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Abstract. With the AQ-Bench dataset, we contribute to the recent developments towards shared data usage and
machine learning methods in the field of environmental science. The dataset presented here enables researchers
to relate global air quality metrics to easy-access metadata and to explore different machine learning methods for
obtaining estimates of air quality based on this metadata. AQ-Bench contains a unique collection of aggregated
air quality data from the years 2010–2014 and metadata at more than 5500 air quality monitoring stations all
over the world, provided by the first Tropospheric Ozone Assessment Report (TOAR). It focuses in particular on
metrics of tropospheric ozone, which has a detrimental effect on climate, human morbidity and mortality, as well
as crop yields. The purpose of this dataset is to produce estimates of various long-term ozone metrics based on
time-independent local site conditions. We combine this task with a suitable evaluation metric. Baseline scores
obtained from a linear regression method, a fully connected neural network and random forest are provided for
reference and validation. AQ-Bench offers a low-threshold entrance for all machine learners with an interest in
environmental science and for atmospheric scientists who are interested in applying machine learning techniques.
It enables them to start with a real-world problem relevant to humans and nature. The dataset and introductory
machine learning code are available at https://doi.org/10.23728/b2share.30d42b5a87344e82855a486bf2123e9f
(Betancourt et al., 2020) and https://gitlab.version.fz-juelich.de/esde/machine-learning/aq-bench (Betancourt
et al., 2021). AQ-Bench thus provides a blueprint for environmental benchmark datasets as well as an exam-
ple for data re-use according to the FAIR principles.

1 Introduction

In recent years, machine learning has achieved remarkable
success in areas such as pattern, image and speech recogni-
tion by usage of increasing computing power, innovative al-
gorithms and high data availability (Krizhevsky et al., 2012;
Amodei et al., 2016; Silver et al., 2016). This has aroused the
interest of environmental scientists in exploring the applica-
tion of machine learning and data-driven methods in their
fields. The strength to be exploited is the ability of machine
learning algorithms to find complex relationships in large
multivariate, inhomogeneous datasets (as described, for ex-
ample, in Wise and Comrie, 2005; Porter et al., 2015).

In air quality research, there is one pollutant which is espe-
cially challenging to track: tropospheric ozone, a toxic trace
gas which harms human health and vegetation and also im-
pacts the climate (Cooper et al., 2014; Monks et al., 2015).
Tropospheric ozone is difficult to track because it has no
direct emission sources but is produced as a secondary air-
borne pollutant by several chemical reaction chains involv-
ing a large variety of precursors and photochemistry. With
a lifetime of days to weeks (Wallace and Hobbs, 2006),
the ozone concentration is affected by various physical and
chemical processes which produce and destroy ozone. There-
fore, ozone is a scientifically interesting candidate for ma-
chine learning applications: it is influenced by many inter-
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connected environmental factors – and it is interesting to see
if machine learning algorithms can learn these.

Data-driven atmospheric chemistry research was com-
bined with machine learning from the late 1990s to model
and predict surface ozone concentrations in an alternative
way to multivariate regression (Yi and Prybutok, 1996; Com-
rie, 1997; Elkamel et al., 2001; Caselli et al., 2009). These
data-driven approaches take ground-based measurements as
input and predict the pollutant concentrations for the follow-
ing days at individual locations. The principle behind recent
machine learning applications in ozone research is often a
similar principle to the one Schultz et al. (2021) described for
weather data: the input data are directly mapped to a specific
data product, e.g., from meteorological and past ozone mea-
surements to the next day’s maximum ozone value. In recent
studies, Sayeed et al. (2020) and Kleinert et al. (2021) pre-
dicted regional ozone time series with convolutional neural
networks and meteorological input data. Furthermore, Silva
et al. (2019) trained a feed-forward neural network to output
ozone dry deposition at two forest measurement sites. More-
over, within computationally complex components of atmo-
spheric chemistry models, machine learning techniques are
used as emulators or surrogate models. They replace for ex-
ample costly atmospheric chemistry and micro-physical cal-
culations to improve computational performance of the mod-
els (Kelp et al., 2020). In addition, machine learning is ap-
plied in the calibration of low-cost sensors for air quality
measurements in order to account for the diverse sources of
interference with these measurements (Schmitz et al., 2021;
Wang et al., 2020). Nevertheless, to our knowledge there are
currently no machine learning projects that attempt to ana-
lyze and predict ozone on the global scale, for longer time
periods and with many kinds of metadata.

Developments in machine learning are accelerated by the
existence of precompiled benchmark datasets that allow ma-
chine learners to try out specific tasks, exchange solutions
and compete with each other (LeCun et al., 2010; Deng et al.,
2009; Rasp et al., 2020). Benchmarks can also be used for the
development of explainable artificial intelligence approaches

(Kierdorf et al., 2020; Roscher et al., 2020). So far, few such
benchmark datasets exist in the field of environmental sci-
ence, especially related to air quality. While air quality data
are in principle easily accessible from a variety of archives,
there is often incomplete information and insufficient meta-
data to develop useful machine learning applications from
these data. Furthermore, harmonization of such data from
different sources, which is needed to achieve a global pic-
ture of ozone air pollution, is a difficult and time-consuming
task.

With the AQ-Bench dataset, we aim to fill this gap and
provide a dataset of global long-term air quality metrics and
metadata compiled from the TOAR database (Tropospheric
Ozone Assessment Report; Schultz et al., 2017). To make
these data usable for machine learning developments, this
paper also describes the specific task of mapping between
the metadata and the air quality metrics (see graphical ab-
stract). Our ready-to-use, fully documented dataset is freely
available under the DOI https://doi.org/10.23728/b2share.
30d42b5a87344e82855a486bf2123e9f (Betancourt et al.,
2020). We also provide our baseline machine learning code
at https://gitlab.version.fz-juelich.de/esde/machine-learning/
aq-bench (Betancourt et al., 2021), offering a low-threshold
entrance to machine learning in environmental science within
a relevant research topic. In Sect. 2 of this paper we present
the main factors affecting tropospheric ozone as the scien-
tific background for the design of the AQ-Bench dataset. Sec-
tion 3 introduces the TOAR data products from which AQ-
Bench was constructed. In Sect. 4, we describe the dataset
itself. Section 5 contains the machine learning task for AQ-
Bench and three baseline experiments to evaluate the appli-
cability of these data in the machine learning context. We
discuss opportunities and challenges of AQ-Bench and give
problem-related expected difficulties in Sect. 6. Information
on data and code availability is given in Sect. 7, followed by
a conclusion in Sect. 8.
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Figure 1. Simplified scheme describing the ozone chemical cycle.
Figure adapted and modified from Jacob (2000). See text for elabo-
ration.

2 What factors influence ozone?

Ozone (O3) is a toxic greenhouse gas. While stratospheric
ozone protects life on the planet’s surface from ultraviolet
radiation, tropospheric ozone is detrimental to human health,
vegetation and climate. The AQ-Bench dataset and this paper
focus exclusively on tropospheric ozone, more precisely the
near-surface ozone to which humans, animals and plants are
exposed. Ozone is a secondary pollutant that is formed from
emissions of precursor substances and undergoes a variety
of physical and chemical processes during its atmospheric
lifetime. Figure 1 summarizes these processes, and they are
further elaborated in the following subsections. How the de-
scribed processes translate into the data in AQ-Bench is de-
scribed in the dataset description (Sect. 4).

2.1 Precursor emissions

The most important ozone precursors are nitrogen ox-
ides, carbon monoxide and volatile organic compounds
(denoted as NOx , CO and VOCs in Fig. 1; note that
NOx =NO2+NO). Many of these precursors are emitted by
human activities, e.g., from traffic, industry and agriculture
(Benkovitz et al., 1996; Field et al., 1992). NOx concentra-
tions resulting primarily from combustion processes are es-
pecially high at very heavily polluted sites such as in city cen-
ters or near power plants. Industrial and traffic pollution are
closely related to energy consumption depending on popula-
tion density and economic activities. Agriculture machinery
emits similar trace gases to those emitted by traffic or indus-
try. Moreover, agricultural plants are often fertilized, which
adds more trace gas emissions (Veldkamp and Keller, 1997).
In addition to emissions from human activities, several pro-
cesses in nature also lead to emissions, especially of VOC
compounds. For example, plants emit VOCs which are of-
ten more reactive (and could therefore produce more ozone)

than VOCs emitted from human activities. The exact emis-
sion patterns vary among the types of plants and are thus re-
lated to land cover. Agricultural fields, forests and grasslands
therefore yield different magnitudes and seasonal cycles of
VOC emissions (Simpson et al., 1999). Emissions can also
occur from oceans, barren land, and snow- or ice-covered
surfaces. For example, the latter emit substantial quantities
of NOx in Arctic regions (Wang et al., 2007).

2.2 Ozone chemistry

The daily average ozone volume mixing ratios vary in the
order of 10 to 100 ppbv (parts per billion by volume), with
a lifetime of days to weeks (Wallace and Hobbs, 2006).
Ozone has practically no direct emissions but is exclusively
formed through atmospheric chemical reactions. The chem-
ical processes leading to ozone formation are driven by ul-
traviolet radiation (denoted with hν in Fig. 1). At wave-
lengths< 0.43 nm, photons convey enough energy to release
chemical bonds in nitrogen dioxide (NO2) molecules. This
process (photo dissociation) leads to the formation of nitro-
gen oxide (NO) and a free oxygen radical (O). NO is also a
radical and thus recombines quickly, while O collides with a
high probability with O2 and forms O3. The produced O3 is
removed rapidly when it reacts with NO to NO2+O2. The
reactions form a null cycle, because O3 is both created and
destroyed. The cycle stabilizes at a certain O3 concentration,
depending on the available NO2, ultraviolet light intensity
and temperature. Up to a certain point, the ozone concentra-
tion rises with increasing NO2 concentrations.

The dynamic equilibrium of this cycle can be altered by
the presence of VOCs and CO (denoted as primary emissions
in Fig. 1), which provide chemical pathways to convert NO
to NO2 without the destruction of O3 by oxidation (oxidized
pollutants denoted as HO2 and RO2 in Fig. 1). This leads
to a nonlinear system, where O3 concentrations depend on
the ratio of VOCs+CO and NOx (=NO+NO2) concentra-
tions. During the daytime, O3 can photo dissociate and re-
combine with water vapor (H2O in Fig. 1), thereby forming
hydroxy radicals (OH in Fig. 2) which fuel a large share of
atmospheric oxidation. There are several thousand chemical
reactions occurring in the atmosphere, which need to be con-
sidered for an adequate description of ozone formation and
loss processes, and Fig. 1 only provides a very small glimpse
into this rather complex system. For more details on ozone
chemistry we refer to Brasseur et al. (1999).

2.3 Transport and loss processes

During its atmospheric lifetime, O3 can be transported on
spatial scales of hundreds or even thousands of kilome-
ters (Schultz et al., 1999), until it is removed via atmo-
spheric chemical reactions and deposition (indicated with
downward-pointing arrows in Fig. 1). Primary chemical loss
of O3 is rather indirect via removal of NO2 in polluted
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regimes and radical–radical reactions in clean environments
with low NO2 concentrations. Besides the chemical loss,
O3 can be removed by deposition on surfaces, especially on
the leaves of natural or agricultural plants (Emberson et al.,
2000). Ozone irreversibly damages plant tissue when the
plant leaves take it up (Schraudner et al., 1997), leading to
reduced crop yields (Mills et al., 2011). Ozone deposition on
water surfaces is relatively slow, but due to the large extent
of them, this process also matters in the context of the global
ozone budget (Luhar et al., 2018).

2.4 Interconnected factors

In the following, we describe how the influences of ozone
precursor emission, chemistry, transport and loss (described
in Sect. 2.1–2.3) can come together. The combination of
chemistry and transport of air pollutants favors ozone forma-
tion downwind of sites with high precursor exhaust. A typ-
ical example is summertime rural areas downwind of larger
city centers, where peak ozone values can often be observed
(Xu et al., 2011). In the close vicinity of power plants or in
city centers, NOx is often very high and low ozone levels are
observed (Sillman, 1999).

There are several geographical factors which determine
the rates of chemical formation and loss of ozone. These fac-
tors can result in different mixes of ozone precursor emis-
sions, varying reaction rates and varying rates of deposition.
For example, the climate in a certain location determines the
vegetation cover and the local weather. Since temperatures
near the Equator are high and more intense sunlight is avail-
able, ozone levels are generally higher there than near the
poles. Moreover, at higher altitudes the air is generally cooler
and drier, which leads to changes in reaction rates. Local
flow patterns can also influence the ozone concentration, for
example through the transport of air masses from valleys to
mountain tops (Kaiser et al., 2007).

Besides natural geographic factors, political decisions can
also influence ozone formation. Many governments and deci-
sion makers worldwide strive to reduce air pollution by emis-
sion regulation, but these regulations differ between coun-
tries and may be implemented with more or less rigor. Ozone
regulation is more difficult than that of primary air pollutants
as one has to limit both VOC and NOx emissions in order to
control ozone, because of the chemical cycles described in
Sect. 2.2.

Although ozone has a rather long lifetime, the local ozone
concentration can change substantially in a matter of min-
utes and on scales of meters (e.g., in a street canyon), but it
can also remain stable across hundreds of kilometers and for
several weeks (e.g., at higher altitudes over the oceans). The
“radius of influence” within which ozone is determined by
nearby precursor emissions and deposition surfaces is typ-
ically about 25 km in mid-latitude areas (European Union,
2008). All in all, ozone concentrations measured at a sta-
tion are determined by many interconnected influences from

precursor emissions, land use and land cover, and the local
weather conditions. Many of these factors are poorly quan-
tified, and often the interconnections have not yet been un-
derstood well (Schultz et al., 2017). With AQ-Bench and the
machine learning task described below, we want to explore
a novel way of using a multitude of geographical features
to predict ground-level ozone around the world. The details
of data selection are described in Sect. 4, while the machine
learning task is provided in Sect. 5.1.

3 TOAR data products

The TOAR database (Schultz et al., 2017) was created in
the context of the Tropospheric Ozone Assessment Report
(TOAR). It contains one of the world’s largest collections
of near-surface ozone measurements, gathered from public
bodies, research institutions and air quality networks all over
the world. TOAR data products enabled the first comprehen-
sive global assessment of the tropospheric ozone distribution
and trends (Schultz et al., 2017; Fleming et al., 2018; Gaudel
et al., 2018; Lefohn et al., 2018; Chang et al., 2017; Young
et al., 2018; Mills et al., 2018; Tarasick et al., 2019; Xu et al.,
2020). In the spirit of FAIR data usage (Wilkinson et al.,
2016), these data products are openly available via the JOIN
graphical interface1, a REST interface2 and the PANGAEA
repository3.

For the AQ-Bench dataset, we selected and harmonized
air quality metrics and metadata from TOAR (see Sect. 4 and
Appendix C). This section therefore contains a description
of these selected data products, introducing the concepts of
metrics and metadata.

3.1 Air quality metrics

The TOAR database contains hourly ozone measurements,
transmitted from air quality observation sites. The data
providers conduct quality control on these data by calibrat-
ing the measurement devices and setting suitable instrument
parameters. In a second step of data curation, the TOAR
database administrators conduct a statistical analysis of the
data to identify and remove low-quality data (Schultz et al.,
2017). Hourly data are usually aggregated into statistics or
“metrics” for further analysis. Ozone metrics consolidate air
quality properties of longer time series (e.g., a season or a
year) into a single figure, which can then be directly used for
a scientific assessment and in decision-making. Longer ag-
gregation periods also average out short-term weather fluctu-
ations. There are specific metrics for different areas of ozone

1https://join.fz-juelich.de/ (last access: 21 June 2021).
2https://join.fz-juelich.de/services/rest/surfacedata/ (last access:

21 June 2021).
3https://doi.org/10.1594/PANGAEA.876108 (last access:

21 June 2021).
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impact assessments (respiratory and cardiovascular disease,
vegetation damage, climate impacts) and control.

The JOIN web service is connected to the TOAR database
and provides more than 30 of the most frequently used met-
rics as data products, calculated on-demand from hourly data.
Besides these specialized metrics, basic statistics such as av-
erages, medians and percentiles are also available in JOIN. In
the context of evaluating air quality, the validity of reported
ozone metrics hinges on the data capture. Typically, statis-
tical aggregations (i.e., metrics) of air quality data can only
be used for decisions on attainment or non-attainment of air
quality standards if at least 75 % of the (hourly) samples in
a dataset were reported. In this sense, the validity of ozone
metrics is tied to the data completeness, and we will use the
term “valid data” to indicate samples with sufficient coverage
of accurate data. All metrics which are part of AQ-Bench are
listed in Table 2 of Sect. 4. Documentation and further infor-
mation on all available metrics including data capture criteria
are available in Schultz et al. (2017) and Lefohn et al. (2018).

3.2 Station metadata

The TOAR database also contains geographical informa-
tion on air quality measurement station locations, i.e., sta-
tion metadata. Metadata give background information on the
measurement site where the data were retrieved from and
thus enable the characterization of the location. These meta-
data are collected from different sources. Some data, for in-
stance station coordinates and altitude, are given by the data
providers and quality controlled by TOAR. Others were de-
rived from data sources with individual quality control, such
as satellite Earth observations. For a complete list of the
available metadata attributes see Schultz et al. (2017) and the
REST interface (see footnote 2).

For the AQ-Bench dataset described in this paper, we se-
lected metadata from the TOAR database which characterize
measurement locations and their surroundings with respect
to pollution-relevant properties as introduced in Sect. 2. They
are listed in Table 1 of Sect. 4.

4 AQ-Bench dataset description

The AQ-Bench dataset consists of metadata and aggregated
ozone metrics from the years 2010–2014 at 5577 measure-
ment stations all over the world, compiled from the TOAR
database. The point of interest is to determine the resulting
ozone metrics (see Sect. 3.1) given all environmental influ-
ences (Sect. 2) represented by metadata (Sect. 3.2). Our con-
tribution in data preparation is to pick metadata with expert
knowledge, relate them to processes, and aggregate air qual-
ity data to metrics in a way that it is representative of long
time periods and meaningful in a machine learning context.

Three key points in the conception of this benchmark
dataset are as follows: (1) as targets, we use aggregated air
quality metrics over 5 years. These are not influenced by

short-term weather and emission forcings but by site condi-
tions on the climatological timescale. (2) Many known envi-
ronmental influences on ozone are on short timescales (see
Sect. 2), but we aim to predict long-term air quality con-
ditions at the sites. Thus, we have identified which station
metadata are the climatological representations of these short
forcings. (3) We use a – to our knowledge unprecedented –
variety of metadata that contain diverse information about
environmental influences on the climatological scale. These
metadata are sometimes not directly descriptive of the influ-
ences but rather proxies for them. The benefits of machine
learning must be leveraged to relate these proxies to air qual-
ity metrics.

This aggregated, climatological approach makes it possi-
ble to cover air quality data over a long period of time on the
global scale with a relatively small and compact dataset. Yet,
aggregated data account for long-term air quality conditions
at a site, and daily or hourly influence on ozone variations is
not considered. Figure 2 gives an overview of all TOAR air
quality monitoring stations included in AQ-Bench.

4.1 Station metadata

A summary of metadata in AQ-Bench is given in Table 1. The
data originate from the TOAR database (Sect. 3); see Appen-
dices A and C for details on the data sources and harmo-
nization for machine learning purposes. The metadata con-
tain proxies for environmental influences on ozone on the
climatological scale. In the following, we give two examples.

As mentioned in Sect. 2, ozone is influenced by weather.
Likewise, ozone on longer timescales is influenced by cli-
mate. One variable in the AQ-Bench dataset is the climatic
zone in which the site is located. The climatic zone provides
simplified information about climatic conditions at a loca-
tion, for example, whether it is hot or cold, humid or dry, or
of tropical climate.

A second example is ozone precursor emissions. In
Sect. 2.1 we outlined that they are emitted by, for example,
traffic and human activities. This means that the population
density at a site is a good proxy for these activities. A second
– more subtle – proxy is the stable nightlight at a location.
This is the average intensity of light during the night as seen
from space, an indicator for industrial activity. In Sect. 2.2,
we pointed out that ozone is often formed downwind of sites
with high human and industrial activity. Therefore, in the
AQ-Bench dataset, we give not only population density and
stable nightlights at a site but also related statistics of the
closer surroundings. One example is the maximum popula-
tion density in a radius of 5 km around the station.

All variables of the AQ-Bench dataset can be related to
environmental impacts on the climatological timescale. We
indicate the proxies in the right column of Table 1. Machine
learning can make use of these proxies, even if they are not
directly related to ozone concentrations.
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Figure 2. Worldwide measurement stations which are part of AQ-Bench, selected from the TOAR database. Map by Wessel et al. (2019).

4.2 Ozone metrics

The AQ-Bench dataset contains annually aggregated, av-
eraged (years 2010–2014) ozone metrics as introduced in
Sect. 3.1. There are therefore two steps involved in obtaining
the metrics: (1) obtaining up to five yearly metrics between
2010–2014 from hourly measurements, including data cover
criteria to validate the metrics, and (2) averaging over these
5 years. If fewer than two yearly values are available, the
value is considered missing. Missing values are denoted with
−999 in the dataset. Some suspiciously high values were
eliminated, as documented in Appendix C. A summary of
all metrics and their data capture criteria is given in Table 2.
More details on the process of ensuring robustness through
data capture are given in Appendix B.

5 Validating AQ-Bench via machine learning

In this section, we introduce the AQ-Bench dataset as a ma-
chine learning benchmark dataset. This means we combine
the data documentation from the previous section (Sect. 4)
with the machine learning task for this dataset. We also pro-
vide an evaluation metric, a data split and baseline experi-
ments.

5.1 Task description and evaluation metric

The task proposed for the AQ-Bench dataset is to train a ma-
chine learning model that maps from metadata in Table 1
to the ozone metric values in Table 2. This can be achieved
with individual machine learning algorithms or in one multi-
output algorithm.

The evaluation metric for our baselines is R2, the coeffi-
cient of determination:

R2
= 1−

∑M
m=1(ym− ŷm)2∑M
m=1(ym−〈y〉)2

with 〈y〉 =
1
M

M∑
m=1

ym , (1)

where m denotes a sample index, M denotes the total num-
ber of samples, ŷm denotes a predicted output value and ym
denotes a reference target value.
R2 measures the proportion of variance in the output val-

ues that the model predicts from the input values. A largerR2

thus denotes a better model, and the largest possible value is
1, or 100 %. We choose R2 as it is comparable between all
different targets, even if they cover different value ranges.
The overall score of the solution is the mean of all scores
achieved on the test set for all ozone metrics. For further
evaluation of machine learning results, cross validation can
be applied. We would like to challenge the machine learning
and air pollution researchers to use this rather small dataset
as efficiently as possible to extract all inherent information to
accurately map onto the ozone metrics.

5.2 Data split

We provide a fixed data split within the AQ-Bench dataset
to enable a comparison of our baseline results with future
solutions and to provide a suitable data setup for learning
(see below). As it is good practice in machine learning, the
dataset is split into three subsets for training, validation and
hyperparameter tuning, and testing. The three data subsets
are required to be independent while having a similar sta-
tistical distribution to prevent the concealment of possible
overfitting and an overestimation of accuracy. Because the
dataset is relatively small, the split was chosen to be 60 %–
20 %–20 %, as is commonly used for datasets of this size. It

Earth Syst. Sci. Data, 13, 3013–3033, 2021 https://doi.org/10.5194/essd-13-3013-2021
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Table 1. The station metadata of AQ-Bench.

Variable Unit Type Proxy for

Country – categorical Emission regulation

HTAP region – categorical World region set by the Task Force on
Hemispheric Transport of Air Pollution
http://htap.org (last access: 21 June 2021)

Climatic zone – categorical Temperature, humidity, radiation

Longitude deg circular –

Latitude deg continuous Radiation, temperature

Altitude m continuous Sinks, temperature

Relative altitude m continuous Local flow patterns

Type – categorical Industry/traffic emissions

Type of area – categorical Proximity to human settlement

Water in 25 km area % continuous Deposition

Evergreen needle leaf forest in 25 km area % continuous VOC emissions, deposition

Evergreen broadleaf forest in 25 km area % continuous VOC emissions, deposition

Deciduous needle leaf forest in 25 km area % continuous VOC emissions, deposition

Deciduous broadleaf forest in 25 km area % continuous VOC emissions, deposition

Mixed forest in 25 km area % continuous VOC emissions, deposition

Closed shrub lands in 25 km area % continuous VOC emissions, deposition

Open shrub lands in 25 km area % continuous VOC emissions, deposition

Woody savannas in 25 km area % continuous VOC emissions, deposition

Savannas in 25 km area % continuous VOC emissions, deposition

Grasslands in 25 km area % continuous VOC emissions, deposition

Permanent wetlands in 25 km area % continuous VOC emissions, deposition

Croplands in 25 km area % continuous Agricultural emissions

Urban and built-up in 25 km area % continuous Human settlement

Cropland/natural vegetation mosaic in 25 km area % continuous Emissions, agriculture, deposition

Snow and ice in 25 km area % continuous Factor in ozone formation

Barren or sparsely vegetated in 25 km area % continuous Emissions, deposition

Wheat production 1000 t continuous Agricultural emissions

Rice production 1000 t continuous Agricultural emissions

NOx emissions g m−2 yr−1 continuous NOx emissions

NO2 full column 105 molec. cm−2 continuous NO2

Population density persons km−2 continuous Human emissions

Max population density 5 km persons km−2 continuous Human emissions nearby

Max population density 25 km persons km−2 continuous Human emissions in area of influence

https://doi.org/10.5194/essd-13-3013-2021 Earth Syst. Sci. Data, 13, 3013–3033, 2021
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Table 1. Continued.

Variable Unit Type Proxy for

Nightlight 1 km brightness
index

continuous Industrial activity

Nightlight 5 km brightness
index

continuous Industrial activity nearby

Max nightlight 25 km brightness
index

continuous Industrial activity in area of influence

is indicated in the dataset whether an example belongs to the
training, validation or test set.

In order to guarantee the spatial independence of the sub-
sets, the data are divided into several spatial zones. The zones
were created by spatial clustering, where stations are as-
signed to the same cluster if they are closer than 50 km to
each other (European Union, 2008). Large station clusters
were split again into smaller ones to ensure similar statistical
distributions of the training, validation and test datasets. The
final clusters were randomly assigned to the three datasets.
This way, all stations within a spatially dependent cluster are
allocated to the same dataset.

5.3 Baseline experiments

As baselines for machine learning approaches on the AQ-
Bench dataset, we present results obtained with three stan-
dard machine learning algorithms. For preprocessing, rows
with missing values are dropped. Continuous metadata are
scaled, each by a quantile range from 25 % to 75 % to avoid
influence from outliers. Categorical metadata are one-hot en-
coded, resulting in 135 input features in total. We drop the
longitude from our baseline experiments, since this is a cir-
cular variable and cannot be used without additional feature
engineering. The preprocessed metadata are called input data
in the following. Ozone metrics, which are the targets, are not
scaled.

Methods are as follows:

– Linear regression. Linear regression models the sim-
plest correlation between input and target values. It
maps an input data example xm with ŷm = wT

· xm+ b,
where w and b are the regression parameters weights
and bias. Vector w = [w1,w2, . . .,wN ]

T has the dimen-
sion of input vector xm = [x1,x2, . . .,xN ]

T.

– Neural network. We train a shallow fully connected neu-
ral network with two hidden layers of size 20 and 5
neurons, respectively. We use the Adam optimizer with
an MSE (mean squared error) loss function, L2 regu-
larization and ReLU (rectified linear unit) as the acti-
vation function (Goodfellow et al., 2016). Training is
performed independently for each ozone metric. We op-
timized the learning rate and regularization parameter

by empirical studies and random search. Through fur-
ther empirical analyses, we decided on the hyperparam-
eters summarized in Appendix B. The model is written
in TensorFlow–Keras (Chollet et al., 2015).

– Random forest. Our random forest model (Breiman,
2001) is built with a number of 100 trees for each target,
based on empirical studies. As in the case of the neural
network, we use the MSE as an optimization criterion.
We use the RandomForestRegressor of scikit-learn (Pe-
dregosa et al., 2011).

The baseline results are summarized in Table 3. Compar-
ing the different models, random forest yields the best results
for all targets except the nvgt metrics, where the neural net-
work performs best. The linear regression is the worst for
most targets except, e.g., 75th percentile, where it is the sec-
ond best after the random forest. For some targets, e.g., aver-
age values, random forest is only slightly better than the neu-
ral network. However, there are targets, e.g., AOT40, where
the gap between the two methods is almost 10 %. The neural
network performs best for nvgt070 and nvgt100. The baseline
experiment results of nvgt100 drops in comparison to other
targets with partly negative R2 scores. The results of nvgt070
have the second-lowest scores. These two targets count ex-
ceedances of a certain threshold, so many values equal zero,
which might be problematic for standard machine learning
algorithms to capture. Except for those, R2 is higher than
50 % for at least one of the three models per target. This
shows that there is a quantitative relationship between input
data and targets. Nevertheless, for our baseline experiments
we used rather simple models in order to prove the concept.
Ozone, as a secondary pollutant with levels highly dependent
on the environment and available precursors, is not captured
perfectly by these simple baselines.

6 Discussion

6.1 Opportunities for machine learning in air quality
research

With the AQ-Bench dataset, we used our knowledge on en-
vironmental influences on ozone, a toxic greenhouse gas, to
bundle air quality data and metadata with machine learning
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Table 2. The ozone metrics of AQ-Bench. The unit is ppb (parts per billion) for all metrics except the nvgt metrics, where it is the number
of days.

Metric Description Relevant field

Average values Annual average value. No data capture criterion is applied; i.e., an average is valid if at least
one hourly value is present.

Basic statistics

Daytime average “Daytime average” is defined as average of hourly values for the 12 h period from 08:00 to
19:59 solar time. All hourly values in the aggregation period are averaged, and the resulting
value is valid if at least 75 % of hourly values are present.

Basic statistics

Nighttime average Same as daytime average but accumulated over the daily interval from 20:00 to 07:59 solar
time.

Basic statistics

Median Median daily mixing ratio over 1 year. At least 10 hourly values must be present to accept
a daily median value as valid.

Basic statistics

25th percentile 25th percentile of daily values in 1 year. At least 10 hourly values must be present to accept
a daily percentile value as valid.

Basic statistics

75th percentile As “25th percentile” but for the 75th percentile. Basic statistics

90th percentile As “25th percentile” but for the 90th percentile. Basic statistics

98th percentile As “25th percentile” but for the 98th percentile. Basic statistics

dma8eu Daily maximum 8 h average statistics according to the EU definition. For 24 bins, 8 h aver-
ages are calculated starting at 17:00 local time of the previous day. The 8 h running mean
for a particular hour is calculated on the concentration for that hour plus the following 7 h.
If fewer than 75 % of the data are present (i.e., less than 6 h), the average is considered
missing. For annual aggregation, the 26th-highest daily 8 h maximum of the aggregation
period will be computed. Note that in contrast to the official EU definition, a daily value is
considered valid if at least one 8 h average is present.

Human health

avgdma8epax Average value of the daily “dma8epax” statistics during the aggregation period.
dma8epax is the same as “dma8eu”, but hourly bins start at 00:00 instead of 17:00.

Human health

drmdmax1h Maximum of the 3-month running mean of daily maximum 1 h mixing ratios during the
aggregation period of 1 year.

Human health

W90 Daily maximum W90 5 h experimental exposure index: EI=SUM(wiCi ) with weightwi =
1/[1+M exp(−ACi/1000)], where M is 1400 and A is 90, and where Ci is the hourly
average O3 mixing ratio in units of ppb. For each day, 24 W90 indices are computed as 5 h
sums, requiring that at least 4 of the 5 h is present (75 %). If a sample consists of only four
data points, a fifth value shall be constructed from averaging the four present mixing ratios.
For annual aggregation, the fourth-highest W90 value is computed but only if at least 75 %
of days in this period have valid W90 values.

Vegetation

AOT40 Daily 12 h AOT40 values are accumulated using hourly values for the 12 h period from the
08:00 until 19:59 solar time interval. AOT40 is defined as cumulative ozone above 40 ppb.
If fewer than 75 % of hourly values (i.e., less than 9 out of 12 h) are present, the cumulative
AOT40 is considered missing. When there exists 75 % or greater data capture in the daily
12 h window, the scaling by fractional data capture (ntotal/npresent) is utilized. For annual
statistics, the daily AOT40 values are accumulated over the aggregation period and scaled
by (ntotal/nvalid) days. If less than 75 % of days are valid, the value is considered missing.

Vegetation

nvgt70 Number of days with exceedance of the dma8epax value above 70 ppb. The value is marked
as missing if less than 75 % of days contain data.

Human health

nvgt100 Number of days with exceedance of the daily max 1 h values above 100 ppb. The value is
marked as missing if less than 75 % of days contain data.

Human health
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Table 3. R2 scores of the test set in percent. Best results are marked in bold; second-best results are underlined.

Target Linear Neural Random
regression network forest

Average values 53.69 58.25 59.75
Daytime average 55.93 56.26 62.99
Nighttime average 49.79 56.92 59.00
Median 52.21 56.67 56.85
25th percentile 52.77 56.12 62.75
75th percentile 51.75 45.92 55.65
90th percentile 49.48 50.41 58.54
98th percentile 47.68 54.89 59.19
dma8eu 49.32 54.95 58.43
avgdma8epax 54.76 58.23 62.99
drmdmax1h 40.21 50.12 51.53
W90 47.90 46.15 51.29
AOT40 45.88 50.91 59.97
nvgt70 26.38 31.94 30.53
nvgt100 −32.33 12.51 −66.57

Overall score 43.03 49.35 48.19
Overall score (excluding nvgt) 50.10 53.52 58.38

approaches. By doing this, we enable a quick entry into ma-
chine learning in air quality research on a global scale with
reduced machine learning overhead. Our approach enables
the use of data from various sources that would otherwise be
time-consuming to acquire and prepare. We provide a ready-
to-use dataset for the machine learning community to sup-
port research on meaningful real-world applications (moti-
vated by Wagstaff, 2012).

One great advantage of using machine learning for air
quality research is the possibility of using data from vari-
ous different sources, especially data which are not directly
connected to air pollution via physical or biogeochemical
models (e.g., stable nightlights). To explore this opportunity
for ozone, we gathered an unprecedented variety of metadata
to allow the machine learning approaches to obtain hints on
the many interconnected, nonlinear influences, which deter-
mine ozone concentrations (see Sect. 2). As the results from
our baseline experiments show, the AQ-Bench dataset bears
some potential to exploit these relations with machine learn-
ing methods.

Currently not many air pollution researchers use purely
data-driven approaches for their studies. With AQ-Bench we
offer a first data-driven machine learning view on global tro-
pospheric ozone. To achieve the global view, we use the
JOIN web interface4 of the TOAR data center, which pro-
vides customized data products from the TOAR database. As
proposed by Schultz et al. (2021), our approach is to out-
put the demanded metrics directly and thus to obtain the re-
quired data products directly from machine learning. Further
applications of AQ-Bench could be developed, such as a clas-

4https://join.fz-juelich.de/ (last access: 21 June 2021).

sification of ozone sites into “healthy” or “unhealthy”. Our
dataset fits with the vision for benchmark datasets described
by Ebert-Uphoff et al. (2017).

6.2 Limitations of AQ-Bench

AQ-Bench includes ozone metrics and metadata from 5577
stations and spans a time period of 5 years. The stations in-
cluded in AQ-Bench are not distributed equally around the
globe. The spatial coverage in most of the regions is low, ex-
cept in the USA, European countries and some regions of
East Asia (Japan and South Korea). This raises the question
of whether it is possible to generalize machine learning re-
sults to regions that are not included in the training data, even
if they have similar input metadata. Possibly it may be nec-
essary to use a combination of observational data and numer-
ical models to achieve full global coverage (cf. Chang et al.,
2017).

Measurement errors, interannual changes and drift result
in noisy ozone metrics. Conversely, at least in the current
version of AQ-Bench, the input metadata are fixed and have
no temporal evolution, an assumption which we can make
because we average over 5 years of ozone metrics. It can-
not be ruled out that within this time major environmental
changes could have happened; e.g., settlements could grow
or shrink during this time. This means, that metadata as given
in AQ-Bench might not be valid for the whole time period of
5 years. The population density might have increased; the cli-
mate zone might have changed; and if a forest was cleared,
for example, the land cover would have changed as well. We
note that some uncertainty is introduced by the relatively lax
requirement of two annual ozone metric values to form a
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valid 5-year average value (see Appendix B): if both yearly
averages correspond to the beginning or to the end of the time
period in question, a bias may be introduced if the ozone con-
centrations exhibit a strong trend or if the region experienced
rapid changes, such as urbanization.

Another topic is the complexity of the problem, compared
to the dataset size. It is doubtful whether simple machine
learning models are intricate enough to grasp all complex re-
lationships between ozone and environmental factors. On the
other hand, very deep neural networks, which may be capable
of learning such patterns, cannot be trained on a dataset with
only 5577 samples. In Sect. 5.3 we gave some basic machine
learning approaches to find a mapping between the metadata
and the target ozone metrics. We assume that the inaccura-
cies in our baselines partly arise from the complex relation-
ships of ozone with the environment compared to the input
dataset size and complexity of these basic machine learn-
ing approaches. Furthermore, through a longer aggregation
period, we emphasize robust, static features. This aggrega-
tion reduces the size of the dataset and makes global cov-
erage possible. Due to our focus on spatial relationships we
consciously ignore time-resolved patterns. We simplify the
problem and make machine learning on the dataset easy –
but this simplification also comes at the cost of introducing
noise and uncertainties. For a more complete description of
ozone processes, more input data, additional input variables
and time-resolved data could be used.

6.3 Machine learning challenges arising from AQ-Bench

In order to provide some guidance on how the machine learn-
ing results could be improved compared to the standard ma-
chine learning methods applied in our baselines (Sect. 5.3),
we briefly discuss some techniques here. One aspect to ex-
plore is feature engineering. Currently AQ-Bench includes
for example the circular variable longitude, which cannot
be accessed by the machine learning algorithm without fur-
ther feature engineering. Other variables could be accumu-
lated, or transformed to improve machine learning results.
See, e.g., Duboue (2020) for an introduction to the topic. We
hope that the research community will be creative in feature
engineering.

Another aspect is multi-task learning. The baseline meth-
ods were performed independently for each ozone metric, but
there may be a connection between them, as they all describe
ozone pollution. Therefore, multi-task learning is a promis-
ing direction to exploit these connections. See Zhang and
Yang (2017) for a review on this topic.

The baseline experiments show that extremes are sparse
and thus difficult to catch. For example, the metric nvgt070
which counts the days where maximum ozone exceeds
70 ppb (which happens at least once a year at approx. 75 % of
the stations) gives acceptable results, but nvgt100 is not cap-
tured well. This is explained by the fact that there are very
few (< 25 %) stations which experience occasional ozone

values above 100 ppb. Extremes can be captured by imbal-
anced learning. See He and Garcia (2009) for a review on
learning from imbalanced data.

7 Data and code availability

The AQ-Bench dataset is available in .csv
format at http://doi.org/10.23728/b2share.
30d42b5a87344e82855a486bf2123e9f (Betancourt et al.,
2020). To enable a machine learning quick start on the AQ-
Bench dataset with reproduction of the baseline experiments,
we also provide an introductory Jupyter notebook on https://
gitlab.version.fz-juelich.de/esde/machine-learning/aq-bench
(Betancourt et al., 2021). To start it directly in your browser,
click the button “launch on binder” in the readme of this
repository.

8 Conclusions

In this paper, we introduced AQ-Bench as a benchmark
dataset for machine learning on global air quality metrics.
It allows the exploration of different machine learning meth-
ods on the real-world problem of air quality analyses. Specif-
ically, the machine learning task is to map station metadata
to air quality metrics at 5577 measurement stations around
the globe and to optimize the results with hyperparameter
tuning and data engineering. The usability of the dataset is
documented through the results from our three baseline ma-
chine learning solutions. These methods show robust rela-
tions between the input data (geospatial features) and the tar-
gets (ozone metrics), and these relations are understandable
from an atmospheric chemistry point of view. As data-driven
techniques for air quality research are emerging, we present
a first benchmark dataset on the global scale. The purpose
and significance of AQ-Bench is twofold: first, it has never
been tried before to exploit a rich collection of geospatial
datasets to find out which fraction of ozone pollution can
be attributed to such more or less static geographical fea-
tures. Second, this problem definition makes some low-level
air quality analysis easily accessible to data scientists with
little or no background in atmospheric chemistry. Following
the vision of Ebert-Uphoff et al. (2017) to design benchmarks
that bridge geoscience and data science, the key features of
AQ-Bench are as follows:

– Active research area. Ozone is a highly relevant and ac-
tive field of research, as it harms living beings and the
ecosystem. Ozone research benefits from making data
available and developing data-driven methods for ozone
assessment.

– Understandable context. We introduced the complex
mechanisms behind ozone formation as well as physical
and chemical processes in Sect. 2 to make the scientific
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context of this dataset understandable to everyone, even
without prior knowledge.

– Impact on data science. Since AQ-Bench is relatively
small and thus easy to handle, it is suitable for begin-
ners in programming. AQ-Bench can be trained in less
than a minute on a common personal computer with-
out GPUs, so one can quickly iterate through differ-
ent algorithms and configurations. Yet noise, the small
size of the dataset and the complicated underlying pro-
cesses make it challenging to achieve satisfactory ma-
chine learning results on this dataset.

– A means to evaluate success. We propose R2, the co-
efficient of determination, as an evaluation metric for
AQ-Bench. It is a suitable metric because it measures
the proportion of variance in the output values that the
model predicts from the input values. It is comparable
between all targets.

– Quick start. To start machine learning on AQ-Bench in a
common browser, launch the “binder” in the following
Git repository: https://gitlab.version.fz-juelich.de/esde/
machine-learning/aq-bench (last access: 21 June 2021).
Running the introductory notebook on the binder en-
ables users to try out different training algorithms and
hyperparameters directly in the browser.

– Citability and reproducibility. The dataset has a DOI,
and the baseline experiments can be reproduced with the
code that is openly available on GitHub (see Sect. 7).

We hope that the AQ-Bench dataset will help to advance
data-driven techniques in the field of air quality research and
form a basis for future experiments and research.
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Appendix A: Technical details on the station
metadata of the AQ-Bench dataset

Table A1. Technical details on the station metadata of the AQ-Bench dataset, updated from Schultz et al. (2017). Please note that in order to
keep this table uncluttered, we have summarized all types of land cover in a 25 km area, all population density and all nightlight variables in
one row each.

Variable Data source Reference

Country Information given by data providers

HTAP region Derived from gridded data: Tier-1 regions from the Task Force on Hemi-
spheric Transport of Air Pollution with an original resolution of 0.1◦

Koffi et al. (2016)

Climatic zone Derived from gridded data: IPCC 2006 classification scheme for default
climate regions with a resolution of 5′

https://esdac.jrc.ec.europa.eu/
projects/RenewableEnergy/
(last access: 23 Mar 2021)

Longitude Information given by data providers. Quality controlled by TOAR
database administrators

Latitude Information given by data providers. Quality controlled by TOAR
database administrators

Altitude Information given by data providers. Quality controlled by TOAR
database administrators

Relative altitude Derived from the ETOPO1 digital elevation model and the station alti-
tude

Amante and Eakins (2009)

Type Information given by data providers

Type of area Information given by data providers

Land cover in 25 km
area

Derived from gridded data: yearly land cover type L3 from the MODIS
MD12C1 collection with an original resolution of 0.05◦. The year 2012
and the IGBP classification scheme were used

https://ladsweb.modaps.
eosdis.nasa.gov/
missions-and-measurements/
products/MCD12C1/
(last access: 23 Mar 2021)

Wheat production Derived from gridded data: annual wheat production of the year 2000
according to the Global Agro-Ecological Zones data, version 3, with an
original resolution of 5′

https://www.fao.org/
(last access: 23 Mar 2021)

Rice production Derived from gridded data: annual rice production of the year 2000 ac-
cording to the Global Agro-Ecological Zones data, version 3, with an
original resolution of 5′

https://www.fao.org/
(last access: 23 Mar 2021)

NOx emissions Derived from gridded data: annual NOx emissions of the year 2010
from the EDGAR HTAP inventory V2 with an original resolution of
0.1◦

Janssens-Maenhout et al. (2015)

NO2 full column Derived from gridded data: 5-year average (2011–2015) tropospheric
NO2 column value from the Ozone Monitoring Instrument (OMI) in-
strument on NASA’s Aura with an original resolution of 0.1◦

Krotkov et al. (2016)

Population density Derived from gridded data: GPWv3 population density of the year 2010
with an original resolution of 2.5′

CIESIN (2005)

Nightlight Derived from gridded data: stable nighttime lights of the year 2013 ex-
tracted from the NOAA DMSP product with an original resolution of
0.925 km

https://ngdc.noaa.gov/eog/dmsp/
downloadV4composites.html
(last access: 23 Mar 2021)
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Appendix B: Data capture criteria

The data capture criteria applied in this work ensure robust-
ness of the ozone metrics. Data capture criteria of hourly
to annual metrics are applied through the JOIN web service
(https://join.fz-juelich.de/, last access: 21 June 2021), as de-
scribed in Schultz et al. (2017). The 5-year mean and its data
capture criterion were applied in this work. One exception is
the average value metric which does not have a data capture
criterion in JOIN. Here we have verified that more than 2200
hourly values are processed to calculate the metric and that
the average hourly data capture of all stations is above 50 %.
The flowchart in Fig. B1 shows an example data capture cri-
terion as applied in the AQ-Bench dataset. All data capture
criteria are summarized in Table 2 of this work.

Figure B1. Data capture criteria for the AOT40 metric.
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Appendix C: Data editing

Some data from TOAR–JOIN were modified in order to
make them more understandable and user-friendly.

– HTAP region was updated according to the number code
(see Table C1).

– Climatic zone was updated according to the number
code (see Table C2).

– The variable type was harmonized, as there are some
types which appear only once or twice. These types
were replaced with the category they go best with:

– The types agricultural, commercial, other-
agricultural and other-marine were replaced with
other.

– The type rural was replaced with background.

– The type urban was replaced with unknown.

Five types remain: background, industrial, traffic, other
and unknown.

– The variable type_of_area was harmonized in the same
way as type:

– The types alpine grasslands, background, forest and
marine were replaced with unknown.

– The types rural-nearcity and rural-regional were re-
placed with rural.

– The type rural-remote was replaced with remote.

– The type Urban was replaced with urban.

Five types of area remain: rural, urban, suburban, re-
mote and unknown.

– The station with ID 4587 was eliminated because it was
a remote background station in Romania which reported
an o3_average value that was one of the highest of all
stations (65.5899 ppb), and it had low data coverage. We
suspect its values are faulty.

– The station with ID 4589 was eliminated because
it reported a max_population_density_5km of ca. 1×
106 km−2 which we suspect is faulty.
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Table C1. HTAP region number code.

No. Replaced with Description

2 OCN Non-Arctic and Antarctic Ocean
3 NAM USA and Canada (up to 66◦ N, polar circle)
4 EUR Western and eastern Europe and Turkey (up to 66◦ N, polar circle)
5 SAS South Asia: India, Nepal, Pakistan, Afghanistan, Bangladesh, Sri Lanka
6 EAS East Asia: China, Korea, Japan
7 SEA Southeast Asia
8 PAN Pacific, Australia and New Zealand
9 NAF Northern Africa, Sahara and Sahel
10 SAF Sub-Saharan and sub-Sahel Africa
11 MDE Middle East: Saudi Arabia, Oman, Iran, Iraq, etc.
12 MCA Mexico, Central America, the Caribbean, Guyana, Venezuela, Columbia
13 SAM South America
14 RBU Russia, Belarus, Ukraine
15 CAS Central Asia
16 NPO Arctic Circle (north of 66◦ N) and Greenland
17 SPO Antarctic

Table C2. Climatic zone number code.

No. Replaced with

1 warm_moist
2 warm_dry
3 cool_moist
4 cool_dry
5 polar_moist
6 polar_dry
7 boreal_moist
8 boreal_dry
9 tropical_montane
10 tropical_wet
11 tropical_moist
12 tropical_dry
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Appendix D: Hyperparameters for baselines

Table D1. Hyperparameters for the neural network training in Sect. 5.3. They are determined from empirical studies and random search.

Target Learning rate L2 lambda Batch size Epochs

Average values 1.0× 10−4 1.0× 10−2 32 250
Daytime average 1.0× 10−4 1.0× 10−2 32 250
Nighttime average 1.0× 10−4 1.0× 10−2 32 250
Median 1.0× 10−4 1.0× 10−2 32 250
25th percentile 1.0× 10−3 1.0× 10−2 64 100
75th percentile 1.0× 10−3 1.0× 10−2 256 250
90th percentile 1.0× 10−3 1.0× 10−2 256 250
98th percentile 1.0× 10−3 1.0× 10−2 256 250
dma8eu 1.0× 10−3 1.0× 10−2 128 250
avgdma8epax 1.0× 10−4 1.0× 10−2 32 250
drmdmax1h 2.0× 10−4 1.0× 10−2 32 150
W90 1.0× 10−4 1.0× 10−2 32 250
AOT40 1.0× 10−2 1.0× 10−2 128 250
nvgt070 1.0× 10−4 1.0× 10−2 32 150
nvgt100 1.0× 10−5 1.0× 10−2 32 200
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