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Abstract. Land-use and land-cover change (LULCC) impacts local energy and water balance and contributes
on global scale to a net carbon emission to the atmosphere. The newly released annual ESA CCI (climate change
initiative) land cover maps provide continuous land cover changes at 300 m resolution from 1992 to 2015, and
can be used in land surface models (LSMs) to simulate LULCC effects on carbon stocks and on surface energy
budgets. Here we investigate the absolute areas and gross and net changes in different plant functional types
(PFTs) derived from ESA CCI products. The results are compared with other datasets. Global areas of forest,
cropland and grassland PFTs from ESA are 30.4, 19.3 and 35.7 million km2 in the year 2000. The global forest
area is lower than that from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) or Houghton and Nassikas (2017)
while cropland area is higher than LUH2v2h (Hurtt et al., 2011), in which cropland area is from HYDE 3.2 (Klein
Goldewijk et al., 2016). Gross forest loss and gain during 1992–2015 are 1.5 and 0.9 million km2 respectively, re-
sulting in a net forest loss of 0.6 million km2, mainly occurring in South and Central America. The magnitudes of
gross changes in forest, cropland and grassland PFTs in the ESA CCI are smaller than those in other datasets. The
magnitude of global net cropland gain for the whole period is consistent with HYDE 3.2 (Klein Goldewijk et al.,
2016), but most of the increases happened before 2004 in ESA and after 2007 in HYDE 3.2. Brazil, Bolivia and
Indonesia are the countries with the largest net forest loss from 1992 to 2015, and the decreased areas are gener-
ally consistent with those from Hansen et al. (2013) based on Landsat 30 m resolution images. Despite discrepan-
cies compared to other datasets, and uncertainties in converting into PFTs, the new ESA CCI products provide the
first detailed long-term time series of land-cover change and can be implemented in LSMs to characterize recent
carbon dynamics, and in climate models to simulate land-cover change feedbacks on climate. The annual ESA
CCI land cover products can be downloaded from http://maps.elie.ucl.ac.be/CCI/viewer/download.php (Land
Cover Maps – v2.0.7; see details in Sect. 5). The PFT map translation protocol and an example in 2000 can be
downloaded from https://doi.org/10.5281/zenodo.834229. The annual ESA CCI PFT maps from 1992 to 2015 at
0.5◦× 0.5◦ resolution can also be downloaded from https://doi.org/10.5281/zenodo.1048163.
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1 Introduction

LULCC (Land-use and land-cover change) is the essential
human perturbation on natural ecosystems (Klein Goldewijk
et al., 2016) and one of the main drivers of climate change
(Alkama and Cescatti, 2016; Bonan, 2008) through biophys-
ical (e.g. albedo and transpiration change; Peng et al., 2014;
Zhao and Jackson, 2014) and biogeochemical effects (e.g.
carbon emissions from gross deforestation and carbon sinks
in secondary forest regrowth; Houghton and Nassikas, 2017).
Forest loss from 2003 to 2012 was found to have caused a lo-
cal increase in air temperature of about 1 ◦C in temperate
and tropical regions, despite less solar energy being absorbed
by non-forest secondary vegetation with a higher albedo
(Alkama and Cescatti, 2016). Global net LULCC carbon
emissions (ELUC) are estimated to be 1.1±0.4 PgCyr−1 dur-
ing the past decade (2006–2015) by the bookkeeping model
of Houghton and Nassikas (2017) based on the national land
cover data from the Food and Agriculture Organization of
the United Nations (FAO, 2015; Keenan et al., 2015). The
ELUC diagnosed from an ensemble of land surface models
(LSMs) is 1.3± 0.3 PgCyr−1 during 2006–2015 (Le Quere
et al., 2016) based on different (successive) versions of ex-
panding cropland and pasture area from the HYDE dataset
(Klein Goldewijk et al., 2016).

Accurate, well defined and spatially explicit gridded
LULCC data are a prerequisite for calculating ELUC in mod-
els, either under the form of annual area change in bookkeep-
ing models or converted to changes in plant functional type
(PFT) areas in LSMs. In fact, uncertain historical LULCC
data are one of the largest contributors to the uncertainties
in ELUC estimation (Bayer et al., 2017; Houghton and Nas-
sikas, 2017). In addition to the inventory data (e.g. FAO data
reported by individual countries), satellite observations in the
recent three decades offer the possibility to characterize the
vegetation distributions as well as their temporal changes due
to both natural and anthropogenic activity. Global satellite
data include the Global Land Cover 2000 (GLC2000) map
based on SPOT VEGETATION (SPOT-VGT; 1 km resolu-
tion; Bartholomé and Belward, 2005), the MODIS Collection
5 Land Cover Product (500 m resolution; Friedl et al., 2010),
forest cover maps based on Landsat (30 m resolution; Hansen
et al., 2013), the GlobCover 2005 and 2009 products (300 m
resolution; Bontemps et al., 2011; Defourny et al., 2012) and
the European Space Agency Climate Change Initiative (ESA
CCI) epoch maps based on MERIS (300 m resolution; Bon-
temps et al., 2013). These satellite land cover products, how-
ever, differ in terms of land cover type, spatial resolution,
time span, stability and accuracy due to the different sen-
sor designs, classification procedures and validation methods
(Bontemps et al., 2012). In order to use satellite land cover
(LC) products in LSMs, these maps of LC classes are usu-
ally translated into maps of PFTs to drive the carbon dynam-
ics in vegetation and soils (Poulter et al., 2015); however, the
cross-walking table between LC classes and PFTs is compli-

cated by subjective decisions related to the interpretation of
LC class descriptions, and therefore is a source of uncertainty
in model simulations (Hartley et al., 2017). Because LC tran-
sitions of opposite directions can happen simultaneously in
a 0.5◦×0.5◦ grid cell, which is a typical spatial resolution of
LSMs, gross transitions instead of net transitions are gradu-
ally implemented in LSMs to more accurately simulate ELUC
(Bayer et al., 2017; Shevliakova et al., 2009; Stocker et al.,
2014; Wilkenskjeld et al., 2014; Yue et al., 2017). Thus, high-
resolution and successive long-term data on LC change are
needed to generate the gross transition matrix used in LSMs.
Although the products from Hansen et al. (2013) have a res-
olution of 30 m, they only provide forest area change rather
than changes between all LC types. Further, the gross for-
est gain is only available for the whole period of 2000–2012
rather than at annual time steps (Hansen et al., 2013). The
previous ESA CCI epoch maps contain all LC types (Bon-
temps et al., 2013) but the LC transitions are not appropriate
to be used in LSMs because these epoch products represent
5-year composite maps and thus do not allow us to assess
annual LC change dynamics; furthermore, only transitions to
or from forest cover were considered at that time (Li et al.,
2016).

The newly released annual ESA CCI land cover maps from
1992 to 2015 partly overcome these challenges with 300 m
resolution and long and successive annual time series for all
major land cover transitions (i.e. the maps now include tran-
sitions between non-forest classes, including grasses, crops
and urban areas; ESA, 2017) and thus can be potentially
translated into PFT maps used in the LSMs. The objectives
of this study are to document the major gross and net changes
and transitions in PFT maps derived from annual ESA CCI
LC products and to evaluate whether they can be used in
LSMs. Geographical distributions and temporal trends of the
translated PFT maps from ESA CCI products are character-
ized and compared with those from other datasets. It should
be noted that our analyses are based on the PFT maps that
have been translated from the ESA CCI LC maps, rather than
the original LC classes, because we aim to demonstrate the
differences between different datasets and provide sugges-
tions to modellers for implementing them in LSMs.

2 Methods

2.1 ESA CCI land cover products

The annual ESA CCI LC maps cover a period of 24 years
from 1992 to 2015 at a spatial resolution of 300 m (ESA,
2017). These maps describe the Earth’s terrestrial surface
in 37 original LC classes based on the United Nations
Land Cover Classification System (UN-LCCS; Di Gregorio,
2005).

This unique long-term land cover time series was achieved
by combining the global daily surface reflectance of five dif-
ferent observation systems while aiming to maintain a good
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consistency over time. This was identified as a key require-
ment from the modeling community (Bontemps et al., 2012).
Each of these global daily measurements of multispectral ra-
diance recorded from 1992 to 2015 have been pre-processed
to complete radiometric calibration, geometric and atmo-
spheric correction, and clouds and cloud shadow screening.
The full archive of MERIS (2003–2012) providing 15 spec-
tral bands at 300 m resolution was classified to establish
a baseline by fusing the outputs of machine learning and
unsupervised algorithms (ESA, 2017). The 1 km time series
recorded respectively by AVHRR from 1992 to 1999, SPOT-
VGT from 1999 to 2013 and PROBA-V from 2014 and 2015
were used to detect and confirm the change which was even-
tually delineated more precisely at the 300 m spatial resolu-
tion whenever possible, i.e. later than 2004. This last step
results in both back- and forward-dating the 10 year base-
line LC map to produce the 24 annual LC maps from 1992
to 2015. In order to avoid false change detections due to the
interannual variability in classifications, each change has to
persist over more than 2 successive years in the classifica-
tion time series to be confirmed (for more information see
Sect. 3.1.2 of the ESA CCI LC Product User Guide; ESA,
2017). The resulting series of consistent 300 m annual LC
maps from 1992 to 2015 is delivered with a pixel-based un-
certainty value indicating the confidence at which a LC class
was assigned for each pixel.

The accuracy of ESA CCI LC products was evaluated on
a global scale according to international standards, using an
independent validation dataset to produce a confusion matrix
and derive overall an accuracy figure. An object-based val-
idation database of 2600 primary sampling units was built
by a panel of international experts to specifically assess the
accuracy of both the LC classes and changes (ESA, 2017).
Research is currently ongoing to find how to address the
new challenges underlying this database, i.e. following a per-
object approach and interpreting not just a unique land cover
class but also a distribution of land cover classes within a pri-
mary sampling unit. The uniqueness of these two concepts
in the framework of global land cover validation requires
more time to derive reliable figures about LC classes and LC
change accuracy. It will also prevent any comparison with
previous validation figures.

In this respect, for the sake of comparison, the accuracy of
the ESA CCI LC product from 2010 was assessed using the
GlobCover 2009 validation database (Bontemps et al., 2011).
Using all the points interpreted as “certain” by the experts,
whether “homogeneous” (i.e. made of a single LC class) or
“heterogeneous” (i.e. made of several or mosaic LC classes),
the overall accuracy was found to be 71.5 %. Accounting for
only the “homogeneous” and “certain” points, the overall ac-
curacy raised to 75.4 % (ESA, 2017). The highest user accu-
racy values were found for the classes of rainfed cropland,
irrigated cropland, broadleaved evergreen forest, urban ar-
eas, bare areas, water bodies and permanent snow and ice.
Conversely, mosaic classes of natural vegetation were asso-

ciated with the lowest user accuracy values, as well as the
three classes of lichens and mosses, sparse vegetation and
flooded forest with fresh water.

The overall accuracy of the ESA CCI LC products
was also assessed by independent studies over specific re-
gions (e.g. Tsendbazar et al., 2015, over Africa and Yang
et al., 2017, over China), which can give valuable insights
for specific applications.

2.2 PFT area and net changes

The original 37 ESA CCI LC classes were first aggregated
into 0.5◦× 0.5◦ resolution and then translated into 14 differ-
ent PFTs based on the cross-walking table (Table S1 in the
Supplement) from the ESA Land Cover Product User Guide
(ESA, 2017). This table originated from Poulter et al. (2015)
and was further adjusted for some classes due to improved
understanding of how the LC class descriptions can be in-
terpreted to estimate fractional cover of PFTs from each LC
class, in particular for mosaic classes and sparsely vegetated
regions. PFTs were grouped into major vegetation types: for-
est, shrub, grassland and cropland. The tree PFTs and shrub
PFTs (Table S1) were summed to obtain the forest and shrub
area respectively; thus, the shrub PFTs are excluded from tree
PFTs in our analyses. The net area change was calculated by
comparing two annual PFT maps at 0.5◦× 0.5◦ resolution.

2.3 Gross PFT changes and transitions

Gross changes need to be considered differently because it
is only possible to derive the net change by comparing the
annual 300 m maps sequentially. Gross changes may be far
larger than the net changes, and thus may show different
magnitudes or even directions of LULCC carbon fluxes when
simulated in LSMs. To document all the bidirectional LC
transitions at 0.5◦×0.5◦ resolution, high-resolution LC tran-
sition data are needed. Therefore, the annual ESA CCI LC
maps are compared year by year at 300 m resolution to record
the gross loss and gain of each original LC class over the
whole period from 1992 to 2015. There are 23 original LC
classes that experienced gross changes (classes with stars in
Table S1).

In order to derive the gross transitions, all possible transi-
tions (506 in total) between the 23 original LC classes with
gross changes were calculated at 300 m resolution. There are
a total of 422 gross transitions between these 23 original
LC classes. These gross changes in the original classes were
then translated into gross changes in PFTs using the LC-to-
PFT cross-walking table (Table S1) and grouped into the ma-
jor vegetation types (forest, shrub, grassland, cropland). For
example, a LC transition from class “50”, corresponding to
90 % tree PFT in Table S1, to class “30” (10 % tree PFT) is
taken as a forest loss of 80 % in that 300 m grid cell. Finally,
the converted transitions were aggregated into fractions in
each 0.5◦× 0.5◦ grid cell.
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Table 1. Description and comparison of different land-use/land-cover datasets used in this study. The term of “dataset” in this study can also
involve some model output (e.g. forest area from Land Use Harmonization dataset, LUH2v2h).

PFTs from annual
ESA CCI maps

LUH2v2h
(Hurtt et al., 2011)

HYDE 3.2
(Klein Goldewijk
et al., 2016)

Hansen et al. (2013) Houghton and Nas-
sikas (2017)

Time span 1992–2015 850–2100 10 000 BC-2015 2000–2014 1850–2015
Time step annual annual 1000 year for the BCE

period, then 100 year
till 1700, 10 year till
2000, and from 2000
to 2015 annual

gross loss, annual;
gross gain for one
period (2000–2012)

annual

Spatial reso-
lution

300 m 0.25◦ 5 arcmin 30 m country

Land-use/
land-cover
type

forest, shrub, grass-
land, cropland, bare
soil, water and urban

forest, cropland, pas-
ture, rangeland, urban
and non-forested

cropland, grazing
lands and urban

forest forest

Gross or net gross and net gross and net net gross and net net at country level
Data source satellite (MERIS,

SPOT-VGT, AVHRR,
and PROBA-V)

urban, cropland,
pasture and rangeland
from HYDE 3.2
(Klein Goldewijk
et al., 2016); forest
and transitions based
on model

cropland and grazing
land are based on
the FAO categories
for “Arable land and
permanent crops” and
“Permanent meadows
and
pastures” (FAOSTAT,
2015); Spatial distri-
bution based on ESA
CCI epoch LC map
2010

satellite (Landsat) FAO FRA (FAO,
2015), based on
country reports

Advantage full land cover types;
relatively long time
series; relatively high
resolution; full gross
transitions

full gross transitions;
long time series

long time series;
inventory-based

high resolution inventory-based

Disadvantage no specific pasture;
uncertainty in cross-
walking table

no separation of de-
ciduous and evergreen
forest; model-based
forest areas; model-
based temporal
changes in historical
cropland and grazing
land (HYDE 3.2)

no forest; coarse time
steps

short time period; no
annual forest gain, but
only for the whole pe-
riod of 2000–2012; no
other LC types

not grid-cell explicit;
no other LC types;
inconsistency of data
sources and forest
definitions between
different countries

2.4 Comparison with other datasets

Three land-use and land-cover datasets (Table 1) were used
for comparison: (i) forest, grassland and cropland area from
the Land Use Harmonization (LUH2v2h) dataset (Hurtt
et al., 2011); (ii) forest cover data from Hansen et al. (2013)
and (iii) national forest area data from Houghton and Nas-
sikas (2017). The cropland and pasture areas in the LUH2v2h
dataset are from HYDE 3.2 (Klein Goldewijk et al., 2016),
in which the ESA CCI epoch LC map in 2010 (represent-
ing 2008–2012) was used as a spatial reference map for
the area allocation and the national cropland and grazing
land were adjusted to match the FAO STAT data (FAOSTAT,
2015) as close as possible. The national forest areas from

Houghton and Nassikas (2017) are based on FAO Forest Re-
sources Assessment (FRA) data (FAO, 2015; also see Keenan
et al. ,2015, for the main findings of FAO FRA 2015). Thus,
these two additional sources of data, HYDE 3.2 (Klein Gold-
ewijk et al., 2016) and FAO FRA (FAO, 2015) were not
shown in the figures.

It should be noted that land use data are not necessarily the
same as land cover data, and the exact definitions and cate-
gorization of forest (cropland and grassland) are different for
each dataset (see details in Discussion). Nevertheless, these
represent the best datasets available for the use in LSMs for
comparison, and we have tried to harmonize the definitions
where possible (see below), but to some degree this is an
ongoing discussion between the modeling and data commu-
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nities. Furthermore, all the LSMs have to use these datasets
for deriving PFT changes back through time, so it is a very
worthwhile exercise to determine if the broad groupings dif-
fer, and to what extent.

Absolute areas, net changes and gross transitions from
1992 to 2015 in the LUH2v2h dataset (Hurtt et al., 2011)
were used for comparison. Forest used in this study from
LUH2v2h (Hurtt et al., 2011) refers to the total of primary
and secondary forest, cropland refers to all crop types and
grassland refers to the total of pasture and rangeland. Be-
cause LUH2v2h data use cropland and grazing land areas
from HYDE 3.2 as an input (Hurtt et al., 2011), the spatial
distributions are mainly determined by HYDE 3.2. The gross
transitions in LUH2v2h data are calculated from the Global
Land Use Model (Hurtt et al., 2006) that tracks sub-grid cell
loss and gain in land use categories. They first determined the
urban area in each grid cell proportionally from cropland,
pasture and secondary lands, and if these areas cannot ful-
fill the urban increase, primary lands were cleared. The min-
imum transition rates between cropland, pasture and other
(sum of primary and secondary) lands were then calculated
to identify the gross transitions between these land use cate-
gories (Hurtt et al., 2011). Transitions related to shifting cul-
tivation and wood harvest were determined last (Hurtt et al.,
2011).

Only annual gross forest loss each year during 2000–2014
and total gross forest gain during 2000–2012 are available in
the dataset of Hansen et al. (2013). Thus, the net forest area
change from this dataset only refers to the period of 2000–
2012. The national forest area data from 1992 to 2015 in the
dataset of Houghton and Nassikas (2017) were used to cal-
culate the forest area changes.

A land mask with nine regions (Fig. 1) defined by
Houghton (1999) was used to derive the regional values.

3 Results

3.1 PFT areas in the year 2000

After translating the original ESA CCI LC classes into PFTs
using the cross-walking table (Table S1), the global and re-
gional areas of forest, cropland and grassland PFTs in the
year 2000 are shown in Fig. 1. Global areas of forest (ex-
cluding shrub), cropland and grassland PFTs are 30.4, 19.2
and 35.7 million km2, respectively Global forest area is 6.7,
11.2 or 10.1 million km2 lower than that from LUH2v2h
(Hurtt et al., 2011), Hansen et al. (2013) or Houghton and
Nassikas (2017), respectively. It is also much lower than
the recently reported global forest area of 43.3 million km2

with increased forest area estimate in dryland biomes using
Google Earth images (Bastin et al., 2017). Global cropland
area from ESA CCI is 4.2 million km2 larger than that from
LUH2v2h, while the difference in global grassland area is
relatively small.

Forest area from ESA CCI is lower than that from Hansen
et al. (2013) in all regions except North Africa and Middle
East and the Pacific developed region. Here, the regions refer
to the defined regions in Fig. 1. Forest area from LUH2v2h
(Hurtt et al., 2011) is larger than that from ESA CCI in
most regions except in South and Central America, tropical
African and the Pacific developed region. Forest area from
Houghton and Nassikas (2017), however, is systematically
higher than that from ESA CCI in all regions. Cropland area
from ESA CCI matches that from LUH2v2h (Hurtt et al.,
2011) in North America but is higher in all the other regions.
Although the global grassland area is similar between ESA
CCI and LUH2v2h (Hurtt et al., 2011), larger differences are
seen on a regional scale. Grassland area from ESA CCI was
found to be much higher than that from LUH2v2h (Hurtt
et al., 2011) in North America and the former Soviet Union
(4.0 and 3.5 million km2 higher, respectively) but much lower
(2.4 million km2) in North Africa and Middle East.

3.2 Gross area change

3.2.1 Time series of gross PFT change

After translating all of the 422 gross transitions detected be-
tween the original ESA LC classes into PFTs, the time se-
ries of gross changes in PFTs are shown in Fig. 2, and the
mean annual change rates are shown in Table S2. Generally,
the gross changes are related to the net, i.e. where there are
more gross changes, more net changes can be found. Major
gross changes occur in forest, cropland and grassland PFTs,
with a global gross gain of 0.91, 1.2 and 1.1 million km2 and
a global gross loss of 1.5, 0.56 and 0.98 million km2 respec-
tively, from 1992 to 2015. The magnitudes of gross changes
in these three PFTs are larger before 2005 than after 2005.
Especially during the late 1990s, both intensive gross forest
loss and gain occurred but overall resulted in net forest loss.
Accordingly, both gross and net cropland area expands dur-
ing this period. Two other peaks of net forest loss were found
in 1995 and 2004, during which net cropland area increased.
Although grassland experienced large gross loss and gross
gain, the net area remains stable, except in 2004 where a net
increase was found.

The temporal correlations of gross and net changes be-
tween ESA CCI PFTs, Hansen et al. (2013) and LUH2v2h
(Hurtt et al., 2011) are not significant (p > 0.05, Table S3).
The magnitudes of gross changes in forest from LUH2v2h
(Hurtt et al., 2011) and Hansen et al. (2013) and cropland
from LUH2v2h (Hurtt et al., 2011) are much larger than
those detected from ESA CCI PFT maps (Fig. 2). In con-
trast to gross changes of forest and cropland from ESA CCI
maps, annual gross changes from LUH2v2h (Hurtt et al.,
2011) show larger variations after 2005 than before 2005.
Especially before 2000, the annual gross changes in for-
est and cropland from LUH2v2h (Hurtt et al., 2011) are
constant because HYDE 3.2 provides cropland and pasture
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Figure 2. Gross changes in PFTs from 1992 to 2015 after translating gross transitions between original ESA land cover classes. Gross
changes from LUH2v2h (Hurtt et al., 2011) and Hansen et al. (2013) are also shown for comparison. The red line indicates the zero line.

area only at a 10-year time step before 2000 (at an annual
time step after 2000), and a linear interpolation was used in
LUH2v2h (Hurtt et al., 2011) to produce the annual maps
from HYDE 3.2 before 2000. The net forest loss and corre-
sponding net cropland gain in 2004 coincides with the ESA
CCI PFT maps and LUH2v2h (Hurtt et al., 2011) but the

years of cropland gain in HYDE 3.2 are rather different from
in ESA CCI PFTs during the other periods. Although the
difference in the magnitude of gross grassland changes be-
tween ESA CCI PFTs and LUH2v2h (Hurtt et al., 2011) is
relatively smaller than that of forest and cropland, the net
grassland changes are not consistent over time.
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Figure 3. Spatial distributions of net and cumulative gross changes in forest, cropland and grassland PFTs between 1992 and 2015 derived
from the ESA CCI data. The color scales indicate the changed fraction in each half-degree grid cell.

Gross changes in shrub and bare soil are also detected over
the whole period, and the net change in these PFTs is gener-
ally a loss in area. The magnitudes of gross water body area
changes are small compared to other PFTs. There is a rela-
tively large net increase during 1995–2000 and a moderate
net decrease during 2000–2010. Urban areas keep expand-
ing over the whole period, and the increasing rates are high
during 2001–2004 and 2012–2014.

3.2.2 Spatial distributions of gross PFT changes

The spatial distributions of net and cumulative gross changes
in forest, cropland and grassland PFTs between 1992 and
2015 are shown in Fig. 3, and the distributions of the other
PFTs are shown in Fig. S1. Intensive gross forest loss and
sparse gross forest gain in South America result in a strong
net decrease in forest area (Fig. 3). There are also consid-
erable gross and net forest losses in South and Southeast
Asia and in some regions of tropical Africa. Gross forest
gain occurs pervasively in boreal regions. Some regions of
intensive gross forest gain were found in south Asia, tropi-
cal Africa and South America, but with a small extent. Gross
cropland gain occurs all over the world, and especially in
South America, tropical Africa (particularly in the Sahel),
South and Southeast Asia, and central Asia. By contrast,
gross cropland loss is only observed in Europe and across the
North China Plain. The cropland loss in these two regions is
mainly caused by urbanization and thus an increase in urban
area was found (Fig. S1). Overall, the net cropland change
is an increase in most regions except Europe and the North
China Plain. Grassland in temperate and tropical regions ex-
perienced extensive gross gain and gross loss, but the gross

gain and loss are not fully coincident, leading to a pattern of
coexisting net gain and loss everywhere (Fig. 3). The changes
in grassland are relatively small in boreal regions.

The changes to shrubs are largely distributed in tropi-
cal regions, with a net gain in South America and net loss
in tropical Africa and south Asia (Fig. S1). Intensive gross
changes in bare soil were found in north China, central Asia,
Australia and the south edge of the Sahara, mainly caused
by the gross transitions between original ESA LC classes
“200” (bare areas) and “150” (sparse vegetation; tree, shrub,
herbaceous cover < 15 %). Water body changes are relatively
small compared to other PFTs. In addition to the urban area
increase over cropland in Europe and the North China Plain,
there is also urban expansion to cropland in the United States
(Fig. S1).

3.3 Net area change of PFTs

3.3.1 Global change

The global and regional net area changes in forest, crop-
land and grassland PFTs from ESA CCI LC maps since
1992 are shown in Fig. 4 (solid lines). Global net forest loss
and net cropland gain between 1992 and 2015 are 0.60 and
0.67 million km2, respectively. Global forest area decreased
fast from 1992 to 2004 accompanied by fast increases in
cropland. Forest area stayed stable between 2004 and 2009
and then decreased again, although by a smaller magnitude
than in 1992–2004, during the recent period from 2009 to
2015. Meanwhile, cropland area remains relatively stable
since 2004. Net grassland changes are small compared to for-
est and cropland changes.
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Figure 4. Global and regional net area changes in forest, cropland and grassland PFTs derived from ESA CCI land cover maps since 1992.
Data from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) and Houghton and Nassikas (2017) are also shown for comparison. Note that
net forest area change from Hansen et al. (2013) is corresponding to the period of 2000–2012, and thus the forest area change between 1992
and 2000 from ESA CCI was added as Hansen et al. (2013) data in the plot.

The magnitudes of net forest area change from LUH2v2h
(Hurtt et al., 2011) are much smaller than those from ESA
CCI, mainly because the forest area decrease between 1992
and 2009 (Fig. 4) is not reflected in the LUH2v2h dataset
(Hurtt et al., 2011). Although the net increased cropland ar-
eas from 1992 to 2015 are similar between ESA CCI and
LUH2v2h (Hurtt et al., 2011), the temporal trajectories are
rather different. The increase in cropland in ESA CCI data
happened between 1992 and 2004, while cropland area in
LUH2v2h (Hurtt et al., 2011) mainly increased since 2007
(Fig. 4). Grassland area changes in LUH2v2h (Hurtt et al.,
2011) display more variations than those from ESA CCI.
There was an increase in grassland in LUH2v2h (Hurtt et al.,
2011) in the earlier period (1992–2004) where ESA CCI had
the increase in cropland. Globally, net forest area loss be-
tween 1992 and 2015 from both Hansen et al. (2013) and
Houghton and Nassikas (2017) is much larger than that from
ESA CCI and LUH2v2h data (Hurtt et al., 2011).

3.3.2 Regional change

Consistent with the spatial distributions of net forest change
in Fig. 3, net forest loss in South and Central America dom-
inates the global net forest loss (Fig. 4), accounting for 75 %
of the global total. The magnitude of net forest loss is close
to that observed by Hansen et al. (2013) in this region. How-
ever, the magnitudes of net forest loss from ESA CCI PFTs in
other regions are generally smaller than those from Hansen
et al. (2013). Net forest area change from Houghton and Nas-
sikas (2017) also shows a stronger loss in all three tropical

regions than that in other datasets, especially in South and
Central America and tropical Africa. It should be noted that
the net forest loss in South and Southeast Asia is consistent
between LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013)
and Houghton and Nassikas (2017), and all these datasets
have much larger net forest area loss than ESA CCI data.
All datasets demonstrate net forest gain in North America,
except Hansen et al. (2013) which has a strong forest loss.
The forest area in LUH2v2h data (Hurtt et al., 2011) and
inventory-based data from Houghton and Nassikas (2017)
shows a net increase in the China region and western Eu-
rope. In contrast, forest area in the satellite-based datasets of
ESA CCI PFTs and Hansen et al. (2013) is stable or slightly
decreasing.

South and Central America, tropical Africa and the former
Soviet Union are the regions with the largest contributions to
the global total net cropland increase, representing 37, 33 and
11 % of the global total. The regional patterns of temporal
net cropland area change are rather different between ESA
CCI PFTs and LUH2v2h (Hurtt et al., 2011) although the
global net changes from 1992 to 2015 are similar. Cropland
from LUH2v2h (Hurtt et al., 2011) expands more in tropical
regions but decreases more in other regions than in ESA CCI
PFTs (Fig. 4).

Grassland area from ESA CCI PFTs slightly increases in
South and Central America and South and Southeast Asia,
and slightly decreases in North America, the former Soviet
Union, North Africa and Middle East. Differences in grass-
land change are large between ESA CCI PFTs and LUH2v2h
(Hurtt et al., 2011) in all regions other than tropical regions.
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Figure 5. Net area changes in forest, cropland and grassland PFTs derived from ESA CCI land cover maps since 1992 in countries with
largest net forest area loss between 1992 and 2015. Data from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) and Houghton and
Nassikas (2017) are also shown for comparison.

3.3.3 Countries with largest net forest area loss and
gain

The countries with the largest net forest PFT area loss be-
tween 1992 and 2015 from ESA CCI maps are shown in
Fig. 5, and countries with the largest net forest PFT gain in
Fig. 6. Brazil, Bolivia and Indonesia are the three countries
with largest net forest losses during 1992–2015 with a net
loss of 0.28, 0.044 and 0.042 million km2, respectively. The
net forest loss in Brazil during the whole period is consis-
tent between ESA CCI PFTs, LUH2v2h (Hurtt et al., 2011)
and Hansen et al. (2013), despite the fact that temporal pat-
terns are different between ESA CCI and LUH2v2h (Hurtt
et al., 2011). Net forest changes between ESA CCI PFTs
and Hansen et al. (2013) are also similar in Indonesia, Ar-
gentina and Cambodia, while net forest loss in Russia and
the Democratic Republic of the Congo (DRC) from Hansen
et al. (2013) is much larger than that from ESA CCI. Net for-
est loss from Houghton and Nassikas (2017) is always higher
than the loss from other datasets in all these countries except
in China and Russia, where a net forest gain was found in
Houghton and Nassikas (2017).

The overall net cropland gain from 1992 to 2015 between
ESA CCI and LUH2v2h (Hurtt et al., 2011) is similar in Bo-
livia but is rather different in all other countries in Fig. 5.
Larger cropland gain from LUH2v2h (Hurtt et al., 2011)
compared to ESA CCI was found in Brazil, Indonesia, Ar-
gentina and Paraguay, while lower cropland gain was found
in Cambodia and the DRC. The cropland area change in
China and Russia from LUH2v2h (Hurtt et al., 2011) even

shows a net loss rather than gain. Grassland area increased
in Argentina, Paraguay, Russia, Cambodia and the DRC in
LUH2v2h (Hurtt et al., 2011), which was not captured by
ESA CCI maps.

The magnitudes of forest change in the countries with the
largest forest gain in Fig. 6 are much smaller than those with
largest forest loss (Fig. 5). For example, the net forest gain
from 1992 to 2015 is 0.019 million km2 in Canada, com-
pared with a forest loss of 0.28 million km2 in Brazil. In these
largest forest gain countries, forest area change from Hansen
et al. (2013) indicates a net forest gain only in Uruguay, and
a net loss or stable in other countries. Again, contrary to
ESA CCI PFTs, Houghton and Nassikas (2017) forest area
data show large magnitudes of net forest loss in Myanmar,
North Sudan and Nigeria, and greater magnitudes of net for-
est gain than other datasets in Uruguay. Cropland changes
from LUH2v2h (Hurtt et al., 2011) display larger magni-
tudes, more variations and even different directions than
those from ESA CCI in these nine countries in Fig. 6. Grass-
land area changes from ESA CCI are rather flat, which is
different from those in LUH2v2h (Hurtt et al., 2011).

4 Discussion

4.1 Differences in total area of forest, cropland and
grassland

The forest, cropland and grassland areas from different
datasets do not match on global or regional scales (Fig. 1),
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Figure 6. Net area changes in forest, cropland and grassland PFTs derived from ESA CCI land cover maps since 1992 in countries with
largest net forest area gain between 1992 and 2015. Data from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) and Houghton and
Nassikas (2017) are also shown for comparison.

mainly caused by the differences in land cover definitions
and data sources (Table 1), as well as the uncertainties in the
cross-walking table used for translating original ESA CCI
LC classes into PFTs. The canopy cover of forest varies in
different ESA CCI LC classes with defined ranges such as >

15 %, 15–40 % and > 40 % depending on the “openness” of
the canopy and according to the UN-LCCS framework pro-
vided by the FAO (Di Gregorio, 2005). Although continu-
ous tree cover fractions are provided in data from Hansen
et al. (2013), the forest cover is defined as > 25 % canopy
closure for trees higher than 5 m (Hansen et al., 2010). For-
est areas in Hansen et al. (2013) are obtained from NASA’s
Landsat instruments with a spatial resolution of 30 m that can
capture the small-scale forest areas. This partly explains the
larger forest extent in Hansen et al. (2013) than ESA CCI
PFT maps. The definition of forest by FAO, which is the
data source of Houghton and Nassikas (2017), is a canopy
cover > 10 %. FAO’s forest areas are based on reports from
the member countries (FAO, 2015) and the methods of com-
piling data in each country may vary largely, e.g. from field
survey or from satellite-imagery-based estimation (Grainger,
2008; Harris et al., 2012). Furthermore, in the definition of
forest by FAO, natural disturbance suppressing forests do not
change the land remaining a forest, but from satellite, they
are not detected as forest cover. Keenan et al. (2015) also
compared the forest area from FAO FRA 2015 with remote
sensing data and attributed their differences to five factors,
the major one of which is the different definitions of “forest”.
It seems that forest area from ESA CCI PFTs is lower than

that from Hansen et al. (2013) in humid regions (Fig. S2).
Additionally, in the drylands like tropical Africa, it is dif-
ficult to map and estimate forest area using medium- (e.g.
Landsat; Hansen et al., 2013) or coarse-resolution satellite
data (e.g. ESA CCI LC; Achard et al., 2014; Bastin et al.,
2017; Gross et al., 2017), in particular when tree cover is be-
low 30 % (Achard et al., 2014). Bastin et al. (2017) recently
reported a forest estimate in drylands using very high spa-
tial resolution satellite imagery, which is 40–47 % more than
previous forest assessments. The difficulty of detecting forest
in these sparse tree cover regions could partly be responsible
for the lower forest area from ESA CCI PFT maps than those
from Hansen et al. (2013) and Houghton and Nassikas (2017)
in tropical Africa (Fig. 1).

Forest area estimates in LUH2v2h (Hurtt et al., 2011) are
based on aboveground biomass density from the Miami-LU
ecosystem model (Hurtt et al., 2006), and cropland and pas-
ture areas are based on HYDE 3.2 (Klein Goldewijk et al.,
2016). HYDE 3.2 uses the cropland and pasture areas from
FAO STAT (FAOSTAT, 2015) as the main land-use input data
and the ESA CCI epoch LC map of 2010 as a spatial refer-
ence map (Klein Goldewijk et al., 2016). Thus, the grasslands
in LUH2v2h refer to the sum of intensively managed pastures
and less intensively used rangelands (Klein Goldewijk et al.,
2016), while the grassland PFT from ESA CCI maps also in-
cludes natural grassland, which may be the reasons for less
grassland in LUH2v2h (Hurtt et al., 2011) than ESA CCI,
especially in the former Soviet Union, western Europe and
North America (Fig. 1).
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Similarly, the underestimate in cropland area in ESA CCI
maps (Fig. 1) is likely due to differences in definitions of
what constitutes a cropland based on remote sensing datasets
used to derive the ESA maps vs. land use statistics and
country-dependent reporting used to derive FAO statistics
that are used to define croplands in HYDE 3.2 (Klein Gold-
ewijk et al., 2016), in addition to differences in spatial res-
olution. For example, the attribution of oil palm plantations
is an important factor for the differences in area changes be-
tween different datasets, especially in Indonesia. Oil palm is
taken as cropland rather than forest in the FAO definitions
(FAOSTAT, 2015) but detected as tree covers from the re-
mote sensing (Carlson et al., 2012, 2013; Hansen et al., 2013;
Koh et al., 2011; Tropek et al., 2014), including in the CCI
LC products. This partly explains that the larger cropland in-
crease in LUH2v2h (Hurtt et al., 2011) and larger forest de-
crease in Houghton and Nassikas (2017) than those in ESA
CCI PFTs and Hansen et al. (2013) in Indonesia (Fig. 4).
Furthermore, the classification of cropland in ESA CCI is
also based on remote sensing temporal analysis. In the ESA
CCI algorithm, for example, spectral features at key mo-
ments during the year were used to optimize the discrimina-
tions between all major crop classes: differentiating between
cropland and natural vegetation (typically harvesting dates).
Cropland in LUH2v2h that is essentially from FAO statistics
(Klein Goldewijk et al., 2016), on the other hand, depends
on country reporting and therefore comprises different defi-
nitions and data sources.

Pérez-Hoyos et al. (2017) provide an extensive compari-
son of multiple cropland datasets, including ESA CCI epoch
and annual maps, for the purposes of cropland monitoring,
and they found that the ESA CCI 2015 annual map is more
suitable for cropland monitoring than the epoch map because
of the reduction in cropland area over the Congo basin. They
also showed that spatial resolution is a key driver of prod-
uct suitability for agriculture monitoring (Pérez-Hoyos et al.,
2017). However, the specific framework of their study is
the suitability for agriculture monitoring for early warning
and they focus on a limited number of countries selected to
be “with high risk of food insecurity” (Pérez-Hoyos et al.,
2017). The issues of cropland area from the ESA CCI LC
maps discussed in their study is fully justified for a study
addressing the challenge of cropland monitoring, but it does
not allow generalizing the conclusion to all domains (e.g. to
derive PFT maps for use in global land surface modeling in
this study). As Pérez-Hoyos et al. (2017) and our study show,
the agreement (or lack thereof) is country-dependent, fur-
ther implying that more consistent definitions of LC classes
are required and/or regional LC satellite mapping algorithms
(or cross-walking table, see below) are needed. Cropland
mapping issues, including those discussed in Pérez-Hoyos
et al. (2017) are being addressed in upcoming versions of the
ESA CCI maps. Additionally, Waldner et al. (2016) have pro-
duced a product that aims to combine the “fittest” LC maps
on the country level into a unified 250 m resolution cropland

product, but again this is dependent upon a specific defini-
tion (the JECAM, Joint Experiment of Crop Assessment and
Monitoring, cropland definition for the purposes of cropland
monitoring).

The final spatial area of each PFT in this study is de-
rived from a combination of the ESA LC map and the cross-
walking table (Table S1) used for translating original ESA
LC classes into PFTs. The range in tree cover canopy open-
ness (as discussed above) and percent of each type of vegeta-
tion for mosaic LC classes in the LC description contributes
to uncertainty in the conversion fractions used to translate
the LC classes into PFTs in the cross-walking table. Thus,
uncertainties in the cross-walking table contribute to the dif-
ferences in forest, cropland and grassland PFT areas when
comparing with other datasets. Only one value is used to
prescribe the fraction of each PFT for a given class, e.g.
class “50” corresponds to 90 % of broadleaf evergreen trees
in Table S1. This hinders an explicit representation of spa-
tially heterogeneous tree cover fractions. In the absence of
other information, the approximate mid-point of the range in
the LC class description is used when calculating the frac-
tion of forest PFT from a given LC class. For example, class
“61” represents a closed canopy (> 40 %) and therefore we
use a LC-to-tree PFT conversion fraction of 70 % (0.7) as
the mid-point between 40 and 100 % (Table S1). Class “62”,
on the other hand, is an open canopy (15–40 % cover) and
therefore we use a LC-to-tree PFT conversion factor of 30 %.
Some exceptions to this general rule are made when we have
a better understanding of the species or biomes included in
a given LC class. For example, class “50” (broadleaved ever-
green trees) encompasses tropical rainforests. Although the
class description states that the canopies in this class can be
closed to open (> 15 %), we know that the tree cover fraction
is much higher than a mid-point of ∼ 60 %, therefore we use
a conversion factor of 90 %. However, this level of knowl-
edge is not available for all LC classes. This is particularly
true for mosaic and sparse vegetation classes (e.g. classes
“100”, “110” and “150”) that span different regions/biomes
that may contain different fractional coverages of vegetation.

Likewise, an explicit regional classification is required for
cropland. For example, class “10” (cropland, rainfed) is sep-
arated well in North America, i.e. mainly partitioning into
class “11” (herbaceous cover), and thus the cropland area in
this region is highly consistent with LUH2v2h data (Hurtt
et al., 2011; Fig. 1). In tropical Africa where class “10” is
not separated into a more detailed classification, the differ-
ence in cropland areas between these two datasets are large
(Fig. 1). This is because if most of the cropland in this region
belongs to class “12”, using the corresponding value for class
“10” in the cross-walking table (90 % for class “10” vs. 30 %
for class “12”, Table S1) overestimates cropland areas.

Hartley et al. (2017) also investigated the uncertainty in
simulations of carbon, water and energy fluxes from three
LSMs as a result of cross-walking table uncertainty. This
study found that the spread in model outputs due to cross-
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walking uncertainty was higher than uncertainty due to the
underlying LC maps (mapping algorithm; Hartley et al.,
2017). Despite these uncertainties, satellites provide the only
plausible way to derive the global maps of vegetation dis-
tribution needed to drive LSMs and validate dynamic global
vegetation models. Future efforts by the ESA CCI LC project
and collaborators will focus on reducing the uncertainty in-
troduced when translating from LC to PFT, including using
optimized and regionally based cross-walking tables.

4.2 Differences in area changes

The ESA CCI LC magnitudes of gross changes for all PFTs
are lower than those of all three products considered. This is
explained by the effect of spatial resolution combined with
a change consolidation approach. Using Earth observation
time series of 1 km spatial resolution to annually detect the
land cover change for the ESA CCI maps does not allow
capturing small-scale LC changes, which is part of the rea-
son for smaller gross and net forest changes than those in
Hansen et al. (2013). On the other hand, this is the only way
to have a consistent method of LC change detection over the
whole period. In spite of the consolidation strategy, confirm-
ing the change over several years, ESA CCI LC trends of
area change mitigate only partly the impact of the heteroge-
neous quality of the data acquired by the various sensors. For
instance, larger change variations for forest and cropland in
the 1990s result from poorer radiometric and spectral quality
of the AVHRR input data. This instrument, first designed for
meteorological observation, is, however, the only one record-
ing the land surface systematically before 1999.

The large magnitude of gross changes in forest and crop-
land in LUH2v2h (Hurtt et al., 2011; Fig. 2) mostly dis-
tributes in the tropical regions (Figs. S3 and S4) where gross
changes reflect shifting agriculture (Heinimann et al., 2017).
The gross gain and loss of forest (or cropland) in the tropics
from LUH2v2h maintains a similar constant rate with other
small variations (Figs. S3 and S4). This is because the gross
changes in LUH2v2h are mainly generated from the shift-
ing cultivation in the tropics by assuming a turnover rate of
6.7 %year−1 (i.e. a residence time of 15 year) of all agricul-
tural lands (Hurtt et al., 2011) and based on a spatial distri-
bution map from Butler (1980). The Butler (1980) map is
a hand-drawn map indicating the presence or absence (no
precise area or fraction) of both shifting cultivation and other
non-shifting farming systems based on some regional stud-
ies and “general knowledge” (Heinimann et al., 2017). The
estimate of shifting cultivation extent from LUHv2h (Hurtt
et al., 2011) is thus highly uncertain because of the simple
assumptions and the old reference map (representing 1960s–
1970s) but strongly affects the gross land use change areas.
Heinimann et al. (2017) recently estimated the global ex-
tent of shifting cultivation visually using Landsat 30 m for-
est data and very-high-resolution satellite imagery from Bing
and Google. They found that shifting cultivation area de-

creases over the last 40 to 50 years, in particular in Southeast
Asia (Heinimann et al., 2017). This, however, is not reflected
in the LUH2v2h dataset (Figs. S3 and S4). From LUH1 to
LUH2v2h, The area of shifting agriculture is reduced (see an
example in tropical Africa; Fig. S5) because of the separation
of forest from natural vegetation in LUH2 (Hurtt et al., 2011).
However, the gross forest changes in LUH2v2h (Hurtt et al.,
2011) are still much higher than those in ESA CCI PFTs and
Hansen et al. (2013). Especially in the ESA 300 m resolution
data, the gross change area seems very small (Figs. S3 to S5).
Therefore, the shifting cultivation area in LUH2v2h may be
overestimated due to (1) the binary (presence/absence) indi-
cation rather than a precise extent of shifting cultivation in
the Butler (1980) map and (2) no temporal change (missing
the decreasing trend) of the reference map. Still, it should be
noted that the coarse spatial resolution of ESA CCI products
cannot detect small-scale LC changes, resulting in an under-
estimation of gross changes. The shifting cultivation today
remains extensive and is very important for land carbon mod-
eling, but there are only very limited studies on the regional
or national extent estimates (Heinimann et al., 2017). More
research and developments in the mapping and change detec-
tion of shifting cultivation are urgently desired.

The discrepancies in temporal PFT net area changes be-
tween ESA CCI maps and FAO data (cropland and pas-
ture area changes in LUH2v2h, Hurtt et al., 2011, and for-
est area changes in Houghton and Nassikas, 2017; Figs. 4–
6) are mainly caused by the different approaches for esti-
mating LC change used by different countries in FAO re-
ports (FAO, 2015; FAOSTAT, 2015). Some countries like
Canada distinguish land use and land cover when compil-
ing forest statistics. For example, a forest cleared for wood
harvest is not taken as a forest loss because new secondary
forest will be planted on this land, thus no change in land
use (Keenan et al., 2015). However, remote sensing can eas-
ily detect such land cover change and treat it as forest loss.
Cropland and pasture in HYDE 3.2 (Klein Goldewijk et al.,
2016) adopted the FAO categories for “Arable land and per-
manent crops” and “Permanent meadows and pastures”, re-
spectively, as the main data source. In the ESA CCI LC maps,
pastures are mapped as grassland and translated into 100 %
“Natural Grass” PFT (Table S1). The different trajectories of
temporal cropland changes between ESA CCI and LUH2v2h
(the former shows increasing from 1992 to 2004 while the
latter increases after 2007; Fig. 4) are probably caused by
the time lag between the real changes and country report-
ing to FAO. Finally, the trends of cropland area change from
FAO STAT data may contradict those from national statis-
tics (Li et al., 2016), e.g. comparing FAO STAT data (FAO-
STAT, 2015) with USDA estimates (Nickerson et al., 2011)
for the United States or with NBSC estimates (NBSC, 2015)
for China.

There are also many other land cover and land use datasets
that can be used for comparisons to assess the accuracy
of land cover or land cover change in ESA CCI LC prod-
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ucts. However, they are either regional maps (e.g. the maps
for Europe from Fuchs et al., 2015) or global epoch maps
(e.g. the GlobeLand30 maps for 2000 and 2010; Chen et al.,
2014) and not suitable for the application in LSMs. Thus,
we did not include them in this study. In fact, there have al-
ready been studies on the detailed comparisons of different
datasets in a region (e.g. Fuchs et al., 2015, for Europe; Yang
et al., 2017, for China; and Achard et al., 2014, for the trop-
ics). In addition to the accuracy assessments conducted in the
ESA CCI project (ESA, 2017), a systematic comparison with
all other land cover datasets in future will help to validate the
land cover classification and land cover change detection in
the ESA CCI LC products. Instead of using a single dataset,
combining a sample of several datasets is reported to be con-
siderably more efficient and accurate to estimate land cover
area and change (Olofsson et al., 2014; Sannier et al., 2016)
and has been adopted as technical guidelines (GOFC-GOLD,
2016; GFOI, 2016) in the remote sensing community, espe-
cially for forest monitoring to reduce emissions from defor-
estation and forest degradation in developing countries (the
REDD+ programme).

5 Data availability

The ESA CCI LC maps can be viewed online using http://
maps.elie.ucl.ac.be/CCI/viewer/index.ph, and the data prod-
ucts can be download from http://maps.elie.ucl.ac.be/CCI/
viewer/download.php. After entering some basic informa-
tion, the land cover maps with a specific version number are
available for download in the Climate Research Data Pack-
age (CRDP) section. In this study, we used the version “Land
Cover Maps – v2.0.7”. A protocol for translating the orig-
inal ESA CCI LC maps into PFT maps and an example of
a LC map and PFT map in 2000 used in this study can be
downloaded from https://doi.org/10.5281/zenodo.834229 (Li
et al., 2017a). The annual ESA CCI PFT maps from 1992 to
2015 at 0.5◦× 0.5◦ resolution can also be downloaded from
https://doi.org/10.5281/zenodo.1048163 (Li et al., 2017b).

6 Conclusions

In this study, we compare the absolute areas and areal
changes between PFTs from annual ESA CCI LC prod-
ucts and other datasets. In the intensive LULCC regions like
South and Central America, both forest area and net forest
change are consistent with those from other datasets. The de-
tection of LC changes has significantly improved from the
last version of 5-year epoch ESA CCI maps (Li et al., 2016).
The detailed annual cropland changes from 1992 to 2000 fill
the gaps of HYDE 3.2 data for this period, in which only
decadal changes are available (Klein Goldewijk et al., 2016).

Considering the discrepancies, advantages and disadvan-
tages among different datasets (Table 1), we propose differ-
ent choices of these datasets for application in LSMs de-

pending on research purposes. For example, if we would
like all LSMs to share the same historical and future maps
in a model intercomparison project (e.g. using LUH2v2h
data in CMIP6), annual ESA CCI data products should be
cautiously harmonized considering the large differences be-
tween ESA CCI and LUH2v2h (Hurtt et al., 2011). On the
other hand, if we want to analyse recent carbon and water
budgets with LSMs, ESA CCI maps are definitely an ap-
propriate choice. The detailed LC classes in ESA CCI prod-
ucts provide a valuable reference map for modellers to parti-
tion land covers into PFTs, e.g. separating the generic forest
in LUH2v2h dataset (Hurtt et al., 2011) into different for-
est PFTs (Table S1). LSMs can also benefit from the 300 m
spatial resolution changes in ESA CCI products when ac-
counting for gross land use changes to simulate the LULCC
carbon fluxes. Therefore, the current annual ESA CCI land
cover maps with full land cover classes, 300 m spatial reso-
lution and relatively long-term time series are sufficient to be
implemented in LSMs and help better characterize the recent
global and regional carbon cycles.
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