
Response to Reviewer#2 Comments 

 
The manuscript uses machine learning methods to establish relationships between tide 
gauge measurements and several atmospheric and oceanic variables, generating a 
global coastal storm surge dataset at 10 km spatial resolution. Overall, the generated 
dataset is of substantial application value, and the validation results show strong 
performance, particularly in the reconstruction of extreme values—a known challenge 
for AI models. The topic aligns well with the aims of ESSD. However, there are several 
key areas that require attention to ensure the manuscript is clear, methodologically 
sound, and accessible to readers. 
 
Majors: 
Point 1: The discussion of previous studies in the introduction lacks depth. The authors 
list previous studies without effectively explaining how the current work advances the 
field. To strengthen this section, the introduction should focus more on the existing gaps 
in storm surge modeling and how the proposed dataset addresses those shortcomings. 
The classification of storm surge research is overly simplified. The four categories 
mentioned in the second paragraph overlap and include one another. Moreover, the 
machine learning approach presented in this paper is described as separate from AI-
based methods, though it clearly falls within that domain as a regression model. The 
difference between this approach and single-site models is primarily in the inputs used, 
such as geographic and temporal variables, but the fundamental methodology remains 
similar. A more refined categorization would provide better context for the reader. 
Response:  

Thanks for your constructive suggestions. In this version, we deleted the second 
paragraph and rewrote the introduction in Lines 31-84 to make it focus on the existing 
gaps in storm surge datasets and how our method can fix the gaps. The logic is from 
tide gauge observations to numerical models, then to data-driven models: 

High-frequency (at least hourly), sufficient spatial coverage, and long-term 
records are the basis for SS analysis. To date, tide gauges (TGs) are the most reliable 
source of coastal sea-level observations (Marcos et al., 2019). However, their 
distribution is sparse and uneven. For example, as the most complete high-frequency 
TG collection currently, though the Global Extreme Sea Level Analysis version 3 
(GESLA-3) dataset included 5,119 stations around the world, most of them were 
distributed in North America, Europe, Japan, and Australia (Haigh et al., 2023). 



Interpolating TG observations among different stations cannot accurately capture the 
variabilities of SSs (Muis et al., 2016) since they are affected by many factors, such as 
storminess, coastline shape, and bathymetry (Resio and Westerink, 2008). This always 
limits in-depth analysis of the spatial characteristics of SSs from TG records directly, 
especially on a global or quasi-global scale. In addition, though some of the oldest TG 
stations can date back to the eighteenth century, only ~10% (554 stations) of TG records 
in the GESLA-3 dataset were longer than 50 years, which makes it difficult to obtain 
more detailed long-term variations in SSs. 

Numerical models can provide simulated data with better spatial coverage by 
resolving coastal physical processes inducing SSs (Muis et al., 2016, 2023; Lockwood 
et al., 2024). A common limitation of numerical models is that they require accurate 
and high-resolution bathymetric data for sufficiently precise SS estimations since SSs 
are significantly affected by water depth in shallow water (Resio and Westerink, 2008). 
However, such bathymetric data is often unavailable in nearshore areas (Cid et al., 
2018). In addition, in global or quasi-global SS simulations, the coastal grid resolution 
of numerical models is usually set to several kilometers to balance the computational 
complexity (Muis et al., 2020; Mentaschi et al., 2023), which means that nearshore 
physical features with a spatial scale smaller than this resolution cannot be sufficiently 
simulated (Parker et al., 2023), and hence affecting the SS precision. Meanwhile, the 
computational efficiency of global numerical models tends to affect the length of 
simulated SSs (Muis et al., 2019). For instance, the state-of-the-art Global Tide and 
Surge Model (GTSM), though its outputs have been widely used in relevant studies 
(Kirezci et al., 2020; Dullaart et al., 2021; Fang et al., 2021; Yang et al., 2024b), its 
simulations spaned only the most recent decades from 1979 to 2018 (Muis et al., 2020). 
This imposed limitations on studies requiring long-term SS records. 

Unlike numerical models, data-driven models do not need to resolve coastal 
physical processes. They obtain the statistical relationship between SSs (predictand) 
and relevant atmospheric factors (predictor) through multiple linear regression (Cid et 
al., 2018) or artificial intelligence (Bruneau et al., 2020). Therefore, the precision of 
data-driven models is unaffected by bathymetric data and grid resolution. In addition, 
long-term SSs can be reconstructed efficiently after the statistical relationship is 
established (Tadesse et al., 2020). However, the commonly used single-site modeling 
framework for data-driven models heavily relies on TGs; it must establish independent 
relationships for every TG site by site (Cid et al., 2017; Bruneau et al., 2020; Tiggeloven 
et al., 2021) and cannot provide any SS information at ungauged coastal locations. For 



example, the Global Storm Surge Reconstruction (GSSR) database, the only publicly 
released global SS dataset from the data-driven model, provided SS reconstructions at 
882 points globally going as far back as 1836, which benefited the research on long-
term trend analysis of SSs (Tadesse and Wahl, 2021). However, it cannot address issues 
caused by the sparseness and uneven distribution of TG stations. Some studies replaced 
TG observations with numerical SS simulations to train the data-driven model (so-
called 'surrogate model') (Lee et al., 2021; Ayyad et al., 2022; Lockwood et al., 2022). 
This combination improved the spatial resolution, but numerical models' precision 
limitations were also transferred to the surrogate model. Moreover, in theory, surrogate 
models cannot be better than numerical models compared to TG observations. Yang et 
al. (2023) proposed a novel all-site modeling (ASM) framework, which allowed the 
data-driven model to reconstruct high spatial-coverage SSs in research areas by learning 
from TG observations (without SS simulations from numerical models). Although 
single-site modeling and ASM belong to the data-driven model, their basic ideas differ. 
The former presumes SS observations at different TGs are independent. Therefore, the 
relationship between predictors and SSs needs to be learned for every TG site by site; 
this relationship is unsuitable for other locations. In contrast, the latter believes there is 
a universal connection between SSs at different TGs, so all available TGs within the 
research area can be pooled into one model to learn the only regional relationship 
between predictors and SSs. This essential difference enables the ASM framework to 
reconstruct SSs at any coastal point in the research area. In addition, the study has 
shown that ASM's precision is better than single-site modeling's (Yang et al., 2023). 

High spatiotemporal resolution and sufficiently long SS dataset is the basis for 
analyzing this disaster. However, the existing SS datasets, whether from TG 
observations, numerical model simulations, or data-driven reconstructions, cannot 
fulfill all three demands simultaneously on a global or quasi-global scale. The ASM 
provides an opportunity to fix this gap. This research used it to establish a SS data-
driven model in coastal areas within ~45°S to ~45°N, which are severely affected by 
SSs since most destructive tropical and extratropical cyclones occur here (Knapp et al., 
2010). After precision assessment by comparing it with TG observations and the 
numerical model GTSM, we released, for the first time, a long-term (> 80 years from 
1940 to 2020) quasi-global hourly SS dataset reconstructed from the data-driven model 
with high spatial resolution (10 km along the coastline). We hope this dataset, the ASM-
SS (all-site modeling storm surge), can provide possible alternative support for coastal 
communities to deepen our understanding of SSs and ESLs. 



Point 2: The description of the model's methodology lacks sufficient detail on its 
innovations. For instance, the choice of specific atmospheric and oceanic variables from 
ERA5 should be justified, and the process of integrating geographical and temporal 
variables requires further explanation. How were these inputs pre-processed to allow 
for prediction across any coastal location or time? This is a key aspect of the model and 
should be clarified. Although more detailed explanations may have been presented in 
the authors' previous publications, it is still important to concisely convey these 
methodological details in this data-focused paper to ensure readers can fully understand 
the process without referring to other sources. 
Response:  

We are sorry for any difficulties in understanding. We added more details of our 
modeling framework in this version (Lines 135-150), hoping it can be clearer and more 
understandable to readers: 

Full details of the ASM can be found at Yang et al.(2023). Here, a conceptual 
description of it is provided. As mentioned in the introduction, though single-site 
modeling and ASM belong to the data-driven model, their basic ideas are different. For 
example, assuming there are n  available TGs within 45°S to 45°N. The single-site 
modeling presumes SS observations at n TGs are independent; each site needs to build 
a separate data-driven model to learn the relationship between predictors and SSs at 
that station. In this case, n single-site modeling data-driven models are established, and 
they cannot reconstruct SSs for locations other than TG stations. Unlike single-site 
modeling, the ASM believes a general connection exists between SSs at n TGs within 
the research area. Namely, there is a unique regional relationship between predictors 
and SSs, and all TGs follow this relationship. Therefore, predictors and SSs at n 
available TGs can be pooled into one ASM data-driven model. After learning the only 
regional relationship through adequate training, this ASM model can be used to 
reconstruct SSs at any gauged or ungauged coastal point within the research area by 
inputting relevant predictors. The following are the modeling processes: 
 (1) Obtaining predictors. Four atmospheric data (mslp, u10, v10, and t2m) for each 
TG station are extracted from the ERA5 dataset through linear interpolation. Changes 
in sea level pressure and wind are the main factors in generating SSs  (Woodworth et 
al., 2019); adding temperature variations considers the effects of thermal expansion and 
contraction. Meanwhile, following Yang et al.(2023) and Yang et al. (2024a), another 
three variables (longitude, latitude, and timestamp) are considered since geographical 
locations and record lengths of TGs are different. Hence, the predictor matrix for each 



TG consists of 7 columns: mslp, u10, v10, t2m, longitude, latitude, and time; 
 
Point 3: One of the key strengths of the model is its superior performance in predicting 
extreme storm surge events compared to numerical models. However, the reasons 
behind this superior performance are not fully explored. A deeper analysis of why the 
machine learning model performs better than numerical models in extreme cases, 
particularly considering that AI models often struggle with extremes, would add 
significant value. 
Response:  

Thanks for your suggestion. In this version, we discussed the possible reason in 
Lines 228-234 after the comparison between our data-driven mode and numerical 
model in section 3.2: 

The reason why ASM outperforms GTSM can be attributed to two main aspects. 
For the global numerical model GTSM, as mentioned in the introduction, the accuracy 
and spatial resolution of bathymetric data in the nearshore area limits the precision of 
SSs. Meanwhile, the grid with a resolution of several kilometers affects the effective 
simulation of small-scale physical factors. For the ASM data-driven model, the training 
process is based on TG observations. TGs are the most accurate source for sea level 
monitoring, and their records can be considered to include effects from all spatial-scale 
physical processes. In addition, the machine learning method XGBoost is a residual 
model that pays more attention to where residual errors are significant, which also 
benefits the estimation of extreme SSs. 
 
Point 4: While the manuscript provides a thorough discussion of the spatial 
performance of the dataset, it lacks an analysis of the model's temporal performance. 
How does the model perform over the 1940–2020 period? Are there periods when the 
model is more or less accurate? Providing this temporal analysis would add an 
important dimension to the validation results. 
Response:  

Thanks for your professional suggestion. In this version, we added the temporal 
variation analysis of our model's precision from 1940 to 2020 every 10 years in Lines 
190-206: 

It is necessary to evaluate temporal variations in reconstructed SSs further since 
their length is over 80 years, during which the number of TG stations and the quality of 
atmospheric data have changed. As shown in Fig. 4, the precision of ASM model at 



TGs in each sub-region was calculated every 10 years (excluding TGs with less than 
one year of data in a given decade). Results indicate that the overall precision (i.e., for 
ALL TGs) of entire surges and 95th extremes gradually increased from 1940 to 2020. 
Possible reasons are, on the one hand, the increase of TGs in recent decades provided 
more predictand features; on the other hand, the optimization of ERA5 atmospheric 
data (predictor) contained more detailed tropical and extratropical cyclone information. 
At the regional scale, for entire surges, Fig. 4(a) indicates that except for SWA (CORR 
decreases) and WAS (CORR remains unchanged), CORRs of other sub-regions present 
an upward trend; Fig. 4(b) shows the RMSE in SES increases, while RMSEs in other 
regions decrease; Fig. 4(c) gives that MBs of sub-regions have been gradually 
optimized (excluding WAS). For 95th extremes, in terms of CORR (Fig. 4(d)), WEU, 
NAF, WNA, ENA, EAS, NOC, and SOC show an upward trend, whereas there is no 
obvious pattern in other regions; for RMSE (Fig. 4(e)), ER, SEA, and SES present an 
increasing trend, other regions decrease; for MB (Fig. 4(f)), the underestimation of SSs 
in ER and SAS rises, and there is no noticeable change in WNA and SES. MBs in WEU, 
NAF, ENA, WAS, EAS, NOC, and SOC are optimized, while there is no clear pattern 
in SWA, SEA, CA, and SWS. 



 
Figure 4: Temporal variations of the ASM model's precision at tide gauges from 1940 to 2020. 

(a-c) Entire surge evaluation statistics for different regions every 10 years; (d-f) 95th extreme 

evaluation statistics for different regions every 10 years 

 

Point 5: Figure 1 shows several tide gauge stations in South America and West Africa 
with long records, yet these regions are not featured in the validation results. The 
authors should explain why results from these areas were excluded from the analysis. 
Response:  

Apologies for this confusion. Our initial logic was to analyze the areas mainly 
affected by tropical or extratropical cyclones in the main text (since there are almost no 
tropical or extratropical cyclones in the equatorial region, the South Atlantic and the 
southeastern Pacific), and put the evaluation results of the entire area in the appendix. 
However, this did not seem to be a suitable way. Therefore, in this version, we deleted 
the appendix and moved the assessment of the entire domain into the main text for 
discussion. All relevant figures were updated: 

As shown in Fig. 3, we divided the research area into fifteen sub-regions (ER: the 



equatorial region, WEU: Western Europe, NAF: Northern Africa, SWA: Southwestern 
Africa, SEA: Southeastern Africa, WNA: Western North America, ENA: Eastern North 
America, CA: Central America, SWS: Southwestern South America, SES: Southeastern 
South America, WAS: Western Asia, EAS: Eastern Asia, SAS: Southern Asia, NOC: 
Northern Oceania, and SOC: Southern Oceania) for more detailed assessment 
information. Note that the equatorial region (~6°S to ~6°N) was separated as an 
independent area since it has almost no tropical or extratropical cyclones. 

 

Figure 3: ASM model evaluation at tide gauges from 1940 to 2020. (a-c) Entire surge and 95th 

extreme evaluation statistics for different regions; (d-i) Distributions of evaluation metrics. 

Gray lines are tropical cyclone paths. 



 
Figure 5: ASM model comparison with the numerical model at tide gauges from 1979 to 2018. 

(a-c) ASM and GTSM 95th extreme evaluation statistics for different regions; (d-i) 

Distributions of evaluation metrics. Gray lines are tropical cyclone paths. 



 

Figure 6: Scatter density plots of ASM and GTSM annual maxima (Amax) compared with tide 

gauge observations in different regions. The data for tide gauges were combined. The red dotted 

line indicates the perfect fit line. 



 
Figure 7: Differences between ASM and GTSM at the coastal scale from 1979 to 2018. (a-c) 

Comparison statistics between ASM and GTSM modeled entire surges and 95th extremes for 

different regions; (d-i) Distributions of comparison metrics. Gray lines are tropical cyclone 

paths. 

 
Point 6: The manuscript suffers from imprecise language and grammatical errors. 
Phrases like "coastline having complicated shapes" (line 41) and "internal climate 
variability" (line 49) are vague and not commonly used in geoscience literature. 
Additionally, phrases such as "numerical models are based on shallow water equations" 
(line 65) overly simplify the complexity of these models. Grammatical issues such as 
"until now" (line 9) and "will" (line 89) create ambiguity and should be corrected for 
clarity. Moreover, the manuscript contains an excessive number of speculative terms 
such as "some," "might," "may," and "slightly better." Scientific writing should avoid 



this level of uncertainty when possible, and more precise language should be used. 
Where quantifiable data are available, the authors should provide specific numbers to 
reduce ambiguity. 
Response:  

We are sorry for our imprecise language and grammatical errors. Phrases "coastline 
having complicated shapes" and "internal climate variability" were deleted since we 
rewrote the introduction; "numerical models are based on shallow water equations" was 
replaced with "…by resolving coastal physical processes inducing SSs" in Line 41. In 
addition, we carefully revised the tense issues and reduced the use of speculative terms 
in this version, hoping it can be more readable and precise. 
 
Point 7: The authors should ensure that the data description fully complies with the 
journal's requirements. Additional details about the structure and usage of the dataset 
may be necessary for ESSD's standards. 
Response:  

Thanks for reminding. We added more details about the dataset in Lines 262-271: 
The ASM-SS quasi-global storm surge dataset was generated from the ASM data-

driven model established in section 3.3. The dataset is available at 
https://doi.org/10.5281/zenodo.13293595 (Yang et al., 2024a) as NetCDF files month 
by month from 1940 to 2020. Each file includes five parameters: longitude, latitude, 
nodes, time, and surge level. Longitude and latitude are the location information of 
nodes in degree; the unit of time is accumulated hours since 1900-01-01 00:00:00; surge 
levels are given in meters. Users can use longitude, latitude, and time as keywords to 
select surge levels at nodes of interest within a target period. In addition, the spatial 
resolution of nodes is 10 km along the coastline (as shown in Fig. 2). Since the sea 
surface varies rapidly during tropical cyclones, the temporal resolution of surge levels 
is set to hourly. Though this temporal resolution increases the data volume, it can 
provide sufficient information for users who want to analyze high-frequency variations 
of storm surges during extreme events. 
 
Minors: 
Point 8: The choice of an hourly temporal resolution for the dataset is not fully 
explained. The authors should provide a rationale for this decision, especially 
considering the implications for data volume and usability. 
Response:  



Thanks for your recommendation. The reason was added in Lines 268-271: 
Since the sea surface varies rapidly during tropical cyclones, the temporal 

resolution of surge levels is set to hourly. Though this temporal resolution increases the 
data volume, it can provide sufficient information for users who want to analyze high-
frequency variations of storm surges during extreme events. 

 
Point 9: The mention of "small phase shifts" (line 120) lacks context. The origin of 
these phase shifts and their impact on the results should be discussed in detail. 
Response:  
 Thanks for your suggestion. Previous research has discussed this issue. For 
example, Horsburgh and Wilson (2007) gave the following figure: 

 
(Horsburgh, K. J. and Wilson, C.: Tide‐surge interaction and its role in the distribution of surge residuals 

in the North Sea, J. Geophys. Res., 112, 2006JC004033, https://doi.org/10.1029/2006JC004033, 2007.) 

In this version, we presented the reason in Lines 110-113: 
(5) Finally, a 12-hour moving average was applied to SS data to limit possible 

remaining tidal signals (Tiggeloven et al., 2021; Yang et al., 2023), which are generally 
generated by small phase shifts in predicted tides due to the difficulty of obtaining 
perfect and completely accurate estimates through harmonic analysis (Horsburgh and 
Wilson, 2007). 
 
Point 10: Units such as cm/m should be standardized across the manuscript. Similarly, 
decimal precision should be consistent for a more professional and coherent 
presentation of the data. 
Response:  

Thanks for your professional suggestion. We standardized the units of RMSE and 
MB to meters with three decimal places. The precision of CORR was set to two decimal 
places: 



Lines 14-16: the precision of this model (medians of correlation coefficients, root mean 
square errors, and mean biases are 0.63, 0.093 m, and -0.049 m, respectively) is better 
than that of the state-of-the-art global hydrodynamic model (medians are 0.55, 0.106 
m, and -0.044 m); 
Lines 182-184: Figure 3(a-c) show that on a quasi-global scale (i.e., for ALL TGs), the 
median CORR of the entire time series of surges is 0.78, RMSE is 0.062m, and MB is 
0.014m. In comparison, the reconstruction precision for extreme events (>95th 
percentile) is lower: CORR is 0.59, RMSE is 0.094m, and MB is -0.052m. 
Lines 215-217: ASM (medians of CORRs, RMSEs, and MBs for 95th extremes are 
0.63, 0.093 m, and -0.049 m, respectively) outperforms the numerical model GTSM 
(medians are 0.55, 0.106 m, and -0.044 m). 
Lines 249-251: there are noticeable differences between ASM and GTSM. On the 
quasi-global scale, medians of CORRs, RMSEs, and MBs of the entire surges (95th 

extremes) between them are 0.32 (0.23), 0.084 m (0.138 m), and -0.056 m (-0.126 m), 
 
Point 11: The gray lines in the figures (presumed to be tropical cyclone paths) should 
be explicitly described, and their inclusion justified. What purpose do these lines serve, 
and how do they enhance the understanding of the storm surge dataset? 
Response:  

Thanks for reminding. Since not all areas between 45°S to 45°N are affected by 
tropical cyclones (for example, the equatorial region, the South Atlantic and the 
southeastern Pacific), mapping the tropical cyclone paths can facilitate the division of 
sub-regions and highlight their differences. We added relevant descriptions in this 
version: 
Lines 177-178: …Note that the equatorial region (~6°S to ~6°N) was separated as an 
independent area since it has almost no tropical or extratropical cyclones. 
Lines 180-181: Figure 3: ASM model evaluation at tide gauges from 1940 to 2020. (a-c) Entire 

surge and 95th extreme evaluation statistics for different regions; (d-i) Distributions of 

evaluation metrics. Gray lines are tropical cyclone paths. 

Lines 213-214: Figure 5: ASM model comparison with the numerical model at tide gauges 

from 1979 to 2018. (a-c) ASM and GTSM 95th extreme evaluation statistics for different 

regions; (d-i) Distributions of evaluation metrics. Gray lines are tropical cyclone paths. 

Lines 245-247: Figure 7: Differences between ASM and GTSM at the coastal scale from 1979 

to 2018. (a-c) Comparison statistics between ASM and GTSM modeled entire surges and 95th 



extremes for different regions; (d-i) Distributions of comparison metrics. Gray lines are tropical 

cyclone paths. 

 
Point 12: The same color bar is used for multiple metrics, which can create confusion. 
I recommend using separate color bars for each metric to avoid misinterpretation. 
Response:  

Thanks for your recommendation. We used three color bars to show different 
metrics in this version, hoping it can be clearer. Taking Figure 3 as an example: 

 

Figure 3: ASM model evaluation at tide gauges from 1940 to 2020. (a-c) Entire surge and 95th 

extreme evaluation statistics for different regions; (d-i) Distributions of evaluation metrics. 

Gray lines are tropical cyclone paths. 

 

Point 13: The use of "surge" as a variable name in the NetCDF files is problematic, as 



it refers to a physical phenomenon rather than a dataset variable. I recommend choosing 
a more precise name that clearly describes the data field. 
Response:  

Thanks for your recommendation. We replaced it with 'surge level'. The new 
NetCDF files were updated in the repository. 
 
Point 14: Line 62, a space between "abovementioned". 
Response:  
 Thanks for reminding. This word was not used in this version since we rewrote the 
introduction. 
 
Another comment: 
Point 15: The manuscript emphasizes the computational inefficiency of numerical 
models, but fails to acknowledge that AI models, particularly those involving extensive 
preprocessing, ground truth acquisition, and training, can also be computationally 
expensive. Large/big AI models often require substantial computing power. A more 
balanced comparison of the computational demands of AI models versus numerical 
models would provide a fairer perspective on the advantages and limitations of each 
approach. 
Response:  

Thanks for your constructive suggestion. As you mentioned in Point 1, this paper 
should focus on the gaps between existing storm surge models or datasets to highlight 
the advantages of our dataset; another reviewer holds the same opinion. Computational 
efficiency is not the most concerning matter for dataset users. They care more about 
what the new dataset can provide to their research. Therefore, we rewrote the 
introduction and deleted relevant descriptions in other sections.  

Nevertheless, as you point out, with the expanding application scenarios of AI, 
finding a more objective way to evaluate its computational efficiency and resource cost 
is worth attention. 
 
Summary: 
Overall, this manuscript presents a highly valuable and timely contribution to the field 
of storm surge modeling. The application of machine learning to generate a global, 
high-resolution dataset fills an important gap in coastal hazard prediction, especially 
for regions lacking sufficient observational data. The dataset's strong performance in 



reconstructing extreme values, combined with its spatial resolution, demonstrates its 
potential for numerous applications in coastal risk management and scientific research. 
While there are areas that could benefit from further clarification and refinement, 
particularly in terms of methodological transparency and computational comparisons, 
the work is commendable. It reflects a significant step forward in leveraging AI for 
oceanographic data analysis, and with some improvements, it will undoubtedly become 
a highly valuable resource for the community. 


