
Response to Reviewer 1  

Comments to the Author:  

This study presents a high-resolution rice distribution map in Africa using an innovative 

approach that combines time-series optical and SAR data. Given the limitations of current rice 

distribution products in this region, this study will provide a valuable product for monitoring 

rice cultivation in African. This product can contribute to assessing food security and the 

sustainability of rice production in African, such as the evaluation of rice yield and GHGs 

emission. However, there are several major comments that needed to be addressed: 

RESPONSE: Thank you very much for your appreciation of our work. 

1. Please provide the full form of all abbreviations when they first appear, such as SAR, 

to ensure clarity for readers. 

RESPONSE: Thanks for pointing it out. They are revised in the manuscript. 

Line 14 Synthetic Aperture Radar (SAR) 

Line 60-61 Land Surface Water Index (LSWI) and Enhanced Vegetation Index (EVI) 

Line 116-117 FAO (Food and Agriculture Organization of the United Nations) 

Line 144-145 NDWI (Normalized Difference Water Index) and NDVI (Normalized Difference 

Vegetation Index) 

Line 152 European Space Agency's (ESA) 

Line 245 GRD (Ground Range Detected) data) 

Line 265 UN (United Nations) 

Line473-474 SDGs (Sustainable Development Goals) 

 

2. Section 2.2.1: More details are needed on the criteria used for image screening. 

RESPONSE: Thanks for your suggestion. Details are added in the manuscript. 

Line 142-147 



The main data sources in the study are time-series SAR data and optical data for their high 

temporal and spatial coverage. Specifically, the monthly average VH and VV data of Sentinel-

1 satellite for the whole year of 2023 were obtained as SAR data input on the GEE platform. 

Because rice is sensitive to NDWI (Normalized Difference Water Index) and NDVI 

(Normalized Difference Vegetation Index)(De Lima et al., 2021; Zhang et al., 2019), the 

monthly average B3, B4, B8, and B8A band data of Sentinel-2 satellite for the whole year of 

2023 were obtained as optical data input to composite NDWI and NDVI. 

 

3. Section 2.2.4: Is it appropriate to distinguish the distribution of single- and double-

season rice in 2023 using a crop type dataset in 2017? My main concern is that the 

planting area of single- and double-season rice in Africa have expanded rapidly in 

recent years. 

RESPONSE: Thanks for your comment. This could be a problem as we mention it in 4.3 and 

sorry for the confusion that it is not well explained in the manuscript. Explanation is added in 

discussion part. 

Line 442-450: 

Another potential problem is when comparing with statistic data, the administrative distribution data of 

rice planting intensity in RiceAtlas product is utilized to calculate the planting area from the paddy area 

of the mapping result. This dataset of year 2017 could lead to gaps between calculated planting area with 

actual planting area and that with statistical data since rice cultivation expands rapidly in recent years as 

mentioned in section 4.3. However, there is no up-to-date dataset of rice intensity in Africa. And other 

datasets including rice intensity in Africa like GCI (Global Cropping Intensity) from year 2001 to 2019 

(Liu et al., 2021), and GCI30(Zhang et al., 2021) from year 2016 to 2018, are pixel-level datasets, which 

are assumed to change more than administrative-level data over time. Therefore, RiceAtlas is chosen as 

the rice intensity source to balance consistency and data availability. Nevertheless, more up-to-data 

intensity data can provide more insight into the rice planting status in Africa. 

 

4. Section 3.1: How was the quality of screened samples assessed, and how are these 

samples distributed? 

RESPONSE: Thanks for your comment and sorry for the confusion. The “screening” process 

is part of visual interpretation. The visual interpretation is conducted referring to the 

intersections of the rice grid map from CROPGRIDS, cropland distribution maps, 



corresponding optical imagery and the fast coarse positioning feature (R: VHmax, G: VHmin, 

B: VHvariance), as described in section 3.1.1. 

 

5. The accuracy of the rice distribution map highly depends on image segmentation. 

Please explain the reason for choosing bands such as B3, B4, B8 and B8A for image 

segmentation, and provided results demonstrating the image segmentation. 

RESPONSE: Thanks for your comment. The reason to choose band B3, B4, B8 and B8A is 

added in the manuscript, as explained in response to comment 2. The effect of image 

segmentation is presented in Fig. 8, and explained in Line 277-280. 

Line 278-280 

Additionally, the mean values calculated from object-based segmentation of optical imagery 

improved the representation of SAR image noise and fragmented plots while preserving clear 

boundaries. 



 

Figure 8. Example of pseudo-color composites using selected time-series SAR features: (a) optical image(From 

©Google Earth) (b) pseudo-color composite 1 (R: VH_min, G: VH_variance, B: VH_mean) (c) mean values 

of pseudo-color composite 1 overlaid on the object-based segmentation result from NDVI time series (d) 

pseudo-color composite 2 (R: VV_variance, G: VV_mean, B: PRVI_mean); (e) mean values of pseudo-color 

composite 2 overlaid on the object-based segmentation result from NDVI time series. 



6. If more reliable rice samples can be obtain based on fast coarse positioning and 

ancillary data, is it possible to map rice distribution directly using this method? 

Additionally, after SAR features screening, can rice paddy be distinguished from 

similar elements such as wetland? 

RESPONSE: Thanks for your comment. Reliable samples are essential in rice mapping when 

supervised classification is involved. So it is possible to map rice distribution directly using this 

method if there are more reliable rice samples. In fact, the fast coarse positioning strategy is 

proposed to tackle the problem of lacking reliable rice samples of Africa.  

As for the second question, it is hard to distinguish rice paddy from similar elements such as 

wetland. Actually, we conducted experiments to perform unsupervised classification using the 

same SAR features hoping to distinguish rice paddy from other ground objects even generate 

rice samples automatically, but the result was not ideal. Therefore the sample construction still 

relies on visual interpretation. The fast coarse positioning strategy improves the efficiency of 

visual interpretation greatly. 

 

7. The structure of the methods is confusing, and the description of the methodology is 

unclear. This section required further improved. 

RESPONSE: Thanks for your comment. This section is rewritten. 

The flowchart is refined. “SAMPLE SET MAKING” is changed into “SAMPLE SET 

CONSTRUCTION”, and “Fast Coarse Location” is changed into “Fast Coarse Positioning” 

 
Figure 4. Flowchart of the proposed rice mapping method (Optical images are from ©GoogleEarth) 

Line 174-189: 



The workflow for mapping the spatial distribution of rice in Africa at a 20-meter resolution is depicted 

in Fig. 4. The study adopts a multi-source time-series data approach combined with a supervised classifier 

to achieve large-scale, high-resolution mapping of rice distribution in Africa. The workflow is primarily 

divided into two main stages: sample set construction and object-based classification guided by feature 

importance. 

During the sample set construction phase, visual interpretation is conducted referring to ESA WorldCover 

cropland data, CROPGRIDS rice grid map, and optical image, with statistical features from VH time-

series aiding in the fast coarse positioning of potential rice-growing regions. 

During the classification phase, classification experiments were conducted in every country separately. 

Object-based segmentation is first performed on optical images to obtain super-pixel results, which helps 

mitigate the effects of speckle in SAR imagery, enhances classification accuracy, and better captures the 

complex spatial patterns of rice fields. The mean values of SAR data (VH, VV) and various radar 

vegetation indices derived from SAR data within these super-pixels are then used as input features. A 

random forest classifier is applied to train the model, which gives ranks of the importance of the input 

features. The most important features of different sub-regions of Africa are selected for a subsequent 

classification to produce the rice paddy distribution map. Finally, accuracy validation is conducted using 

statistical data and validation datasets. 

3.1 Sample set construction: fast coarse positioning aided visual interpretation 

 

8. The figures and tables need better organization. For instance, there are overlaps 

between Table5 and Fig7, and some figures, such as fig.12, are missing horizontal or 

vertical axes. 

RESPONSE: Thanks for pointing it out. They are revised in the manuscript. 

The overlap between Table5 and Fig7 is deleted. 

Fig. 12 is refined.  

   

Figure 12. The linear fitting results between the 2023 rice planting area derived from this study and the 

existing statistical data, with mapping results as the x-axis and existing statistical data as the y-axis. The red 

dashed line represents the y = x line. (a) fitting results for all 34 countries, (b) fitting results for 30 countries 



after excluding those with missing data from the CARD dataset (c) fitting results for 27 countries after 

excluding those with missing data from the USDA dataset. 

 

Legends of Fig.15 are modified. 

 

Figure 15. Comparison of current rice planting areas and 2030 targets for CARD countries 

 

9. The discussion section should be strengthened, especially by comparing the methods 

in this study with those used in other studies, and the implications of the rice 

distribution map for Africa should also be emphasized further. 

RESPONSE: Thanks for your thorough suggestion. This part is revised accordingly. 

Line 422-462: 

5.1 Strengths and limitations 

To produce large-scale, high-resolution rice distribution maps across Africa, this study proposed a 

method effectively combining Sentinel-1 SAR and Sentinel-2 optical imagery, addressing key challenges 



in sample collection and classification. By leveraging time-series statistical features from Sentinel-1 VH 

data for initial fast coarse positioning of potential rice-planting areas and complementing this with visual 

interpretation using auxiliary datasets, the study efficiently generates reliable samples. During the 

classification phase, the approach integrates object-based segmentation results from Sentinel-2 optical 

time-series data with feature importance guided Random Forest classification results from Sentinel-1 

SAR time-series data. This combination enhances the precision of rice paddy boundaries and reduces 

noise in heterogeneous landscapes, showing a significant improvement than pixel based method. 

Additionally, the proposed method requires no phenology information, allowing for a more adaptable 

mapping process across diverse rice-growing regions like Africa, avoiding the inaccuracies that arise 

from seasonal variability and diverse planting practices, which are common challenges in phenology-

based methods. Collectively, these strengths underscore the method's robustness, efficiency, and 

scalability, positioning it as a reliable tool for high-resolution agricultural monitoring across Africa. 

Despite these strengths, the study acknowledges limitations related to the SNIC algorithm, particularly 

in the calibration of key parameters—seed distance and neighbourhood size, which affects the size and 

definition of segmented objects. In this study, it was primarily achieved through a process of trial and 

visual inspection. While this method provided a practical solution within the context of this research, the 

robustness of the method needs to be further strengthened. Future research should focus on developing 

more systematic approaches to parameter optimization. This could involve the use of automated tuning 

algorithms or machine learning techniques that adjust parameters dynamically based on the 

characteristics of the input data, thereby improving the accuracy, consistency, and scalability of the 

segmentation process. 

Another potential problem is when comparing with statistic data, the administrative distribution data of 

rice planting intensity in RiceAtlas product is utilized to calculate the planting area from the paddy area 

of the mapping result. This dataset of year 2017 could lead to gaps between calculated planting area with 

actual planting area and that with statistical data since rice cultivation expands rapidly in recent years as 

mentioned in section 4.3. However, there is no up-to-date dataset of rice intensity in Africa. And other 

datasets including rice intensity in Africa like GCI (Global Cropping Intensity) from year 2001 to 2019 

(Liu et al., 2021), and GCI30 from year 2016 to 2018, are pixel-level datasets, which are assumed to 

change more than administrative-level data over time. Therefore, RiceAtlas is chosen as the rice intensity 



source to balance consistency and data availability. Nevertheless, more up-to-data intensity data can 

provide more insight into the rice planting status in Africa. 

5.2 Enlightenment and implications 

The experiment result highlights regional variations in the importance of specific features for rice 

mapping across Africa. Despite these variations, temporal statistical features from SAR data—

particularly VH, VV, and PRVI—consistently demonstrated their utility in capturing the temporal 

dynamics of rice cultivation. By further exploring and experimenting with these temporal SAR features, 

future studies could refine rice detection models to be more sensitive to regional differences and temporal 

changes in Africa. This could involve integrating these features with additional data sources, such as 

optical imagery or other environmental variables, to create more robust and comprehensive mapping 

models.  

The rice distribution map generated in this study has significant implications for agricultural monitoring 

and food security across Africa. By providing an accurate baseline for rice distribution, this study 

supports government and research initiatives focused on food resource management, land use planning, 

and climate impact assessments. Unlike current rice mapping studies in Africa, which have been 

constrained by limited spatial resolution and are primarily represented as gridded data, this approach 

offers a reliable, scalable framework that aligns with Africa’s need for consistent agricultural data. 

 

10. Some references are incorrect, such as those in lines 61 and 189, and should be 

corrected. 

RESPONSE: Thanks for pointing it out. Style of all references is revised in the manuscript. 
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