used the full 40 yr
reference period for training. Nevertheless, in most areas of
the globe the bias correction results in a significant improve-
ment of the matching between simulations and observations
even with a 20 yr reference period.

Next we go back to our initial reference period which
is 1960 to 1999 and was applied to obtain the ISI-MIP
dataset. It samples variability on decadal and multi-decadal
time scales and should thus result in more robust parameter
estimates. We consider the distributions of simulations and

observations over the whole reference period, since this is the
time span where they are intended to match by construction.

While the mean climate signal (long-term trend) should be
preserved by the ISI-MIP bias correction algorithm, different
parameters of the probability distribution are modified. The
latter was already illustrated in Figs.3 and5 for an exam-
ple grid cell. Although the mapping of the probability dis-
tributions remains imperfect (see particularly left panels), it
is significantly improved with the applied bias correction. In
case of temperature (Fig.3) the mean values show very good
agreement, while the standard deviation is slightly underesti-
mated in the bias-corrected data. For precipitation (Fig.5) a
substantial harmonisation of the standard deviations and the
mean values was achieved.

In order to check if theses results are robust, next, we con-
sider global maps of the different statistical quantities of the
probability distributions which we already described at the
beginning of this section (cf. Fig.7). However, this time the
reference period for the bias correction and the time span to
construct the histogram are the same (1960 to 1999). Devi-
ations between GCM and WFD in the three mentioned sta-
tistical quantities, as well as the improvement by our trend-
preserving bias correction, are shown in Fig.8 for (a) tem-
perature and (b) precipitation.

In case of the long-term temperature mean, shown in the
upper panels, we observe deviations of WFD and GCM data
between approximately−15 and 15 K (i.e. a span of 30 K).

Earth Syst. Dynam., 4, 219–236, 2013 www.earth-syst-dynam.net/4/219/2013/



S. Hempel et al.: A trend-preserving bias correction – the ISI-MIP approach 231

Fig. 8. The anomalies (simulation – observation) of statistical properties in raw (GCM) and bias-corrected (ISI and ISIe) model data are
shown. The trend-preserving ISI-MIP methodology was applied to the period 1960 to 1999 for bias correction based on a 40 yr reference
period (1960 to 1999). The illustration is analogous to Fig.7. Colours refer to(a) temperature values in K and(b) precipitation values in
mm day−1.

This is much narrower than the span of the long-term tem-
perature mean values themselves which range from approx-
imately 236 to 308 K (i.e. a span of 72 K). Thus, the devia-
tions are comparatively small. Discrepancies between WFD
and GCM are mainly related to the coarse resolution of the
model affecting the altitude information in some regions.
These anomalies are significantly reduced by our bias cor-
rection, as illustrated in the upper right panel of Fig.8a in
comparison to the upper left one.

Moreover, the width (and skewness) of the distribution
of the daily averaged temperature values shows good agree-
ment between WFD and GCM data, as reflected in the inter-
percentile ranges shown in the middle and lower panels in
Fig. 8a. Here the departure between WFD and GCM spans
20 K. Larger deviations in the inter-percentile ranges occur
mainly in the Northern Hemisphere (particularly in Cental
Asia and North America). With the two-parameter quantile
mapping applied to residual time series these differences be-
tween observation and model dataset are significantly re-
duced (right panels compared to left ones). The patterns,
however, persist. A total matching cannot be achieved with
the linear transfer function, since we do not adjust higher
moments of the distribution. In addition, interpolation of the
slope of the transfer function from monthly to daily values
also prevents total matching.

In the case of precipitation (Fig.8b) some regions in the
Southern Hemisphere show larger deviations between the
long-term mean and the inter-percentile ranges of the WFD
and GCM data (particularly in Central Africa, South Amer-
ica, and Indonesia). In addition several regions in South-
East Asia are affected. The extended trend-preserving bias
correction algorithm reduces theses departures significantly

(cf. Fig. 8b, right panels to left ones), although adjustment
of the probability distributions is imperfect. In the bias-
corrected dataset largest deviations from the WFD distribu-
tion persist in North Brazil and Indonesia with regards to
the inter-percentile ranges (middle and lower right panel in
Fig. 8b). The largest differences between WFD and bias-
corrected GCM long-term mean precipitation occur in North
Africa and China (Fig.8b, upper right panel). While in North
Africa the values obtained with the uncorrected dataset were
already comparatively low, in China model and observations
are substantially harmonised by the bias correction.

Moreover, the algorithm proposed here allows to signifi-
cantly improve the dry days statistics in most regions of the
globe (cf. maps of the number of dry days between 1980
and 1999 in the Supplements Fig. S3). Nevertheless, the ad-
justment is imperfect particularly in eastern North America,
northern Asia, central Australia and in the Sahara, and it does
not yield any improvement in some mountain regions (e.g. on
the western side of the Andes). The latter is most likely re-
lated to the limited downscaling ability of the method.

We focus in our sensitivity study on the range between be-
tween the 10 % and the 90 % quantile. For this central range
bias correction methods are expected to perform well, while
the correction in the outer ranges of the distribution is typ-
ically worse, since there are less events (Maraun, 2013). In
general bias correction methods tend to exaggerate extreme
events, since the limited number of data points prohibits
a robust analysis of the relationship between observations
and simulations, potentially resulting in an overestimation of
these events. In addition, the extreme events always cover
the whole gridbox area, i.e. their spatial extent is typically
too large. However, since we introduced an upper bound for
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Fig. 9. Absolute differences between the trends in the interpolated GCM April data before and after bias correction. The absolute trend
for temperature (in K) is estimated asT2095−2099− T1960−1964. In the case of the relative precipitation trend, we consider the logarithm
log(P2095−2099/P1960−1964). Similarly trends in the bias-corrected data are estimated fromT̃ and P̃ . Values of the absolute differences
between the trends in bias-corrected and uncorrected data are truncated at the upper bound of the colourbar, i.e. yellow refers to the denoted or
higher values. White areas belong to regions where no information about the trend is available. The results with the quantile mapping applied
on the time series themselves (WATCH method) and on the residuals or normalised values (ISIMIP method) are shown for temperature and
precipitation (cf. Table2 for main algorithmic differences). We consider the end of the 21st century (mean 2095–2099) in comparison to the
beginning of the reference period (mean 1960–1964) to define the trend.

the bias-corrected values in ISIMIP, the impact of this effect
is not arbitrarily large. On the global scale the bias-corrected
variables show good agreement with the observational data
even in the tails of the distribution (cf. Supplement Fig. S4).

However, the influence of the overestimated spatial corre-
lation on the impact simulations clearly depends on the de-
gree to which impacts at one grid cell are influenced by im-
pacts or meteorological events in the neighbouring grid cells
that might be particularly relevant with regard to hydrologi-
cal models. In Supplement Fig. S5, we provide maps of the
bias-corrected and observed variances over the reference pe-
riod (April precipitation aggregated to the original resolution
of the HadGEM2-ES GCM) for illustration. Moreover, the
ratio of both is given.

Furthermore, maps which evaluate the bias correction of
the other ISI-MIP variables in terms of the long-term mean
and inter-percentile ranges are provided in the Supplement.
Patterns of discrepancies between observational and bias-
corrected data can be identified in all statistical properties,
however, their spatial distribution is not consistent among
all variables (cf. Fig. S6). Changes in the inter-percentile
ranges are small and rather localized for all four variables.
In any case, bias correction yields a significant improvement
in the long-term mean, particularly of pressure and radiation,
as can be seen when comparing Figs. S6 and S7. Note that
the colour bar for the long-term mean of pressure, long- and
shortwave radiation differs between the two figures.

4.2 Trend: comparison with WATCH method

We illustrate that in contrast to a quantile mapping of the time
series itself (as used e.g. in Water-MIP;Hagemann et al.,
2011or WATCH; Weedon et al., 2011), our approach pre-
serves the long-term trend with respect to the monthly mean
values either in absolute or relative terms (cf. Fig.9).

The proposed additive approach does not modify the ab-
solute trend in the temperature data compared to the inter-
polated GCM output (except for small deviations related to
the interpolation of the transfer function, cf. Eq.20). As an
example, we consider monthly means over two 5 yr periods,
one at the beginning (1960–1964) and one at the end (2095–
2099) of the application period. The difference between those
monthly mean values,

T2095−2099 − T1960−1964 = T̃2095−2099 − T̃1960−1964, (29)

is not affected if we apply the ISI-MIP algorithm for tem-
perature correction described in Sect.3, as shown in Fig.9
(upper panels). This is in contrast to what is observed when
applying the quantile mapping to the time series themselves
(left panel, denoted as WATCH in Fig.9). In the left panel
significant changes in the temperature trend occur partic-
ularly in West Canada, Alaska, East Russia, North-West
China, and North Brazil. With our proposed algorithm (right
panel, denoted as ISIMIP in Fig.9) a small region in North
Brazil is most affected by the change in temperature trend.
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Fig. 10.The lower (50–10 %) and upper (90–50 %) inter-percentile range of the April daily precipitation from 1960 to 1999 are shown for
the ISI-MIP dataset (ISI) and with the extended version of the algorithm (ISIe). In addition the differences of both version are shown. The
inter-percentile ranges are analogues to Fig.8. Colours refer to precipitation in mm day−1. Difference values outside the range of the shown
colourbars are white in order to increase visibility of the map (over land this affects only few small areas).

However, that shift is small compared to the changes ob-
served with previous approaches.

The lower panels of Fig.9 illustrate that the multiplicative
approach preserves the relative trend of the precipitation in
the same sense:

P2095−2099

P1960−1964
=

P̃2095−2099

P̃1960−1964
. (30)

This is valid for the precipitation that is bias-corrected with
the extended version of the multiplicative algorithm (ISIe) as
well as for the ISI-MIP climate input (ISI), since the modifi-
cations to the code affect only the variability of the the daily
data, but not the correction of the monthly mean. White areas
in Fig. 9 occur if no conclusions about the relative trend can
be made. We show the absolute difference of the logarithms,

log
P2095−2099

P1960−1964
− log

P̃2095−2099

P̃1960−1964
, (31)

in Fig. 9 in order to weight departures in increasing and de-
creasing precipitation amounts the same. To increase visibil-
ity a nonlinear colourscale which is truncated at 10 has been
chosen. However, there are regions (particularly in the left
panel of Fig.9) where the change in trend exceeds that value
(e.g. in the West Sahara).

We observe that significant changes in the relative trend
in April precipitation occur mainly in regions which (in
spring) are characterised by rather arid conditions. The quan-
tile mapping applied to the time series themselves (denoted
as WATCH in Fig. 9) results in extended areas of large
changes in the trend. As shown in the lower left panel of
Fig. 9, most affected regions are North Africa, Australia, In-
dia, West China, Namibia, Botswana, and few small regions
in Chile, Argentina, Mexico, Southern US, Northern Canada,
Greenland and East Russia. In contrast, the precipitation that

was bias-corrected with the ISI-MIP approach (denoted as
ISIMIP in Fig. 9) shows fewer and smaller changes in the
trend. Modifications of the trend persist in North Africa,
Australia, North-West India, Namibia, Botswana, Mexico,
Southern US and East Russia, which is most likely related
to numerical effects in arid regions.

4.3 ISI-MIP algorithm and its extension

The bias correction method for variables with positivity con-
straints that was applied to generate the ISI-MIP dataset, due
to time constraints, suffers from some unresolved problems
and a bug in the programme code. As a result, while the long-
term mean is adjusted in the desired fashion, the variability
of the variables (e.g. precipitation) is corrected only to a lim-
ited extent. Hence, compared to the results shown and dis-
cussed in the previous paragraph (cf. Fig.8b), variability in
the ISI-MIP dataset is typically closer to that in the GCM.
This holds in particular for the upper inter-percentile range,
whilst the lower inter-percentile range is slightly enlarged by
introducing zero precipitation days.

In order to characterise the problems in the ISI-MIP
dataset, in Fig.10 we compare the inter-percentile ranges
over the reference period (1960–1999) in the ISI-MIP pre-
cipitation dataset and the precipitation that is bias-corrected
with the extended version of the algorithm. Since the same
methodology is used for correction of the long-term mean
in both datasets, the resulting long-term mean is the same
by definition (identical to what is shown in the upper row in
Fig. 8b).

In case of the lower inter-percentile range basically the
northern part of South America, Congo, South-East China
and Indonesia show significant deviations between the two
bias-corrected datasets (cf. Fig.10, lower left panel). In ad-
dition, we observe that the lower inter-percentile range is in
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Fig. 11.The lower inter-percentile range (50–10 %) and upper inter-percentile range (90–50 %) of the normalised April daily precipitation
from 2091 to 2099 are shown for the ISI-MIP dataset (ISI) and with the extended version of the algorithm (ISIe). In addition the differences
of both version are shown. The inter-percentile ranges are analogues to Fig.8.

general less affected than the upper one, both with regards to
absolute values and to spatial extent (cf. Fig.10, lower pan-
els). This indicates that in the ISI-MIP dataset extreme high
precipitation events in most areas are less likely than in the
precipitation dataset that is bias-corrected with the extended
algorithm. Particularly South-Eastern USA, Northern Brazil,
South-Eastern China, and several countries in Central Africa
are affected by this deviation between the datasets.

Furthermore, the limited correction of the variability in
the ISI-MIP data set results in several places in a narrower
distribution than the one obtained with the extended algo-
rithm. This can be concluded from Fig.10 if we sum up the
values shown in the two lower panels. Most affected areas
in that context are Eastern USA, Southern Greenland and
South-Eastern China in the Northern Hemisphere, as well as
South America, Central Africa and Indonesia in the Southern
Hemisphere.

The level of agreement between the width of the WFD and
GCM probability distributions (including daily and monthly
variability) during the reference period dictates also the
width of the distribution of bias-corrected values in the fu-
ture. Thus, when performing the analysis shown in Fig.10
for a period at the end of the 21st century (RCP 8.5) we ob-
tain basically the same patterns, although absolute values are
in general larger.

Since in both datasets the monthly variability is modified
in the same way (by a constant multiplicative factor), the
described differences must result from the correction of the
daily variability. For a more detailed investigation and com-
parison of variability only on this short time scale, we con-
sider the inter-percentile ranges of the normalised values for
the end of the 21st century (RCP 8.5). We chose this scenario

and time period, since deviations are expected to be most pro-
nounced here. Results are shown in Fig.11.

The time series are divided by the monthly mean (in-
cluding all days of the month) in order to normalise them
before the inter-percentile ranges are calculated. While the
same normalisation was applied in the algorithm used to pro-
duce the ISI-MIP dataset, in the extended algorithm a dif-
ferent normalisation is applied (cf. Sect.3.2.2). This means
for the extended algorithm the normalisation applied before
plotting the results does not coincide with the normalisa-
tion used during the corresponding bias correction process.
Thus, we cannot expect to find agreement of the distribu-
tions of the two precipitation datasets across all locations.
However, while particularly the patterns in South America
and Central Africa reflect the results which we found for
the unnormalised datasets, those in Central Asia and western
North America did not occur before. This means consider-
ation of the inter-percentile ranges of the normalised values
in Fig. 11 reveals patterns of changes in the distributions,
which are masked on the larger scale (cf. maps for the unnor-
malised values Fig.10). A general statement on the deviation
of the width of distributions of normalised values, as done for
the unnormalised values in Fig.10, is however not straight-
forward. This is because in many cases the discrepancy for
lower and upper inter-percentile range is of opposite sign.

5 Conclusions and future work

We presented a novel, trend-preserving statistical bias cor-
rection approach, which adjusts the monthly mean and daily
variability of simulated climate data to observations, whilst
preserving the climate signal (long-term trend) much bet-
ter than previous algorithms. The proposed bias correction
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method extends the approach byPiani et al.(2010) to con-
serve the trend. An additive approach preserving the abso-
lute changes (for temperature) and a multiplicative one pre-
serving the relative changes (for precipitation) were devel-
oped and described in detail. Quantile mapping was applied
only to residual or normalised data. We demonstrated that
our approach is capable of adjusting the probability distri-
bution over the reference period, whilst widely preserving
the long-term trend in the data. We showed and discussed
that, although daily weighting of monthly correction factor
(temperature algorithm) or truncation of extreme high val-
ues (precipitation algorithm) can affect the trend, even with
those limitations the methodology proposed by ISI-MIP per-
forms well in preserving the trend. This is essential for the
project and not necessarily ensured by other methods (as
shown for the method used within Water-MIP). In addition,
our approach separates the bias correction at different time
scales from each other.

In the case of temperature the proposed procedure is
similar to the cascade bias correction method described by
Haerter et al.(2011). The major difference is the bias correc-
tion on the largest time scale. We refrain from multiplicative
correction in that case in order to preserve the trend, whilst
Haerter et al.(2011) use a linear transfer function instead
of an offset. However, the benefits of the cascading proce-
dure persist. Thus, the method chosen by ISI-MIP avoids
that improvement of the matching of probability distributions
based on daily data leads to impairment of the one based on
monthly data. A non-cascading bias correction on the other
hand mixes the adjustment of short-term and long-term mean
and variability and leads only to improvements on both scales
if the fluctuations at the different time scales are aligned, as
shown byHaerter et al.(2011).

Furthermore, the cascading approach allows to further ex-
tend the method to bias-correct GCM data at multiple time
scales. For example, the same methodology as described in
Sect.3.2 could be applied to temperature by replacing the
monthly mean by an annual mean and the daily data by
monthly data. With that approach the annual mean temper-
ature will be adjusted, while the trend based on the annual
values is preserved. Moreover, the monthly variability, which
was preserved in the ISI-MIP dataset, will be adjusted. In the
next step, daily temperature variability will be corrected as
described in Sect.3.2.

With the bias correction method that we proposed in
Sect.3 a similar cascade bias correction can be assigned to
precipitation and other variables with positivity constraints.
This allows us to bias-correct the related GCM data at mul-
tiple time scales as well. Within the ISI-MIP approach de-
scribed here, we corrected only the variability of the daily
data about the monthly mean, while variability at other time
scales was neglected. However, the bias in the weekly or
monthly variability of precipitation, for example, affects the
representation of droughts and floods. A bias correction of
the variability at multiple time scales – e.g. the (relative)

variability of the monthly data about the annual mean, i.e. the
seasonal cycle – is in principle possible with the method pro-
posed by ISI-MIP, but has not been applied so far. Such an ex-
tension will be crucial for future impact studies, even though
bias correction can only be applied to processes that operate
on time scales that are considerably shorter than the reference
period.

Supplementary material related to this article is
available online at:http://www.earth-syst-dynam.net/4/
219/2013/esd-4-219-2013-supplement.pdf.
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