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Abstract. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial-resolution
gridded emissions data product that distributes carbon dioxide (CO2) emissions from fossil fuel combustion. The
emissions spatial distributions are estimated at a 1× 1 km spatial resolution over land using power plant profiles
(emissions intensity and geographical location) and satellite-observed nighttime lights. This paper describes the
year 2016 version of the ODIAC emissions data product (ODIAC2016) and presents analyses that help guide
data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the
original publication in 2011, we have made modifications to our emissions modeling framework in order to
deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are
(1) the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) at the
Oak Ridge National Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and
international aviation and marine bunkers); (2) the use of multiple spatial emissions proxies by fuel type such as
(a) nighttime light data specific to gas flaring and (b) ship/aircraft fleet tracks; and (3) the inclusion of emissions
temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for
the recent years and produced the ODIAC2016 emissions data product that covers 2000–2015. Our emissions
data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data
users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product.
Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data
product with a timely update. Such capability has become more significant given the CDIAC/ORNL’s shutdown.
The ODIAC data product could play an important role in supporting carbon cycle science, especially modeling
studies with space-based CO2 data collected in near real time by ongoing carbon observing missions such as the
Japanese Greenhouse gases Observing SATellite (GOSAT), NASA’s Orbiting Carbon Observatory-2 (OCO-2),
and upcoming future missions. The ODIAC emissions data product including the latest version of the ODIAC
emissions data (ODIAC2017, 2000–2016) is distributed from http://db.cger.nies.go.jp/dataset/ODIAC/ with a
DOI (https://doi.org/10.17595/20170411.001).
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1 Introduction

Carbon dioxide (CO2) emissions from fossil fuel combustion
are the main cause for the observed increase in atmospheric
CO2 concentration. The Carbon Dioxide Information Anal-
ysis Center (CDIAC) at the Oak Ridge National Laboratory
(ORNL) estimated that the global total fossil fuel CO2 emis-
sions (FFCO2; fuel combustion, cement production, and gas
flaring) in the year 2014 was 9.855 PgC based on fuel statis-
tics data published by the United Nations, UN (Boden et al.,
2017). This FFCO2 estimate often serves as a reference in
carbon budget analysis, especially for inferring CO2 uptake
by the terrestrial biosphere and oceans (e.g., Ballantyne et
al., 2012; Le Quéré et al., 2016). The Global Carbon Project
(GCP), for example, estimated that approximately 55 % of
the carbon released to the atmosphere (FFCO2 plus emis-
sions from land use change) was taken up by natural sinks
over the past decade (2006–2015) (Le Quéré et al., 2016).

Similarly, FFCO2 estimates serve as a reference in atmo-
spheric CO2 flux inversion analysis in which the location
and size of natural sources and sinks are estimated using at-
mospheric CO2 data and atmospheric transport models (e.g.,
Tans et al., 1990; Bousquet et al., 1999; Gurney et al., 2002;
Baker et al., 2006). In the conventional inversion method,
unlike land and oceanic fluxes, FFCO2 is a given quantity
and never optimized (e.g., Gurney et al., 2005). FFCO2 thus
needs to be accurately quantified and given in space and time
to yield robust estimates of natural fluxes (Gurney et al.,
2005). Accurately prescribing FFCO2 has become more crit-
ical because of the use of spatially and temporally dense CO2
data from a wide variety of observational platforms (ground-
based, aircraft, and satellites), which inform not only back-
ground levels of CO2 concentration but also CO2 contri-
butions from anthropogenic sources (e.g., Schneising et al.,
2013; Janardanan et al., 2016; Hakkarainen et al., 2016). At-
mospheric transport models then need to be run at a higher
spatiotemporal resolution than before to fully interpret and
utilize CO2 variability observed on a synoptic to local scale
to quantify sources and sinks (e.g., L. Feng et al., 2016; Lau-
vaux et al., 2016). FFCO2 data thus need to be accurately
given at a high resolution so as not to cause biases in simula-
tions.

Global FFCO2 data are available in a gridded form
from different institutions and research groups (e.g.,
CDIAC/ORNL and Europe’s Joint Research Centre, JRC)
and those gridded emissions data are often based on dis-
aggregation of national (or sectoral) emissions (e.g., An-
dres et al., 1996; Rayner et al., 2010; Oda and Maksyu-
tov, 2011; Janssens-Maenhout et al., 2012; Kurokawa et al.,
2013; Asefi-Najafabady et al., 2014). The emissions spa-
tial distributions are often estimated using spatial proxy data
that approximate the location and intensity of human ac-
tivities (hence, CO2 emissions) (e.g., population, nighttime
lights, and gross domestic production, GDP) and/or geoloca-
tion of specific emissions sources (e.g., power plant, trans-

portation, cement production/industrial facilities, and gas
flares). The CDIAC gridded emissions data product, for ex-
ample, is based on an emissions disaggregation using pop-
ulation density at a 1× 1◦ resolution (Andres et al., 1996).
The Emission Database for Global Atmospheric Research
(EDGAR, http://edgar.jrc.ec.europa.eu/) estimates emissions
on the emissions sectors specified by the Intergovernmen-
tal Panel on Climate Change (IPCC) methodology instead of
fuel type and it uses spatial proxy data and geospatial data
such as point and line source location at a 0.1× 0.1◦ resolu-
tion (Janssens-Maenhout et al., 2012).

Satellite-observed nighttime light data have been iden-
tified as an excellent spatial indicator for human settle-
ments and intensities of some specific human activities (e.g.,
Elvidge et al., 1999, 2009) and have been used to infer the
associated CO2 emissions or their spatial distributions (e.g.,
Doll et al., 2000; Ghosh et al., 2010; Rayner et al., 2010).
Oda and Maksyutov (2011) proposed a combined use of
power plant profiles (power plant emissions intensity and
geographical location) and nighttime light data to achieve
a global high-spatial-resolution emissions field. The decou-
pling of the point source emissions, which often has less
spatial correlation with population (hence, nighttime light),
yields improved high-resolution emissions fields that show
an improved agreement with the US 10 km Vulcan emis-
sions product developed by Gurney et al. (2009) (Oda and
Maksyutov, 2011). Based on Oda and Maksyutov (2011),
we initiated the high-resolution emissions data development
(named the Open-source Data Inventory for Anthropogenic
CO2, ODIAC) under the Japanese Greenhouse gases Ob-
serving SATellite (GOSAT; Yokota et al., 2009) project at
the Japanese National Institute for Environmental Studies
(NIES). The original purpose of the emissions data develop-
ment was to provide an accurate prior FFCO2 field for global
and regional CO2 inversions using the column-averaged CO2
(XCO2 ) data collected by GOSAT. Since 2009, the ODIAC
emissions data product has been used for the inversion for
the official GOSAT Level 4 (surface CO2 flux) data produc-
tion (Takagi et al., 2009; Maksyutov et al., 2013), NOAA’s
CarbonTracker (Peters et al., 2007) as supplementary FFCO2
data, and dozens of published works (e.g., Saeki et al., 2013;
Thompson et al., 2016; S. Feng et al., 2016, 2017; Shirai
et al., 2017) including several urban scale modeling studies
(e.g., Ganshin et al. 2012; Oda et al., 2012, 2017; Brioude et
al., 2013; Lauvaux et al., 2016; Janardanan et al., 2016).

In response to increasing needs from the CO2 modeling re-
search community, we have upgraded and modified our mod-
eling framework in order to produce a global, comprehensive
emissions data product in a timely manner, while our flag-
ship high-resolution emissions modeling approach remains
the same. In this paper, we describe the year 2016 version
of the ODIAC emissions data product (ODIAC2016, 2000–
2015), which was the latest version of the ODIAC emis-
sions data at the time of the submission of this paper, along
with the emissions modeling framework we are currently
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based on, highlighting changes and differences from Oda
and Maksyutov (2011). Currently, the updated 2017 version
of the ODIAC emissions data (ODIAC2017, 2000–2016) is
available. Although this paper describes ODIAC2016, the
readers should be able to understand how we developed
ODIAC2017 (the latest) with updated information.

2 Emissions modeling framework

Figure 1 illustrates our current ODIAC emissions modeling
framework (we defined it as “ODIAC 3.0 model”, in contrast
to the original version). Major changes and differences from
Oda and Maksyutov (2011, ODIAC v1.7) are (1) the use of
emissions estimates made by the CDIAC/ORNL (rather than
our own emissions estimates), (2) the use of multiple spa-
tial emissions proxies in order to distribute CDIAC national
emissions estimates made by fuel type, and (3) the inclusion
of emissions temporal variations (version 1.7 only indicates
annual emissions fields). Given that CDIAC emissions esti-
mates have been well-respected and widely used in the car-
bon research community (e.g., Ballantyne et al., 2012; Le
Quéré et al., 2016), our mission in our emissions data de-
velopment is to develop and deliver an extended, compre-
hensive global gridded emissions data product, fully utilizing
CDIAC emissions data (e.g., emissions estimates in both tab-
ular and gridded forms). We also extend CDIAC emissions
data where possible. Our emissions modeling framework was
also designed to produce an annually updated emissions data
product in a timely manner. Given the discontinuity of future
updated CDIAC emissions data, we believe that our capabil-
ity of producing an extended product of the CDIAC emis-
sions data is significant.

Starting with national emissions estimates as an input, our
model framework achieves monthly, global FFCO2 gridded
fields via preprocessing and spatial and temporal disaggre-
gation. CDIAC national estimates made by fuel type (liq-
uid, gas, solid, cement production, gas flare, and international
bunker emissions) are further divided into an extended set of
ODIAC emissions categories (point source, nonpoint source,
cement production, gas flare, international aviation, and ma-
rine bunkers; further described in Sect. 3). It is important to
note that ODIAC2016 carries emissions from international
bunkers (international marine bunkers and aviation often ac-
count for a few percent of the global total emissions), which
are not included in the CDIAC gridded emissions data prod-
ucts (CDIAC gridded emissions data only indicate national
emissions and international bunker emissions are often not
considered to be a part of national emissions in an interna-
tional convention). With the inclusion of international bunker
emissions, we provide a more comprehensive global gridded
emissions field. We extended the CDIAC national estimates
over the recent years that were not yet covered in the previ-
ous version of CDIAC gridded data (2014–2016) in order to
support near-real time CO2 simulations and analysis. Emis-

sions are then spatially distributed using a wide variety of
spatial data (e.g., point source geographical location, night-
time light data, and flight and ship tracks; further described
in Sect. 4). We adopt an emissions seasonality from exist-
ing emissions inventories for particular emissions categories
(further described in Sect. 5).

In the following sections (Sects. 3–5), we describe how
ODIAC2016 was developed. It is important to note that
ODIAC2016 is based on the best available data at the time
of the development (ODIAC2016 was released in Septem-
ber 2016). Thus, some of the emissions estimates and un-
derlying data used in ODIAC2016 might now be outdated.
For traceability purposes, data used in this development,
their versions or editions, and data sources are summarized
in Table A1 in the Appendix. Following the results and
evaluation section (Sect. 6), we discuss caveats and current
limitations in our modeling framework and emissions data
product (Sect. 7), and then we describe how we will up-
date the ODIAC emissions data product with updated fuel
statistics and/or emissions information (Sect. 8). Recently
published atmospheric CO2 inversion studies (e.g., Maksyu-
tov et al., 2013) and operational assimilation systems such
as NOAA’s CarbonTracker (https://www.esrl.noaa.gov/gmd/
ccgg/carbontracker/) often focus on time periods after 2000.
We thus made it a priority to produce emissions data after
the year 2000 with regular update upon the availability of
updated emissions and fuel statistical data and deliver the
emissions product to the science community, instead of de-
veloping a longer-term emissions data product. Future ver-
sions of ODIAC data, however, might have longer, extended
time coverage. Currently the ODIAC data are provided in
two data formats: (1) global 1× 1 km (30 arcsec) monthly
data in the GeoTIFF format (only includes emissions over
land) and (2) 1× 1◦ annual (12 month) data in the NetCDF
format (includes international bunker emissions). The 1× 1◦

annual data are aggregated from the 1× 1 km product. The
improvements with the use of improved nighttime light data
in the 1× 1 km data were documented in Oda et al. (2012).
This paper thus focuses on the comprehensive global FFCO2
fields at a 1× 1◦ resolution, unless otherwise specified.

3 Emissions estimates and input emissions data
preprocessing

3.1 Emissions for 2000–2013

CDIAC FFCO2 emissions estimates are based on fuel statis-
tic data published as the United Nation Energy Statistics
Database (Boden et al., 2017). Emissions estimates are cal-
culated on a global, national, and regional basis and by fuel
type in the method described in Marland and Rotty (1984).
CDIAC also provides their own gridded emissions data prod-
ucts that indicate annual and monthly FFCO2 fields at a
1× 1◦ resolution (Andres et al., 1996, 2011). ODIAC2016
is primarily based on the year 2016 version of the CDIAC
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Figure 1. A schematic figure of the ODIAC emissions modeling framework (defined as “ODIAC 3.0 FFCO2 model”). Starting with CDIAC
national emissions estimates made by fuel type (emissions estimates), the CDIAC national emissions estimates are first divided into extended
ODIAC emissions categories (input data processing; see Sect. 3). The ODIAC 3.0 FFCO2 model then distributes the emissions in space and
time, using point source geolocation information and spatial data depending on emissions categories such as nighttime light (NTL) and
aircraft and ship fleet tracks (spatial disaggregation; see Sect. 4). The emissions seasonality for emissions over land and international aviation
were adopted from existing emissions inventories (temporal disaggregation; see Sect. 5).

national estimates (Boden et al., 2016), which were the most
up-to-date CDIAC emissions estimates at the time of the data
development (currently Boden et al., 2017, is the latest). We
first aggregated the CDIAC national (and regional) emis-
sions estimates to 65 countries and 6 geographical regions
(North America, South and Central America, Europe and
Eurasia, the Middle East, Africa, and Asia Pacific) defined
in Oda and Maksyutov (2011) (see the country/region defi-
nitions are shown in Table 1 in Oda and Maksyutov, 2011).
In addition to the national and geographical categories, we
decided to include Antarctic fishery emissions, which are
from fishery activities over the Antarctic Ocean (< 60◦ S,
1–4 kTC yr−1 over 1987–2007 by Boden et al., 2016), as
an individual emissions region and distributed in the same
way as Andres et al. (1996). Emissions from international
bunkers and aviation are not included in national emissions
by international convention. Thus, CDIAC gridded emissions
data products do not include the emissions from international
bunkers and aviation although the CDIAC/ORNL does have
records of those emissions on a national and regional ba-
sis. ODIAC2016 includes those emissions to achieve com-
prehensive global FFCO2 gridded emissions fields.

In CDIAC emissions estimates, the global total emissions
and national total emissions are obtained using different cal-
culation methods (global fuel production vs. apparent na-
tional fuel consumption; see Andres et al., 2012) and the

CDIAC national totals do not sum to the CDIAC global to-
tal due to the difference in calculation method and inconsis-
tencies in the underlying statistical data (e.g., import–export
totals) (e.g., Andres et al., 2012). We thus calculate the dif-
ference between the global total and the sum of national to-
tals and scaled up national totals to account for the differ-
ence. Andres et al. (2014) reported that global total emis-
sions estimates calculated with production data (as opposed
to apparent consumption data) have the smallest uncertainty
(approximately 8 %; 2σ ). It is thus used as the reference for
global carbon budget analyses (e.g., Le Quéré et al., 2016).
Inversion analysis is an extended version of the global car-
bon budget analysis using atmospheric models. We thus be-
lieve that imposing transport models and/or inversion models
in a consistent way with the global carbon budget analysis,
as Le Quéré et al. (2016) have done, has significance, al-
though we sacrifice the accuracy of the national and regional
emissions estimates. Due to the global scaling, national totals
in ODIAC2016 differ from the estimates originally reported
by the CDIAC/ORNL. The difference between the CDIAC
global total and the sum of national emissions is often a
few percent and thus the magnitude of the scaling is often
within the uncertainty range of national emissions (e.g., 4.0
to 20.2 %; Andres et al., 2014). The global scaling factors
derived and used in this study are presented in Table A2.
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3.2 Emissions for 2014–2015

The 2016 version of the CDIAC emissions estimates only
covers years to 2013 (Boden et al., 2016). We thus extrap-
olated the 2013 CDIAC emissions to years 2014 and 2015
using the 2016 version of the BP global fuel statistical data
(BP, 2017). Our emissions extrapolation approach is the same
as Myhre et al. (2009) and Le Quéré et al. (2016). Emissions
from cement production and gas flaring (approximately 5.7
and 0.6 % of the 2013 global total; Boden et al., 2016) were
assumed to be the same as those in 2013. International bunker
emissions were scaled using changes in national total emis-
sions.

3.3 CDIAC emissions sector to ODIAC emissions
categories

CDIAC national emissions estimates (prepared by fuel type)
were recategorized into our own ODIAC emissions cate-
gories (point source, nonpoint source, cement production,
gas flare, and international aviation and marine bunkers).
Following Oda and Maksyutov (2011), the sum of emis-
sions from liquid, gas, and solid fuels was further divided
into point source emissions and nonpoint source emissions.
The total emissions from point sources were estimated us-
ing national total power plant emissions calculated using
Carbon Monitoring for Action (CARMA; Wheeler and Um-
mel, 2008) (Oda and Maksyutov, 2011). As mentioned ear-
lier, CDIAC gridded emissions data products only indicate
national emissions and do not include international bunker
emissions (Andres et al., 1996, 2011). In contrast, EDGAR
provides bunker emissions in their gridded data product
(JRC, 2017). Peylin et al. (2013) show some models include
international bunker emissions and some do not, although
the difference due to the inclusion–exclusion of the interna-
tional bunker emissions in the prescribed emissions could be
corrected afterwards (Peylin et al., 2013). In ODIAC2016,
we carry CDIAC international bunker emissions reported
on a country basis to achieve the complete picture of the
global fossil fuel emissions. Country total bunker emissions
(aviation plus marine bunkers) were distributed using spa-
tial proxy data adopted from other emissions inventories de-
scribed later (see Sect. 4.3). Although the CDIAC/ORNL
does not report emissions from international aviation and
marine bunkers separately, we loosely estimated those two
emissions using UN statistics. We estimated the fraction of
aircraft emissions using jet fuel and aviation gasoline con-
sumption and then the international bunker emissions were
divided into aircraft and marine bunker emissions.

4 Spatial emissions disaggregation

4.1 Emissions from point sources, nonpoint sources,
and cement production

We define the sum of the emissions from solid, liquid,
and gas fuels as land emissions (see Fig. 1). Land emis-
sions are further divided into two emissions categories (point
source emissions and nonpoint source emissions) and then
distributed at a 1× 1 km resolution in the ways described
in Oda and Maksyutov (2011): point source emissions are
mapped using power plant profiles (emissions intensity and
geographical location) taken from the CARMA database
(Wheeler and Ummel, 2008) and nonpoint source emissions
are distributed using nighttime light data collected by De-
fense Meteorological Satellite Program (DMSP) satellites
(e.g., Elvidge et al., 1999). To avoid difficulty in emissions
disaggregation, especially over bright regions, in nighttime
light data (e.g., cities), Oda and Maksyutov (2011) employed
a product that does not have an instrument saturation issue
rather than a regular nighttime light product. ODIAC2016
employs the latest version of the special nighttime light prod-
uct (Ziskin et al., 2010). The improved nighttime light data
have mitigated the underestimation of emissions over dim-
mer areas seen in ODIAC v1.7 (Oda et al., 2010). Nighttime
light data are currently available for multiple years (1996–
1997, 1999, 2000, 2002–2003, 2004, 2005–2006, and 2010).
In ODIAC2016, due to the lack of information, the emissions
from cement production were spatially distributed as a part of
nonpoint source emissions, although those emissions should
have been distributed as point sources. This needs to be fixed
in future versions of ODIAC emissions data.

4.2 Emissions from gas flaring

In ODIAC v1.7, emissions from gas flaring were not con-
sidered (Oda and Maksyutov, 2011). Nighttime light pix-
els corresponding to gas flares often appear very bright and
would result in strong point sources in emissions data (Oda
and Maksyutov, 2011). We thus identified and excluded those
bright gas flare pixels before distributing land emissions us-
ing another global nighttime light data product that was
specifically developed for gas flares by NOAA, National
Centers for Environmental Information (NCEI, formerly Na-
tional Geophysical Data Center, NGDC) (Oda and Maksyu-
tov, 2011). In ODIAC2016 we separately distributed CDIAC
gas flare emissions using the 1× 1 km nighttime light-based
gas flare maps developed for 65 individual countries (Elvidge
et al., 2009). Other than the 65 countries, the gas flare emis-
sions were distributed as a part of land emissions.

4.3 Emissions from international aviation and marine
bunkers

Emissions from international aviation and marine bunkers
were distributed using aircraft and ship fleet tracks. Interna-
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tional aviation emissions were distributed using the AERO2k
inventory (Eyers et al., 2005). The AERO2k inventory was
developed by a team at the Manchester Metropolitan Univer-
sity and indicates the fuel use and NOx , CO2, CO, hydro-
carbon, and particulate emissions for 2002 and 2025 (pro-
jected) with injection height at a 1× 1◦ spatial resolution on
a monthly basis. We used their column total CO2 emissions
to distribute emissions to a single layer. International marine
bunker emissions were distributed at a 0.1× 0.1◦ resolution
using an international marine bunker emissions map from
EDGAR v4.1 (JRC, 2017). We decided not to adopt an inter-
national and domestic shipping (1A3d) map from EDGAR
v4.2 as it includes domestic shipping emissions that we do
not distinguish.

5 Temporal emissions disaggregation

The inclusion of the emissions temporal variations is often
a key in transport model simulation. For CO2 flux inver-
sion, the potential biases in flux inverse emissions estimates
due to the lack of temporal profiles were suggested by Gur-
ney et al. (2005). In ODIAC2016, we adopt the seasonal
emissions changes developed by Andres et al. (2011). The
CDIAC monthly gridded data include monthly national emis-
sions gridded at a 1× 1◦ resolution (Andres et al., 2011). We
normalized the monthly emissions fields by the annual to-
tal and applied them to our annual emissions over land. The
seasonality in ODIAC2016 is based on the 2013 version of
the CDIAC monthly gridded emissions. The CDIAC monthly
emissions data do not cover recent years. For recent years, we
created a climatological seasonality using monthly CDIAC
data from 2000 to 2010 (except 2009 when economic reces-
sion happened). Due to the limited availability of monthly
fuel statistical data, Andres et al. (2011) used proxy country
and also seasonality allocated with Monte Carlo simulations.
The years between 2000 and 2010 were the most data-rich
period and the most well explained by data (see Fig. 1 in An-
dres et al., 2011).

Although ODIAC2016 only provides monthly emissions
fields, users can derive hourly emissions by applying scal-
ing factors developed by Nassar et al. (2013). The Temporal
Improvements for Modeling Emissions by Scaling (TIMES)
is a set of scaling factors that one can derive weekly emis-
sions and diurnal emissions from with any monthly emis-
sions data. Temporal profiles are collected from Vulcan,
EDGAR, and the best available information and are gridded
on a 0.25× 0.25◦ grid (Nassar et al., 2013). TIMES also in-
cludes per capita emissions corrections for Canada (Nassar
et al., 2013).

Figure 2. Global emissions time series from four gridded emissions
data: CDIAC (red, 2000–2013) plus projected emissions (dashed
maroon, 2014–2015) (values taken from ODIAC2016), CDIAC
1× 1◦ (black, 2000–2013), EDGAR v4.2 (green, 2000–2008), and
EDGAR v4.2 FastTrack (blue, 2000–2010). The values here are
given in the unit of petagrams (equal to a gigaton) of carbon per
year. The shaded area indicated in tan is the 2σ uncertainty range
(8 %) estimated for CDIAC global total emissions estimates by An-
dres et al. (2014).

6 Results and discussions

6.1 Annual global emissions

In Fig. 2, global emissions time series from different
emissions data were compared to give an idea of agree-
ment among them. We calculated the global total for each
year from four gridded emissions data for the period of
2000–2016: CDIAC global total + projection (taken from
ODIAC2016), CDIAC gridded data (hence, no international
bunker emissions), and two versions of EDGAR gridded
data (v4.2 and FastTrack). The uncertainty range (shaded in
tan) is 8 % (2σ ), estimated for CDIAC global by Andres et
al. (2014). Those gridded emissions data are often used in
global atmospheric CO2 inversion analysis (e.g., Peylin et
al., 2013). To account for the difference in emissions report-
ing categories (e.g., fuel basis in CDIAC vs. emissions sec-
tor basis in EDGAR), the EDGAR totals were calculated as
the total short cycle C (with the file name “CO2_excl_short-
cycle_org_C”) emissions minus the sum of emissions from
agriculture (IPCC code: 4C and 4D), land use change and
forestry (5A, C, D, F, and 4E), and waste (6C) (see more
details on emissions sectors documented in JRC, 2017). In-
ternational aviation (1A3a) and navigation (1A3b) were thus
included in values for EDGAR time series. The authors ac-
knowledge the JRC has updated EDGAR emissions time se-
ries for 1970–2012 in November 2014 (JRC, 2017). This
study, however, uses gridded emissions data, which are not
fully based on the updated emissions estimates, in order to
characterize differences from gridded emissions data, espe-
cially for potential data users in the modeling community.
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All four global total values obtained from four gridded
emissions data agree well within 8 % uncertainty. The differ-
ence between ODIAC and CDIAC gridded data (3.3–5.7 %)
was largely attributable to the international bunker emissions
and global correction. ODIAC (where the total was scaled by
CDIAC global total) and the two versions of EDGAR showed
minor differences in magnitude (0.3–2.7 %) and trend, which
are largely attributable to the differences in the underlying
statistical data (e.g., UN Statistics Division vs. the US Energy
Information Administration from different inventory years)
and the emissions calculation method (fuel basis vs. sec-
tor basis). Global total estimates at 5-year increments are
shown in Table 1. For the years 2014 and 2015, we estimated
the global total emissions at 9.836 and 9.844 PgC. Boden et
al. (2017) reported the latest estimate for 2014 global total
emissions as 9.855 PgC. Our projected 2014 emissions es-
timate was lower than the latest estimate by approximately
0.02 PgC (0.2 %).

Figure 3 shows the same type of comparison as Fig. 2, but
for the top 10 emitting countries (China, US, India, Russian
Federation, Japan, Germany, Islamic Republic of Iran, Re-
public of Korea (South Korea), Saudi Arabia, and Brazil, ac-
cording to the 2013 ranking reported by CDIAC). We aggre-
gated all four gridded emissions fields to a common 1× 1◦

field and sampled using the 1× 1◦ country mask used in
CDIAC emissions data development. The annual uncertainty
estimates for national total emissions (2σ ) are made fol-
lowing the method described by Andres et al. (2014) and
values are shown in Table 2. In the analysis presented in
Fig. 3, emissions from international aviation (1A3a) and nav-
igation (1A3b) are excluded. All four national total values
sampled from four gridded emissions data at a 1× 1◦ resolu-
tion often agree within the uncertainty estimated by Andres
et al. (2014). Systematic differences of ODIAC from CDIAC
gridded data can be largely explained by (1) global correction
(the total was scaled using CDIAC global total) and (2) the
differences in emissions disaggregation methods. Although
ODIAC is expected to indicate slightly higher values than
CDIAC gridded data (often a few percent) because of the
global correction (note global correction can be negative, de-
spite the depiction in Fig. 1), ODIAC sometimes indicates
values lower that CDIAC gridded data by more than a few
percent (see Japan in Fig. 3 as an example). This is due to
a sampling error using the 1× 1◦ country map in the anal-
ysis. The aggregated 1× 1◦ ODIAC field is slightly larger
than that of CDIAC, especially because the coastal areas de-
picted a high resolution in the original 1× 1 km emissions
field. This type of sampling error was discussed in Zhang
et al. (2014). ODIAC employs a 1× 1 km coastline and a
5× 5 km country mask as described in Oda and Maksyu-
tov (2011). Thus, the use of a 1× 1◦ CDIAC country map
results in missing some land mass (hence, CO2 emissions).
Similar sampling errors can happen for countries that are
physically small and island countries, depending on the res-
olution of analysis. Despite the sampling errors, the authors

used the CDIAC 1× 1◦ country map to perform this com-
parison analysis with CDIAC gridded data as a reference.
The lower emissions indicated by ODIAC or EDGAR in this
analysis do not always mean the national total emissions are
lower. The emissions estimates at a national level often agree
well even among different emissions inventories (e.g., An-
dres et al., 2012).

6.2 Global emissions spatial distributions

The global total emissions fields of CDIAC gridded emis-
sions data and ODIAC2016 for the year 2013 (the most re-
cent year CDIAC indicates) are shown in Fig. 4. Emissions
fields are shown at a common 1× 1◦ resolution. The ma-
jor difference seen between two fields is primarily due to
inclusion–exclusion of emissions from international bunker
emissions that largely account for the differences indicated
in Table 1. A breakdown of ODIAC 2013 emissions fields
are presented by emissions category in Fig. 5. The emissions
fields for point sources, nonpoint sources, cement produc-
tion, and gas flaring were produced at a 1× 1 km resolution
in the ODIAC 3.0 model, but as mentioned earlier, we fo-
cus on the 1× 1◦ version of ODIAC2016 in this paper. In
CDIAC gridded emissions data, the emissions over land are
distributed by population data without fuel type distinction.
In the ODIAC 3.0 model, we have added additional layers
of consideration in the emissions modeling from the conven-
tional CDIAC model and add the possibility of future im-
provement with improved emissions proxy data.

In Fig. 6, we compared the four global gridded products
over land and also calculated differences from ODIAC2016
(shown in Fig. 7; histograms are presented in Fig. A1). It
is often very challenging to evaluate the accuracy and un-
certainty of gridded emissions data because of the lack of
direct physical measurements on grid scales (Andres et al.,
2016). Recent studies have attempted to evaluate the uncer-
tainty of gridded emissions data by comparing emissions data
to each other (e.g., Oda et al., 2015; Hutchins et al., 2016).
The differences among emissions were used as a proxy for
uncertainty. However, it is important to note that such evalu-
ation does not give us an objective measure of which one is
closer to truth, beyond characterizing the differences in emis-
sions spatial patterns and magnitudes from methodological
viewpoints (e.g., emissions estimation and disaggregation).
Some of the gridded emissions data are partially disaggre-
gated using commercial information, and users are often not
authorized to fully disclose the information used. This thus
makes the comparison even less meaningful and/or signifi-
cant. Oda et al. (2015) also discussed that emissions inter-
comparison approaches often do not allow us to evaluate two
distinct uncertainty sources (emissions and disaggregation)
separately. In addition, because of the use of emissions proxy
for emissions disaggregation (rather than mechanistic model-
ing), such comparison can be only implemented at an aggre-
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Figure 3. National emissions time series for top 10 emitting countries (China, US, India, Russian Federation, Japan, Germany, Islamic
Republic of Iran, Republic of Korea (South Korea), Saudi Arabia, and Brazil). The values are given in the unit of petagrams (equal to a
gigaton) of carbon per year. The values are calculated using gridded emissions data, not tabular emissions data. The national total values
in the plots might thus be different from values indicated in the tabular form due to the emissions disaggregation. The shaded area in grey
indicates the 2σ uncertainty range estimated by Andres et al. (2014) (see Table 2).
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Table 1. Global total emissions estimates for 2000, 2005, and 2010 from four gridded emissions data estimates (ODIAC2016, CDIAC,
EDGAR v4.2, and EDGAR FastTrack). Values for two versions of EDGAR emissions data were calculated by subtracting emissions from
agriculture (IPCC code: 4C and 4D), land use change and forestry (5A, C, D, F, and 4E), and waste (6C) from the total EDGAR CO2
emissions (total short cycle C).

Year ODIAC2016 CDIAC national EDGAR v4.2 EDGAR FT

2000 6727 6506 (−3.3 %) 6907 (+2.7 %) NA
2005 8025 7592 (−5.4 %) 8005 (−0.2 %) 7959 (−0.8 %)
2010 9137 8694 (−4.8 %) NA 8950 (−2.0 %)

NA = not available

Table 2. Annual uncertainty estimates associated with CDIAC national emissions estimates. The uncertainty estimates were made following
the method described by Andres et al. (2014). The national total emissions for the year 2013 were taken from Boden et al. (2016).

Ranking Country 2013 emissions in kTC Uncertainty
no. (% of the global total) (%)

1 China 2 795 054 (28.6 %) 17.5
2 US 1 414 281 (14.5 %) 4.0
3 India 554 882 (5.7 %) 12.1
4 Russia Federation 487 885 (5.0 %) 14.8
5 Japan 339 074 (3.5 %) 4.0
6 Germany 206 521 (2.1 %) 4.0
7 Islamic Republic of Iran 168 251 (1.7 %) 9.4
8 Republic of Korea (South Korea) 161 576 (1.7 %) 12.1
9 Saudi Arabia 147 649 (1.5 %) 9.4
10 Brazil 137 354 (1.4 %) 12.1

gated, coarse spatial resolution. These issues will be further
discussed in Sect. 7.

Because of the limitation mentioned above, here we com-
pared emissions data only to characterize the differences that
can be explained by the differences in emissions disaggre-
gation methods. We implemented this comparison exercise
using the 2008 emissions field aggregated at a 1× 1◦ res-
olution. The year 2008 is the most recent year for which
all the four emissions fields are available. The major emis-
sions spatial patterns (e.g., emitting regions such as North
America, Europe, and East Asia) are overall very similar
as the correlations were driven by national emissions esti-
mates (which we already saw to be in good agreement ear-
lier), but we do see differences due to emissions disaggrega-
tion at the subnational level. Because of the use of nighttime
light, ODIAC did not indicate emissions over some of the
areas (e.g., Africa and Eurasia) while others are indicated.
In particular, EDGAR shows emissions over those areas that
are largely explained by line source emissions such as trans-
portation. Overall, ODIAC tends to put more emissions to-
wards populated areas than suburbs. This is also explained
by the lack of line sources. In EDGAR v4.2, domestic fish-
ery emissions can be seen, but not in EDGAR FT. Even in
these two EDGAR versions, we can confirm the subnational
differences in the United States, Europe, and China.

6.3 Regional emissions time series

Figure 8 shows time series of regional fossil fuel emissions
aggregated over 11 land regions defined in the TransCom
transport model intercomparison experiment (e.g., Gurney
et al., 2002). The global seasonal variation and the associ-
ated uncertainty have been presented and discussed in An-
dres et al. (2011). Here monthly total emissions values were
calculated for eleven TransCom land regions and presented
with the associated uncertainty values (see Table 3). The
monthly total values were calculated both excluding inter-
national bunker emissions (hence, land emissions only) and
including the emissions. The uncertainty range was calcu-
lated with mass weighted uncertainty estimates of countries
that fall into the TransCom regions. The uncertainty ranges
shown in Fig. 8 show annual uncertainty plus the monthly
profile uncertainty (12.8 %; reported by Andres et al., 2011).
Monthly time series are presented for land-only emissions
and land and international bunker emissions (here, largely
aviation emissions). As described earlier, the emissions sea-
sonality was adopted from Andres et al. (2011). The pat-
terns in the emissions seasonality are often largely character-
ized by the large emitting countries within the regions (e.g.,
US for region 2 and China for region 8). Since Andres et
al. (2011) used geographical closeness (also, type of eco-
nomic systems) to define proxy countries, the countries in
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Figure 4. The 2013 global fossil fuel CO2 emissions distributions from CDIAC (a, 8.36 PgC) and ODIAC (b, 9.78 PgC). The ODIAC
emissions field was aggregated to a common 1× 1◦ resolution. The value is given in the unit of log of thousand tons C cell−1.

Figure 5. The 2013 global distributions of ODIAC fossil fuel emissions by emissions type. The panels show emissions from (from top to
the right, then down) point source, nonpoint source, cement production, gas flaring, international aviation, and international shipping. The
values in the figures are given in the unit of log of thousand tons of carbon per year per cell (1× 1◦). The numbers in the brackets are the
total for the category emissions in the unit of PgC (total 2013 emissions in ODIAC2016 was 9.78 PgC).

the same TransCom regions can have similar or the same sea-
sonal patterns in their emissions.

As we can see in Fig. 4 (panel plot for aviation emissions),
aviation emissions are intense over North America, Europe,

and Asia. Global total aviation emissions was approximately
0.12 PgC yr−1 in 2013 and it often does not account for a
large portion of the global total (1.2 % of the global total in
2013). However, considering the fact that those emissions are
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Figure 6. Land emissions from ODIAC (a), CDIAC (b), and two versions of EDGAR emissions data (v4.2, c; and v4.2 FastTrack, d). The
units are million tons of carbon per year per cell (1× 1◦). In addition to excluding emissions from international aviation and marine bunkers,
some of the sector emissions were subtracted from EDGAR short cycle total emissions to account for the differences in emissions calculation
methods between CDIAC and EDGAR. The emissions fields for the year 2008 were used.

concentrated in particular areas such as North America, Eu-
rope, and East Asia, rather than evenly distributed in space,
and are often imposed at the surface layer in transport model
simulation, care must be taken to achieve an accurate atmo-
spheric CO2 transport model simulation (Nassar et al., 2010).
Aviation emissions were often around 0.5–5.1 % of the land
total emissions over most regions, but also reached 12.7 %
(North American Boreal).

7 Current limitations, caveats, and future prospects

As the ODIAC emissions data product is now used for a wide
variety of carbon cycle research (e.g., global, regional inver-
sions, urban emissions studies), it would be useful for the
users of the ODIAC emissions data product to note and dis-
cuss issues, limitations, and caveats in our emissions data.
Some of the issues and limitations are specific to our study;
however, the majority of them are often shared by other ex-
isting gridded emissions data and emissions models.

7.1 Emissions estimates

In the production of ODIAC2016, we used several versions
or editions of CDIAC estimates (e.g., global estimates, na-
tional estimates, and monthly gridded data). This could of-
ten happen in emissions data production, as some of the un-

Table 3. Annual uncertainty estimates over the TransCom land re-
gions. The uncertainty estimates were mass weighted values of un-
certainty estimates of countries that fall in the regions. Country un-
certainty estimates were estimated using the method described (An-
dres et al., 2014). The values were reported as the 2σ uncertainty.

Region no. Region name Uncertainty (%)

1 North American Boreal 3.7
2 North American Temperate 3.7
3 South American Tropical 9.6
4 South American Temperate 12.8
5 Northern Africa 5.1
6 Southern Africa 10.6
7 Eurasian Boreal 12.4
8 Eurasian Temperate 7.8
9 Tropical Asia 11.8
10 Australia 4.0
11 Europe 3.8

derlying data are not updated ro upgraded at the time of
emissions data production (we often start updating emissions
data after new fuel statistical data are released). We some-
times accept the inconsistency and try to use the most up-to-
date information available. For example, we could use GCP’s
emissions estimates (e.g., Le Quéré et al., 2016) to constrain
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Figure 7. ODIAC minus other emissions data differences. CDIAC
(b) and the two versions of EDGAR (v4.2, c; and v4.2 FastTrack, d).
The units are million tons of carbon per year per cell (1× 1◦). Note
that the differences are defined as ODIAC (this study) minus others.
The histograms of the differences are also presented in Fig. A1.

the global totals, if CDIAC global total emissions estimates
are not available. The way we obtained emissions estimates
for each version is often described in the NetCDF header
information of the emissions data product. The use of the
CARMA power plant estimates for estimating the magnitude
of the point source portion of emissions is hard to eliminate,
although ideally this is done using emissions estimates that
are fully compatible with CDIAC estimates. We are currently
examining UN statistical data (which CDIAC emissions esti-
mates are based on) to assess the ability of explaining power
plant emissions.

7.2 Emissions spatial distributions

7.2.1 Point source emissions

Although the use of the power plant geolocation allowed us
to achieve improved high-resolution emissions spatial distri-
butions over land (Oda and Maksyutov, 2011), the availabil-
ity of power plant data is often very limited. For example,
CARMA does not provide power plant emissions and their
status (e.g., commission–decommission) every year. Further-
more, updates and upgrades after their version 3.0 database
(which is dated to 2012) are also not provided. The error in
their power plant geolocation is another issue that has been
identified (e.g., Oda and Maksytuov, 2011; Woodard et al.,
2015). In ODIAC, the base year emissions (2007) were pro-
jected and all the power plants were assumed to be active
over the period (Oda and Maksyutov, 2011). There are only
a few global projects such as the Global Energy Observa-
tory (GEO, http://globalenergyobservatory.org/) that collect
power plant information and those can be a useful source of
data to improve and supplement the CARMA database. Re-
gionally, CARMA can be evaluated using an inventory such
as the US Emissions and Generation Resource Integrated
Database (eGRID) (EPA, 2017). However, it is often difficult
to find such a well-constructed and well-documented inven-
tory for countries that are actually driving the uncertainty in
global emissions (e.g., China and India).

Emissions from cement production (which are currently
distributed by Ziskin et al., 2010, using nighttime light) and
gas flare (which is distributed by Elvidge et al., 2009, us-
ing gas flare nighttime light data) should be distributed as
point sources. For gas flare emissions, we examine the use
of Nightfire (Elvidge at al., 2013a) to pinpoint active gas
flares in a timely manner and improve their emissions spatial
disaggregation over recent years. Currently, the point source
emissions in ODIAC do not have an injection height due to
the lack of global information. This limitation is shared with
other existing global emissions data products.

7.2.2 Nonpoint source emissions

Nighttime light data have been an excellent proxy for human
settlements (hence, CO2 emissions) even at a high spatial
resolution; however, there are some issues to be discussed.
As mentioned earlier, we used an improved version of cal-
ibrated radiance data developed by Ziskin et al. (2010), but
those data are only available for seven data periods over the
course of the DMSP years (1992–2013). As we do not be-
lieve linearly interpolating the existing nighttime light data
over the intervening years is necessarily the best way (as
done in Asefi-Najafabady et al., 2014), the same nighttime
light data have been used for some periods, and thus emis-
sions distributions remain unchanged. We now examine the
use of nighttime light data collected from the Visible In-
frared Imaging Radiometer Suite (VIIRS) on the Suomi Na-
tional Polar-orbiting Partnership satellite (e.g., Elvidge et al.,
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Figure 8. Emissions time series over inversion analysis land regions defined by the Transport Model Intercomparison Project (TransCom)
(Gurney et al., 2002). The TransCom region map (bottom right) is available from http://transcom.project.asu.edu/transcom03_protocol_
basisMap.php (last access: 8 November 2016). Black lines indicate the ODIAC 1× 1◦ monthly emissions. The monthly emissions are
calculated using the 1× 1◦ ODIAC emissions data. The uncertainty range was calculated using mass weighted uncertainty estimates of
countries that fall into the regions (see Table 3). The uncertainty ranges shown in this figure are annual uncertainty plus the monthly profile
uncertainty (12.8 %; reported by Andres et al., 2011). Note that scales on the vertical axis are different.
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2013b; Román and Stokes, 2015). VIIRS instruments do not
have several of the critical issues that the DMSP instrument
had (e.g., spatial resolution, dynamic range, quantization,
and calibration) (Elvidge et al., 2013b). The fully calibrated
nighttime light data can be used to map emissions changes in
space in a timely and consistent manner.

In ODIAC, the disaggregation of nonpoint emissions is
solely performed using nighttime light data for estimating
subnational emissions spatial distributions, and no additional
subnational emissions constraints were applied. Rayner et
al. (2010) proposed to better constrain subnational emissions
spatial distribution by combining population data, nighttime
lights, and GDP in their Fossil Fuel Data Assimilation Sys-
tem (FFDAS) framework. Asefi-Najafabady et al. (2014)
further introduced the use of point source information in
their disaggregation; the optimization in their current frame-
work is however under-constrained by the lack of GDP in-
formation. Without having such optimization, the state level
per capita emissions estimates can provide subnational con-
straints. Nassar et al. (2013) evaluated the per capita emis-
sions in CDIAC and ODIAC emissions data over Canada
using the national inventory and found that ODIAC outper-
formed. However, as the nighttime light–population relation-
ship might have a bias for developing and the least devel-
oped countries (Raupach et al., 2010), we would expect to
see significant biases over those countries and the per capita
estimates can provide a useful constraint.

As seen in the comparison to other emissions data, the
major difference from EDGAR emissions spatial distribution
was due to the lack of line sources in ODIAC. We do not be-
lieve the result from the emissions data comparison can fal-
sify the emissions distribution in ODIAC, as discussed ear-
lier. However, we do expect an inclusion of the line sources
would improve the spatial distributions and emissions rep-
resentations in both cities and rural areas. We are currently
examining the inclusion of transportation network data (e.g.,
OpenStreetMap) as a proxy for line source emissions to ex-
plore the better spatial emissions aggregation method. Oda et
al. (2017) recently implemented the idea of adding a spatial
proxy for line sources and improved emissions estimates for
a US city.

7.2.3 Aviation emissions

We estimated emissions from international aviation from
CDIAC using UN statistical data. The emissions are cur-
rently provided as a single layer emissions field, although
this is not appropriate given the nature of the aviation emis-
sions. Nassar et al. (2010) discussed the importance of the
three-dimensional (e.g., x,y,z) emissions for interpreting the
CO2 profile. In the current modeling framework, although
we maintain the aviation emissions injection height from
AERO2k (reduced to 1 km interval), we distribute the emis-
sions to a single layer. As pointed out by Olsen et al. (2013),
AERO2k does not agree with other inventories in height dis-

tribution. While noting this inconsistency, we will examine
the use of height information from AERO2k and other data
available to us and do sensitivity analysis using transport
model simulations.

7.3 Emissions temporal profiles

The emissions seasonality in ODIAC2016 is based on An-
dres et al. (2011) and it can be further extended to an hourly
scale using the TIMES scaling parameter. We note that the
emissions seasonality was based on the top 10 emitting coun-
tries’ fuel statistics and Monte Carlo simulation (Andres et
al., 2011). The emissions seasonality for countries other than
the top 10 could be less robust. Also, because of the use of
Monte Carlo, the seasonality is different over different edi-
tions of monthly emissions data. It is also important to note
that the repeated use of climatological (mean) seasonality for
recent years (described in Sect. 5) could be a source of uncer-
tainty and bias. Andres et al. (2011) estimated the monthly
uncertainty as 12.8 % (2σ ) in addition to the annual emis-
sions uncertainty. As we often impose fossil fuel emissions,
care must be taken when applied to inversions. Ultimately, as
carried out by Vogel et al. (2013), we might be able to evalu-
ate temporal profiles from statistical data and improve them
(but only to limited small locations).

7.4 Uncertainties associated with gridded emissions
fields

As mentioned earlier, the evaluation of gridded emissions
data is often very challenging and most of the emissions data
studies share this difficulty. Although the emissions estimates
are made on global and national scales with small uncertain-
ties (e.g., 8 % for the global scale by Andres et al., 2014),
considerable errors seem to be introduced when the emis-
sions are disaggregated (e.g., Hogue et al., 2016; Andres et
al., 2016). Andres et al. (2016), for example, estimated the
uncertainty associated with CDIAC gridded emissions data
on a per grid cell basis with an average of 120 % and a range
of 4.0 to 190 % (2σ ). Hogue et al. (2016) looked closely at
CDIAC gridded emissions data over the US domain and es-
timated the uncertainty associated with the 1× 1◦ emissions
grids as±150 %. Those errors seem to be unique to the disag-
gregation method (Andres et al., 2016). Future funding may
allow us to pursue a full uncertainty analysis of the ODIAC
emissions data and model, akin to the Andres et al. (2016) ap-
proach but accounting for the greater-than-one carbon distri-
bution mechanisms utilized in the ODIAC emissions model-
ing framework. All of the spatially distributed gridded emis-
sions data mentioned in this paper suffer from the same
basic defect: they use proxies to spatially distribute emis-
sions rather than actual measurements. In addition, evaluat-
ing emissions distributions based on a nighttime light proxy
can be challenging as the connection between CO2 emissions
and proxy is less direct compared to population (e.g., per
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capita emissions). A combined use of emissions proxy and
geolocation data (e.g., power plant location) would also add
additional difficulties to finding a comprehensive measure of
the uncertainty because of different types of error and uncer-
tainty sources (e.g., Woodard et al., 2015). As finer spatial
scales are approached, the defect of the proxy approach be-
comes more apparent: proxies only estimate emissions fields.
The ODIAC data product has been used not only for global
simulations at an aggregated spatial resolution, but also at
very high spatial resolution (e.g., Ganshin et al., 2012; Oda
et al., 2012, 2017; Lauvaux et al., 2016). Thus, an emissions
evaluation at a high resolution has become an important task.
One approach we could take for evaluating high-resolution
emissions fields is comparing to a local finely grained emis-
sions data product such as Gurney et al. (2012), acknowl-
edging the limitations of the approach discussed earlier. An-
other approach would be evaluating emissions data in con-
centration space rather than emissions space. As reported in
Vogel et al. (2013) and Lauvaux et al. (2016), with radiocar-
bon measurements and/or good, spatially dense CO2 mea-
surements, a high-resolution transport model simulation can
provide an objective measure for emissions data evaluations
(e.g., model–observation mismatch and emissions inverse es-
timate).

While the quality (i.e., bias and uncertainty) of the grid-
ded emissions estimates remains unquantified for most of
the emissions data mentioned in this paper, the emissions
data are still used because sufficient measurements in space
and time are not presently available to offer a better alterna-
tive. At the very least, we presented the uncertainty estimates
over the aggregated TransCom land regions. We believe that
the regional uncertainty estimates are highly useful for at-
mospheric CO2 inversion modelers, more than uncertainty
estimates at a grid level, which still do not seem to be ready
for use. Inversion studies often aggregate flux estimates over
the TransCom land regions to interpret regional carbon bud-
gets, while flux estimations in their models are performed
at much higher spatial resolutions (e.g., Feng et al., 2009;
Chevallier et al., 2010; Basu et al., 2013). Taking advantage
of the ODIAC emissions dataset being based on the CDIAC
estimates, we adopted the updated uncertainty estimates re-
ported by Andres et al. (2016) and obtained the regional un-
certainty estimates. Those estimates are new and readily us-
able for the inversion studies, especially when interpreting
the regional estimates.

8 Product distribution, data policy, and future
update

The ODIAC2016 data product is available from a web-
site hosted by the Center for Global Environmental Re-
search (CGER), Japanese National Institute for Environmen-
tal Studies (NIES) (http://db.cger.nies.go.jp/dataset/ODIAC/,
https://doi.org/10.17595/20170411.001). The data product is

distributed under Creative Commons Attribution 4.0 Interna-
tional (CC-BY 4.0, https://creativecommons.org/licenses/by/
4.0/deed.en). The ODIAC2016 emissions data are provided
in two file formats: (1) a global 1× 1 km (30 arcsec) monthly
file in the GeoTIFF format (only includes emissions over
land) and (2) a 1× 1◦ annual (12 month) file in the NetCDF
format (includes international bunker emissions). A single,
global 1× 1 km monthly GeoTIFF file is about 3.7 GB (com-
pressed to 120 MB). A 1× 1◦ single NetCDF annual file is
about 6 MB.

We update the emissions data on an annual basis, follow-
ing the release of an updated global fuel statistical data. Fu-
ture versions of the emissions data are in principle based on
an updated version or edition of the underlying statistical
data with the same name convention (ODIACYYYY, YYYY
is the release year; the end year is YYYY minus 1). In Octo-
ber 2017, we started distributing the updated 2017 version of
ODIAC data (ODIAC2017, 2000–2016). We primarily focus
on years after 2000. Future versions of ODIAC data, how-
ever, might have a longer, extended time coverage.

9 Data availability

For detailed information about data availability, please refer
to Sect. 8 in this paper.

10 Summary

This paper describes the 2016 version of ODIAC emissions
data (ODIAC2016) and how the emissions data product was
developed within our upgraded emissions modeling frame-
work. Based on the CDIAC emissions data, ODIAC2016
can be viewed as an extended version of the CDIAC grid-
ded data with improved emissions spatial distribution repre-
sentations. Utilizing the best available data (emissions esti-
mates and proxy), we achieved a comprehensive, global fos-
sil fuel CO2 gridded emissions field that allows data users
to impose their CO2 simulations in a consistent way with
many of the global carbon budget analyses. With updated
fuel statistics, we should be able to continue producing up-
dated future versions of the ODIAC emissions data prod-
uct within the same model framework. The capability we
developed in this study has become more significant now,
given the CDIAC/ORNL’s shutdown. Despite expected dif-
ficulties (e.g., discontinued CDIAC estimates), the authors
believe that ODIAC could play an important role in deliver-
ing emissions data to the carbon cycle science community.
Limitations and caveats discussed in this paper mirror and
lead ODIAC’s future prospects. The ODIAC emissions data
product is distributed from http://db.cger.nies.go.jp/dataset/
ODIAC/ with a DOI. Currently the 2017 version of ODIAC
emissions data (ODIAC2017, 2000–2016) is also available.
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Appendix A

Table A1. A list of components in ODIAC2016 and data used in the development.

Component Data/product name Description and data source Reference

Global FFCO2 CDIAC global fossil
fuel CO2 emissions

The 2016 edition of the CDIAC global total estimates was
used to constrain the ODIAC2016 totals. Data are available
at http://cdiac.ornl.gov/ftp/ndp030/global.1751_2013.ems.

Boden et al. (2016)

National FFCO2 CDIAC fossil fuel CO2
emissions by Nation

The 2016 editions of the CDIAC national emissions esti-
mates are used as primary input data. Data are available at
http://cdiac.ornl.gov/ftp/ndp030/nation.1751_2013.ems.

Boden et al. (2016)

Global fuel statistics BP statistical review of
world energy

The 2016 edition of the BP statistical data was
used to project CDIAC national emissions over
recent years (2014–2015). Data are available at
http://www.bp.com/en/global/corporate/energy-economics/
statistical-review-of-world-energy.html.

BP (2017)

Monthly temporal variation CDIAC gridded
monthly estimate

The 2013 version of the CDIAC monthly gridded data
was used to the model seasonality in ODIAC2016. Data
are available at http://cdiac.ornl.gov/ftp/fossil_fuel_CO2_
emissions_gridded_monthly_v2013/.

Andres et al. (2011)

Power plant data CARMA The CARMA power plant database with geolocation cor-
rection described in Oda and Maksyutov (2011). Data are
available from http://carma.org/.

Wheeler and Ummel (2008)

NTL (for nonpoint emissions) Global radiance cali-
brated nighttime lights

Multiple-year NTL data are used to distribute nonpoint
emissions. Data are available at https://ngdc.noaa.gov/eog/
dmsp/download_radcal.html.

Ziskin et al. (2010)

NTL (for gas flaring) Global gas flaring
shapefiles

Global gas flaring NTL data are specifically used
to distribute gas flaring emissions. Data are available
at http://ngdc.noaa.gov/eog/interest/gas_flares_countries_
shapefiles.html.

Elvidge et al. (2009)

Int’l ship tracks EDGAR v4.1 The international marine bunker emissions field in EDGAR
v4.1 was used. Data are available at http://edgar.jrc.ec.
europa.eu/archived_datasets.php.

JRC (2017)

Int’l aviation flight tracks AERO2k Data were used to distribute aviation emissions. More de-
tails can be found at http://www.cate.mmu.ac.uk/projects/
aero2k/.

Eyers et al. (2005)

Weekly and diurnal cycle TIMES This was not a part of ODIAC2016; however, it is useful to
note that these scaling factors can be used to create weekly
and diurnally varying emissions. Data are available at http:
//cdiac.ornl.gov/ftp/Nassar_Emissions_Scale_Factors/.

Nassar et al. (2013)
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Figure A1. A histogram of the inter-emissions data differences from ODIAC. Values are given in the unit of million tons carbon per year
(MTC yr−1).

Table A2. A table for the global scaling factor for 2000–2013.

Year Scaling factor

2000 0.999
2001 1.016
2002 1.008
2003 1.014
2004 1.012
2005 1.022
2006 1.022
2007 1.016
2008 1.023
2009 1.024
2010 1.015
2011 1.017
2012 1.017
2013 1.025

www.earth-syst-sci-data.net/10/87/2018/ Earth Syst. Sci. Data, 10, 87–107, 2018
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