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Abstract—Due to the technical and cost limitations,
wireless systems suffer from various hardware impair-
ments, including phase noise, power amplifier nonlinearity,
carrier frequency offset and in-phase and quadrature-
phase imbalance. These impairments can highly degrade
the physical layer performance and are usually compen-
sated separately by using model-based signal processing
techniques. However, due to the high carrier frequency
and large bandwidth of 5G new radio, the coupling effects
between different impairments are highly aggravated,
which greatly degrades the performance of individual
compensation modules for different impairments. In this
paper, we propose a deep learning-based method, which
jointly addresses the hardware impairments directly from
the received data. Specifically, we focus on carrier frequen-
cy offset and in-phase and quadrature-phase imbalance,
and propose a deep neural network with multiple parallel
subnets for joint compensation. Numerical results show
that the proposed method outperforms the conventional
method using separate compensation modules in practical
signal-to-noise ratio regions, and the performance im-
provement further increases when the cyclic prefix length
or the pilot length is limited.

Index Terms—Carrier frequency offset, deep learning,
IQ imbalance.

I. INTRODUCTION

Due to the high spectral efficiency property, orthog-

onal frequency division multiplexing (OFDM) has been

widely adopted as the physical layer technology in

modern wireless systems, including WiFi, 4G, and 5G

networks [1–3]. In OFDM systems, the zero intermediate

frequency receiver has been widely adopted for its low

complexity and low power consumption. However, its

performance can be greatly degraded by radio-frequency

(RF) front-end imperfections.

This work was partially supported by the National Natural Science
Foundation of China (61801208, 61931023, U1936202).

The RF imperfections may lead to various hardware

impairments, including phase noise, power amplifier

nonlinearity, carrier frequency offset and in-phase and

quadrature-phase imbalance. Traditionally, these impair-

ments are compensated separately by using pilot-aided

methods [4]. However, these impairments are fundamen-

tally dependent on each other and their coupling effect

may degrade the performance of individual modules.

Specifically, for 5G new radio with high carrier frequen-

cy and large bandwidth, the coupling effects are further

aggravated, and it requires advanced methods to address

these impairments jointly. However, joint compensation

methods usually suffer from great modeling difficulty

and high computational complexity, which highly limits

their application in practical systems.

In this paper, we consider two types of hardware im-

pairments, carrier frequency offset (CFO) and in-phase

and quadrature-phase (IQ) imbalance. CFO is introduced

by the frequency mismatch between the transmitter and

the receiver, which causes phase shift and inter-carrier

interference. IQ imbalance is introduced by the ampli-

tude distortion and frequency mismatch of the mixers

between the I- and Q-branches, which causes serious

amplitude and phase distortions. A variety of digital

compensation methods are proposed in the literature,

including pilot-aided methods [5, 6] and blind methods

[7, 8]. However, these methods neglect the coupling

effects and may degrade the overall performance. With

the presence of IQ imbalance, the phase shift caused

by CFO between two consecutive OFDM symbols is

no longer a constant, such that the conventional CFO

compensation methods using two consecutive pilots are

not applicable. Also, a small estimation error of CFO

may greatly degrade the performance of IQ imbalance

compensation. To address the coupling effect between

CFO and IQ imbalance, a number of joint compensa-

tion methods are proposed, where the pilots are jointly
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designed and processed [9–11].

To overcome the modeling difficulty and high com-

putational complexity of traditional joint compensa-

tion methods, we propose a deep learning (DL)-based

compensation method for the joint compensation of

CFO and IQ imbalance. Recently, DL has been intro-

duced to address signal processing issues in wireless

communications [12–15]. In [16], an autoencoder-based

transceiver is proposed to learn the end-to-end signal

processing to achieve global optimization. In [17], the

autoencoder architecture is embedded into an OFDM

system to overcome the hardware impairments in terms

of power amplifier nonlinearity and CFO, respectively.

In [18], a deep neural network (DNN) is proposed as

a joint channel estimation and signal detection method

and provides comparable performance to the minimum

mean-square error algorithm. In [19], an autoencoder-

based method is proposed to reduce the peak-to-average-

power ratio of OFDM signals, of which the encoder

and decoder are utilized as constellation modulation and

demodulation, respectively. In [20], a long short-term

memory network is connected to a convolutional neural

network to directly reconstruct the channel information

of time-varying environments. Here, we propose a DNN

which jointly compensates the CFO and IQ imbalance

and directly recovers information bits from the received

data.

The rest of this paper is organized as follows. In

Section II, the OFDM receiver with CFO and IQ

imbalance is presented. In Section III, the DL-based

joint compensation method is proposed. In Section IV,

numerical results are provided and analyzed, and Section

V concludes the paper.

II. SYSTEM MODEL

We consider an OFDM system with K subcarriers, in

which the modulation order is M , the subcarrier interval

is Δf and the k-th subcarrier frequency is fk = kΔf .

The length of an OFDM symbol is then given by Ts =
1/Δf . We denote by X[k] as the signal transmitted at

the k-th subcarrier, and the baseband signal x(t) in time

domain is then given by

x(t) = 1

K

K−1∑
k=0

X[k]ej2πfkt. (1)

When the carrier frequency of the receiver is strictly

identical to the transmitter and I- and Q-branches are

strictly balanced, the received baseband signal in the

Fig. 1. System model of OFDM receivers with the presence of CFO
and IQ imbalance.

time domain can be given by

y(t) = ∫ ∞

−∞
x(t − τ)h(τ)dτ +w(t), (2)

where h(τ) and w(t) represent the time domain channel

response and the white gaussian noise, respectively.

In Fig. 1, we show an OFDM receiver with the

presence of CFO and IQ imbalance. r(t) is the radio

frequency signal directly received from the antenna with

carrier frequency fc. z(t) is the signal after the down-

conversion. The frequency shift is given by fshift and

the amplitude and phase mismatch of the mixers on the

I- and Q-branches are given by ε and φ, respectively.

Thus, we have

r(t) = y(t)ej2πfct, (3)

and

z(t) =LPF{r(t)(1 + ε)cos[2π(fshift + fc)t + φ]+ r(t)(1 − ε)cos[2π(fshift + fc)t − φ]}, (4)

where LPF{} represents the low-pass filter. By substi-

tuting (3) into (4), we have

z(t) =(1 + ε)cosφRe[y(t)ej2πfshiftt]
− (1 + ε)sinφIm[y(t)ej2πfshiftt]
− j(1 − ε)sinφRe[y(t)ej2πfshiftt]
+ j(1 − ε)cosφIm[y(t)ej2πfshiftt]
=(cosφ + jεsinφ)y(t)ej2πfshiftt

+ (εcosφ − jsinφ)y∗(t)e−j2πfshiftt,

(5)

where Re[] and Im[] represent the real part and the

imaginary part of the signal, respectively.

We define two IQ imbalance distortion parameters α
and β as follows.

α = cosφ + jεsinφ, (6)
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β = εcosφ − jsinφ. (7)

Thus, the baseband signal z(t) can be rewritten as

z(t) = αy(t)ej2πfshiftt + βy∗(t)e−j2πfshiftt. (8)

The received baseband signal z(t) is then sent to the FFT

demodulator. The output signal of the k-th subcarrier is

then given by

z[K] = 1

K

K−1∑
k=0

z(t)e−j2πfkt. (9)

If there is no CFO, i.e., fshift = 0, the baseband signal

z(t) is given by,

z(t) = αy(t) + βy∗(t). (10)

The baseband signal z(t) consists of two signal compo-

nents, αy(t) and βy∗(t). The former component αy(t)
equals the ideally received signal y(t) multiplied by

distortion parameter α, which can be easily compensated

by channel equalization. The latter component βy∗(t)
is an interference signal, which is the conjugate of the

ideally received y(t) multiplied by distortion parameter

β. This mirror interference can be estimated by using

conjugate symmetric pilot sequences, as in conventional

IQ imbalance compensation methods [6].

If the IQ imbalance can be perfectly compensated,

i.e., α = 1 and β = 0, the baseband signal is given by,

z(t) = y(t)ej2πfshiftt. (11)

As we can see, the CFO introduces frequency shift

fshift in frequency domain, which is equal to phase shift

2πfshiftt. Thus, the phase shift between two consecutive

OFDM symbols is constant, which can be utilized to

estimate the phase shift by inserting identical pilot

sequences in the time domain as in the conventional CFO

compensation methods [5, 21].

However, with the presence of both CFO and IQ

imbalance, the phase shift between two consecutive

OFDM symbols resulted by CFO is no longer a constant

and the interference caused by the IQ imbalance is no

longer a conjugate of the ideally received signal. There-

fore, the existing compensation methods that separately

compensate CFO and IQ imbalance may suffer from

severe performance degradation if the coupling effect is

further aggravated as in 5G new radio with high carrier

frequency and large bandwidth.

Fig. 2. The proposed DNN model for joint compensation of CFO
and IQ imbalance.

III. DEEP LEARNING BASED JOINT COMPENSATION

OF CFO AND IQ IMBALANCE

In this section, we utilize a single DNN to jointly

compensate the CFO and IQ imbalance. The input is the

OFDM symbols representing both the pilot and the data

information. The output is the demodulated information

bits of the corresponding data symbols. The DNN is

trained offline and deployed online at the receiver after

the FFT demodulator.

A. Deep Learning Model

As shown in Fig. 2, the proposed DNN has a parallel

architecture with J subnets of identical structure and

parameters, each of which contains three fully connect-

ed hidden layers. The activation function is uniformly

given by the rectified linear unit (ReLU) function. All

subnets share the same input layer, consisting of Np

pilot symbols and Nd data symbols. The input layer

corresponds to K(Np+Nd) complex modulation signals,

which are divided into real and imaginary parts for

convenience. Thus, the number of neurons in the input

layer is given by 2K(Np + Nd). The output layer of

each subnet consists of MNs neurons, where M is the

modulation orders and Ns = kNd/J is the number of

subcarriers addressed by each subnet. The total number

of output neurons is then given by MKNd. The numbers

of neurons in hidden layers are set at 2K(Np + Nd),
4K(Np +Nd) and 2K(Np +Nd).

The parallel architecture greatly reduces the number

of network parameters and highly reduces the training

complexity, while the cost is the loss of correlation

information between data in different subnets.

2021 IEEE/CIC International Conference on Communications in China (ICCC)

795Authorized licensed use limited to: Nanjing University. Downloaded on February 13,2023 at 08:26:19 UTC from IEEE Xplore.  Restrictions apply. 



4

B. Training Process

The training set consists of I samples, in which the

i-th sample is given by (xi,yi), where xi represents Np

pilot symbols and Nd data symbols, and yi represents

the information bits corresponding to the data symbols.

Then, we denote by u(l) and W(l) as the states of

neurons in the l-th layer and the weight matrix between

the l-th and (l-1)-th layers, respectively, and we have

u(l) = f (l)(g(l)(u(l−1),W(l))), (12)

where f (l)(⋅) is the ReLU activation function, given by

f (l)(z) =max(0,z), (13)

and gl(⋅) is the linear combination, given by

g(l)(u(l),W(l)) =W(l)u(l), (14)

Thus, for any input xi, the output ŷi is given by

ŷi =f (3)(g(3)(f (2)(g(2)(f (1)(g(1)(xi,W
(1)))

,W(2))),W(3)). (15)

The loss function is defined as the average mean

squared error between ŷi and yi of all samples, which

is given by

L =
���	1

I

I∑
i=1

∥ŷi − yi∥2, (16)

In order to minimize the loss function, the weight

parameters are updated by using the backpropagation

algorithm. The change of weight parameters in the l-th
layer is then given by

ΔW(l) = −η ∂L

∂W(l)
, (17)

where η is the learning rate and ∂L/∂W(l) can be

calculated by using the chain rule. The updated weight

parameters are then given by

W′(l) =W(l) +ΔW(l). (18)

IV. NUMERICAL RESULTS

In this section, experiments are conducted to demon-

strate the performance of the proposed method. We set

the number of subcarriers K = 64, subcarrier frequency

Δf = 15kHz, OFDM symbol duration Ts = 66.67μs,

and adopt 8 phase-shift keying modulation, i.e., M = 3.

The input of the proposed DNN corresponds to one

pilot symbol and one data symbol, i.e., Np = 1 and

Nd = 1, consisting of K(Np + Nd) = 128 complex

signals. Thus, the number of neurons in the input layer

is 2K(Np +Nd) = 256. We set the number of parallel

structures is J = 8. Thus, the number of neurons of

the output layer in each subnet is MNs = 24. For the

network training phase, we set the batch size as 128,

the number of epochs as 500, and the learning rate as

η = 0.04. To generate the training sample, the CFO

varies between 100 and 200 parts per million randomly,

while the IQ imbalance distortion parameter ε and φ are

distributed in [0.05,0.1] and [12○,18○], respectively.

We compare the proposed DL-based method with

the conventional method using three consecutive pilot

symbols followed by three consecutive data symbols

[10], where the CFO is estimated based on the phase

error characteristics of all the three pilots, and the IQ

imbalance parameters are estimated by using the first

pilot and the third pilot. The channel estimation and

equalization modules utilize the least square and the

zero-forcing algorithms, respectively. We conduct the

experiments under two scenarios, the AWGN channel

and the multipath channel. For the multipath channel,

the number of paths is 6, the delay is given by [0, 3, 4,

7, 12, 14] μs, and the power attenuation for each path

is given by [-4.437, -8.861, -10.458, -12.219, -18.861,

-20.000]dB for each path.

A. AWGN Channel

In Fig. 3, we compare the proposed method with

the conventional method with different CP lengths over

AWGN channels. The pilot length is fixed at Kp = 64.

As we can see, the proposed method outperforms the

conventional method for SNRs between 0dB and 35dB.

As the CP length Tτ is reduced from Ts/4, Ts/8, to

0, the SNR threshold where the BER of the proposed

method surpasses the conventional method increases,

which implies that the performance advantage of the

proposed method is increased by the reduced CP length.

In the conventional method, the BER slightly increas-

es as the CP length is reduced. The reason is that the

reduced CP length decreases the phase shift between two

consecutive symbols, and the noise influence is relatively

increased. However, in the proposed method, the BER

decreases as the CP length is reduced. For the reason that

the time interval between the two consecutive symbols

decreases as the CP length is reduced, and the time

domain correlation between the pilot symbol and the

data symbol increases, which helps the compensation of

CFO and IQ imbalance.

In Fig. 4, we compare the proposed method with

the conventional method with different pilot lengths

over AWGN channels. The CP length is fixed at Tτ =

Ts/4. As we can see, the BER of the proposed method
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Fig. 3. The BER performance of the proposed and the conventional
method with different CP lengths over AWGN channels. The pilot
length is Kp = 64.
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Fig. 4. The BER performance of the proposed and the conventional
method with different pilot lengths over AWGN channels. The CP
length is Tτ = Ts/4.

outperforms the conventional method for SNRs between

0dB and 35dB. As the pilot length is reduced from 64,

16, to 0, the SNR threshold increases, which implies

that the advantage of the proposed method is increased

by the reduced pilot length. We can also see that the

BER performance increase with the pilot length for both

the proposed and the conventional methods since longer

pilot sequences increase the estimation accuracy.

B. Multipath Channel

In Fig. 5, we compare the proposed method with

the conventional method with different CP lengths over

multiple channels, where the pilot length is fixed at Kp =

0 5 10 15 20 25 30 35 40
10-5

10-4

10-3

10-2

10-1

100

BE
R

Fig. 5. The BER performance of the proposed and the conventional
method with different CP lengths over multipath channels. The pilot
length is Kp = 64.

64. When the CP length Tτ is reduced from Ts/4, Ts/8,

to 0, the BER of the proposed method outperforms the

conventional method for SNRs between 0dB and 35dB

and the SNR threshold where the BER of the proposed

method surpasses the conventional method increases. As

the CP length is reduced to 0, the conventional method

cannot work due to severe inter-subcarrier interference.

As the CP length is reduced, the BER of the proposed

method increases, which is different from the AWGN

channel where the BER increases. The reason is that

even though the CP weakens the time domain corre-

lation between consecutive symbols, it greatly helps to

overcome the inter-subcarrier interference introduced by

the multipath channel, which can dramatically degrade

the demodulation performance. Thus, enough length

of CP is important for both of the proposed and the

conventional methods over multipath channels.

In Fig. 6, we compare the proposed method with the

conventional method with different pilot lengths, where

the CP length is fixed at Tτ = Ts/4. As we can see, the

proposed method outperforms the conventional method

for SNRs between 0dB and 35dB. As the pilot length is

reduced from 64, 16, to 0, the SNR threshold increases,

which implies that the advantage of the proposed method

is increased by the reduced pilot length. For similar

reasons in Fig. 4, we can see that the BER performance

is improved for both of the proposed method and the

conventional method as the pilot length is increased.

In sum, the proposed method outperforms the conven-

tional method for SNRs between 0dB and 35dB. When

the CP length or pilot length is reduced, the performance
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Fig. 6. The BER performance of the proposed and the conventional
method with different pilot lengths over multipath channels. The CP
length is Tτ = Ts/4.

advantage of the proposed method is increased.

V. CONCLUSION

In this paper, we have proposed a DL-based method

for the joint compensation of CFO and IQ imbalance

in OFDM receivers. Compared with the conventional

compensation method using two separate modules for

each impairment, the proposed method directly recovers

the information bits from the received signals by using

a single DNN. Numerical results show that the proposed

method achieves a lower BER than the conventional

method for SNRs between 0dB and 35dB, and the BER

improvement further increases when the CP length or

the pilot length is limited.
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