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Abstract. We introduce CAMELS-INDIA (Catchment Attributes and MEteorology for Large-sample Studies – India), the 

hydrometeorological time series, and catchment attributes for 472 catchments in Peninsular India. Peninsular India covers 15 

intrastate river basins defined by the Central Water Commission (CWC), where river flow and water level datasets are available 

for several gauge stations through the open-source India Water Resources Information System (India-WRIS). However, many 

of these gauge stations lack reliable metadata, and data are not in an analysis-ready format for large-sample hydrological 15 

studies. Therefore, we utilized 472 gauge stations and their catchment boundaries, characterized as stations with reliable 

metadata, from the ‘Geospatial dataset for Hydrologic analyses in India (GHI)’ (Goteti, 2023). For each of these catchments, 

the CAMELS-INDIA provides a catchment mean time series of meteorological forcings for 41 years (1980-2020) and around 

211 catchment attributes representing hydroclimatic and land cover characteristics extracted from multiple data sources 

(including ground-based observations, remote sensing-based products, and reanalyses datasets). The CAMELS-INDIA follows 20 

the same standards of the previously developed CAMELS datasets for the USA, Chile, Brazil, Great Britain, Australia, 

Switzerland, Germany, and Denmark to facilitate comparisons with catchments of those countries and inclusion in global 

hydrological studies. Notably, the CAMELS-INDIA includes available observed streamflow and catchment mean time series 

of 19 meteorological forcings, including precipitation, maximum, minimum, and average temperature, long-wave and short-

wave radiation flux, U and V-components of wind, relative humidity, evaporation rates from canopy and soil surface, actual 25 

and potential evapotranspiration, and soil moisture of four layers (covering depth up to 3 m below ground) for detailed 

hydrometeorological studies. We also derived catchment attributes representing human influences, including the number of 

dams and their utilization, total volume contents of dams in catchments, population density, and increase in urban and 

agricultural land covers to facilitate studies to understand human influences on catchment hydrology. Furthermore, the dataset 

includes predicted streamflow time series from a regionally trained Long-Short Term Memory (LSTM)-based hydrological 30 

model, which can fill gaps in observed streamflow data or serve as a benchmark for testing and developing new hydrological 

models. We envision that CAMELS-INDIA will provide a strong foundation for a community-led effort toward gaining new 
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hydrological insights from hydrologically distinct Indian catchments and solving pertinent issues related to water management, 

quantification and risk assessment of hydrologic extremes, unraveling regional-scale hydrologic functioning, and climate 

change impact assessment of catchments across India. The CAMELS-INDIA dataset is available at 35 

https://doi.org/10.5281/zenodo.13221214 (Mangukiya et al., 2024). 

1 Introduction 

Large-scale hydrological studies to formulate generalized conclusions on hydrological models and processes require data from 

large samples of catchments to understand spatiotemporal hydrological differences across scales (Addor et al., 2017; Coxon 

et al., 2020). Various studies have utilized large-sample datasets to investigate the impacts of climate change and anthropogenic 40 

influences on hydrological behavior (Van Loon et al., 2022; Feng et al., 2023), for predictions of hydrometeorological variables 

(Feng et al., 2020; Kratzert et al., 2018; Lees et al., 2021; Mangukiya et al., 2023), for hydrological classification and 

similarities (Fang et al., 2022; Dimitriadis et al., 2021; Jehn et al., 2020), for predictions in the ungauged and data-sparse region 

(Kratzert et al., 2019; Ma et al., 2021; Nearing et al., 2024), and for understanding drivers of extreme events and future 

hydrological changes (Mangukiya and Sharma, 2024; Alvarez-Garreton et al., 2021; Zhang et al., 2022; Das et al., 2024). The 45 

primary data required for hydrometeorological analyses are streamflow and its drivers, such as precipitation, temperature, solar 

radiation, evapotranspiration, wind, soil moisture, and relative humidity. Ideally, the hydrometeorological time series datasets 

are complimented by catchment attributes, which are believed to control hydrological processes, such as topography, land 

cover, soil, and geology (Addor et al., 2017). The availability of such catchment data sets provides a new perspective to the 

research community for finding answers to some relevant questions that could not be addressed in the past. In addition, it helps 50 

the researchers to expedite their research by saving hours of collecting and processing the data from various sources. 

The compilation of hydrometeorological time series and complimentary attributes for large samples of catchments began in 

2006 with the ‘Model Parameter Estimation Experiment (MOPEX)’ dataset (Schaake et al., 2006) in the USA. Later, the 

MOPEX dataset was extended by Newman et al. (2015) and Addor et al. (2017), resulting in the first ‘Catchment Attributes 

and MEteorology for Large-sample Studies (CAMELS)’ dataset comprising 671 catchments in the contiguous United States 55 

(CONUS). Given the importance of such a large-sample dataset for hydrometeorological studies, the CAMELS and other 

datasets are developed for various countries, such as Chile (CAMELS-CL; Alvarez-Garreton et al., 2018), North America 

(HYSETS; Arsenault et al., 2020), Brazil (CAMELS-BR; Chagas et al., 2020, and CABra; Almagro et al., 2021), Great Britain 

(CAMELS-GB; Coxon et al., 2020), China (CCAM; Hao et al., 2021), Australia (CAMELS-AUS; Fowler et al., 2021), Austria 

(LamaH-CE; Klingler et al., 2021), France (CAMELS-FR; Andréassian et al., 2021), Switzerland (CAMELS-CH; Höge et al., 60 

2023), Spain (CAMELS-ES; Casado Rodríguez, 2023), Sweden (CAMELS-SE; Teutschbein, 2024), Germany (CAMELS-

DE; Loritz et al., 2024), and Denmark (CAMELS-DK; Liu et al., 2024). Recently, the initiative to combine all existing 

CAMELS and other large-sample datasets was taken through Caravan (Kratzert et al., 2023) to facilitate global hydrological 

studies. The cloud-based platform of Caravan for extraction of meteorological forcings and catchment attributes further 
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extended Caravan datasets for Denmark (Koch, 2022) and Israel (Efrat, 2023). Despite the increasing availability of large-65 

sample hydrometeorological datasets globally, India still lacks a comprehensive dataset for large-sample hydrological studies. 

In India, accessing analysis-ready datasets is difficult, and the available open-source datasets require additional quality checks 

(Goteti, 2023). The Central Water Commission (CWC) and various state government agencies provide water-related data 

through the online portal, India – Water Resources Information System (India-WRIS; https://indiawris.gov.in/wris/#/). 

However, the related Geographic Information System (GIS) metadata, such as digitized gauge locations, catchment boundaries, 70 

and river network information, is still limited, and researchers need to put significant efforts into digitizing and compiling the 

required information from available CWC reports (Goteti, 2023). For meteorological time series datasets, the India 

Meteorological Department (IMD) provides a nationwide gridded dataset of rainfall and temperature, and the National Centre 

for Medium Range Weather Forecasting (NCMRWF) provides various other meteorological variables in gridded format 

through the Indian Monsoon Data Assimilation and Analysis (IMDAA) – reanalysis data services 75 

(https://rds.ncmrwf.gov.in/home). However, such nationwide datasets are rarely aggregated to the catchment scale and require 

pre-processing to make them analyses ready (Hao et al., 2021). For large-scale hydrological studies, searching for appropriate 

data, finding methods for data pre-processing, and formatting data consume considerable time and redundant efforts with 

limited research advances (Beniston et al., 2012; Hao et al., 2021). Due to a lack of analysis-ready datasets and associated 

difficulties in data processing, unsurprisingly, large-sample hydrological studies are less common in India than in the USA or 80 

Europe. To overcome all these difficulties, community-led efforts are required to develop the needed analysis-ready dataset 

for India (Goteti, 2023). 

Goteti (2023) recently provided the first quality controlled publicly available hydrographic dataset, the ‘Geospatial dataset for 

Hydrologic analyses in India (GHI)’, which includes GIS data on locations of gauges, catchment boundaries, and river network, 

and monthly and annual time series of precipitation, evapotranspiration, and runoff for 472 catchments in peninsular India. 85 

Even though the GHI dataset does not systematically provide catchment attributes representing hydroclimatic, land cover, and 

anthropogenic influences, it paved the way for the hydrologic community by providing reliable GIS metadata for a consistent 

set of catchments for Indian river basins. To address the data gap of GHI, we produced the CAMELS-INDIA dataset 

(Mangukiya et al., 2024), which provides a daily catchment mean time series of 19 meteorological forcing, available observed 

and Long-Short Term Memory (LSTM)-based hydrological model predicted streamflow (Mangukiya et al., 2023), and around 90 

211 catchment attributes representing topographic, climatic, hydrologic, land cover, soil, geological, and anthropogenic 

influence characteristics for 472 catchments in Peninsular India. The proposed dataset will be the stepping stone to provide 

large-sample meteorological time series and attributes of the Indian catchments to the global and national hydrological 

community. The CAMELS-INDIA follows the same standards as the previously developed CAMELS datasets to facilitate 

comparisons with catchments of those countries and inclusion in global hydrological studies. The following sections describe 95 

the objectives behind the CAMELS-INDIA dataset and comprehensively describe all data supplied within CAMELS-INDIA, 

including its data source and how the hydrometeorological time series and static catchment attributes were prepared. 
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2 Motivation and Rationale 

India has hydrologically distinct catchments spread across arid, temperate, and tropical climate zones (Fig. 1a). These 

catchments are heterogeneous in terms of characterization and are influenced to varying degrees by anthropogenic activities 100 

(Mangukiya and Sharma, 2024; Mangukiya et al., 2023). Despite these unique characteristics, Indian catchments are often 

underutilized in global hydrological studies due to insufficient analysis-ready datasets. The publication of CAMELS-INDIA 

aims to address this gap, providing an essential resource for researchers worldwide to investigate hydrological regimes under 

anthropogenic influences and changing climates, thus tackling water-related issues. CAMELS-INDIA includes over 100 arid 

catchments, which can be combined with other arid-zone catchments, such as those in CAMELS, CAMELS-CL, and 105 

CAMELS-AUS, enabling large-sample studies of arid-zone hydrology (Fowler et al., 2021). Furthermore, India's catchments 

are regulated by large and medium dams due to the seasonality of rainfall, often experiencing water limitations on a seasonal 

basis. This characteristic offers a significant number of samples to the global research community, aiding in addressing various 

modeling challenges specific to catchments with such unique features. 

Given the global use case, during the development of CAMELS-INDIA, a critical choice was whether to utilize national or 110 

global datasets for extracting hydrometeorological time series and catchment attributes. While global datasets would facilitate 

intercontinental comparisons, national datasets would provide the highest-quality information available in India. So far, 

CAMELS datasets of different countries have utilized the best possible national data sources, drawing on the expertise of 

CAMELS creators. In cases where national datasets were unavailable, global datasets, such as the ‘Global Lithological Map 

(GLiM)’ (Hartmann and Moosdorf, 2012) and ‘GLobal HYdrogeology MaPS (GLHYMPS)’ (Gleeson et al., 2014), were used. 115 

Using national products would facilitate global users, potentially unfamiliar with such products, to benefit from these local 

insights (Fowler et al., 2021). It will also encourage national-scale studies by providing analysis-ready datasets from the best 

available data source within the country. Moreover, ongoing efforts, such as Caravan (Kratzert et al., 2023), to produce 

consistent global datasets (using global data products for deriving meteorological time series and catchment attributes) will 

complement the data produced from national sources and facilitate comparative studies. Therefore, we prioritized national data 120 

products, where possible, to produce CAMELS-INDIA. 

3 Catchments and Data Availability 

The CWC and other state government agencies have listed 4824 gauge locations, at present, on India-WRIS for users to obtain 

streamflow observations. However, out of those, only 645 gauges in Peninsular India offer free access to data for users. The 

remaining stations either lack data or fall under the ‘classified data’ category due to transboundary river basins. Given the 125 

existing challenges in validating and extracting information from these available datasets in India, the GHI has introduced the 

first quality-controlled metadata in GIS format and listed 472 catchments with reliable metadata out of the 645 gauge stations 

in Peninsular India (Goteti, 2023). In the CAMELS-INDIA dataset, we have incorporated these 472 catchments located in 
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Peninsular India (Fig. 1b) to extract daily meteorological time series and catchment attributes for large sample hydrological 

studies. 130 

Peninsular India is a large region situated between the Western Ghats and the Eastern Ghats, extending south of the Vindhya 

range (Fig. 1b). The elevation ranges from 0 to 2600 m above mean sea level, with a mean elevation of 600 m, sloping 

eastward. The Western Ghats, also known as Sahyadri hills, are a prominent landform in this region and play a crucial role in 

controlling moisture movement during the southwest monsoon. The Palghat gap, a narrow region in the Western Ghats, is a 

geological shear zone representing a weak area in the earth’s crust. This gap supports a network of brooks and creeks forming 135 

the west-flowing Bharathappuzha river, the second-largest river in Kerala. This gap influences the weather patterns in 

Peninsular India by allowing moisture-laden southwest monsoon winds to enter the state of Tamil Nadu, moderating the 

summer temperatures and increasing the rainfall in the region. Other major landforms in Peninsular India include the Eastern 

Ghats, a discontinuous mountain range along the Bay of Bengal coast. These mountains are eroded and intersected by major 

rivers of Peninsular India, the Mahanadi, Godavari, Krishna, and Cauvery. These rivers create large delta regions east of 140 

Eastern Ghats, with nutrient-rich soils (Fig. 1b). The Maikal range in the north is the origin of the Narmada River. Figure 1b 

illustrates the major river basins and gauge locations in Peninsular India. 

 

Figure 1. (a) Major river basins in Peninsular India, defined by the Central Water Commission (CWC), spread across various climate zones, 

and (b) Geography of Peninsular India with major river basins, gauge locations, catchment boundaries, and elevation map. 145 
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Daily-scale streamflow and water level observations for Indian catchments are publicly accessible via the online portal India-

WRIS (https://indiawris.gov.in/wris/#/DataDownload). Users can navigate the portal to select the data source (agencies 

providing river flow and water level data) and location (such as river basin and gauge name) to download river flow and water 

level data in Excel (.xlsx) format (Fig. A1 and A2). Currently, India-WRIS imposes a maximum limit of one year for each 

download. To obtain long-term time series, users must combine data by downloading one year at a time. This process can be 150 

tedious, but it is necessary to acquire river flow data for Indian catchments. Following this process, we compiled the available 

streamflow observations from 1 January 1980 to 31 December 2020 from India-WRIS and provided them in the CAMELS-

INDIA dataset. Our preliminary analysis shows that most catchments have reliable data availability (less than 20% missing 

values for all hydrological years) from 1980 to 2018 (Fig. 2). However, it’s worth noting that the India-WRIS portal was 

launched in July 2019. Since then, continuous efforts have been made to digitize the available data and update the information 155 

on the portal. We anticipate that, with time, observations from the rest of the gauges will be made available for users to 

download. Therefore, we extracted catchment mean meteorological forcings and static attributes for all 472 catchments. 

 

Figure 2. Streamflow data availability for each gauge station and the line plot with markers indicating the maximum number of catchments 

have long-term flow data from 1980 to 2018. The indicated years are hydrological years (starting from 1 June). 160 

4 Meteorological forcings 

For large-sample studies, meteorological time series are often extracted from gridded datasets (Fowler et al., 2021). In 

CAMELS-INDIA, we extracted daily meteorological time series for 19 variables (listed in Table A1) from a nationwide 

gridded dataset covering the period from 1 January 1980 to 31 December 2020, spanning 41 years. We used gridded 

precipitation (0.25° spatial resolution) (Pai et al., 2014) and maximum and minimum temperature (1° spatial resolution) 165 

(Srivastava et al., 2009) datasets from the IMD, which are the only available and widely utilized national dataset for India. 
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Daily time series for surface downward long-wave and short-wave radiation flux, U-component and V-component of wind (at 

10 m), relative humidity (at 2 m), evaporation rates from the soil surface and canopy, and soil moisture at four different layers 

(0-0.1 m, 0.1-0.35 m, 0.35-1 m, and 1-3 m below ground) were extracted from the IMDAA dataset (Rani et al., 2021). This 

dataset, with a resolution of approximately 12 km, is presently the highest-resolution gridded dataset available for the Indian 170 

monsoon region. As the actual and potential evapotranspiration (AET and PET) dataset over India is not available from national 

sources, we obtained a daily time series of AET and PET from the Global Land Evaporation Amsterdam Model (GLEAM) 

(Miralles et al., 2011). We also extracted daily time series of PET from Singer et al. (2021), which is presently the highest 

resolution (0.1°) gridded dataset developed using the ERA5-Land reanalysis dataset, to facilitate comparison. For all 

meteorological variables, spatially averaged time series for each catchment were calculated using area-weighted averages for 175 

each day. The basin-wise meteorological time series is in a compressed zip file named “catchment_mean_forcings.zip” in the 

CAMELS-INDIA dataset (Mangukiya et al., 2024). 

5 Catchment attributes 

In CAMELS-INDIA, we compiled and calculated 211 catchment attributes representing location and topography, climate, 

hydrological signatures, land-use land cover (LULC), soil and geology, and anthropogenic influences. Table 1 summarizes 180 

the file names and descriptions of the attributes provided within the files in the CAMELS-INDIA dataset. In India, CWC has 

divided the entire country into 22 basins and provided a unique basin code for identification. In CAMELS-INDIA, we created 

a 5-digit gauge station identifier (the first two digits are CWC basin code, and the last three digits are station number) and used 

it as the gauge ID throughout the dataset. For each gauge ID, we provided the station's name as in the CWC database (CWC, 

2021) and the name of the river/tributary and basin on which the station is located (Table A2). For ease of use, we also provided 185 

the GHI station ID and the GHI assigned group from the GHI dataset to associate the catchment attributes with the metadata 

provided in the GHI dataset (Goteti, 2023). 

Table 1. Summary of 211 catchment attributes provided in CAMELS-INDIA 

File name Attributes description 

camels_India_name 7 attributes (Table A2) representing gauge name and identifier  

camels_India_topo 16 attributes (Table A3) representing location and topography 

camels_India_clim 42 attributes (Table A4) representing climate indices 

camels_India_hydro 73 attributes (Table A5) representing hydrological signatures 

camels_India_land 13 attributes (Table A6) representing land cover characteristics 

camels_India_soil 28 attributes (Table A7) representing soil characteristics 

camels_India_geol 7 attributes (Table A8) representing geological characteristics 

camels_India_anth 25 attributes (Table A9) representing anthropogenic influence in the catchment 
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5.1 Location and topography 

The attributes representing the location and catchment area for each gauge ID are compiled from both the CWC and GHI 190 

datasets in CAMELS-INDIA (Table A3). However, it’s worth noting that for many gauge stations, the CWC documented 

spurious gauge locations and catchment areas (Goteti, 2023). Therefore, we preferred the corrected locations provided within 

the GHI dataset for plotting the gauge locations in this manuscript. For topographic characteristics, elevation and slope are 

extracted using the 3 arcsec (~90 m) resolution Digital Elevation Model (DEM) of the Shuttle Radar Topography Mission 

(SRTM) (Farr et al., 2007), as these are the key controlling factors of catchment behavior (Addor et al., 2017). The catchment 195 

areas range from 125.7 to 308433.8 km², with quartile values of 1095.38 km² (first quartile), 3042.2 km² (second quartile), and 

11990.63 km² (third quartile). Figure 3a shows the spatial distribution of the catchment area and highlights that there are 131 

catchments with an area greater than 10,000 km2. The average elevation becomes less meaningful for such large catchments 

due to spatial heterogeneity. Moreover, the west-flowing rivers from Tadri to Kanyakumari originate from the steep mountains 

and meet the Arabian Sea, flowing through plain regions, resulting in lower average elevations and higher slopes (Fig. 3b-c). 200 

Therefore, we also computed minimum, maximum, and median catchment elevation and slope for all the gauges to represent 

the spatial heterogeneity of topographical features in the CAMELS-INDIA dataset. The catchment mean elevation ranges from 

58.04 to 1687.24 m, with quartile values of 361.04 m (first quartile), 470.37 m (second quartile), and 617.9 m (third quartile), 

while the mean slope ranges from 1.07 to 32.15%, with quartile values of 4.11% (first quartile), 6.23% (second quartile), and 

10.02% (third quartile). Additionally, the catchment mean drainage path slope is also estimated using SRTM DEM (Fig. 3d). 205 

The mean drainage path slope of the catchments ranges from 1.22 to 74.88 m/km, with mean and median slopes of 8.93 and 

6.35 m/km, respectively. Overall, the topographic attributes show that the high-altitude catchments with moderate to steep 

slopes are located in the Western and Eastern Ghats regions, while the catchments in central India have gentler slopes. 

 
Figure 3. Topographic characteristics of catchments in Peninsular India. The histograms depict the frequency distribution of catchments 210 
across the bins. (a) catchment area in km2, (b) catchment mean elevation in meters above mean sea level, (c) catchment mean slope in 

percentage, and (d) catchment mean drainage path slope in m/km. 
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5.2 Climate indices 

We computed climate indices similar to Addor et al. (2017), which represent both mean and extreme events, using the 

meteorological time series described in Section 4. Additionally, we calculated the monthly and annual precipitation variability, 215 

precipitation uniformity, asynchronicity, and the maximum number of consecutive days of extreme event occurrence and their 

timings (Table A4). To compute aridity, we used the ratio of mean annual precipitation over the PET, following the approach 

of Addor et al. (2017). Moreover, we also derived the aridity index as the ratio of the deficit between potential and actual 

evapotranspiration over PET. As an additional reference, we extracted the spatially averaged aridity index from Trabucco and 

Zomer (2018). The precipitation uniformity indicates how uniformly the annual maximum precipitation is distributed across 220 

the days of a year, and it is estimated by Relative Entropy, a metric proposed by Feng et al. (2013). A zero-precipitation 

uniformity value indicates all the days have equal precipitation, whereas a value of 1 indicates that all the annual maximum 

precipitation occurred in a single day (Dey and Mujumdar, 2019). The asynchronicity index measures the relative magnitude 

and phase differences between long-term monthly precipitation and potential evapotranspiration (Feng et al., 2019). The 

frequency of high precipitation days is estimated when the observed precipitation is at least five times the mean daily 225 

precipitation. The frequency of low precipitation days is calculated when the observed precipitation is less than 1 mm/day. 

The average consecutive days of high precipitation are used to estimate the average duration of high precipitation, and the 

average consecutive dry days are used to estimate the average duration of low precipitation. The timing of high and low 

precipitation is defined as the season (Monsoon – June, July, August and September; Pre-monsoon – January, February, March, 

April and May; Post-monsoon – October, November and December) when most of the high and low precipitation events 230 

occurs. 

The spatial distribution of the selected climate indices is shown in Figure 4. The variability of annual precipitation and 

frequency of high precipitation days are notably higher (with a coefficient of variation > 0.8 and more than 21 days with 

precipitation ≥ 5 times mean daily precipitation) in the Mahi, Narmada, Pennar, Sabarmati, and Tapi basins (Fig. 4a-b). We 

observed high precipitation events, mainly concentrated during the monsoon and post-monsoon seasons in the majority and 235 

southern parts of the region, respectively. It highlights the dominance of the southwest monsoon (June to September) in the 

region and the impact of the northeast monsoon in the southern part during winter (Das et al., 2022; Das and Jain, 2023). The 

catchments along the western coast experience prolonged high precipitation in the southwest monsoon season and exhibit 

evaporation rates of more than 1.2 mm/day (Fig. 4c-d). India has a seasonal precipitation pattern, with most precipitation 

occurring during the southwest monsoon. Consequently, most Indian catchments experience more than 210 dry days in a year 240 

(Fig. 4e). Moreover, the Mahi, Narmada, Sabarmati, and Tapi basins, along with the catchments of west-flowing rivers between 

the Tapi and Tadri basins show extreme seasonality (Rai and Dimri, 2020), receiving most of the precipitation in 1-2 month, 

resulting in the prolonged dry periods (Fig. 4f-g). The catchments along the southwest coast and eastern sides of Peninsular 

India are relatively more humid compared to the catchments of Godavari, Krishna, Mahi, Pennar, Sabarmati, and Tapi basins 

(Fig. 4h). A sharp transition in the aridity index is observed across the Western Ghats – highlighting the increased precipitation 245 
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on the leeward side and a decrease in the rain shadow region of the Western Ghats. A distinct north-south pattern in the 

asynchronicity index between long-term precipitation and PET is observed – with a strong out-of-phase relationship in the 

north and central parts of Peninsular India (Fig. A3). In contrast, an in-phase relationship is observed in the southern part of 

the region. In CAMELS-INDIA, we also provide mean indices for temperature, relative humidity, radiation flux, win speed, 

and soil moisture to understand the climatic conditions over Peninsular India comprehensively. Higher mean daily precipitation 250 

is observed in the southern part of the region, and the precipitation decreases towards the central part of the region (Fig. A3). 

The northern and eastern parts of the region exhibit moderate precipitation. The spatial patterns of PET and AET are similar – 

moderate magnitudes are in the central and northern parts, and high values are in the southern part (Fig. A3). 

 

Figure 4. Climate indices for catchments in Peninsular India. The histograms depict the frequency distribution of catchments across the bins. 255 
(a) variation in annual precipitation patterns (higher values indicate more significant variation), (b) frequency of days with precipitation ≥ 5 

times mean daily precipitation, (c) average number of consecutive days with precipitation ≥ 5 times mean daily precipitation, (d) mean daily 

evaporation rate from canopy and soil surface, (e) frequency of days with precipitation < 1 mm/day, (f) average number of consecutive days 

with precipitation < 1 mm/day, (g) maximum number of consecutive days with precipitation < 1 mm/day, and (h) aridity index (P/PET). 
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5.3 Hydrological signatures 260 

To calculate hydrological signatures, we compiled available streamflow observations from IndiaWRIS, and indices were 

computed for gauges with at least 25 years of data and less than 20% missing values for all hydrological years (1 June to 31 

May) between 1980 and 2020. The hydrological signatures representing the mean flow and extreme flow events are included 

in the CAMELS-INDIA (Table A5), similar to Addor et al. (2017). Additionally, due to seasonal precipitation patterns in 

India, we also computed seasonal flow and its variability, providing quartiles of flow for the southwest monsoon season. For 265 

this purpose, we also included gauges with available streamflow observations during specific seasons with less than 20% 

missing values for all months. In general, streamflow comprises two components – baseflow and quick flow. The baseflow 

index – the ratio of long-term baseflow to long-term total flow – is estimated using the method described in Ladson et al. 

(2013) available in the TOSSH toolbox (Gnann et al., 2021). The higher the baseflow index, the more the contribution of the 

baseflow to the total streamflow. The slope of the flow duration curve (FDC) is used to estimate the variability of streamflow. 270 

The slope of FDC is calculated as the slope of the curve between the log-transformed 33rd and 66th percentiles of daily 

streamflow over the period of observation (Chouaib et al., 2018; Yokoo and Sivapalan, 2011). A high slope value indicates 

highly variable streamflow due to pronounced streamflow seasonality or rapid response to precipitation events. Streamflow 

elasticity quantifies the sensitivity of mean annual precipitation (Sankarasubramanian et al., 2001). A value of streamflow 

elasticity m indicates that there will be m% change in mean annual streamflow with respect to 1% change in mean annual 275 

precipitation. In addition, runoff ratio – the ratio of long-term mean daily flow to long-term mean daily precipitation – is 

estimated, which measures the fraction of precipitation that, on average, gets converted to streamflow. The streamflow 

uniformity – measured using Gini’s coefficient (Gudmundsson et al., 2018), ranges from 0 to 1, where 0 indicates a uniform 

distribution of flows throughout the year, and 1 indicates that all the flows occur on a single day, with values between 0 and 1 

representing intermediate cases. Apart from the measures of streamflow variability, attributes quantifying the behavior of 280 

extreme streamflow conditions are also quantified. The high-flow and low-flow thresholds during the observation period are 

computed based on the 95th and 25th percentile of the daily flows. Moreover, we computed approximately 40 indices of 

hydrological alterations, representing monthly water availability and variability, annual extreme events and their timing, and 

the frequency and rate of change in flow conditions. The primary limitations with the hydrologic signatures derived are: 1) 

many attributes can be associated with the size of the catchments, and 2) the causal factors of the extreme flow conditions are 285 

not considered. 

The mean streamflow pattern closely follows the spatial patterns of the precipitation. The catchments of west-flowing rivers 

and Brahmani and Baitarni, Godavari, Mahanadi, Narmada, and Subernarekha basins exhibit higher flows (> 1 mm/day) 

throughout the year, including the southwest monsoon season (Fig. 5a-b). A high variation in the streamflow elasticity is 

observed in the arid regions, and less variation is observed in the humid regions (Fig. A3). However, the sensitivity of 290 

streamflow change to precipitation change is more in the arid regions. The streamflow uniformity is higher in the central, 

Eastern Ghats, and delta regions and smaller in the Western Ghats region (Fig. A3). High variability (with increased values) 
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in the baseflow index is observed in the southern region, whereas this variability tends to reduce in the central and the northern 

parts of the region (Fig. A3). In addition, the sensitivity of streamflow to precipitation decreases with increasing baseflow 

index – highlighting the role of baseflow in sustaining the flows. The catchments along the southwest coast have a high runoff 295 

ratio (> 0.5) and relatively low variability in daily flows (Fig. 5c-d). The majority of Indian catchments exhibit low-flows for 

90 to 120 days during the summer season (March-May) with consecutive 30 to 60 days of low-flows (Fig. 5e-f). A similar 

pattern can be observed for high-flows but for a shorter duration, indicating the influence of the dams (Fig. 5g-h). Because 

most dams in India are operated to store water from high precipitation during the southwest monsoon season and gradually 

release it during summer for irrigation and other water demands. Evidence for this can be seen in Figure 5i-k, indicating a 300 

higher number of hydrological reversals (> 100 in a year) despite seasonal precipitation patterns. 
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Figure 5. Streamflow characteristics for catchments in Peninsular India. The histograms depict the frequency distribution of catchments 

across the bins. (a) mean daily streamflow, (b) mean daily streamflow of southwest monsoon season, (c) runoff ratio (q_mean/p_mean), (d) 

variability of daily streamflow, (e) mean consecutive low flow days (flow < 25th percentile daily flow), (f) frequency of low flows in a year, 305 
(g) mean consecutive high flow days (flow > 95th percentile daily flow), (h) frequency of high flows, (i) mean of the positive difference 

between consecutive flow values, (j) mean of the negative difference between consecutive flow values, (k) mean number of hydrologic 

reversals (i.e., number of peaks in hydrograph), and (l) mean annual flow volume. 
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5.4 Land cover characteristics 

Land cover attributes were extracted from the Sentinel-2 10m LULC time series (Karra et al., 2021), providing eight LULC 310 

classes, including water, trees, flooded vegetation, crops, built-up areas, bare ground, snow cover, and rangeland. Due to the 

absence of snow cover in Peninsular Indian catchments, we excluded it, and the temporal average of the seven remaining 

LULC classes was extracted as fractions of the catchment (Table A6). Additionally, spatiotemporally averaged (from 2001 to 

2020) minimum and maximum leaf area index (LAI) of the catchment were extracted from MCD15A2H MODIS/Terra+Aqua 

Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006 [Data set] to represent the vertical density of vegetation. The 315 

maximum LAI will help set the boundary conditions of evaporation rates from the canopy and vegetation interception, while 

the difference between maximum and minimum LAI will represent the seasonal variation of LAI (Addor et al., 2017). The 

spatial variation of different LULC classes indicates that catchments of west-flowing rivers from Tadri to Kanyakumari, east-

flowing rivers between Pennar and Kanyakumari, and the Cauvery basin have higher (> 8%) urban areas. In comparison, more 

than 50% of the catchment areas of the Godavari, Krishna, Mahi, Narmada, and Tapi basins are covered with agricultural land 320 

(Fig. 6a-b). To meet agricultural water demands in these catchments, several large and medium reservoirs and lakes are present 

in this region, covering more than 2% of the catchment area (Fig. 6c). The catchments along the southwest coast are mainly 

covered with trees and exhibit lower seasonal variability of LAI (Fig. 6d-f). On the other hand, catchments in central India 

show high seasonal variability of LAI, primarily due to seasonal crops, as these catchments have a very low fraction of forest 

cover (Fig. 6d-f). 325 
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Figure 6. Land-use land cover characteristics for catchments in peninsular India. The histograms depict the frequency distribution of 

catchments across the bins. (a-d) fraction of built-up area, cropland, water and flooded vegetation, and tree cover, respectively, (e) maximum 

leaf area index, and (f) difference between maximum and minimum leaf area index. 330 

5.5 Soil and Geological characteristics 

The attributes related to soil characteristics of the catchment were derived from global data sources (Table A7), as national 

datasets related to soil characteristics are either not openly available or not in digitized form at present. The average soil depth 

of the catchments was extracted from Pelletier et al. (2016), which provides the thickness of soil and sediment deposits with a 

30 arcsec resolution. The saturated hydraulic conductivity, available water storage, and fraction of organic matter content for 335 

both topsoil (0-30 cm) and subsoil (30-200 cm) were extracted from HiHydroSoil v2 at 250m resolution (Simons et al., 2020). 

The available water storage capacity of the soil was extracted from Food and Agriculture Organization (FAO) soil data (Fischer 

et al., 2008). The fraction of sand, silt, clay, and gravel, bulk density of soil, and organic carbon content in soil for both topsoil 

(0-30 cm) and subsoil (30-100 cm) were extracted from the Harmonized World Soil Database v2.0 (FAO and IISA, 2023). 

The catchment mean annual average water table depth was extracted from Fan et al. (2013). Additionally, we also extracted 340 
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the major hydrologic soil group (HSG) from the HiHydroSoil v2 (Simons et al., 2020). The HSG helps derive the runoff curve 

number utilized in hydrological modeling for direct runoff estimation.  

The spatial variability of soil attributes shows that the catchments of the Mahanadi and lower Godavari basins have a high 

fraction of sand, while catchments along the southwest coast, Brahmani and Baitarni, Sabarmati, and Subernarekha basins 

have a high fraction of silt and gravel (Fig. 7a-d). The catchments of the Krishna, Narmada, Tapi, and upper Godavari basins 345 

have a high fraction of clay in the soil. Catchments of west-flowing rivers from Tapi to Tadri have more than 4% organic 

carbon content (Fig. 7e). Out of 472 catchments, 320 catchments in India have a soil depth up to 2 m, while 87 catchments, 

mainly located along the east coast, lower Godavari, lower Narmada, and Sabarmati basins, exhibits soil depth of more than 3 

m (Fig. 7f). The catchments located in the upper part of Peninsular India, mainly in the Godavari, Mahanadi, Mahi, Narmada, 

Sabarmati, and Tapi basins, have a low available water storage capacity of the soil, in comparison to the catchments along the 350 

southwest coast (Fig. 7g). The spatial variability of soil conductivity shows that catchments of lower Krishna, Mahi, Pennar, 

and Sabarmati basins have high soil conductivity (> 5 cm/day) (Fig. 7h), and catchments of Peninsular India have moderate 

to high runoff potential. 

 

Figure 7. Soil characteristics for catchments in peninsular India. The histograms depict the frequency distribution of catchments across the 355 
bins. (a-e) fraction of sand, silt, clay, gravel, and organic matter content in topsoil (0-30 cm), respectively, (f) average thickness of soil and 

https://doi.org/10.5194/essd-2024-379
Preprint. Discussion started: 18 September 2024
c© Author(s) 2024. CC BY 4.0 License.



17 

 

sedimentary deposit, (g) available water storage capacity of topsoil (0-30 cm), and (h) mean saturated hydraulic conductivity of topsoil (0-

30 cm). 

The geological attributes (Table A8) were computed following Addor et al. (2017). The first and second most common 

geological classes, their respective proportions within the catchment, and the fraction of ‘carbonate sedimentary rocks’ were 360 

extracted from the Global Lithological Map (GLiM) (Hartmann and Moosdorf, 2012). The mean subsurface porosity and 

permeability of the catchment were derived from the GLobal HYdrogeology MaPS (GLHYMPS) (Gleeson et al., 2014). The 

spatial variability of subsurface porosity and permeability indicates that catchments in the Narmada and Sabarmati basins have 

relatively high porosity (> 0.1), while those in the Mahi, Narmada, Tapi, upper Godavari, and upper Krishna basins exhibit 

high permeability (> 0.73 m2) (Fig. 8a-b). The southern parts of the Peninsular region consist of the hard rock aquifer system 365 

with low porosity and permeability. The Peninsular region is the oldest and largest geomorphic province of India. There are 

seven dominant geological classes identified in the Peninsular region – basic volcanic, metamorphic, acid plutonic, siliciclastic 

sedimentary rocks, mixed sedimentary rocks, carbonate sedimentary rocks, and subordinate unconsolidated sediments. Out of 

472 catchments, 179 have 'basic volcanic rocks' and 176 have 'metamorphic rocks' as the most common geological classes, 

with the majority of them having only a single geological class for the entire catchment (Fig. 8c-g). The rock types that are 370 

classified under basic volcanic rocks are basalts, tephrites, tholeiites, and lamprophyres (Hartmann and Moosdorf, 2012). The 

metamorphic class constitutes a variety of rocks from shales to gneiss, from amphibolite to quartzite. The groundwater 

movement in these two dominant classes is controlled by rock fractures and their continuities, depth of weathering, topography, 

nature, and size of recharge and discharge areas. 
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 375 

Figure 8. Geological characteristics for catchments in peninsular India. The histograms depict the frequency distribution of catchments 

across the bins. (a-b) mean subsurface porosity and permeability, (c-d) most common geological classes, (e-f) fraction of catchment area 

associated with most common geological classes, and (g) fraction of catchment area characterized as carbonated sedimentary rocks. 

5.6 Anthropogenic influences 

Catchments in India have varied degrees of anthropogenic influence. Due to seasonal rainfall patterns, water demands in the 380 

region are primarily met by several dams. In CAMELS-INDIA, the degree of human intervention within the catchments is 

quantified through the information on the number of dams, year of construction of the first and the recent dam, total cumulative 

storage of dams, and fraction of these storages used in hydropower generation, flood control, irrigation, drinking, flood storage, 

and navigation (Table A9). In addition, the reservoir index – a ratio of total storage volume to multiyear annual streamflow – 

is also estimated. The attributes of the number of dams in each catchment and their cumulative storage volume were extracted 385 

and digitized from India-WRIS and the Global Reservoir and Dam Database (GRanD) (Lehner et al., 2011). The water stored 

in these dams is mainly used for urban and agricultural purposes. Since quantitative measurements of water demands are 

unavailable, we included decadal population density data (WorldPop and CIESIN, 2018) and the fraction of urban areas and 

cropland (Roy et al., 2015) as indirect measures in CAMELS-INDIA.  
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 390 

Figure 9. Attributes representing anthropogenic influences for catchments in Peninsular India. The histograms depict the frequency 

distribution of catchments across the bins. (a) total number of large and medium dams, (b) total volume content of dams, (c-d) decadal 

fraction of urban land cover in 1985 and 2005, respectively, (e) mean population density, (f-g) decadal fraction of cropland in 1985 and 

2005, respectively, and (h) reservoir index. 

The spatial distribution of large and medium dams across catchments shows significant regulation in the catchments of 395 

Cauvery, Godavari, Krishna, Mahanadi, Mahi, Narmada, and Tapi basins (Fig.9a-b). The number of dams within the 

catchment ranges from 0 to 1277, with a mean and median of 75 and 9, respectively. The total storage capacity ranges from 0 

to 59929 Mm3 with mean and median storage capacity of 3796 Mm3 and 246 Mm3, respectively. The decadal variation of the 

urban land cover and population density reveals a notable increase in urbanization within the catchments of southern India 

from 1985 to 2015 (Fig. 9c-e). Conversely, the fraction of agricultural land remains relatively constant over the same period 400 

(Fig. 9f-g). The reservoir index, indicating the impact of dams on streamflow, is higher in Godavari, Krishna, and Cauvery 

basins whereas most of the catchments in Narmada basin and Western Ghats region have lower values of reservoir index (Fig. 

9h). It is observed that majority of the dams in this region is served for irrigation purpose, whereas the dams in the southern 

part of the Peninsular region is mainly used for hydroelectric generation. 
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6. Regionally trained LSTM-based hydrological model for streamflow prediction 405 

We used a Long-Short Term Memory (LSTM)-based regional hydrological model applied to Indian catchments by Mangukiya 

et al. (2023) to predict daily streamflow for all 472 catchments. The LSTM model architecture includes an input gate, output 

gate, forget gate, and a memory cell, which enables the model to learn long-term dependencies within the input datasets 

(Hochreiter and Schmidhuber, 1997). We trained the LSTM-based regional hydrological model using daily meteorological 

time series and catchment attributes as input and predicted daily streamflow (Mangukiya et al., 2023; Mangukiya and Sharma, 410 

2024). The input data included daily meteorological time series of precipitation, maximum and minimum temperature, solar 

radiation, wind speed, and relative humidity, along with catchment attributes representing topographic, land cover, soil, and 

geological characteristics. The LSTM model was trained using a dataset from 159 catchments, ensuring a minimum data length 

of 28 years was available for each catchment between 1980 and 2020. The optimized hyperparameter values for the LSTM 

model were adopted from Mangukiya et al. (2023). The model was trained from 1 January 1991 to 31 December 2015, 415 

validated from 1 January 1980 to 31 December 1990, and tested from 1 January 2016 to 31 December 2020. In addition to 159 

catchments, we tested the LSTM model’s generalization capability to make streamflow predictions in 17 pseudo-ungauged 

catchments, which were held out during training. 

The results indicate satisfactory model performance, with a median Nash-Sutcliffe Efficiency (NSE) of 0.59 and 0.57 during 

the test and validation periods, respectively (Fig. 10a). Notably, the LSTM model achieved a median correlation of 0.8, 420 

percentage bias of -7.64, Kling-Gupta Efficiency (KGE) of 0.62, root mean squared error (RMSE) of 121.5 m3/s, low flow 

(bottom 30% of flow, FLV) bias of -1.4%, and high flow (top 2% of flow, FHV) bias of -15.72% (Fig. 10b). Additionally, we 

calculated the average RMSE of the observed and predicted flow duration curve (fdcRMSE) as an additional evaluation metric. 

The model achieved a median fdcRMSE of 127.09 m3/s. However, we observed that the LSTM model performed poorly in 

challenging catchments, such as those with a high number of dams, non-perennial catchments, and catchments in arid and 425 

semi-arid climate zones. More details on model performance and limitations can be found in Mangukiya et al. (2023). The 

LSTM-based regional hydrological model, trained on 159 catchments, was used to predict daily streamflow for all 472 

catchments from 1 January 1980 to 31 December 2020. Within CAMELS-INDIA, gauge-wise predicted streamflow series are 

provided in a compressed zip file named LSTM_pred_streamflow.zip. This predicted streamflow series is included in the 

dataset to support deep learning or machine learning-based hydrology research and can be used as a benchmark or baseline 430 

model for developing and testing hydrological models. 
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Figure 10. LSTM model performance. (a) spatial distribution of NSE, and (b) performance metrics. 

7. Preliminary assessment of dataset quality and uncertainty 

The preliminary assessment presented here focuses only on the catchment mean meteorological time series provided in 435 

CAMELS-INDIA. The precipitation and maximum and minimum temperature time series were extracted from the IMD 

dataset. The precipitation dataset from IMD is based on observation of rainfall from 6995 rain-gauge stations across India, and 

it accurately represents the spatial distribution of rainfall (Pai et al., 2014). The temperature dataset from IMD is based on 395 

quality-controlled observatories across India. Observations from these stations are converted into a gridded product with a 

spatial resolution of 1° x 1° using Shepard’s angular distance weighting method (Srivastava et al., 2009). Goteti (2023) has 440 

provided a detailed comparison of the annual precipitation series of the catchment extracted from IMD and ECMWF 

Reanalysis (ERA). The results indicated a Pearson correlation coefficient greater than 0.75 for 31 catchments and between 0.5 

to 0.75 for 331 catchments out of 472. The lower correlation was found only in the in the hilly terrain of the southwestern part 

of Peninsular India. Moreover, Mahto and Mishra (2019) also observed a general consistency between the ERA and IMD 

datasets. We extracted the meteorological time series of solar radiation, wind speed, relative humidity, and soil moisture from 445 

the IMDAA data. IMDAA data is a high-resolution regional reanalysis of India, developed by Weather and Climate Modelling 

under the Ministry of Earth Sciences, India, with increased reliability and accuracy (Rani et al., 2021; Ashrit et al., 2020). 

Figure 11a shows the Pearson correlation of catchment mean annual time series for long-wave and short-wave solar radiation, 

as well as wind speed, extracted from IMDAA and those derived from the Global Land Data Assimilation System (GLDAS) 

(Rodell et al., 2004). For the majority of catchments, the long-wave solar radiation extracted from the IMDAA dataset shows 450 

consistency with that of the GLDAS dataset, indicated by a high correlation coefficient. However, a lower correlation was 

observed for short-wave solar radiation, particularly in the hilly terrain of the Mysore Plateau and southern catchments. 

Similarly, wind speed also exhibited discrepancies in a few catchments in the southern region and in the catchments of the 

upper Eastern Ghats, lower Godavari, Mahanadi, and Brahmani and Baitarni basins. These discrepancies between the data 

sources could be attributed to the different boundary conditions and forcings that are used to simulate the climate models 455 
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(Rodell et al., 2004; Rani et al., 2021). While global reanalysis products provide a convenient data source, their relatively 

coarse resolution (e.g., 25 km grid spacing) limits their ability to accurately capture climate variations in mountainous regions. 

In contrast, IMDAA, with its 10 km resolution, provides a more detailed representation of such variations.  As demonstrated 

by Nayak et al. (2018), reanalysis products derived using Indian-specific boundary conditions and land-use data showed better 

performance in capturing meteorological patterns in hilly areas compared with GLDAS. 460 

To further evaluate the quality of the meteorological time series provided within the CAMELS-INDIA, we used it as input to 

the LSTM-based regional hydrological model (described in Section 6) and compared the model’s performance with that of 

GLDAS meteorological time series as input for approximately 200 catchments with continuous streamflow observations from 

1991 to 2015. The results indicate superior model performance when using IMDAA forcings as input compared to GLDAS 

forcings (Fig. 11b). For the majority of the catchments (165 out of 200), the model performed better with IMDAA forcings. 465 

Minor improvements (with a NSE difference of ≈0.02) were observed in 13 catchments, while performance significantly 

deteriorated in 22 catchments with GLDAS forcings. Notably, the simulated streamflow based on IMDAA forcings 

outperformed that based on GLDAS forcings, with a median percentage bias of -11.74%, low flow bias (FLV) of -19.48%, 

and high flow bias (FHV) of -18.58%, compared to -20.39%, -22.5%, and -25.22%, respectively (Fig. 11c). Overall, the 

preliminary assessment of the dataset suggests that the meteorological time series extracted from the IMD and IMDAA are the 470 

best available national data sources for Indian region, providing reliable model performance compared to global data sources.  

The preliminary results clearly demonstrated the CAMELS-INDIA dataset’s potential to significantly enhance the performance 

of hydrological applications. However, it is crucial to acknowledge that the dataset is not without its limitations. Several 

factors, including data collection methods, processing techniques, and measurement errors, can introduce uncertainties into 

the dataset. For instance, the use of diverse instruments and methodologies over time can lead to inconsistencies in 475 

measurements, particularly for variables like rainfall and streamflow. While the dataset provides catchment-average indices 

and series, the spatial resolution disparities between satellite, ground-based, and re-analysis products have a relatively limited 

impact on overall data quality. Nonetheless, gaps in data coverage and the presence of spurious values can further exacerbate 

the uncertainty. A detailed assessment and quantification of uncertainty is beyond the scope of this paper and will be addressed 

in future versions of the dataset when ground-based observations become available for public use. 480 
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Figure 11. (a) Pearson correlation coefficient between catchment mean annual time series from IMDAA and GLDAS, (b) LSTM model 

performance with IMDAA and GLDAS as inputs, and (c) Calculated performance metrics of the LSTM model with IMDAA and GLDAS 

forcing inputs. 

8. Possible future extensions 485 

The CAMELS-INDIA dataset currently provides hydrometeorological time series and catchment attributes for only 472 

catchments in peninsular India due to the availability of openly accessible and quality-controlled datasets. However, India has 

4824 catchments at present, many of which are restricted due to their location in transboundary river basins. While the 

meteorological data are available for the entire country, the primary constraint is the availability of consistent streamflow 

observations. In future versions, we aim to address this limitation by applying the conceptual or physics-based and regionally 490 

trained LSTM-based hydrological model to other locations, thereby providing simulated streamflow series for catchments 

currently classified as restricted. Additionally, we intended to leverage the streamflow series from other sources, such as 

GloFAS (Harrigan et al., 2020) and satellite altimetry (Verma et al., 2021; Rai et al., 2021) to improve the spatial coverage of 

the dataset. To ensure accuracy, these streamflow time series will be validated against ground-based measurements at selected 

stations in restricted regions. 495 
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Groundwater is a vital component of understanding hydrological extremes such as floods (Sharma and Mujumdar, 2024) and 

droughts (Hellwig et al., 2020). However, the current CAMELS-INDIA dataset is limited by the absence of ground water data. 

To address this limitation, we aim to incorporate the ground water level data available at India-WRIS Portal 

(https://indiawris.gov.in/wris/#/groundWater) and derived ground water level data from Gravity Recovery and Climate 

Experiment (GRACE) (Li et al., 2019; Moudgil and Rao, 2023; Gautam et al., 2024). The inclusion of ground water data will 500 

significantly improve the dataset’s ability to capture the complex interactions between surface and sub-surface systems, thereby 

enhancing our understanding of hydrological processes and extreme events. 

Data availability 

The CAMELS-INDIA dataset is freely available at https://doi.org/10.5281/zenodo.13221214 (Mangukiya et al., 2024), which 

includes: (1) ‘00_camels_India_data_description.pdf’ file for description of data source and reference, and file structure of 505 

dataset in the repository, (2) ‘attributes_csv.zip’ and ‘attributes_txt.zip’ files containing all static catchment attributes in CSV 

and TEXT format, (3) ‘catchment_mean_forcing.zip’ file containing catchment mean meteorological time series for each 

catchment, (4) ‘shapefiles_catchment.zip’ file containing GIS shapefiles of catchments and gauge locations, and (5) 

‘streamflow_timeseries.zip’ file containing available observed and LSTM-based hydrological model predicted streamflow 

time series for all catchments. 510 

Concluding remarks 

India has hydrologically distinct catchments, each with unique characteristics. However, Indian catchments are often 

underutilized in global hydrological studies due to insufficient analysis-ready datasets. To address this gap, we introduce 

CAMELS-INDIA (Catchment Attributes and MEteorology for Large-sample Studies – India), which provides catchment mean 

time series of meteorological variables and around 211 catchment attributes representing location and topography, climate, 515 

hydrological signatures, land-use land cover (LULC), soil and geology, and anthropogenic influences for 472 catchments in 

peninsular India. Such a dataset is essential for understanding hydrologic processes over multiple Spatiotemporal scales and 

various other applications for planning and regulating water resources in India. The CAMELS-INDIA follows the same 

standards of the previously developed CAMELS datasets for the USA, Chile, Brazil, Great Britain, Australia, Switzerland, 

and Germany to facilitate comparisons with catchments of those countries and inclusion in global hydrological studies. 520 

CAMELS-INDIA serves as a stepping stone to provide large-sample hydrometeorological time series and attributes of the 

Indian catchments to the global and national hydrological community, and we plan to update and expand the dataset with 

additional catchment attributes and meteorological forcings as new national data sources become available. For example, future 

versions of CAMELS-INDIA could include additional catchment attributes to better characterize heterogeneity and regulations 
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within each catchment. Additionally, since data uncertainties are inherent, future studies will explore this through comparisons 525 

with additional data sources. 

The creation of CAMELS-INDIA aims to foster large-sample hydrological studies in India and promote the inclusion of Indian 

catchments in global hydrological research. Furthermore, it will enhance the reproducibility and transparency of hydrological 

studies in India by providing a standardized dataset. 

Appendices 530 

 

Figure A1. A snippet of the India-WRIS portal for obtaining streamflow observations. Users can select data sources, river basins, and station 

names to download data in Excel (.xlsx) format. 

 

Figure A2. A snippet of the raw streamflow data downloaded for the ‘Garudeshwar’ gauge station for 2010. 535 
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Figure A3. (a) mean annual precipitation, (b) mean annual actual evapotranspiration, (c) mean annual potential evapotranspiration, (d) 

asynchronicity, (e) precipitation uniformity, (f) streamflow elasticity, (g) streamflow uniformity (Gini coefficient), and (h) baseflow index 

Table A1. Summary of streamflow and catchment mean meteorological time-series for a period from 01-01-1980 to 31-12-2020. 

Time series 

class 
Variable name Description Unit 

Data source / 

Reference 

Hydrological 

time series 
streamflow_observed 

available observed streamflow time 

series 
m3/s IndiaWRIS 

LSTM_pred_streamflow 

regionally trained LSTM-based 

hydrological model predicted 

streamflow time series 

m3/s 
(Mangukiya et al., 

2023) 

Meteorological 

time series 
prcp precipitation mm/day 

IMD (Pai et al., 

2014) 

tmax maximum temperature °C IMD (Srivastava et 

al., 2009) tmin minimum temperature °C 

tavg averaged temperature °C (tmax + tmin) / 2 

srad_lw 
surface downward long-wave radiation 

flux 
w/m2 

IMDAA (Rani et al., 

2021) 
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srad_sw 
surface downward short-wave radiation 

flux 
w/m2 

wind_u U-component of wind (10 m) m/s 

wind_v V-component of wind (10 m) m/s 

wind averaged wind speed (10 m) m/s √(wind_u
2
 + wind_v

2
) 

rel_hum relative humidity (2 m) % 

IMDAA (Rani et al., 

2021) 
evap_canopy evaporation rate from canopy mm/day 

evap_surface evaporation rate from the soil surface mm/day 

pet 
potential evapotranspiration (1981-

2020) 
mm/day (Singer et al., 2021) 

pet_gleam potential evapotranspiration mm/day GLEAM (Miralles et 

al., 2011) aet_gleam actual evapotranspiration mm/day 

sm_lvl1 
soil moisture of layer 1 (0-0.1 m below 

ground) 
kg/m2 

IMDAA (Rani et al., 

2021) 

sm_lvl2 
soil moisture of layer 2 (0.1-0.35 m 

below ground) 
kg/m2 

sm_lvl3 
soil moisture of layer 3 (0.35-1 m below 

ground) 
kg/m2 

sm_lvl4 
soil moisture of layer 4 (1-3 m below 

ground) 
kg/m2 

 540 

Table A2. Summary of catchment attributes representing gauge names and identifiers. 

Attribute Description Unit 
Data source / 

Reference 

gauge_id 
gauge station identifier (5-digit; first 2 digits are cwc basin code and 

last 3 digits are station number) 
-  

ghi_stn_id unique ID used to identify a station, 10 characters long - GHI (Goteti, 2023) 

cwc_site_name name of the station - CWC 

river_basin name of the river basin - CWC 

cwc_river river/tributary - CWC 

ghi_group ghi assigned group (G1 or G2) - GHI (Goteti, 2023) 

flow_availability 
percentage duration for which streamflow data is available between 

1980-2020 
% CWC 

 

Table A3. Summary of catchment attributes representing location and topography. 

Attribute Description Unit Data source / Reference 

cwc_lat latitude of the station decimal degrees CWC 
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cwc_lon longitude of the station decimal degrees CWC 

ghi_lat latitude of the ghi relocated station decimal degrees GHI (Goteti, 2023) 

ghi_lon longitude of the ghi relocated station decimal degrees GHI (Goteti, 2023) 

elev_mean catchment mean elevation m SRTM DEM 90m 

elev_median catchment median elevation m SRTM DEM 90m 

elev_min catchment min elevation m SRTM DEM 90m 

elev_max catchment max elevation m SRTM DEM 90m 

slope_mean catchment mean slope % SRTM DEM 90m 

slope_median catchment median slope % SRTM DEM 90m 

slope_min catchment min slope % SRTM DEM 90m 

slope_max catchment max slope % SRTM DEM 90m 

cwc_area catchment drainage area km2 CWC 

ghi_area catchment drainage area km2 GHI (Goteti, 2023) 

gauge_elevation elevation of the gauging station m SRTM DEM 90m 

dpsbar catchment mean drainage path slope m/km SRTM DEM 90m 

 

Table A4. Summary of catchment attributes representing climate indices computed from 01-01-1980 to 31-12-2020. 545 

Attributes Description Unit 
Data Source / 

Reference 

p_mean mean daily precipitation mm/day IMD 

p_max maximum daily precipitation mm/day IMD 

p_mean_anum annual average total precipitation mm IMD 

p_monthly_variability 
variation in precipitation patterns throughout the year (higher 

values indicate greater variation) 
- IMD 

p_annual_variability 
variation in annual precipitation patterns (higher values indicate 

greater variation) 
- IMD 

p_unif 

how uniformly the precipitation is distributed in a year, 0 if the 

annual maximum precipitation is uniformly distributed 

throughout the year, 1 if the annual maximum precipitation 

occurs in a single day 

- IMD 

high_prec_freq 
frequency of high precipitation days (≥ 5 times the mean daily 

precipitation) 
days/year IMD 

high_prec_dur 
average duration of high precipitation events (number of 

consecutive days ≥ 5 times the mean daily precipitation) 
days IMD 

max_high_prec_dur 
maximum number of consecutive days with precipitation ≥ 5 

times the mean daily precipitation 
days IMD 

high_prec_timing 
season during which most high precipitation days (≥ 5 times the 

mean daily precipitation) occur 
season IMD 

low_prec_freq frequency of dry days (precipitation < 1 mm/day) days/year IMD 
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low_prec_dur 
average duration of dry periods (number of consecutive days < 1 

mm/day) 
days IMD 

max_low_prec_dur 
maximum number of consecutive days with precipitation < 1 

mm/day 
days IMD 

low_prec_timing Season during which most dry days (< 1 mm/day) occur season IMD 

asynchronicity 

asynchronicity between the annual precipitation and PET cycles, 

where high values represent high relative magnitude and phase 

differences 

- 
(Feng et al., 

2019) 

tmin_mean mean daily minimum temperature °C IMD 

tmax_mean mean daily maximum temperature °C IMD 

pet_mean mean daily potential evapotranspiration mm/day 
(Singer et al., 

2021) 

pet_min minimum daily potential evapotranspiration mm/day 
(Singer et al., 

2021) 

pet_max maximum daily potential evapotranspiration mm/day 
(Singer et al., 

2021) 

pet_mean_anum annual average total potential evapotranspiration mm 
(Singer et al., 

2021) 

pet_gleam_mean mean daily average potential evapotranspiration 
mm/day 

(Miralles et al., 

2011) 

aet_gleam_mean mean daily average actual evapotranspiration 
mm/day 

(Miralles et al., 

2011) 

evap_canopy_mean mean daily evaporation rate from the canopy mm/day IMDAA 

evap_canopy_min minimum daily evaporation rate from the canopy mm/day IMDAA 

evap_canopy_max maximum daily evaporation rate from the canopy mm/day IMDAA 

evap_canopy_anum annual average total evaporation from the canopy mm IMDAA 

evap_surface_mean mean daily evaporation rate from the soil surface mm/day IMDAA 

evap_surface_min minimum daily evaporation rate from the soil surface mm/day IMDAA 

evap_surface_max maximum daily evaporation rate from the soil surface mm/day IMDAA 

evap_surface_anum annual average total evaporation from the soil surface mm IMDAA 

aridity_p_pet 
aridity index (P/PET; ratio of mean annual precipitation over the 

mean annual potential evapotranspiration)  
-  

aridity_pet_aet 

aridity index [(PET-AET)/PET; a ratio of the deficit between 

potential and actual evapotranspiration over potential 

evapotranspiration] 

-  

ai_mean spatially averaged aridity index of the catchment - 
(Trabucco and 

Zomer, 2018) 

rel_hum_mean mean daily relative humidity (2 m) % IMDAA 

srad_lw_mean mean daily surface downward long-wave radiation flux w/m2 IMDAA 

srad_sw_mean mean daily surface downward short-wave radiation flux w/m2 IMDAA 

wind_mean mean daily wind speed (10 m) m/s IMDAA 

sm_lvl1_mean mean daily soil moisture in layer 1 (0-0.1 m below ground) kg/m2 IMDAA 
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sm_lvl2_mean mean daily soil moisture in layer 2 (0.1-0.35 m below ground) kg/m2 IMDAA 

sm_lvl3_mean mean daily soil moisture in layer 3 (0.35-1 m below ground) kg/m2 IMDAA 

sm_lvl4_mean mean daily soil moisture in layer 4 (1-3 m below ground) kg/m2 IMDAA 

 

Table A5. Summary of catchment attributes representing hydrological signatures computed for 01-01-1980 to 31-12-2015. 

Attributes Description Unit 
Data Source / 

Reference 

q_mean mean daily streamflow of the catchment mm/day IndiaWRIS 

runoff_ratio 
runoff ratio (ratio of mean daily streamflow to the mean 

daily precipitation of catchment) 
-  

streamflow_elas 

streamflow precipitation elasticity (i.e., the sensitivity of 

streamflow to changes in precipitation at the annual 

timescale, using the mean daily discharge as reference) 

- 

Eq. (7) in 

(Sankarasubramani

an et al., 2001) 

slope_fdc 
slope of the flow duration curve between the log-

transformed 33rd and 66th streamflow percentiles 
- (Addor et al., 2017) 

bfi 

baseflow index, computed as the ratio of mean daily 

baseflow to mean daily discharge, with the hydrograph 

separation performed using the Ladson et al. (2013) digital 

filter 

-  

q_cv 
variability of daily streamflow values (coefficient of 

variation) 
% IndiaWRIS 

q_10 
first decile of mean daily streamflow (the value below 

which 10% of the observations fall) 
mm/day IndiaWRIS 

q_25 
first quartile of mean daily streamflow (the value below 

which 25% of the observations fall) 
mm/day IndiaWRIS 

q_50 
median of mean daily streamflow (the value below which 

50% of the observations fall) 
mm/day IndiaWRIS 

q_75 
third quartile of mean daily streamflow (the value below 

which 75% of the observations fall) 
mm/day IndiaWRIS 

q_90 
90th percentile of mean daily streamflow (the value below 

which 90% of the observations fall; High flows) 
mm/day IndiaWRIS 

q_zero frequency of days with zero flow days/year IndiaWRIS 

q_low_days 
mean number of consecutive days with flow less than 25th 

percentile mean daily flow 
days IndiaWRIS 

freq_q_low 
frequency of days with low flows (flow less than 25th 

percentile mean daily flow) 
days/year IndiaWRIS 

q_high_days 
mean number of consecutive days with a flow more than the 

95th percentile mean daily flow 
days IndiaWRIS 

freq_q_high 
frequency of days with high flows (flow more than 95th 

percentile mean daily flow) 
days/year IndiaWRIS 

annual_q mean annual flow volume in the catchment MCM/year IndiaWRIS 

mean_anum_flow 
mean annual flow volume in the catchment (computed for 

1950 to 2020) 
MCM/year GHI (Goteti, 2023) 

cen_time 
centre timing, corresponds to day of the year (doy) at which 

50% of annual flow is reached 
Day  
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gini_flow 

uniformity of flow over the days in a year; 0 indicates equal 

flow throughout the year, and 1 indicates all flow occurred 

in a single day 

-  

annual_max_1day mean annual 1-day maximum flow m3/s IndiaWRIS 

annual_max_3day mean annual 3-day maximum flow m3/s IndiaWRIS 

annual_max_7day mean annual 7-day maximum flow m3/s IndiaWRIS 

annual_max_30day mean annual 30-day maximum flow m3/s IndiaWRIS 

annual_max_90day mean annual 90-day maximum flow m3/s IndiaWRIS 

annual_min_7day mean annual 7-day minimum flow m3/s IndiaWRIS 

month_1day_max month of 1-day maximum flow for the majority of the years 
calendar 

month 
IndiaWRIS 

month_1day_min month of 1-day minimum flow for the majority of the years 
calendar 

month 
IndiaWRIS 

doy_min_flow 
the day of the year (doy) at which minimum streamflow 

occurred 
Day  

doy_max_flow 
the day of the year (doy) at which maximum streamflow 

occurred 
Day  

doy_min_flow_7 
the day of the year (doy) at which minimum 7-day 

streamflow occurred 
Day  

doy_max_flow_7 
the day of the year (doy) at which maximum 7-day 

streamflow occurred 
Day  

mean_jan_flow 
mean monthly flow volume of January in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_feb_flow 
mean monthly flow volume of February in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_mar_flow 
mean monthly flow volume of March in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_apr_flow 
mean monthly flow volume of April in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_may_flow 
mean monthly flow volume of May in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_jun_flow 
mean monthly flow volume of June in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_jul_flow 
mean monthly flow volume of July in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_aug_flow 
mean monthly flow volume of August in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_sep_flow 
mean monthly flow volume of September in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_oct_flow 
mean monthly flow volume of October in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_nov_flow 
mean monthly flow volume of November in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

mean_dec_flow 
mean monthly flow volume of December in the catchment 

(computed for 1950 to 2020) 
MCM/month GHI (Goteti, 2023) 

cv_jan_flow variability of daily streamflow values in January  % IndiaWRIS 

cv_feb_flow variability of daily streamflow values in February % IndiaWRIS 
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cv_mar_flow variability of daily streamflow values in March % IndiaWRIS 

cv_apr_flow variability of daily streamflow values in April % IndiaWRIS 

cv_may_flow variability of daily streamflow values in May % IndiaWRIS 

cv_jun_flow variability of daily streamflow values in June % IndiaWRIS 

cv_jul_flow variability of daily streamflow values in July % IndiaWRIS 

cv_aug_flow variability of daily streamflow values in August % IndiaWRIS 

cv_sep_flow variability of daily streamflow values in September % IndiaWRIS 

cv_oct_flow variability of daily streamflow values in October % IndiaWRIS 

cv_nov_flow variability of daily streamflow values in November % IndiaWRIS 

cv_dec_flow variability of daily streamflow values in December % IndiaWRIS 

mean_swmn_flow 

mean flow volume of the southwest monsoon season (June, 

July, Aug, Sept) in the catchment (computed for 1950 to 

2020) 

MCM/season GHI (Goteti, 2023) 

mean_atmn_flow 
mean flow volume of autumn/retreating monsoon season 

(Oct, Nov) in the catchment (computed for 1950 to 2020) 
MCM/season GHI (Goteti, 2023) 

mean_wint_flow 
mean flow volume of the winter season (Dec, Jan, Feb) in 

the catchment (computed for 1950 to 2020) 
MCM/season GHI (Goteti, 2023) 

mean_sumr_flow 
mean flow volume of the summer season (Mar, Apr, May) 

in the catchment (computed for 1950 to 2020) 
MCM/season GHI (Goteti, 2023) 

q_mean_swmn 
mean daily streamflow of the southwest monsoon season 

(June, July, Aug, Sept) in a catchment 
mm/day IndiaWRIS 

q_5_swmn 
5th percentile of daily streamflow in southwest monsoon 

season (June, July, Aug, Sept) 
mm/day IndiaWRIS 

q_25_swmn 
first quartile of daily streamflow in southwest monsoon 

season (June, July, Aug, Sept) 
mm/day IndiaWRIS 

q_50_swmn 
median of daily streamflow in southwest monsoon season 

(June, July, Aug, Sept) 
mm/day IndiaWRIS 

q_75_swmn 
third quartile of daily streamflow in southwest monsoon 

season (June, July, Aug, Sept) 
mm/day IndiaWRIS 

q_95_swmn 
95th percentile of daily streamflow in southwest monsoon 

season (June, July, Aug, Sept) 
mm/day IndiaWRIS 

rise_rate_mean 
mean of all positive differences between consecutive daily 

flows 
m3/s IndiaWRIS 

rise_rate_median 
median of all positive differences between consecutive daily 

flows 
m3/s IndiaWRIS 

rise_days 
mean number of days in a year with positive differences 

between consecutive daily flows 
days/year IndiaWRIS 

fall_rate_mean 
mean of all negative differences between consecutive daily 

flows 
m3/s IndiaWRIS 

fall_rate_median 
median of all negative differences between consecutive 

daily flows 
m3/s IndiaWRIS 

fall_days 
mean number of days in a year with negative differences 

between consecutive daily flows 
days/year IndiaWRIS 

num_hyd_alt 
mean number of hydrologic reversals in a year (change 

from rise to fall) 
- IndiaWRIS 
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Table A6. Summary of catchment attributes representing land cover characteristics. 

Attributes Description Unit Data Source / Reference 

water_frac water cover fraction (2017 - 2022) - 
ESRI land cover 

(Karra et al., 2021) 

trees_frac trees cover fraction (2017 - 2022) - ESRI land cover 

flooded_veg_frac flooded vegetation fraction (2017 - 2022) - ESRI land cover 

crops_frac crop cover fraction (2017 - 2022) - ESRI land cover 

built_area_frac urban cover fraction (2017 - 2022) - ESRI land cover 

bare_frac bare cover fraction (2017 - 2022) - ESRI land cover 

range_frac range cover fraction (2017 - 2022) - ESRI land cover 

dom_land_cover dom_land cover type (2017 - 2022) - ESRI land cover 

dom_land_cover_frac dom_land cover fraction (2017 - 2022) - ESRI land cover 

lai_mean catchment mean leaf area index (2001-2020) - 

MODIS MCD15A2H 

(Myneni et al., 2015)  

lai_min minimum leaf area index (2001-2020) - 

lai_max maximum leaf area index (2001 - 2020) - 

lai_diff 
difference between maximum and minimum leaf 

area index (2001 - 2020) 
- 

 550 

Table A7. Summary of catchment attributes representing soil characteristics. 

Attributes Description Unit 
Data Source / 

Reference 

soil_depth mean soil and sedimentary-deposit thickness m (Pelletier et al., 2016) 

soil_conductivity_top 
mean saturated hydraulic conductivity of topsoil (30 - 

200 cm) 
cm/day 

HiHydroSoil v2 

(Simons et al., 2020) 

soil_conductivity_sub 
mean saturated hydraulic conductivity of subsoil (0 - 30 

cm) 
cm/day HiHydroSoil v2 

soil_awc_top mean available water content of topsoil (30 - 200 cm) m3/m3 HiHydroSoil v2 

soil_awc_sub mean available water content of subsoil (0 - 30 cm) m3/m3 HiHydroSoil v2 

soil_awsc_min minimum available water storage capacity of the soil mm/m FAO Soil Data 

soil_awsc_max maximum available water storage capacity of the soil mm/m FAO Soil Data 

soil_awsc_major 
available water storage capacity of the soil for the 

majority part of the catchment 
mm/m FAO Soil Data 

sand_frac_top 
fraction of sand in topsoil (0 - 30 cm) for the majority 

of the catchment area 
%wt 

HWSD v2 

(FAO and IISA, 2023) 

sand_frac_sub 
fraction of sand in subsoil (30 - 100 cm) for the 

majority of the catchment area 
%wt HWSD v2 

silt_frac_top 
fraction of silt in topsoil (0 - 30 cm) for the majority of 

the catchment area 
%wt HWSD v2 

silt_frac_sub 
fraction of silt in subsoil (30 - 100 cm) for the majority 

of the catchment area 
%wt HWSD v2 
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clay_frac_top 
fraction of clay in topsoil (0 - 30 cm) for the majority of 

the catchment area 
%wt HWSD v2 

clay_frac_sub 
fraction of clay in subsoil (30 - 100 cm) for the majority 

of the catchment area 
%wt HWSD v2 

gravel_frac_top 
fraction of gravel in topsoil (0 - 30 cm) for the majority 

of the catchment area 
%vol HWSD v2 

gravel_frac_sub 
fraction of gravel in subsoil (30 - 100 cm) for the 

majority of the catchment area 
%vol HWSD v2 

bulkdens_top_major 
reference bulk density of topsoil (0 - 30 cm) for the 

majority of the catchment area 
kg/dm3 HWSD v2 

bulkdens_top_mean mean reference bulk density of topsoil (0 - 30 cm) kg/dm3 HWSD v2 

bulkdens_sub_major 
reference bulk density of subsoil (30 - 100 cm) for the 

majority of the catchment area 
kg/dm3 HWSD v2 

bulkdens_sub_mean mean reference bulk density of subsoil (30 - 100 cm) kg/dm3 HWSD v2 

org_carb_top_major 
organic carbon content in topsoil (0 - 30 cm) for the 

majority of the catchment area 
%wt HWSD v2 

org_carb_top_mean mean organic carbon content in topsoil (0 - 30 cm) %wt HWSD v2 

org_carb_sub_major 
organic carbon content in subsoil (30 - 100 cm) for the 

majority of the catchment area 
%wt HWSD v2 

org_carb_sub_mean mean organic carbon content in subsoil (30 - 100 cm) %wt HWSD v2 

organic_frac_top 
mean fraction of organic matter content in topsoil (30 - 

200 cm) 
- 

HiHydroSoil v2 

(Simons et al., 2020) 

organic_frac_sub 
mean fraction of organic matter content in subsoil (0 - 

30 cm) 
- HiHydroSoil v2 

hsg_major 
hydrological soil group for the majority of the 

catchment area 
- HiHydroSoil v2 

wtd catchment mean water table depth m (Fan et al., 2013) 

 

Table A8. Summary of catchment attributes representing geological characteristics. 

Attributes Description Unit Data Source / Reference 

geol_porosity mean subsurface porosity - 
GLHYMPS 

(Gleeson et al., 2014) 

geol_permeability mean subsurface permeability m2 GLHYMPS 

geol_class_1st most common geological class in a catchment - 
GLiM 

(Hartmann and Moosdorf, 2012) 

geol_class_1st_frac 
fraction of catchment area associated with its most 

common geological class 
- GLiM 

geol_class_2nd 
second most common geological class in the 

catchment 
- GLiM 

geol_class_2nd_frac 
fraction of catchment area associated with its second 

most common geological class 
- GLiM 

carb_rocks_frac 
fraction of catchment area characterized as 

"carbonated sedimentary rocks" 
- GLiM 

 

Table A9. Summary of catchment attributes representing anthropogenic influences. 555 
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Attributes Description Unit 
Data Source / 

Reference 

num_dams total number of large and medium dams in catchments - IndiaWRIS 

res_store_sum sum of total volume content of dams within the catchment 103 m3 IndiaWRIS 

n_dams total number of dams in a catchment - 
GRaND 

(Lehner et al., 2011) 

first_dam_year year of construction of the first dam - GRaND 

latest_dam_year year of construction of the recent dam - GRaND 

total_storage total storage of the reservoirs m3 GRaND 

reservoir_index ratio of total storage to multi-year annual streamflow - GRaND 

irrigation_frac percentage of dams used for irrigation - GRaND 

hydroelec_frac percentage of dams used for hydroelectric generation - GRaND 

drinking_frac percentage of dams used for drinking - GRaND 

flood_frac percentage of dams used for flood storage - GRaND 

overflow_frac percentage of dams used for overflow control - GRaND 

navigation_frac percentage of dams used for navigation - GRaND 

tailings_frac 
percentage of dams used for tailings (storing by products of 

mining operations) 
- GRaND 

pop_density_2000 averaged population density of the catchment in 2000 people/km2 

data.humdata.org 

(WorldPop and 

CIESIN, 2018) 

pop_density_2005 averaged population density of the catchment in 2005 people/km2 data.humdata.org 

pop_density_2010 averaged population density of the catchment in 2010 people/km2 data.humdata.org 

pop_density_2015 averaged population density of the catchment in 2015 people/km2 data.humdata.org 

pop_density_2020 averaged population density of the catchment in 2020 people/km2 data.humdata.org 

urban_frac_1985 fraction of urban land cover in a catchment in 1985 - (Roy et al., 2015) 

urban_frac_1995 fraction of urban land cover in a catchment in 1995 - (Roy et al., 2015) 

urban_frac_2005 fraction of urban land cover in a catchment in 2005 - (Roy et al., 2015) 

crops_frac_1985 fraction of cropland land cover in a catchment in 1985 - (Roy et al., 2015) 

crops_frac_1995 fraction of cropland land cover in a catchment in 1995 - (Roy et al., 2015) 

crops_frac_2005 fraction of cropland land cover in a catchment in 2005 - (Roy et al., 2015) 
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