
Dynamic Analysis for Model Integration (Extended Abstract)
Andreas Fuhr, Tassilo Horn, Volker Riediger

University of Koblenz-Landau
{afuhr,horn,riediger}@uni-koblenz.de

Abstract
In reengineering, legacy systems have to be analyzed from
different viewpoints. Models dealing with certain aspects
of a system are used for that purpose, most of which are
generated by fact extractors and parsers.

Since all of those models describe certain aspects of the
same system, they have to be integrated with each other to
allow a comprehensive analysis of the system as a whole.

This paper presents an approach using dynamic anal-
ysis to identify and manifest relationships between static
model elements. It exemplifies the approach by integrating
a business process model with a source code model.

1 Introduction
In reengineering, a comprehensive understanding of
legacy systems has to be gathered. For that purpose, a
consistent model dealing with all relevant aspects has to
be created by integrating a multitude of different models
generated by fact extractors, parsers or created manually.

In the SOAMIG project1, a model-driven migration ap-
proach towards SOAs, including supporting tools and tech-
niques, is being developed.

With SOA, there is an emphasis on business processes.
By interviewing the developers and users of the system to
be migrated, a business process model is created. It en-
compasses all functionality provided by the system from a
subject-specific logical viewpoint.

Legacy source code is another central model. There are
no links between the code and process model, but when
migrating to services, it is crucial to be able to assign parts
of the legacy system’s code to activities in the business
process model, in order to find service candidates.

It is hard to integrate these models using static analysis,
because no uniform conventions are applied in both mod-
els which a heuristic approach could exploit. So dynamic
analysis was chosen to map business processes to code re-
alizing them. A similar approach using dynamic analysis
for feature identification has already been described in [2].
In contrast to that approach, this paper will focus on map-
ping business processes to code.

2 The SOAMIG Repository
In the SOAMIG project, all models are contained in a cen-
tral fact repository managed by two backends: the TGraph
library JGraLab2 and the Flow Graph Manipulator by pro
et con3. In this paper, the focus is on the former.

TGraphs are directed, typed, attributed and ordered
graphs, which proven their applicability in several reengi-
1 SOAMIG (http://www.soamig.de) is funded by the Ministry of Educa-
tion and Research (01IS09017C)

2 http://jgralab.uni-koblenz.de 3 http://www.proetcon.de

neering projects [1]. The graph library JGraLab provides
an efficient API for accessing and manipulating TGraphs,
including the powerful query language GReQL.

Each TGraph conforms to a metamodel of a class of
TGraphs. In the project, a metamodel encompassing all
relevant aspects of the system has been created. This paper
focuses on two main parts: legacy Java source code and
business processes.

Java Source Code. The legacy system is written in Java,
so the overall metamodel includes a part describing the
complete abstract syntax of Java. The project partner pro et
con provides a parser which generates TGraphs conform-
ing to that metamodel out of source, class and jar files.

Business Processes. The business process part of the in-
tegrated metamodel is defined by a subset of UML activity
diagrams. A converter for transforming activity diagrams
exported as XMI [3] into a TGraph conforming to the in-
tegrated metamodel has been developed.

Traceability Links. The integrated metamodel intro-
duces several traceability link classes defined between “ac-
tivity” from the business process part and “method” and
“class” in the Java part.

The task for the dynamic analysis is to create traceabil-
ity link instances connecting activities in the static busi-
ness process model with methods and classes in the static
source code model.

3 Dynamic Analysis
The setting of the dynamic analysis is depicted in Figure 1.
The SOAMIG Repository is a TGraph conforming to the

SOAMIG
Repository

AspectJ
Traceing

Log-File

Load
business

processes

Log execution of business processes

Log behavior of legacy system

Create trace links

2

1

3

4

Trace 
Analyzer

Log
Server

Legacy
System

Business
Process
Tracer

Manifest actual activity sequence

Instrument legacy system

Figure 1: The setting of the dynamic analysis

integrated metamodel. It contains two isolated static mod-
els: the business process model which was created man-
ually and the source code model generated by a parser.
However, both models form completely isolated partitions
in the graph. These are then integrated by connecting their



elements using traceability links. For that purpose, a Busi-
ness Process Tracer (1) is run in parallel to the instru-
mented Legacy System (2). Both components emit mes-
sages to a Log Server (3) that collects and synchronizes
the messages and stores them in Log-Files. These files are
then processed by the Trace Analyzer (4) creating trace-
ability links between the elements of the static models in
the SOAMIG Repository.

The four major components are explained in the follow-
ing paragraphs.

The Business Process Tracer. The Business Process
Tracer is a graphical tool developed during the project,
which reads the modeled business processes from the
SOAMIG Repository and visualizes them as shown in Fig-
ure 2.

Figure 2: The Business Process Tracer tool

During execution, a user operates the tracer in paral-
lel to the legacy system. In the tracer, an activity is se-
lected and activated (“process request” in the screenshot)
and then the user requests the functionality from the legacy
system by using its user interface.

Whenever an activity is activated or deactivated in the
tracer, a message containing a timestamp and that activ-
ity’s name is sent to the Log Server.

First tests have shown that each modeled business pro-
cess can be executed in multiple ways when using the cur-
rent user interface of the legacy system. Therefore, the
tracer does not enforce that the order in which activities
are activated matches the order modeled in the idealized
business process model.

The Instrumented Legacy System. The legacy system,
consisting of a client and a server, is instrumented using
AspectJ. The relevant aspects define pointcuts for the exe-
cution of methods and constructors. Before and after each
pointcut, a message is sent to the Log Server. This mes-
sage contains a timestamp, the name of the current thread
and the qualified name and signature of the method or con-
structor that has been invoked.

The Log Server. The Log Server receives the mes-
sages sent from the Business Process Tracer and the in-
strumented legacy system and stores them in log files.
Thereby, it provides a synchronization mechanism which
guarantees the correct order of the logged messages, even

though the legacy server, the client and the tracer are
running on different machines with clocks ticking asyn-
chronously.

The Trace Analyzer. So far, all components of the dy-
namic analysis framework dealt with recording the se-
quence of activity (de)activations in an executed business
process and the corresponding low-level actions in terms
of method and constructor calls, which were executed in
the legacy system in response to that.

The Trace Analyzer’s job is to extract meaningful infor-
mation from the log files generated by the dynamic anal-
ysis framework and to integrate them back into the static
models in the SOAMIG repository.

It iterates over the log file entries and from the be-
gin/end-activity entries, it determines the activity in the
business process model, which was executed at that time.
Between the begin and end entry for an activity, there are
method and constructor calls, which were executed in the
legacy system while executing this activity. Therefore, a
traceability link is created connecting the activity in the
business process model to the definitions of the called
methods in the source code model. In case of construc-
tor calls, the link leads to the class definitions from which
objects are instantiated.

Additionally, the actual sequence of executed activities
is integrated into the business process model by creating
special edges between activities. Each path through the
graph consisting of activities and those edges represents
one concrete instances of a business process (a scenario).

After integrating the static business process model with
the static source code model by manifesting dynamically
gathered information as edges in the repository, static anal-
ysis like model querying can exploit these enhancements.
For example, a query can calculate all the classes and
methods instantiated and called in the execution of a given
activity including the dependencies. When trying to pro-
vide some technical activity as a service in a SOA by
reusing legacy code, this is very important information.

4 Conclusion and Future Work
In this paper, dynamic analysis has been used to integrate
a static business process model with a static source code
model. The approach has been applied successfully dur-
ing the SOAMIG project. Queries on the model integrated
by the traceability links can now calculate comprehensive,
global information. Depending on the project needs, the
approach will be extended to several other aspects like ar-
chitecture integration.

References
[1] J. Ebert, V. Riediger, and A. Winter. Graph Technology in

Reverse Engineering: The TGraph Approach. In 10th Work-
shop Software Reengineering, volume 126 of GI-Edition
Proceedings, Bonn, 2008. Ges. f. Informatik.

[2] J. Quante and R. Koschke. Dynamic Object Process Graphs.
In European Conference on Software Maintenance and
Reengineering, pages 81–90, 2006.

[3] OMG. MOF 2.0 / XMI Mapping Specification, v2.1.1, 2007.


