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Abstract. Changes to climate–carbon cycle feedbacks may significantly affect the Earth system’s response to
greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably
opaque Earth system models. Here, we construct a stylised global climate–carbon cycle model, test its output
against comprehensive Earth system models, and investigate the strengths of its climate–carbon cycle feedbacks
analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation
of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same
climate–carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2
solubility all contribute approximately equally to the ocean climate–carbon feedback; and concentration–carbon
feedbacks may be more sensitive to future climate change than climate–carbon feedbacks. Simple models such
as that developed here also provide “workbenches” for simple but mechanistically based explorations of Earth
system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too
uncertain to be included in comprehensive Earth system models.

1 Introduction

The exchanges of carbon between the atmosphere and other
components of the Earth system, collectively known as the
carbon cycle, currently constitute important negative (damp-
ening) feedbacks on the effect of anthropogenic carbon emis-
sions on climate change. Carbon sinks in the land and the
ocean each currently take up about one-quarter of anthro-

pogenic carbon emissions each year (Le Quéré et al., 2016).
These feedbacks are expected to weaken in the future, am-
plifying the effect of anthropogenic carbon emissions on cli-
mate change (Ciais et al., 2013). The degree to which they
will weaken, however, is highly uncertain, with Earth sys-
tem models predicting a wide range of land and ocean car-
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Figure 1. Climate–carbon cycle feedbacks and state variables as represented in the stylised model introduced in this paper. Carbon stored on
land in vegetation and soils is aggregated into a single stock ct. Ocean mixed layer carbon, cm, is the only explicitly modelled ocean stock of
carbon; though to estimate carbon cycle feedbacks we also calculate total ocean carbon (Eq. 7).

bon uptakes even under identical atmospheric concentration
or emission scenarios (Joos et al., 2013).

Here, we develop a stylised model of the global carbon
cycle and its role in the climate system to explore the poten-
tial weakening of carbon cycle feedbacks on policy-relevant
timescales (< 100 years) up to the year 2100. Whereas com-
prehensive Earth system models are generally used for pro-
jections of climate, models of the Earth system of low com-
plexity are useful for improving mechanistic understanding
of Earth system processes and for enabling learning (Randers
et al., 2016; Raupach, 2013). Compared to comprehensive
Earth system models, our model has far fewer parameters,
can be computed much more rapidly, can be more rapidly
understood by both researchers and policymakers, and is
even sufficiently simple that analytical results about feed-
back strengths can be derived. Compared to previous stylised
models (Gregory et al., 2009; Joos et al., 1996; Meinshausen
et al., 2011a, c; Gasser et al., 2017a), our model features sim-
ple mechanistic representations, as opposed to parametric fits
to Earth system model output, of aggregated carbon uptake
both on land and in the ocean. Our stylised and mechanisti-
cally based climate–carbon cycle model also offers a work-
bench for investigating the influence of mechanisms that are
at present too uncertain, poorly defined, or computationally
intensive to include in current Earth system models. Such
stylised models are valuable for exploring the uncertain but
potentially highly impactful Earth system dynamics such as
interactions between climatic and social tipping elements
(Lenton et al., 2008; Kriegler et al., 2009; Schellnhuber et al.,
2016) and the planetary boundaries (Rockström et al., 2009;
Steffen et al., 2015).

Analyses of climate–carbon cycle feedbacks convention-
ally distinguish four different feedbacks (Fig. 1) (Friedling-
stein, 2015; Ciais et al., 2013). (i) In the land concentration–
carbon feedback, higher atmospheric carbon concentration
generally leads to increased carbon uptake due to the fertili-
sation effect, in which increased CO2 stimulates primary pro-
ductivity. (ii) In the ocean concentration–carbon feedback,
physical, chemical, and biological processes interact to sink
carbon. Atmospheric CO2 dissolves and dissociates in the

upper layer of the ocean to then be transported deeper by
physical and biological processes. The concentration–carbon
feedbacks are generally negative, dampening the effects of
anthropogenic emissions. (iii) In the land climate–carbon
feedback, higher temperatures, along with other associated
changes in climate, generally lead to decreased storage on
land at the global scale, for example due to the increase in
respiration rates with temperature. (iv) In the ocean climate–
carbon feedback, higher temperatures generally lead to re-
duced carbon uptake by the ocean, for example due to de-
creasing solubility of CO2. The climate–carbon feedbacks
are generally positive, amplifying the effects of carbon emis-
sions.

We begin by introducing our stylised carbon cycle model
and testing its output against historical observations and fu-
ture projections of Earth system models. Having thus estab-
lished the model’s performance, we introduce different for-
malisms used to quantify climate–carbon cycle feedbacks
and describe how they can be computed both numerically
and analytically from the model. We use our results to analyt-
ically study the relative strengths of different climate–carbon
cycle feedbacks and how they may change in the future, as
well as to compare different feedback formalisms. We con-
clude by speculating on how this stylised model could be
used as a “workbench” for studying a range of complex Earth
system processes, especially those related to the biosphere.

2 Model formulation

There is well-developed literature on stylised models used
for gaining a deeper understanding of Earth system dynamics
and even for successfully emulating the outputs of compre-
hensive coupled atmosphere–ocean and carbon cycle mod-
els (Anderies et al., 2013; Gregory et al., 2009; Joos et al.,
1996; Meinshausen et al., 2011a, c; Gasser et al., 2017a). We
developed a combination of existing models and new formu-
lations to construct a global climate–carbon cycle model with
the following characteristics.

1. The model includes processes relevant to the carbon
cycle and its interaction with climate on the policy-
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relevant timescale of the present to the year 2100.
Stylised carbon cycle models often do not, for exam-
ple, include explicit representations of the solubility or
biological pumps.

2. The model produces quantitatively plausible output for
carbon stocks and temperature changes.

3. All parameters have a direct biophysical or biogeo-
chemical interpretation, although these parameters may
be at an aggregated scale (for example, a parameter for
the net global fertilisation effect, rather than leaf phys-
iological parameters). We avoid models or model com-
ponents constructed by purely parametric fits, such as
impulse response functions, to historical data or projec-
tions of Earth system models (Kamiuto, 1994; Gasser
et al., 2017b; Joos et al., 1996; Harman et al., 2011; Gre-
gory et al., 2009; Meinshausen et al., 2011a).

4. The model is sufficiently simple that calculation of
the model’s feedback strengths is readily analytically
tractable. This tractability may come at the expense
of complexity, for example multiple terrestrial car-
bon compartments, or accuracy at millennial or longer
timescales (Lenton, 2000; Randers et al., 2016).

Building on the work of Anderies et al. (2013), we con-
structed a simple model with globally aggregated stocks of
atmospheric carbon in the form of carbon dioxide, ca; terres-
trial carbon, including vegetation and soil carbon, ct; and dis-
solved inorganic carbon (DIC) in the ocean mixed layer, cm.
The model’s fourth state variable is global mean surface tem-
perature relative to pre-industrial, 1T = T − T0. Compared
to Anderies et al. (2013), our model includes more realistic
representation of terrestrial and ocean processes but without
increase in model complexity, as well as time lags for climate
response to CO2.

We now describe the dynamics of the land carbon stock,
the ocean carbon stock, and atmospheric carbon and temper-
ature in our model.

2.1 Land

Net primary production (NPP) is the net uptake of carbon
from the atmosphere by plants through photosynthesis. NPP
is expected to increase with concentration of atmospheric
carbon dioxide ca. A simple parameterisation of this so-
called fertilisation effect is “Keeling’s formula” for global
NPP (Bacastow et al., 1973; Alexandrov et al., 2003):

NPP(ca)= NPP0

(
1+KC log

ca

ca0

)
. (1)

Throughout this article, the subscript “0” denotes the value
of the quantity at a pre-industrial equilibrium, and “log” de-
notes natural logarithm. Keeling’s formula incorporates all

climate-change-related effects on global NPP occurring si-
multaneously with carbon dioxide changes, for example, pre-
cipitation and temperature effects, in addition to fertilisation
effects. The curvature of the log function represents limita-
tions to NPP such as changing carbon-use efficiency (Körner,
2003) or nutrient limitations (Zaehle et al., 2010). Constant
climate sensitivity is also a key assumption, otherwise the
relative weight of climate and CO2 effects on NPP would
change.

At the same time, carbon loss from the world’s soils
through respiration, R, is expected to increase at higher
global mean surface temperature, 1T . We approximate the
net temperature response of global soil respiration using the
Q10 formalism R(1T )= R0Q

1T/10
R ct/ct0 (Xu and Shang,

2016), where QR is the proportional increase in respira-
tion for a 10 K temperature increase. We assume that pre-
industrial soil respiration is balanced by pre-industrial NPP,
R0 = NPP0. To avoid introducing multiple pools of carbon
into the model, we also have to assume that global soil respi-
ration is proportional to total land carbon (rather than soil
carbon). Respiration in our model also implicitly includes
other carbon-emitting processes such as wildfires or insect
disturbances.

It follows that the change in global terrestrial carbon stor-
age is

dct

dt
= NPP0

(
1+KC log

ca

ca0

)
−

NPP0

ct0
Q
1T/10
R ct−LUC(t).

In this expression we have also included loss of terrestrial
carbon due to land use emissions LUC(t). We rearrange this
expression to give

dct

dt
=

NPP0

ct0
Q
1T/10
R [K(ca,1T )− ct]−LUC(t), (2)

where the terrestrial carbon carrying capacity is

K(ca,1T )=
1+KC log ca

ca0

Q
1T/10
R

ct0. (3)

For model simplicity, we do not explicitly model fac-
tors affecting terrestrial carbon uptake such as seasonality,
species interactions, species functionality, migration, and re-
gional variability.

2.2 Ocean

In the upper-ocean mixed layer, mixing processes allow ex-
change of carbon dioxide with the atmosphere. The solubility
and biological pumps then transport carbon from the mixed
layer into the deep ocean. Since the residence time of deep
ocean carbon is several centuries, we explicitly only model
the dynamics of upper-ocean carbon while the deep ocean
is treated merely as an extremely large carbon reservoir. We
include the effects of ocean carbon chemistry, the solubility
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and biological pumps, and ocean–atmosphere diffusion on
upper-ocean mixed layer carbon.

Ocean uptake of carbon dioxide from the atmosphere is
chemically buffered by other species of DIC such as HCO−3
and CO2−

3 , which are produced when dissolved CO2 reacts
with water. The reaction of CO2 with water, producing these
other species, reduces the partial pressure of CO2 in water al-
lowing for more ocean CO2 uptake before equilibrium with
the atmosphere is achieved. The Revelle factor, r , is defined
as the ratio of the proportional change in carbon dioxide con-
tent to the proportional change in total DIC (Sabine et al.,
2004; Goodwin et al., 2007). For simplicity, we assume a
constant Revelle factor, except for the temperature depen-
dence, DT , of the solubility of CO2 in seawater. Therefore
CO2 diffuses between the atmosphere and ocean mixed layer
at a rate proportional to

ca−p(cm,1T ), (4)

where

p(cm,1T )= ca0

(
cm

cm0

)r 1
1−DT1T

, (5)

since at pre-industrial equilibrium p(cm0,0)= ca0.
There are two main mechanisms by which carbon is trans-

ported out of the upper-ocean mixed layer into the deep
ocean stocks: the solubility and biological pumps. In the sol-
ubility pump, overturning circulations exchange mixed layer
and deep ocean water. We assume that the large size of the
deep ocean means its carbon concentrations are negligibly
changed over the 100-year timescales relevant for the model.
The net transport of carbon to the lower ocean by the solu-
bility pump can therefore be represented by

w0(1−wT1T ) (cm− cm0) ,

where w0 is the (proportional) rate at which mixed layer
ocean water is exchanged with the deep ocean and wT pa-
rameterises weakening of the overturning circulation that is
expected to occur with future climate change (Collins et al.,
2013).

The biological pump refers to the sinking of biomass and
organic carbon produced in the upper ocean to deeper ocean
layers (Volk and Hoffert, 1985). In the models on which the
IPCC reports are based, a weakening of the biological pump
is predicted under climate change, mostly due to a decrease
in primary production, in turn due to increases in thermal
stratification of ocean waters (Bopp et al., 2013). We rep-
resent this climate-induced weakening in a single approxi-
mately linear factor, so that the rate of carbon transported out
of the upper-ocean mixed layer by the biological pump to
lower deep sea layers is given by

B(1T )= B0(1−BT1T ).

As on land, we assume a pre-industrial equilibrium at which
the biological pump was balanced by transport of carbon

back to the mixed layer by ocean circulation. We neglect
deposition of organic carbon to the sea floor and the long
timescale variations in the biological pump that may have
contributed to glacial–interglacial cycles (Sigman and Boyle,
2000). We therefore add an additional term B(1T )−B(0) to
the transport of carbon from the ocean mixed layer to the
deep ocean. Organic carbon that does not sink to the deep
ocean is rapidly respired back to forms of inorganic carbon;
the ocean mixed layer stock of organic carbon is therefore
small, around 3 PgC (Ciais et al., 2013), and we do not count
it in the model’s carbon balance.

By combining the expressions for the solubility and bio-
logical pumps with ocean–atmosphere carbon dioxide diffu-
sion, we obtain the rate of change of ocean mixed layer DIC,
cm:

dcm

dt
=

Dcm0

rp(cm0,0)
(ca−p(cm,1T ))

−w0(1−wT1T ) (cm− cm0)−B(1T )+B(0). (6)

The coefficient of the first term was chosen such that 1/D is
the timescale on which carbon dioxide diffuses between the
atmosphere and the ocean mixed layer (that is, the deriva-
tive of the first term with respect to cm, evaluated at the pre-
industrial equilibrium, is D).

The carbon content of the deep ocean does not explicitly
enter Eq. (6). To evaluate ocean carbon feedbacks, however,
we require the change in total ocean carbon content cM com-
pared to pre-industrial conditions. We calculate this as ocean
mixed layer carbon plus carbon transported to the deep ocean
by the solubility and biological pumps:

1cM =1cm+

t∫ [
w0(1−wT1T )(cm(t)− cm0)

+B(1T )−B(0)
]
dt. (7)

We do not explicitly model factors such as the thickness of
ocean stratification layers, spatial variation of stratification,
nutrient limitations to NPP, or changes in ocean circulation
due to wind forcing, freshwater forcing, or sea-ice processes
(Bernardello et al., 2014).

2.3 Atmosphere

We define cs to be the total carbon in our “system”, com-
prised of carbon stocks in the ocean mixed layer, atmosphere,
and terrestrial biosphere, that is

ca+ ct+ cm = cs. (8)

The only processes that affect the total carbon are human
emissions of fossil carbon into the atmosphere, e(t), and ex-
port of carbon into the deep ocean by the solubility and bio-
logical pumps, giving
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Figure 2. Model output under forcing from different RCP scenarios: (a) ocean carbon stock change, (b) land carbon stock changes, (c) atmo-
spheric carbon stock change, and (d) global mean surface temperature change. Historical changes in carbon stocks are from Le Quéré et al.
(2016) and historical temperature anomalies are from NOAA (2018). The historical temperature dataset of NOAA (2018), which is relative
to the period 1901–2000, has been offset to match the model’s average temperature anomaly over the same period.

dcs

dt
= e(t)−w0(1−wT1T ) (cm− cm0)

− (B(1T )−B(0)) , (9)

in which the initial value of cs is ca0+ ct0+ cm0. To ob-
tain the dynamics of atmosphere carbon stocks, we therefore
solve the differential Eq. (9) and then use the carbon balance
Eq. (8) to find ca.

Increasing atmospheric carbon dioxide levels ca cause a
change in global mean surface temperature, 1T , compared
to its pre-industrial level. To model the response of 1T ,
we follow the formulation of Kellie-Smith and Cox (2011),
which includes a logarithmic response as per the Arrhenius
law and a delay of timescale τ . Physically, this time delay is
primarily due to the heat capacity of the ocean.

d1T
dt
=

1
τ

(
λ

log2
log

(
ca

ca0

)
−1T

)
(10)

The climate sensitivity λ specifies the increase in temperature
in response to a doubling of atmospheric carbon dioxide lev-
els. The climate sensitivity accounts for energy balance feed-
backs such as from clouds and albedo. We use the transient
climate sensitivity (Collins et al., 2013) as this specifies the
response of the climate system over an approximately 100-
year timescale (see Sect. 3).

3 Model parameterisation and validation

Our climate–carbon cycle model has 12 parameters, four
state variables, and three nontrivial initial conditions (by def-

inition, the initial value of 1T is 0). We choose to parame-
terise each process with the best available knowledge about
that process, rather than try to force the model to fit histor-
ical data. This is in line with our stated model purposes of
understanding and learning, rather than prediction. Param-
eters for the response of climate to carbon dioxide (λ, τ )
and two parameters of the response of the ocean to chang-
ing temperature (BT and wT) were set based on the output of
atmosphere–ocean global circulation models. For the climate
sensitivity λ, transient climate response was used. All other
parameters are based on historical observations of the global
carbon cycle (Table 1).

Unless otherwise noted, we perform emissions-based
model runs using harmonised historical data and future RCP
scenarios on fossil fuel emissions [e(t)] and land use emis-
sions [LUC(t)] (Meinshausen et al., 2011b). While the focus
of our study is on future climate change, from the present
day until 2100, we begin simulations in 1750 to compare
our model against historical observations. Time series of the
model output are displayed in Fig. 2. Model solutions were
approximated in continuous time.

4 Feedback analysis

Our climate–carbon cycle model is sufficiently simple that
the strengths of its feedbacks can be estimated analytically.
Such computations are useful since the resulting symbolic
expressions can be used to identify how parameters of in-
terest affect feedback strengths and model dynamics. In this
section we introduce definitions of feedback strengths, cal-
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Table 1. Model parameters.

Name Symbol Value Reference/notes

Pre-industrial atmospheric carbon ca0 589 PgC Ciais et al. (2013)
Pre-industrial soil and vegetation
carbon

ct0 1875 PgC 1325 PgC of soil organic carbon in top metre of soil (Köchy et al., 2015)
plus mid range of vegetation carbon estimate by the Ciais et al. (2013).

Pre-industrial ocean mixed layer
carbon

cm0 900 PgC Ciais et al. (2013)

Climate sensitivity (TCR) λ 1.8 K Multi-model mean transient climate response (Flato et al., 2013)
Climate lag τ 4 years Calculations on ocean heat uptake, the primary cause of climate lag,

indicate a response time (e-folding time) of 4 years for timescales up
to centuries, before deep ocean heat uptake dominates at millennial
timescales (Gregory et al., 2015). This result is consistent with simula-
tions that indicate that maximum warming after a CO2 pulse is reached
after only a decade (Ricke and Caldeira, 2014) and with results from
impulse response model experiments (Joos et al., 2013).

Atmosphere–ocean mixed layer
CO2 equilibration rate

D 1 yr−1 Timescale of approximately 1 year, although highly spatially dependent
(Jones et al., 2014).

Revelle (buffer) factor r 12.5 Williams et al. (2016)
Solubility temperature effect DT 4.23 % K−1 Takahashi et al. (1993); Ciais et al. (2013, p. 498)
Pre-industrial biological pump B0 13 PgCyr−1 Ciais et al. (2013)
Temperature dependence of bio-
logical pump

BT 3.2 % K−1 12 % decrease (Bopp et al., 2013, Fig. 9b) after approximately 3.7 K
climate change (Collins et al., 2013)

Solubility pump rate w0 0.1 yr−1 DIC flux rate from ocean mixed layer divided by DIC stock in mixed
layer (Ciais et al., 2013)

Weakening of overturning circula-
tion with climate change

wT 10 % K−1 Approximate fit to values reported by Collins et al. (2013, p. 1095)

Terrestrial respiration temperature
dependence

QR 1.72 Raich et al. (2002); Xu and Shang (2016). Based on soil respiration,
which contributes the majority of terrestrial ecosystem respiration.

Pre-industrial NPP NPP0 55 PgCyr−1 Wieder et al. (2015); Sitch et al. (2015)
Fertilisation effect KC 0.3 Estimated by substituting recent NPP ≈ 60 PgCyr−1 (Wieder et al.,

2015; Sitch et al., 2015) and recent terrestrial carbon stocks, ct ≈
ct0+ 240 (Ciais et al., 2013), into Eq. (1). Alexandrov et al. (2003)
found that values between 0.3 and 0.4 are compatible with results from
a process-based global NPP model.

culate climate–carbon cycle feedbacks analytically and nu-
merically, and estimate feedback non-linearities.

4.1 Definitions

There are multiple measures of carbon cycle feedbacks cur-
rently in use. We here review three of the most common mea-
sures.

Consider an emission of E Pg C over some time period to
the atmosphere. In the absence of carbon cycle feedbacks, the
atmospheric carbon content would increase by 1coff

a ≡ E.
With a feedback switched on, the atmospheric carbon con-
tent would actually change by 1con

a . The feedback factor is
(Zickfeld et al., 2011)

F =
1con

a

1coff
a
. (11)

Out of the total atmospheric carbon change1con
a , the carbon

cycle feedback contributes (Hansen et al., 1984)

1cfeedback
a =1con

a −1c
off
a . (12)

Gain is the change in a feedback to atmospheric carbon con-
tent caused by changes in atmospheric carbon content:

g =
1cfeedback

a
1con

a
. (13)

Gain and feedback factor are related by

F =
1

1− g
. (14)

An alternative formalism, introduced by Friedlingstein
et al. (2006), allows feedbacks to be characterised from car-
bon cycle model output. Climate models are not required, ex-
cept as a forcing to the carbon cycle model. The formalism
relates the changes in terrestrial and marine carbon stocks to
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changes in global mean temperature and atmospheric carbon
dioxide as follows:

1ct = βL1ca+ γL1T (15)
1cM = βO1ca+ γO1T. (16)

Here the βL and βO feedback parameters are the land and
ocean, respectively, carbon sensitivities to atmospheric car-
bon dioxide changes 1ca. Likewise, γL and γO are the land
and ocean, respectively, carbon sensitivities to temperature
changes 1T . Note that cM denotes the total marine carbon
stock, both mixed layer and deep ocean. The differences1ca,
etc., are usually calculated over the duration of a simulation.
To isolate the β and γ feedback parameters, simulations are
conducted with biogeochemical coupling only and with ra-
diative coupling only (Gregory et al., 2009).

In both the formalisms introduced thus far, the feedback
measures are calculated by examining the changes in car-
bon stocks at the end point of model simulations. In con-
trast, Boer and Arora (2009) estimate sensitivities 0 and B
of the instantaneous carbon fluxes from atmosphere to land
and ocean:

dct

dt
= BL1ca+0L1T (17)

dcM

dt
= BO1ca+0O1T. (18)

These feedback parameters B and 0 are usually computed
for all time points during a simulation, again using biogeo-
chemically coupled and radiatively coupled simulations.

The two sets of parameters (B, 0) and (β, γ ) are related
by

β1ca =

∫
B1cadt (19)

γ1T =

∫
01T dt. (20)

Accordingly, Boer and Arora (2013) refer to B and 0 as di-
rect feedback parameters and to β and γ as time-integrated
feedback parameters.

4.2 Analytical feedback strengths based on equilibrium
changes

Analytical approximations to the strengths of carbon cycle
feedbacks in our model require choosing a timescale on
which the feedbacks will be calculated. Numerically esti-
mated feedback factors (Eq. 11) and time-integrated feed-
back parameters (Eqs. 15–16) are conventionally calculated
using carbon stock changes over 100 years or more. Re-
sponses on the longest timescales of our model are therefore
most relevant if our analytical approximations are to approx-
imate numerically calculated values. While recognising that
the Earth’s climate system is presently far from equilibrium,

we use changes in the equilibrium state of the model to ap-
proximate model responses over long timescales.

We analytically calculate the gains associated with each
of the feedback loops in Fig. 1 as follows. We calculate the
sensitivity (mathematically, partial derivative) of the equilib-
rium value of each quantity in the feedback loop with respect
to the preceding quantity in the loop. We form the product of
the derivatives (as per the chain rule of differentiation) to es-
timate the gain of that feedback loop. For example, to calcu-
late the land climate–carbon gain we calculate the sensitivity
of equilibrium temperature with respect to changes in atmo-
spheric carbon content (∂T ∗/∂ca), multiplied by the sensitiv-
ity of equilibrium terrestrial carbon with respect to changes
in temperature (∂c∗t /∂T ), multiplied by the sensitivity of
equilibrium atmospheric carbon with respect to changes in
terrestrial carbon (∂c∗a/∂ct).

Land climate–carbon equilibrium gain.

g∗TL ≡
∂T ∗

∂ca

∂c∗t
∂T

∂c∗a
∂ct

Land concentration–carbon equilibrium gain.

g∗L ≡
∂c∗t
∂ca

∂c∗a
∂ct

Ocean climate–carbon equilibrium gain.

g∗TO ≡
∂T ∗

∂ca

∂cM

∂T

∂c∗a
∂cM

Ocean concentration–carbon equilibrium gain.

g∗O ≡
∂cM

∂ca

∂c∗a
∂cM

The subscript T denotes that the feedback involves tempera-
ture. Asterisks (∗) denote equilibrium quantities. From these
gains, the feedback factors F ∗TL, F ∗L , F ∗TO, and F ∗O can be cal-
culated using Eq. (14). We label these gain and feedback fac-
tors g∗ and F ∗, respectively, to denote they are based on an
equilibrium approximation, not directly from transient simu-
lations as estimated by Zickfeld et al. (2011).

The derivatives of c∗a are trivial to calculate: by carbon bal-
ance, ∂c

∗
a

∂ct
=

∂c∗a
∂cM
=−1. To calculate the derivatives of c∗T, we

set 0= dct
dt , solve for ct, and calculate the necessary deriva-

tives. A similar procedure provides ∂T ∗

∂ca
.

The remaining derivatives are ∂cM
∂T

and ∂cM
∂ca

. Carbon sunk
into the deep ocean is substantial and cannot be neglected.
Deep ocean carbon storage equilibrates on timescales of mil-
lennia or more, however, far longer than the timescales of
interest in this model (we therefore write derivatives of cM
rather than c∗M). We therefore cannot use the same equilib-
rium approach as for the other variables. Instead, we derive
approximations to Eq. (7) as follows. First, we observe that
in the SRES A2 scenario used below, both cm(t) and 1T (t)
can be approximated as linear increases, starting at cm = cm0
and 1T = 0, respectively, over a time interval tlin. We esti-
mate this time interval by tlin = (cm(tend)−cm0)/c′m(tend) us-
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Table 2. Model validation. Historical changes are carbon stocks in 2011 relative to stocks in 1750 (Ciais et al., 2013) and temperatures in
2012 relative to temperatures in 1880 (Hartmann et al., 2013). Predicted future changes are carbon stocks in 2100 compared to 2012 (Collins
et al., 2013) and global mean surface temperature (GMST) averaged over 2081–2100 relative to 1986–2005 (Collins et al., 2013), under the
range of RCP scenarios.

Ocean carbon changes (Pg C) Land carbon changes (Pg C) GMST change, 1T (K)
IPCC AR5 Model result IPCC AR5 Model result IPCC AR5 Model result

Historical 155± 30 95 −30± 45 26 0.85 [0.65 to 1.06] 0.82
RCP2.6 150 [105 to 185] 174 65 [−50 to 195] 67 1.0 [0.3 to 1.7] 0.5
RCP4.5 250 [185 to 400] 243 230 [55 to 450] 135 1.8 [1.1 to 2.6] 1.2
RCP6 295 [265 to 335] 278 200 [−80 to 370] 168 2.2 [1.4 to 3.1] 1.7
RCP8.5 400 [320 to 635] 340 180 [−165 to 500] 207 3.7 [2.6 to 4.8] 2.4

ing the value cm and gradient c′m at the end of the simulation
period. We obtain

1cM ≈ cm− cm0+w0

(1
2
−

1
3
wT1T

)(
cm− cm0

)
tlin

−
1
2
B0BT1T tlin. (21)

We use this equation to calculate the derivatives ∂cM
∂T

and
∂cM
∂ca

. Evaluating these derivatives will involve the deriva-

tives ∂cm
∂T

and ∂cm
∂ca

. Since partial pressures across the air–sea
interface equilibrate rapidly on the timescale of the model
(D = 1 yr−1, Table 1), we assume that ca ≈ p(cm,1T ), re-
arrange for cm, and then calculate the appropriate derivatives
from the resulting equation.

We analytically estimate equilibrium versions of the time-
integrated feedback parameters of Friedlingstein et al. (2006)
using a similar approach:

γ ∗L =
∂c∗t
∂T

β∗L =
∂c∗t
∂ca

γ ∗O =
∂cM

∂T

β∗O =
∂cM

∂ca
.

Since the ocean component of the model has multiple pro-
cesses that respond to temperature, some analytical forms
were too complicated for easy visual inspection (Table A1).
We derived approximate analytical feedbacks by comparing
the magnitudes of terms in the numerator and denominator of
the feedback measures by expanding in power series ofDT T
and ca/ca0.

4.3 Analytical feedback strengths based on carbon
fluxes

We estimate the direct feedback parameters as follows:

0∗L =
dct

dt

∣∣∣∣
ca=ca0

1
1T

B∗L =
dct

dt

∣∣∣∣
1T=0

1
ca− ca0

0∗O =
dcM

dt

∣∣∣∣
ca=ca0

1
1T

B∗O =
dcM

dt

∣∣∣∣
1T=0

1
ca− ca0

.

Here dct/dt and dcM/dt denote the atmosphere–land and
atmosphere–ocean fluxes. The subscript 1T = 0 denotes
a biogeochemically coupled (and radiatively decoupled) sim-
ulation and ca = ca0 denotes a radiatively coupled (and bio-
geochemically decoupled) simulation.

The values of the feedback parameters are strongly sce-
nario dependent (Arora et al., 2013). To calculate the di-
rect feedback parameters, we assume a standard CO2-
quadrupling concentration pathway in order to compare our
results with Arora et al. (2013). This scenario has ca(t)=
ca0a

t , where a = 1.01. In this scenario, 1
ca

dca
dt = loga and,

ignoring an initial exponential transient, dT
dt = λ loga/ log2.

For the atmosphere–land carbon flux, the calculation is
straightforward under the following assumptions. We as-
sume that NPP0/ct0� loga so that ct tracks its carrying
capacity ct ≈K (Eq. 2). We also ignore land use change,
so that dct

dt ≈
dK
dt . Then we calculate dK

dt |ca=ca0 =
∂K
∂T

dT
dt and

dK
dt |1T=0 =

∂K
∂ca

dca
dt .

While the atmosphere–ocean flux could be read off di-
rectly from the first term of Eq. (6), this form is however
not particularly useful. As it involves a small difference be-
tween two large quantities, ca and p(cm,1T ), the size of the
difference can only be estimated from numerical results and
gives no immediate insight into how it depends on parame-
ters. Furthermore, we seek to compare our analytical results
to the results presented by Arora et al. (2013), in which the
feedback parameters are presented as functions of ca or 1T
only (not cm).

We instead derive an approximation based on timescale
separation as follows. The characteristic timescale of
atmosphere–ocean diffusion is much faster than the solubility
pump, biological pump, or human emissions into the atmo-
sphere (D� w0,B0/cm0, loga). Since atmosphere–ocean
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Table 3. Feedback analysis. Gains (g), feedback factors (F ), time-integrated feedback parameters (γ and β), and direct feedback parameters
(0 and B) were calculated analytically and numerically. Analytical ocean feedbacks are approximations of the exact forms in Table A1
(see Sect. 4.2). Exact forms were used to calculate numerical values. In this table, p ≡ p(cm,T ). Units of the climate–carbon integrated
feedback parameters are Pg C K−1 and concentration–carbon integrated feedback parameters are PgCppm−1. Ranges for analytical results
are written in the form (value at start of simulation) to (value at end of simulation). Emissions scenarios are as indicated; land use emissions
were assumed to be zero. From the results of simulations using the SRES A2 scenario we use tlin ≈ 100 corresponding to a period between
the years 2000 and 2100.

Feedback measure Land climate– Ocean climate– Land conc.– Ocean conc.–
carbon feedback carbon feedback carbon feedback carbon feedback

Gain, analytical expression
λct0

(
1+KC log ca

ca0

)
logQR

10caQ
1T/10
R log2

λtlin
ca log2

(
B0BT

2
+
cmDTw0

2r

+
w0wT(cm− cm0)

3

) −
ct0KC

caQ
1T/10
R

−
cmw0tlin

2car

Feedback factor (numerical scenario: SRES A2) (> 1 amplifies climate change; < 1 dampens climate change)

– estimate from analytical gain 1.81 to 1.18 1.01 to 1.09 0.51 to 0.81 0.89 to 0.84
– from simulation 1.15 1.10 0.80 0.73
– Zickfeld et al. (2011) 1.25 1.22 0.66 0.71

Time-integrated feedback parameter (numerical scenario: SRES A2) (< 0 amplifies climate change; > 0 dampens climate change)

– analytical expression −
ct0 logQR

10Q1T/10
R

−B0BT
tlin
2
−
cmDTw0tlin

2r
ct0KC
ca

cmw0tlin
2car

−w0wt(cm− cm0)
tlin
3

– estimate from analytical form −102 to −86 −3 to −67 2.04 to 0.51 0.26 to 0.42
– from simulation −74 −48 0.84 1.09
– Zickfeld et al. (2011) −129 −32 1.32 0.98
– Friedlingstein et al. (2006) −79 (−20 to −177) −30 (−14 to −67) 1.35 (0.2 to 2.8) 1.13 (0.8 to 1.6)

Direct feedback parameter (numerical scenario: CO2 doubling) (< 0 amplifies climate change; > 0 dampens climate change)

– analytical expression −
ct0λ logQR loga

101T log2
−
w0cm0DT

r
−B0BT

ct0KC loga
ca− ca0

w0cm
rca

– estimate from analytical form Fig. A1a Fig. A1b Fig. A1a Fig. A1b
– from simulation Fig. A1a Fig. A1b Fig. A1a Fig. A1b
– Arora et al. (2013) see text
Non-linearity −0.43 −0.11 0.03 0.03

diffusion is the fastest process, ocean mixed layer carbon
content rapidly gains an equilibrium cm = p

−1(ca,1T ) with
respect to atmospheric carbon content, where p−1(ca,1T )
is the solution to ca = p(cm,1T ). On the timescale of our
model, the atmosphere–ocean flux is therefore controlled by
the solubility and biological pumps, with diffusion provid-
ing a rapid coupling between ocean mixed layer and atmo-
sphere. An approximation for the atmosphere–ocean flux is
therefore dcMdt−1

≈ w0(1−wT1T )(p−1(ca,1T )− cm0)−
B0BT T , which upon substitution into the definitions of B∗O
and 0∗O gives the forms in Table A1. Taylor series expansions
and L’Hôpital’s rule were then used to derive the approximate
forms in Table 3.

4.4 Numerical estimation of feedback strengths

In addition to the analytical approximations to carbon cycle
feedbacks derived from our model, we also estimate feed-

back factors from direct numerical simulations of our model.
To compare the results of our model to previous studies, we
use the following scenarios. To compare our results with the
time-integrated feedback parameters reported by Friedling-
stein et al. (2006) and the feedback factors and gains of
Zickfeld et al. (2011), we employ the SRES A2 emissions
scenario used in those articles. To compare our results with
the direct feedback parameters of Arora et al. (2013), we use
the same scenario used in that article in which CO2 concen-
tration increases 1 % yr−1 until it quadruples (approximately
140 years). For each scenario, we perform four simulations:

1. Fully coupled simulation.

2. Completely uncoupled simulation, giving coff
a (t)=

ca0+
∫ t
E(t)dt for the emissions-driven scenario and the

specified concentration pathway for the concentration-
driven scenario.
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3. Biogeochemically coupled simulation. We switch off
feedbacks involving temperature response to atmo-
spheric CO2 by setting λ= 0. Since our model contains
no radiative forcing other than changes in CO2,
temperature 1T = 0 in this simulation. From this sim-
ulation we estimate the carbon–concentration feedback
factors via land FL =1c

on
a /1c

off
a = 1−1ct/1c

off
a

and ocean FO =1c
on
a /1c

off
a = 1−1cM/1c

off
a , time-

integrated feedback parameters βL =1ct/1ca and
βO =1cM/1ca, and direct feedback parameters
BL(t)= dct

dt /(ca− ca0) and BO(t)= dcM
dt /(ca− ca0).

4. Radiatively coupled simulation. We switch off feed-
backs involving the carbon cycle, by setting KC = 0
and changing the ca in Eq. (6) to ca0. From this sim-
ulation we estimate the carbon–climate feedback fac-
tors FTL = 1−1ct/1c

off
a and FTO = 1−1cM/1c

off
a ,

time-integrated feedback parameters γL =1ct/1T and
γO =1cM/1T following Arora et al. (2013), and di-
rect feedback parameters 0L(t)= dct

dt /1T and 0O(t)=
dcM
dt /1T .

4.5 Feedback non-linearity

Zickfeld et al. (2011) found, in emissions-driven scenarios,
that the fully coupled simulation sunk more terrestrial and
marine carbon than the sum of the biogeochemically and
radiatively coupled scenarios. They refer to this difference
as the non-linearity of the feedback, with the land sink con-
tributing 80 % of the non-linearity and the ocean sink 20 %.
Our analytical expressions for the feedbacks can be used to
obtain an alternative measure of feedback non-linearity.

We evaluate the non-linearity in the ocean and land
climate–carbon feedbacks using F ∗TO(ca,cm,ct,1T )−
F ∗TO(ca0,cm0,ct0,1T ) and F ∗TL(ca,cm,ct,1T )−
F ∗TL(ca0,cm0,ct0,1T ), respectively, where the
F ∗(ca0,cm0,ct0,1T ) are analytical approximations of
feedback factors from a radiatively coupled simulation (all
carbon stocks are fixed at pre-industrial levels). We evaluate
the non-linearities in the ocean and land concentration–
carbon feedbacks using F ∗O(ca,cm,ct,1T )−F ∗O(ca,cm,ct,0)
and F ∗L (ca,cm,ct,1T )−F ∗L (ca,cm,ct,0), respectively, where
the F ∗(ca,cm,ct,0) are analytical approximations of feed-
back factors from a biogeochemically coupled simulation
(temperature is fixed at its pre-industrial level). These ex-
pressions indicate the effect of temperature and atmospheric
carbon on the concentration–carbon and climate–carbon
feedbacks, respectively, We used the SRES A2 scenario.

5 Results and discussion

5.1 Model evaluation

Most predictions of our model are within the range of model
predictions produced for the IPCC’s Fifth Assessment Re-

port (Table 2). Our model estimates around 55 PgC more
historical land carbon uptake than the IPCC multi-model
mean, possibly due to our simplification to a single land car-
bon pool. Because it omits radiative forcing due to green-
house gases other than CO2, our model consistently underes-
timates future temperature changes, although in all except the
RCP8.5 scenario the projections are within the IPCC model
range. The purpose of our model is not to precisely predict
future climate change, but to serve as an approximate, mech-
anistically based emulator of the carbon cycle component
of Earth system models (see Sect. 2). If we choose param-
eters to fit historical observations rather than based on the
best available knowledge about each process (see Sect. 3),
then our results remain mostly within IPCC model range al-
though ocean and land uptake are consistently above and be-
low the IPCC multi-model mean, respectively (Table A2a).
We conclude that the model emulates historical observations
and future projections of Earth system models with sufficient
accuracy for this purpose.

5.2 Feedback analysis

All feedback measures calculated directly from our stylised
model simulations, as well as most of our analytically es-
timated feedback measures, are within a factor of 2 of
the mean output from Earth system models reported by
Friedlingstein et al. (2006) and Zickfeld et al. (2011) (Ta-
ble 3; compare also Fig. A1 with Figs. 4–5 of Arora et al.
(2013) for direct feedback parameters). This is a remarkably
good agreement considering the highly stylised nature of our
model. Furthermore, all of the numerically time-integrated
feedback parameters from our stylised model are within the
multi-model range reported by Friedlingstein et al. (2006).
The agreement observed here serves as additional validation
of our model as well as validation of the approximations used
to calculate analytical feedback factors.

An exception to the close agreement is the ocean
concentration–carbon feedback, with the analytically esti-
mated feedback factor and time-integrated feedback parame-
ter indicating a weaker negative feedback than the numerical
estimates from our stylised model or Earth system models.
This mismatch is primarily due to two approximations: one
in the numerical simulation and one in the analytical approx-
imation. The numerical approximation is that disconnecting
climate feedbacks in the biogeochemically coupled simula-
tion leaves less carbon available to be sunk into the ocean,
placing the ocean feedback at a different point in the highly
non-linear (as parameterised by the Revelle factor) ocean car-
bon uptake dynamics. The analytical approximation is that
Eq. (21) underestimates carbon sunk into the deep ocean.

We used parameters (Table 1) based on the best available
data about each process (see Sect. 3). With a set of parame-
ters based instead on fit to historical changes (Table A2), the
numerically estimated feedbacks became slightly stronger:
that is, the already positive climate–carbon feedbacks be-
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came more positive and the already negative concentration–
carbon feedbacks more negative. The numerical feedback es-
timates retained, however, good agreement with analytical
estimates as well as with previous numerical estimates by
Friedlingstein et al. (2006) and Zickfeld et al. (2011). One
exception was the ocean concentration–carbon feedback, for
which the analytical estimate remained outside Friedling-
stein et al.’s range as noted above, but the direct numerical
estimate moved to also be outside their range. We conclude
that our results are relatively insensitive to parameter val-
ues, though mechanistically based parameter values perform
slightly better than fitted parameter values.

Focusing on the analytical expressions, we observe that
the approximate analytical expressions for the three dif-
ferent feedback measures all have similar dependences on
state variables and parameters. All measures of the land
climate–carbon feedback have dependence of the form
ct0 logQR/Q

1T/10
R . The ocean climate–carbon feedbacks all

have terms of the form B0BT and w0DT cm/r . The land
concentration–carbon feedback has the form ct0KC/ca and
the ocean concentration–carbon feedbacks have the form
w0cm/rca. We conclude that for each type of carbon cycle
feedback, all three feedback formalisms detect similar fea-
tures of the climate–carbon system.

The analytical expressions provide rapid insight into how
feedback strengths depend on state variable and parameter
values that could otherwise only be studied numerically or
by qualitative reasoning. The analytical forms show that in-
creasing Revelle factor r , as is likely to occur in an increas-
ingly acidic ocean (Sabine et al., 2004), will decrease the
strengths of ocean climate–carbon and concentration–carbon
feedbacks. Weakening overturning circulation, viaw0, would
also decrease the strength of the ocean carbon cycle feed-
backs. On land, the parameters QR and KC control the ter-
restrial carbon cycle feedbacks.

We can compare likely trends in feedback strengths
from the analytical expressions for the direct feedback pa-
rameters. According to our model, the destabilising ocean
climate–carbon feedback is almost constant, while the ocean
concentration–carbon feedback weakens with cm (since
cm/ca ∼ c

1−r
m ). Similarly, according to our model the desta-

bilising land climate–carbon feedback will weaken less than
the stabilising concentration–carbon feedback (under CO2

doubling, ∼Q−1T/10
R weakens by 9 % at the new temper-

ature equilibrium while ∼ 1/ca weakens by 50 %). This dif-
ference between the land climate–carbon and concentration–
carbon feedbacks stems from the differing curvatures of
K(ca,1T ) as a function of 1T (close to linear) and ca (con-
cave). We conclude that under continued carbon emissions,
according to our model, both land and ocean feedbacks will
overall become more positive.

Where multiple processes contribute in parallel to a feed-
back, inspection of analytical forms can indicate the relative
contributions of the different processes to the feedback. In

the ocean component of the model, CO2 solubility, the bio-
logical pump, and the solubility pump are all temperature de-
pendent and therefore contribute to the ocean climate–carbon
feedback. Remarkably, all three processes contribute tem-
perature dependences of a similar magnitude; we therefore
list all three in the approximate analytical gain and time-
integrated feedback parameter in Table 3. The three terms
represent temperature dependence of the biological pump,
CO2 solubility, and the solubility pump.

5.3 Feedback non-linearity

As shown in Sect. 4.5, our analytical feedback expressions
enable a new way of estimating feedback non-linearities that
is not possible from direct numerical simulation. Since the
sum of the four non-linearities is negative (Table 3), we con-
clude that summing feedbacks found by individual decou-
pled simulations will overestimate the atmospheric carbon
levels, that is, underestimate land and ocean sinks. This result
matches the findings of Zickfeld et al. (2011) and Matthews
(2007). Terrestrial feedbacks contributed 83 % of the to-
tal non-linearity in our model, compared to 80 % reported
by Zickfeld et al. (2011). Furthermore, we can distinguish
the non-linearities in the climate–carbon and concentration–
carbon feedbacks. We found that the non-linearity in the ter-
restrial carbon–climate feedback was almost 4 times larger
than any other (Table 3). By inspecting the analytical deriva-
tion of the gains we conclude that this dominance is likely
due to a combination of three reasons: first, due to the sensi-
tivity of temperature to carbon dioxide, ∂T /∂ca = λ/ca log2,
the carbon–climate feedbacks are much more sensitive to ca
than the concentration–carbon feedbacks are to 1T . Sec-
ond, the non-linearity in the land climate–carbon feedback
is larger than the ocean climate–carbon feedback because
its feedback factor is larger and therefore more sensitive to
changes in gain (see Eq. 13). Third, the century timescale
of the simulation prevented ocean carbon dynamics, which
generally take place on longer timescales, from being exhib-
ited. We conclude that care must be taken when summing
results for feedbacks from decoupled simulations, especially
for simulations involving land feedbacks.

6 Conclusions

Earth system models span a wide range of complexity.
Here, we constructed a highly stylised, globally aggregated
climate–carbon cycle model. Despite the model’s simplic-
ity – just four state variables – the model emulated globally
aggregated historical trends and future projections of Earth
system models. The model’s simple form allowed climate–
carbon cycle feedbacks to be estimated analytically, provid-
ing mechanistic insight into these processes. For example,
we showed that carbon–climate feedbacks are less sensitive
than carbon–concentration feedbacks; on land, this is due to
the shape of K(ca,1T ). The simple but accurate climate–
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carbon cycle model could be a starting point for model-based
investigations of Earth system processes that are too poorly
understood to be incorporated in more comprehensive mod-
els.

Stylised models such as ours have significant value in pol-
icy contexts. When confronted with difficult policy decisions
involving long time periods and significant uncertainty, col-
laborative work with scientists allows policymakers to iden-
tify and clarify the impacts of various policy actions. In this
context, the utility of a model is to increase stakeholders’ un-
derstanding of a system and its dynamics under various con-
ditions (Voinov and Bousquet, 2010; Anderies, 2005). This
is in stark contrast to the use of more comprehensive models
to predict impacts of policies in which mechanisms under-
lying dynamics and trade-offs are not transparent and quick
explorations with stakeholders are not practical. The utility
of a stylised model is in facilitating a learning process rather
than in “accurately” predicting outcomes.

We foresee at least two strands of valuable future research
based on the climate–carbon cycle model developed in this
paper. First, our climate–carbon cycle model could be ex-
tended by including further processes relevant on different
timescales of interest for Earth system analysis. This would
enable a more in-depth analytical analysis of the feedback
strengths and gains relating to other aspects of Earth system
dynamics, such as the Earth’s energy balance, carbon storage
in the tropics compared to extratropics, albedo changes, the
cryosphere, nutrient cycles, and even societal feedbacks. The
task of characterising the Anthropocene as an epoch could
thus move beyond qualitative comparison of human-impact
trends to an improved characterisation of the feedbacks that
maintain different Earth system “regimes”. The effects on
feedback strengths of different functional forms, such as the
fertilisation effect KC, and how to constrain these functional
forms from data could also be investigated and could yield
insight into the continued divergence of Earth system model
projections.

Second, the model could comprise a workbench for the
systemic understanding of planetary boundary interactions
and hence generate crucial insights into the structure of the
safe operating space for humanity delineated by the plane-
tary boundaries (Rockström et al., 2009; Steffen et al., 2015).
Such extensions should focus on linking the core abiotic
and biotic dimensions of the planetary boundary framework.
The present lack of well-developed model representations
of the dynamics and ecosystem structure of biosphere di-
versity, heterogeneity, and resilience, despite ongoing efforts
in this direction (Purves et al., 2013; Bartlett et al., 2016;
Sakschewski et al., 2016), emphasises the need for a more
conceptual understanding of biosphere integrity, its vulner-
ability to anthropogenic perturbation, and its role for Earth
system resilience.

Data availability. Input parameters are listed in Table 2 and time
series inputs are from publicly available data as listed in Sect. 3.
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Appendix A
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Figure A1. Direct feedback parameters, (a) climate–carbon feedbacks, and (b) concentration–
carbon feedbacks.

Table A1. Exact forms for ocean feedbacks.

Feedback measure Ocean climate–carbon feedback Ocean concentration–carbon feedback

Gain λ
ca log2

[
B0BT tlin

2 +
tlin
3 w0wt(cm− cm0)

+
cmDT

r(1−DT1T )

(
1+w0tlin

(
1
2 −

wT1T
3

))] −
cm
car

(
1+w0tlin

(
1
2 −

wT1T
3

))

Time-integrated feedback −
cmDT

r(1−DT1T )

(
1+w0tlin

(
1
2 −

wT1T
3

))
cm
car

(
1+w0tlin

(
1
2 −

wT1T
3

))
parameter −

B0BT tlin
2 −

tlin
3 w0wt(cm− cm0)

Direct feedback parameter
w0(1−wT1T )cm0

(
(1−DT1T )

1
r −1

)
1T

−B0BT

w0cm0

((
ca
ca0

) 1
r
−1

)
ca−ca0
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Table A2. Testing parameters fitted to historical data. The following changes to parameter values were made to those listed in Table 1:KC =
0.25, QR = 2.45, λ= 1.91 K, w0 = 0.185 yr−1. (a) Historical and projected changes of carbon stocks. See Table 2 for further information
on how the figures were calculated and sources for model comparison. (b) Feedback analysis. See Table 3 for further information. Analytical
forms are omitted here.

(a)

Ocean carbon changes (Pg C) Land carbon changes (Pg C) GMST change, 1T (K)
IPCC AR5 Model result IPCC AR5 Model result IPCC AR5 Model result

Historical 155± 30 155 −30± 45 −30 0.85 [0.65 to 1.06] 0.85
RCP2.6 150 [105 to 185] 303 65 [−50 to 195] 2 1.0 [0.3 to 1.7] 0.3
RCP4.5 250 [185 to 400] 428 230 [55 to 450] 11 1.8 [1.1 to 2.6] 1.2
RCP6 295 [265 to 335] 484 200 [−80 to 370] 13 2.2 [1.4 to 3.1] 1.7
RCP8.5 400 [320 to 635] 591 180 [−165 to 500] −7 3.7 [2.6 to 4.8] 2.5

(b)

Feedback measure Land climate– Ocean climate– Land conc.– Ocean conc.–
carbon feedback carbon feedback carbon feedback carbon feedback

Feedback factor (numerical scenario: SRES A2)
– estimate from analytical gain 4.67 to 1.30 1.01 to 1.16 0.56 to 0.85 0.89 to 0.75
– from simulation 1.27 1.14 0.84 0.60
– Zickfeld et al. (2011) 1.25 1.22 0.66 0.71

Time-integrated feedback parameter (numerical scenario: SRES A2)

– estimate from analytical form −168 to −126 −3 to −100 1.70 to 0.38 0.26 to 0.70
– from simulation −119 −60 1.28 1.92
– Zickfeld et al. (2011) −129 −32 1.32 0.98
– Friedlingstein et al. (2006) −79 (−20 to −177) −30 (−14 to −67) 1.35 (0.2 to 2.8) 1.13 (0.8 to 1.6)
Non-linearity −1.14 −0.14 0.04 0.04
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