

Supplement of

A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020

Ran Jia et al.

Correspondence to: Yu Ye (yeyuleaffish@bnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Supplement: 2.2.1 Reconstruction of the cropland area from 1000 to 1600

The main algorithm applied in the Liao Dynasty (1000 and 1100) is as follows:

$$F_{ihCroparea} = F_{iMan} \times A_{ManCroparea} \tag{1}$$

$$H_{ikCroparea} = H_{ikhousehold} \times A_{kCroparea} \tag{2}$$

$$L_{iCroparea} = F_{ihCroparea} + H_{ikCroparea} \tag{3}$$

where $L_{iCroparea}$ denotes the total cropland area in *i* Dao; $F_{ihCroparea}$ denotes the cropland area of the agricultural population in *i* Dao; $H_{ikCroparea}$ denotes the cropland area of the non-agricultural population in *i* Dao; F_{iMan} denotes the number of Man of the agricultural population in *i* Dao; $A_{ManCroparea}$ denotes the average annual potential cropland area per Man of the agricultural population (0.93 hm²); $H_{ikhousehold}$ denotes the number of households of the non-agricultural population in *i* Dao; and $A_{kCroparea}$ *is* the average cropland area per household in the non-agricultural population (0.13 hm²).

The main algorithm applied in the Jin Dynasty (1200) is as follows:

$$H_{imCroparea} = H_{im} \times AC_m \tag{4}$$

$$F_{ihCroparea} = F_{ih} \times A_{ManCroparea} \tag{5}$$

$$J_{iCroparea} = H_{imCroparea} + F_{ihCroparea} \tag{6}$$

where $J_{iCroparea}$ denotes the total cropland area in *i* Lu; $H_{imCroparea}$ denotes the cropland area of the non-agricultural population in *i* Lu; H_{im} denotes the number of households in the non-agricultural population in *i* Lu; AC_m is the average cropland area per household in the non-agricultural population (3.02 hm²); $F_{ihCroparea}$ denotes the cropland area of the agricultural population in *i* Lu; F_{ih} denotes the number of Man of the agricultural population in *i* Lu; and $A_{ManCroparea}$ denotes the average annual potential cropland area per Man for the agricultural population (0.93 hm²).

The main algorithm applied in the Yuan Dynasty (1300) is as follows:

$$F_{ihCroparea} = F_{iMan} \times A_{ManCroparea} \tag{7}$$

$$H_{imCroparea} = H_{imhousehold} \times A_{mCroparea} \tag{8}$$

$$G_{iCroparea} = G_{isoldier} \times A_{SCroparea} \tag{9}$$

$$Y_{iCroparea} = F_{ihCroparea} + H_{imCroparea} + G_{iCroparea} \tag{10}$$

where $Y_{iCroparea}$ denotes the total cropland area in *i* province; $F_{ihCroparea}$ denotes the cropland area of the agricultural population in *i* province; $H_{imCroparea}$ denotes the cropland area of the non-agricultural population in *i* province; $G_{iCroparea}$ denotes the cropland area of the garrison soldiers in *i* province; F_{iMan} denotes the number of Man of the agricultural population in *i* province; $A_{ManCroparea}$ denotes the average annual potential cropland area per Man of the agricultural population (0.93 hm²); $H_{imhousehold}$ denotes the number of households of the non-agricultural population in *i* province; and $A_{mCroparea}$ *is* the average cropland area per household in the non-agricultural population (0.13 hm²); $G_{isoldier}$ denotes the number of garrison soldiers in *i* province; $A_{SCroparea}$ denotes the average cropland area per soldier (6.67 hm²).

The main algorithm applied in the Ming Dynasty (1400) is as follows:

$F_{ihCroparea} = F_{iMan} \times A_{ManCroparea}$	(11)
$H_{itCroparea} = H_{ithousehold} \times A_{tCroparea}$	(12)
$G = -G = \times A = \times 0.3$	(12)

$$O_{iCroparea} - O_{isoldier} \wedge A_{SCroparea} \wedge 0.5$$
 (13)

(14)

$$M_{iCroparea} = F_{ihCroparea} + H_{itCroparea} + G_{iCroparea}$$

where $M_{iCroparea}$ denotes the total cropland area in *i* province; $F_{ihCroparea}$ denotes the cropland area of the agricultural population in *i* province; $H_{itCroparea}$ denotes the cropland area of the non-agricultural population in *i* province; $G_{iCroparea}$ denotes the cropland area of the garrison soldiers in *i* province; F_{iMan} denotes the number of Man of the agricultural population in *i* province; $A_{ManCroparea}$ denotes the average annual potential cropland area per Man of the agricultural population (0.93 hm²); $H_{ithousehold}$ denotes the number of households of the non-agricultural population in *i* province; and $A_{tCroparea}$ *is* the average cropland area per household in the non-agricultural population (0.13 hm²); $G_{isoldier}$ denotes the number of garrison soldiers in *i* province; $A_{SCroparea}$ denotes the average cropland area per soldier (3.07 hm²).

The main algorithm applied in the Ming Dynasty (1500 and 1600) is as follows:

$$F_{ihCroparea} = F_{iMan} \times A_{ManCroparea} \tag{15}$$

$$H_{itCroparea} = H_{ithousehold} \times A_{tCroparea} \tag{16}$$

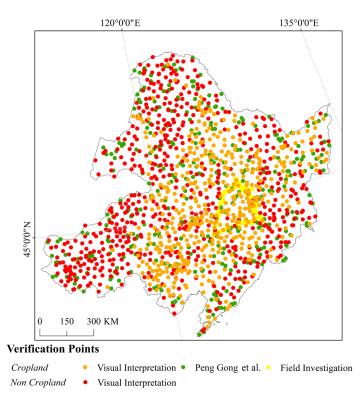
$$G_{iCroparea} = G_{isoldier} \times A_{SCroparea} \times 0.3 + G_{isoldier} \times A_{ManCroparea} \times 2.7$$
(17)

$$M_{iCroparea} = F_{ihCroparea} + H_{itCroparea} + G_{iCroparea}$$
(18)

where $M_{iCroparea}$ denotes the total cropland area in *i* province; $F_{ihCroparea}$ denotes the cropland area of the agricultural population in *i* province; $H_{itCroparea}$ denotes the cropland area of the non-agricultural population in *i* province; $G_{iCroparea}$ denotes the cropland area of the garrison soldiers in *i* province; F_{iMan} denotes the number of Man of the agricultural population in *i* province; $A_{ManCroparea}$ denotes the average annual potential cropland area per Man of the agricultural population (0.93 hm²); $H_{ithousehold}$ denotes the number of households of the non-agricultural population in *i* province; and $A_{tCroparea}$ *is* the average cropland area per household in the non-agricultural population (0.13 hm²); $G_{isoldier}$ denotes the number of garrison soldiers in *i* province; $A_{SCroparea}$ denotes the average cropland area per soldier (3.07 hm²).

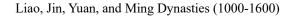
Supplement: 2.2.2 Reconstruction of the cropland area from 1700 to 1900

When reconstructing the cropland data for the three provinces in Northeast China during this period, Ye (Ye et al., 2009) primarily utilized historical documents such as *General Chorography of Shengjing* and statistical data from the late Qing Dynasty's land survey (A, 1997; Li, 1991; Li et al., 2005; Ji et al., 2002; Yang et al., 1990). The methods employed for processing the cropland data include 4 aspects: (1) conversion and standardization of measurement units; (2) correction of the hidden percentage of cropland area in the historical records; (3) estimation of property of mu used in Northeast China; (4) estimation of cropland area based on population data. Among these, (1) conversion and standardization of measurement units: Converting the diverse measurement units used for different regions and types of cultivated land in the Northeast China during


the Qing Dynasty into a unified area measurement unit. Additionally, the conversion of Qing Dynasty area measurement units to km² was performed based on proportional relationships (Wu, 1984). (2) Correction of the hidden percentage of cropland area in the historical records: Historical literature from the Qing Dynasty and the government's published cropland data may contain concealment or inaccuracies (Buck, 1941; Shi, 2000). Hence, a correction of 20% was applied to the original cropland data. (3) Estimation of property of mu used in Northeast China: By analyzing the tax system in Northeast China, it is found that the taxation was different in the same area of cropland in high, middle and low productivity. That means the cropland area recorded in the historical document was the real amount, and the problem of tax mu could be ignored in Northeast China. (4) Estimation of cropland area based on population data: In cases where exact cropland area was unavailable, the minimum requirement of 3 mu (0.2 hm²) per capita were used to estimate and interpolate cropland area based on population data (Fang et al., 2006). In reconstructing cropland data for the east of Inner Mongolia during this period, Tian (Tian, 2005) primarily relied on historical documents such as local gazetteers and official government records. The methods employed for processing cropland data include 4 aspects: (1) historical data summarization; (2) proportional estimation; (3) population-based estimation; (4) linear interpolation. Among these, (1) historical data summarization: By extensively collecting data, the scrutinized and analyzed data were directly used as the historical cropland area. (2) Proportional estimation: In the absence of exact cropland area, the cropland within a region was proportionally distributed to sub-regions based on the ratio of historical and contemporary cropland area, or the cropland area in some regions was used to estimate the overall cropland area. (3) Population-based estimation: Based on the proportional relationship between the number of farmers and the cropland area in the region during historical periods, cropland area was estimated using population data. (4) Linear interpolation: In cases where the trend of cropland change in the study area did not exhibit significant variations, linear interpolation was applied using the already reconstructed cropland area results for various time sections, ultimately generating cropland areas for multiple time sections.

Supplement: 2.2.3 Reconstruction of the cropland area from 1910 to 1980

In the published results used in this study, CNEC data primarily utilized government files or investigation reports, Japanese and Russian survey data, official statistical data and survey data (Committee Of Science And Technology In Northeast China, 1946; National Bureau Of Statistics, 1989; Heilongjiang Provincial Bureau Of Statistics, 1997; Jinlin Provincial Bureau Of Statistics, 1997; Liaoning Provincial Archives et al., 1988; Liaoning Provincial Bureau Of Statistics, 1997; Xin et al., 1999; Xiong, 1933; Ye et al., 2006; Middle East Railway Economic Survey, 1931; Committee Of Integrative Survey Of Natural Resources and Committee Of National Planning Of Chinese Academy Of Sciences, 1989). The methods employed for processing the cropland data include 2 aspects: (1) standardization of multi-sourced data; (2) correlation analysis between statistical data and survey data. (1) Standardization of multi-sourced data: The study area scope of different datasets was determined, measurement units were standardized, and data from different sources during the same period were cross-verified


and compared at the county-level. (2) Correlation analysis between statistical data and survey data: Analyzing the correlation between statistical data and survey data for each county in the study area during the same period, then calculating their linear regression equations and explanatory variances. When reconstructing cropland data for the Eastern of Inner Mongolia during the same period, Ye's data (Ye and Fang, 2012) mainly consisted of government statistical reports and Japanese survey reports (Committee Of Science And Technology In Northeast China, 1946; South Manchuria Railways Co., 2015; Ministry Of Agricultural And Commercial, 1919). The methods employed for processing the cropland data include 2 aspects: (1) conversion and standardization of measurement units; (2) correlation analysis between statistical data and survey data. These two data processing methods have been introduced in the previous sections. In the reconstruction of cropland data for the east of Inner Mongolia during this period, Tian (Tian, 2005) primarily used local gazetteers, statistical data and survey data (Cropland Research Group, 1992; Ho, 1988). The methods employed for processing the cropland data mainly involved a comparative analysis of statistical data and survey data: Comparing the obtained statistical data on cropland area at different time points with survey data at the county-level, assessing the accuracy of the data used in the reconstruction.

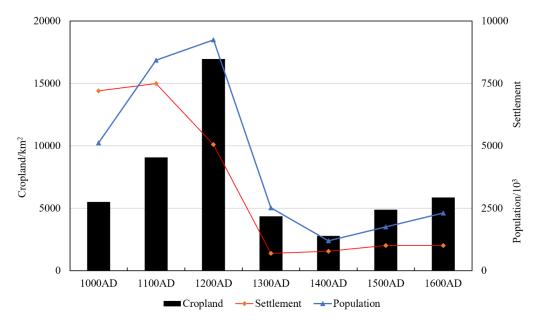

Fig. S1 Supplementary information showing the three types of verification points used in this study

Figure S1. Spatial distribution of verification points. The green points derived from FROM-GLC within the study area (Gong et al., 2013); The yellow points obtained through field investigations conducted by the authors in April 2023 within the study area; The orange and red points were randomly generated within the study area.

Fig. S2 Supplementary information showing change in the cropland area, population and settlements of Northeast China during

Figure S2. Graphs showing change in the cropland area, population and settlements of Northeast China from 1000 to 1600. The settlement relics and the administrative division points derived from Jia et al. (2018) and the *Historical Atlas of China* (Tan, 1982a; Tan, 1982b). The population data was revised and derived from the *History of Population in China* (Wu and Ge, 2005a; Cao and Ge, 2005b).

Counties where cropland is missing or inconsistent	Year	Adjacent counties for interpolation or based on the number of settlements						
Dashiqiao City	1683	Haicheng City, Yingkou City, Gaizhou City, Panjin City						
Tieling County	1683, 1735, 1780	Faku County, Tieling City, Diaobingshan City						
Suizhong County	1683	Huludao City, Jianchang County						
Xingcheng City	1085	Huludao City, Jianchang County						
Liaoyuan City	1683, 1735, 1780, 1908	Dongliao County						
Vifue Country	1725 1790	Changtu County, Siping City, Dongfeng County, Dongliao						
Xifeng County	1735, 1780	County						
		Interpolated based on Shulan City, Yongji County, and Jilin						
Jiaohe City	1735, 1780, 1914	City in 1735 and 1780; Linear interpolation in 1914 using						
		data from 1908 and 1931						
		Interpolated based on multiplying the number of						
Meihekou City	1735, 1780	settlements and the cropland area owned by unit settlement						
		in this region 1735 and 1780.						
Fuxin Mongolian Autonomous		Interpolated based on Fuxin City and Beipiao City in 1780;						
County		Linear interpolation in 1914 using data from 1908 and 1931						
	1780, 1914	Interpolated based on Dunhua City, Jingyu County, and						
Huadian City		Fusong County in 1780; Linear interpolation in 1914 using						
		data from 1908 and 1931						

Table S1. Supplementary information showing the revisions to the CNEC dataset

Shulan City		Jilin City, Changchun City, Jiaohe City, Wuchang City
		Huadian City, Dongliao County, Dongfeng County,
Panshi County		Meihekou City, Huinan County
Yushu City		
Manchu Autonomous County of	1780	
Yitong		Interpolated based on multiplying the number of
Songyuan City		settlements and the cropland area owned by unit settlement
Changling County		in this region in 1780
Fuyu City		
Siping City		Interpolated based on multiplying the number of
Lishu County		settlements and the cropland area owned by unit settlement
Gongzhuling City	1780, 1914	in this region in 1780; Linear interpolation in 1914 using
Shuangliao City		data from 1908 and 1931
		Interpolated based on Lingyuan City, Kalaqinzuoyi
		Mongolian Autonomous County, Suizhong County and
Jianchang County	1908, 1914	Xingcheng County in 1908; Linear interpolation in 1914
		using data from 1908 and 1931
Zhenlai County		Baicheng City, Da'an City, Ulan Hot City
Tailai County		Jalaid Banner, Qiqihar City, Longjiang County
Dorbod Mongolian Autonomous	1908	
County		Qiqihar City, Daqing City, Lindian County
Fuxin City		
Chaoyang City		
Chaoyang County		
Jianping County		
Kalaqinzuoyi Mongolian		
Autonomous County		
Beipiao City		
Lingyuan City		
Baishan City		Linear interpolation based on cropland fraction in 1908 and
Fusong County	1914	1931
Jingyu County		
Korean Autonomous County of		
Changbai		
Qian Gorlos Mongolian		
Autonomous County		
Qian'an County		
Antu County		
Mohe City		
Qiqihar City	1940, 1950	Revised according to Qiqihar Agricultural Annals

Table S2. Supplementary information showing the county's determination of initial cultivation between 1780 and 1908

Year	Adjacent counties for interpolation or based on the number of settlements						
	Revised according to local gazetteer of Nong'an County						
	Based on the historical origin of this region and Jilin City,						
	revised according to the average proportional relationship						
	between the two regions in 1908, 1914, 1931 and 1940						
	Dunhua City, Jingyu County, Fusong County						
	Jilin City, Changchun City, Jiaohe City, Wuchang City						
	Huadian City, Dongliao County, Dongfeng County,						
	Meihekou City, Huinan County						
	Bayan County, Tonghe County, Bin County						
	Yi'an County, Nehe City, Lindian County, Qiqihar City,						
1800 1850	Gannan County						
1800, 1830	Kedong County, Wudalianchi City, Hailun City						
	Interpolated based on multiplying the number of						
	settlements and the cropland area owned by unit settlement						
	in this region in 1800 and 1850 respectively						
	in this region in 1800 and 1850 respectively						
	Revised according to local gazetteer of Yanji City						
1850	Yilan County, Mulan County, Fangzheng County						
1050	Suihua City, Zhaodong City, Harbin City, Qinggang County						
	Year 1800, 1850 1850						

Table S3. Supplementary information showing the total cropland area of global LUCC datasets, previous representative published studies and our dataset in Northeast China from 1000 to 2020

 $(\times 10^4 \text{ km}^2)$.

Period	1000	1100	1200	1300	1400	1500	1600	1661	1685	1700	1724	1750	1753	1766	1800	1812	1820	1840	1850	1870	1887	1890	1900
This	0.55	0.91	1.69	0.44	0.28	0.49	0.59			0.96		2.04			3.33				4.36				6.66
Study																							
HYDE3.2	0.23	0.53	0.57	0.42	0.34	0.37	0.59			0.59		1.29			2.81				4.36				5.63
SAGE										13.61		20.16			26.97				33.80	36.52		38.85	39.97
KK10	25.72	28.26	33.65	14.00	37.90	42.48	43.85			15.49		22.79			26.32				25.93				
PJ	5.58	8.88	9.72	7.27	7.19	9.30	13.53			13.53		20.04			26.80				33.57				39.74
Yu 2021																							16.07
CSY																							
NLS																							
Zhang																2.02			1.21		2.66		
1991																							
Zhou								0.09			0.16		0.68			20.64		19.71					
2001																							
Shi 2015								0.00	0.02		1.25			1.95		2.70			4.94		7.27		
Jin 2015								0.43			1.05						3.80				9.82		
Li 2016										0.78					1.23								1.98
He 2023	0.77		3.35		1.51		1.31								4.14								

Period	1910	1914	1920	1930	1933	1940	1946	1950	1952	1960	1965	1970	1978	1980	1985	1990	1995	2000	2005	2010	2015	2020
This	10.33		13.44	15.37		17.31		16.63		20.53		22.07		24.28	24.56	23.76	25.87	26.64	27.74	33.37	34.08	37.90
Study																						
HYDE3.2	6.44		9.08	11.19		10.88		11.76		12.71		13.53		14.37		15.66		15.06	16.38	16.00	16.00	
SAGE	41.11			44.24				48.30				45.21				44.67		31.99				
KK10																						
PJ	40.87		42.37	44.02		46.08		47.92		46.09		44.90		46.08	45.12	44.49						

Yu 2021	18.64		21.21	23.78		24.63		25.56		26.09		30.13		33.61	33.49	33.05	33.55	33.68	32.99	33.50	33.79	
CSY									18.22		17.49		19.18		19.21	19.04	19.66	21.96	23.07	25.79	27.97	32.06
NLS															24.89		24.60			34.03	33.99	37.64
Zhang		8.23					14.17	15.17														
1991																						
Zhou																						
2001																						
Shi 2015	10.55																					
Jin 2015					14.71				24.46						25.01							
Li 2016																		4.09				
He 2023																		25.89				

The abbreviations used in the table are as follows: HYDE3.2 refers to Goldewijk et al. (2017); SAGE refers to Ramankutty et al. (2008) and Ramankutty and Foley. (1999); KK10 refers to Kaplan et al. (2011); PJ refers to Pongratz et al. (2008); Yu 2021 refers to Yu et al. (2021); CSY denotes the Chinese Statistical Yearbook (refer to provincial and prefectural statistical yearbook); NLS denotes the National Land Survey (1985 refer to the first general land investigation (Committee of Integrative Survey of Natural Resources and Committee of National Planning of Chinese Academy of Sciences, 1989); 1995 refers to the first national land survey (Li, 2000); 2010 and 2015 refer to the second national land survey; 2020 refers to the third national land survey (https://gtdc.mnr.gov.cn/Share#/)); Zhang 1991 refers to Zhang (1991); Zhou 2001 refers to Zhou (2001); Shi 2015 refers to Shi (2015); Jin 2015 refers to Jin et al. (2015); Li 2016 refers to Li et al. (2016); He 2023 refers to He et al. (2023).

Table S4. Supplementary information showing the statistical cropland data and land survey cropland data at the prefectural-

level in Northeast China in 2010, 2015 and 2020 (km^2).

Period	20)10	20	015	2020		
	CSY	NLS	CSY	NLS	CSY	NLS	
Hulunbeier City	11980	18545	17812	18651	21172	21172	
Xingan League	7969	12691	10940	12637	15440	15413	
Chifeng City	10081	14066	14000	14107	18476	18299	
Tongliao City	10744	13477	13509	13807	21723	21344	
Xilinguole League	2387	2413	2433	2433	3080	3082	
Shenyang City	7008	7719	4903	7567	7688	7689	
Dalian City	3850	4205	2590	4154	3727	3727	
Anshan City	2585	3040	2117	3008	3016	3017	
Fushun City	1431	1876	858	1850	1842	1897	
Benxi City	677	857	506	842	880	842	
Dandong City	2018	2483	1623	2455	2227	2429	
Jinzhou City	4855	5117	3517	5060	5052	5478	
Yingkou City	1152	1215	1098	1193	1113	1120	
Fuxin City	3774	5204	4606	5176	5187	5986	
Liaoyang City	1526	1887	1789	1858	1851	1851	
Panjin City	1288	1589	1424	1568	1568	1568	
Tieling City	6502	6678	6573	6634	6912	6729	
Chaoyang City	4785	5505	5297	5493	4767	6140	
Huludao City	2553	2938	2605	2914	2900	3122	
Changchun City	12244	14598	13016	14457	15651	18210	
Jilin City	5841	9281	5965	9247	6736	9122	
Siping City	8498	9727	8568	9696	5859	6812	
Liaoyuan City	2234	2596	2501	2583	2312	2718	
Tonghua City	3058	4054	3227	4070	3165	4064	
Baishan City	462	1165	536	1164	950	1094	
Songyuan City	10053	12595	12018	12587	12176	13866	
Baicheng City	8663	11785	9950	11818	10211	14203	

Yanbian Korean Autonomous Prefecture	3601	4373	3840	4371	3816	4578
Harbin City	19650	22866	19774	22744	20066	24531
Qiqihar City	23984	27531	23989	27586	22560	29026
Jixi City	4768	9829	4906	9873	9376	10561
Hegang City	4327	5512	2188	5503	2180	6047
Shuangyashan City	4195	10579	4209	10583	4136	11051
Daqing City	7244	7777	7522	7830	7824	9299
Yichun City	2409	2592	2402	2587	2588	2871
Jiamusi City	12279	20413	16650	20414	18715	21763
Qitaihe City	1752	2799	1660	2782	1949	2865
Mudanjiang City	5874	8840	6531	8817	8879	8879
Heihe City	11084	19203	12257	19196	12708	21874
Suihua City	17637	19977	18904	19961	18973	20935
Daxing'anling Prefecture	879	663	881	665	1161	1161

CSY denotes the Chinese Statistical Yearbook (2010, 2015 and 2020 refer to provincial and prefectural statistical yearbook); NLS denotes the National Land Survey (2010 and 2015 refer to the second National Land Survey; 2020 refers to the third National Land Survey); Daxing'anling Prefecture includes: Mohe City, Huma County, Tahe County.

Reference:

- A, G.: General Chorography of Shengjing (ed. in 1736), Liaohai Publishing House, Shenyang, China, ISBN: 7-80638-001-9, 1997 (in Chinese).
- Buck, J. L.: Land use in China, Cheng City Press, Chengdu, China, https://xueshu.baidu.com/usercenter/paper/show?paperid=bf54d6a61bb08f8d1dbb2a9b17668316&site=xueshu_se (last access: 22 October 2024), 1941 (in Chinese).
- Committee Of Integrative Survey Of Natural Resources and Committee Of National Planning Of Chinese Academy Of Sciences: Data Compilation of National Land Resources, Volume 1, Committee of National Planning of Chinese Academy of Sciences, https://www.las.ac.cn/front/book/detail?id=f232342377990406593ffef3e4d3ba6a, 1989 (in Chinese).
- Committee Of Science And Technology In Northeast China: Agricultural Statistics of Northeast China, Committee of Science and Technology in Northeast China, https://www.las.ac.cn/front/book/detail?id=e08f150b1a328aa88b83aa6607ea9062 (last access: 22 October 2024), 1946 (in Chinese).
- Cropland Research Group: Quantitative Economic Analysis of Cropland Decline in China, Economic Science Press, Beijing, China, ISBN: 7-5058-0489-8, 1992 (in Chinese).
- Fang, X., Ye, Y., and Zeng, Z.: Interaction of extreme climate event-cultivation-policy management, Science China Earth Sciences, 36, 680-688, https://doi.org/10.3969/j.issn.1674-7240.2006.07.009, 2006 (in Chinese).
- He, F., Yang, F., Zhao, C., Li, S., and Li, M.: Spatially explicit reconstruction of cropland cover for China over the past millennium., Science China Earth Sciences, 66, 111-128, https://doi.org/10.1007/s11430-021-9988-5, 20222023.
- Heilongjiang Provincial Bureau Of Statistics: Heilongjiang Statistical Yearbook, China Statistics Press, Beijing, China, ISBN: 7-5037-2481-1, 1997 (in Chinese).
- Ho, P.: Interpretation and evaluation of ancient and modern land quantity in China, China Social Sciences Press, Beijing, China, ISBN: 7-5004-0242-2, 1988 (in Chinese).
- Ji, J., Li, X., Zhao, D., and Zhou, Y.: New Volume of General Chorography of Baqi (ed. in 1796), Literary History Press of Jilin, Changchun, China, ISBN: 7-80626-817-0, 2002 (in Chinese).
- Jin, X., Cao, X., Du, X., Yang, X., Bai, Q., and Zhou, Y.: Farmland dataset reconstruction and farmland change analysis in China during 1661-1985, J. Geogr. Sci., 1058-1074, 2015.
- Jinlin Provincial Bureau Of Statistics: Jinlin Statistical Yearbook, China Statistics Press, Beijing, China, ISBN: 7-5037-2480-3, 1997 (in Chinese).
- Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C., and Goldewijk, K. K.: Holocene carbon emissions as a result of anthropogenic land cover change, The Holocene, 21, 775-791, https://doi.org/10.1177/0959683610386983, 2011.

- Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the holocene hyde 3.2, Earth Syst. Sci. Data, 9, 927-953, https://doi.org/10.5194/essd-9-927-2017, 2017.
- Li, L.: Restoration and expansion of Northeast China farming area in the early Qing Dynasty, Journal of Chinese Historical Geography, 2, 111-132, 1991 (in Chinese).
- Li, S., He, F., and Zhang, X.: Spatially explicit reconstruction of cropland cover in China from 1661 to 1996, Reg. Envir. Chang., 16, 417-428, https://doi.org/10.1007/s10113-014-0751-4, 2016.
- Li, W., Zhang, P., and Song, Y.: Analysis on Land Development and Causes in Northeast China during Qing Dynasty, Scientia Geographica Sinica, 1, 7-16, https://doi.org/10.3969/j.issn.1000-0690.2005.01.002, 2005 (in Chinese).
- Li, Y.: Land Resources of China, China Land Press, Beijing, China, ISBN: 7-80097-371-9, 2000 (in Chinese).
- Liaoning Provincial Archives, Jilin Provincial Archives, and Heilongjiang Provincial Archives: Compilation of Documents of Financial Economy History in Northeast China, Heilongjiang People's Press, Harbin, China, UBSN: 11093·225, 1988 (in Chinese).
- Liaoning Provincial Bureau Of Statistics: Liaoning Economic Statistics Yearbook, China Statistics Press, Beijing, China, ISBN: 7-5037-2479-X, 1997 (in Chinese).
- Middle East Railway Economic Survey: Economic map of North Manchuria, Middle East Railway Economic Survey, Harbin, China, 1931 (in Japanese).
- Ministry Of Agricultural And Commercial: The Fifth Agricultural and Commercial Statistics Table, Ministry of Agricultural and Commercial, Beijing, China, 1919 (in Chinese).
- National Bureau Of Statistics: The Summary of Rural Social Economic Statistics on County Level in China, Chinese Statistical Press, Beijing, China, ISBN: 7-5037-0198-6, 1989 (in Chinese).
- Pongratz, J., Reick, C., Raddatz, T., and Claussen, M.: A reconstruction of global agricultural areas and land cover for the last millennium, Glob. Biogeochem. Cycle, 22, GB3018, https://doi.org/10.1029/2007GB003153, 2008.
- Ramankutty, N. and Foley, J. A.: Estimating historical changes in global land cover: croplands from 1700 to 1992, Glob. Biogeochem. Cycle, 13, 997-1027, https://doi.org/10.1029/1999GB900046, 1999.
- Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A.: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000, Glob. Biogeochem. Cycle, 22, GB1003, https://doi.org/10.1029/2007GB002952, 2008.
- Shi, Z.: Analysis on Variable of the Population and Land in the Area of Gan, Ning and Qing of the Late Qing Dynasty, Agricultural History of China, 19, 72-79, 2000 (in Chinese).
- Shi, Z.: An Estimate of Agricultural Economic Indicators in the Qing Dynasty, Researches in Chinese Economic History, 5, 5-30, 2015 (in Chinese).
- South Manchuria Railways Co.: Encyclopedia of Manchuria and Mongolia (ed. in 1923), Inner Mongolia University Press, Hohhot, China, ISBN: 978-7-5665-0777-8, 2015 (in Chinese).

- Tian, Y.: The land use and land cover change in Re-Cha-Sui area in recent 300 years, Master. thesis, Graduate School of Chinese Academy of Sciences, 166 pp., 2005 (in Chinese).
- Wu, C.: History of Chinese Weights and Measures, The Commercial Press, Beijing, China, ISBN: 9787100009799, 1984 (in Chinese).
- Xin, P., Zhang, F., and Gao, X.: The Development History of Heilongjiang, Heilongjiang People's Publishing House, Harbin, China, ISBN: 7-207-04108-X, 1999 (in Chinese).
- Xiong, Z.: Summary of county governance in Northeast China, Lida Publishing House, ISBN: 9787537152136, 1933 (in Chinese).
- Yang, Y., Wang, G., and Zhang, Y.: Northeast China history of the Qing Dynasty, Liaoning Education Publishing House, Shenyang, China, ISBN: 7-5382-1386-4, 1990 (in Chinese).
- Ye, Y., Fang, X., Dai, Y., Zeng, Z., and Zhang, X.: Calibration of cropland data and reconstruction of rate of reclamation in Northeast China during the period of Republic of China, Progress in Natural Science, 16, 1419-1427, 2006 (in Chinese).
- Ye, Y. and Fang, X.: Expansion of cropland area and formation of the eastern farming-pastoral ecotone in northern china during the twentieth century, Reg. Envir. Chang., 923-934, https://doi.org/10.1007/s10113-012-0306-5, 2012.
- Ye, Y., Fang, X., Ren, Y., Zhang, X., and Chen, L.: Cropland cover change in northeast china during the past 300 years, Science China Earth Sciences, 52, 1172-1182, https://doi.org/10.1007/s11430-009-0118-8, 2009.
- Yu, Z., Jin, X., Miao, L., and Yang, X.: A historical reconstruction of cropland in china from 1900 to 2016, Earth Syst. Sci. Data, 13, 3203-3218, https://doi.org/10.5194/essd-13-3203-2021, 2021.
- Zhang, Y.: Re-estimation on China's population and cropland in modern times, Researches in Chinese Economic History, 1, 20-30, 1991 (in Chinese).

Zhou, R.: A General Inspection and Re-appraise on Area Under Cultivation in the Early Period of the Qing, Journal of Chinese Social and Economic History, 3, 39-49, https://doi.org/10.3969/j.issn.1000-422X.2001.03.004, 2001 (in Chinese).