Good RE Artifacts? I Know It When I Use It!

Henning Femmer
Technische Universitit Miinchen
femmer @in.tum.de

I. MOTIVATION AND CONTEXT

The definition of high-quality or good RE artifacts is
often provided through normative references, such as quality
standards or text books (e.g., ISO/IEEE/IEC-29148 [1]). We
see various problems of such normative references.

Quality standards are incomplete. Several quality stan-
dards describe quality through a set of abstract criteria. When
analyzing the characteristics in detail, we see that there are two
different types of criteria: Some criteria, such as ambiguity,
consistency, completeness, and singularity are factors that
describe properties of the RE artifact itself. In contrast,
feasibility, traceability and verifiability state that activities can
be performed with the artifact. This is a small, yet important
difference: While the former can be assessed by analyzing just
the artifact by itself, the latter describe a relationship of the
artifact in the context of its usage. Yet this usage context is
incompletely represented in the quality standards: For example,
why is it important that requirements can be implemented
(feasible in the terminology of ISO-29148) and verified, but
other activities, such as maintenance, are not part of the quality
model? Therefore, we argue that normative standards do not
take all activities into account systematically, and thus, are
missing relevant quality factors.

Quality standards are only implicitly context-dependent.
One could go even further and ask about the value of some
artifact-based properties such as singularity. A normative
approach does not provide such rationales. This is different
for activity-based properties, such as verifiability, since these
properties are defined through their usage: If we need to
verify the requirements, properties of the artifact that increase
verifiability are important. If we do not need to verify this
requirement, e.g., because we use the artifacts only for task
management in an agile process, these properties might not
necessarily be relevant. This example shows that, in contrast to
the normative definition of quality in RE standards, RE quality
usually depends on the context.

Quality standards lack precise reasoning. For defining
most of the aforementioned criteria, the standards remain
abstract and vague. For some criteria, such as ambiguity, the
standards provide a detailed lists of factors to avoid. However,
these criteria have an imprecise relation to the abstract criteria
mentioned above, and, consequently, the harm that they might
potentially cause remains unclear.

Andreas Vogelsang
Technische Universitéit Berlin
andreas.vogelsang @tu-berlin.de

Stakeholders
& Activities

Stakeholder
Role

performs

Activity

Artifact

contains contains impacts
o B
Artifacts & . .
Entities 5 Quality Factor Quality Factors

present & Impacts

Fig. 1. The ABRE-QM meta model, based on [2]
II. PROPOSED SOLUTION

We postulate that creating an RE artifact is rarely an end in
itself, but just a means to understand and reach the project’s
goals. Following this line of thought, the purpose of the
requirements artifact is to support the stakeholders in whatever
activities they are performing in the project. This change of
view means that it is unreasonable to talk about good or bad
RE artifacts in general. What is good and what is bad must
always be assessed with respect to the given context and, more
specifically, with respect to the activities that are conducted with
the RE artifacts. In fact, we argue that common quality criteria,
even completeness and correctness, have to be rethought from
a quality in use perspective. This contributes a novel view on
requirements engineering artifact quality, which discusses RE
artifact quality from a quality-in-use viewpoint. To express this
view, we contribute an activity-based RE quality meta model
that contains the following elements (see Fig. [I):

« An artifact is a file or file-like representation of a product
of an RE endeavour, such as a use case document.

An entity is a logically coherent part of an artifact or

another entity, such as a use case or a step in the flow of

a use case.

A stakeholder role is a role with an interest in the

project [3]], such as the tester.

An activity is an invested effort, which involves one or

more of the aforementioned artifacts and stakeholders,

such as creating test cases.

A quality factor is a property that is or is not present

in an entity. This property must be objectively assessable

to be used during QA. Furthermore, each quality factor

consists of a set of impacts.

« An impact is an explicit relation between a quality factor
and an activity. The impact influences either effectiveness
or efficiency of that activity.



This model enables researchers to provide practitioners with
a precise definition of what they consider to be bad quality, why
(i.e., because of which consequences) and in which context
(i.e., under the assumption that which activities are performed).
Practitioners can then use such a precise quality model and,
based on artifacts, activities and impacts, decide which quality
characteristics are relevant for their context.

III. SO WHAT?

We have applied the proposed meta model for different
purposes. The meta model proved beneficial in several contexts
that are discussed in the following.

Activity-based RE guidelines. Many companies nowadays
have guidelines to help employees improve their requirements
and to create a baseline for quality. However, as stated before,
these guidelines are often incomplete and imprecise. We argue
that guidelines that are defined in an activity-based manner
could help in this direction. In a first study [4], practitioners
reported that a translated guideline helps to both discuss validity
of the existing rules and to create more complete guidelines.

Activity-based cost estimation. We have used the proposed
meta model to develop cost models to enable an informed
decision making process. In a recent study [5], we used
an instance of the meta model to characterize the cost and
benefits of refactoring functional parts that reoccur in several
functions of a system specification. The decision whether
a refactoring pays off heavily depends on the context in
which the respective system specification is used. To take
this context into consideration, we identified activities that are
performed with the system specification, and we identified
cost factors that affect these activities in the original and
the refactored version. Cost factors are a specific form of
quality factors as apparent in the meta model. As a result, the
decision whether to refactor a specification or leave it as it
is can be assessed with respect to the usage context. For one
context, the refactoring pays off because functions must be
tested frequently and recurring parts in the functions makes
testing more expensive. For another context, the refactoring
does not pay off because the responsibility for implementing
the refactored parts is in a different department and, thus,
we need to consider costs for knowledge transfer. A similar
approach is taken by Hauptmann et al. [[6] to decide when and
if test step automation pays off.

Activity-based tailoring of Requirements Templates. Re-
quirements templates are blueprints that determine the syntactic
structure of a single requirement. One reported advantage
of requirements templates is that they facilitate complete
specifications of requirements. However, what complete ac-
tually means depends on how the requirement is used. The
information that needs to be provided by a requirement is
determined by the activities that are performed based on the
requirement. For example, when performance tests will be
conducted for the system, the requirement templates must
enforce to augment requirements with detailed information
about the desired reaction times and assumed conditions [7].

We have shown how activity-based models can be used to
tailor requirements templates in a way that the information
they demand for a requirement fit the actual usage in a specific
development context [8]]. The result is a set of requirements
templates that are more specific and expressive than the general
templates that are proposed to fit every situation.

Activity-based quality assurance. The presented paradigm
also has strong implications on quality assurance. This is
both for constructive aspects, such as tailoring guidelines
to requirements use, but also analytical approaches, such as
requirements smells [4].

Activity-based impact of RE quality and a generic
ABRE-QM. Lastly, the paradigm helps to steer and unite
research by providing it with a common theory: Research can
be structured along quality factors and focus on which activities
are impacted by the quality factor. That way, both defining
the quality factor and understanding its impact is precise and
structured, as we did, for example, in our experiment on the
impact of passive voice on understanding [9]].

If the research continues along this theory, this will inevitable
lead to a generic ABRE-QM, which resembles existing knowl-
edge on RE artifact quality and its impact.

IV. CONCLUSIONS

The strengths of our approach, as reported by practition-
ers [2], lies in the clarity of the reasoning. Taking activities as
the basis provides with a simple rule whether or not something
is of better or worse quality: If it hinders someone, it is bad
quality. This comes with the same strength, that this rule at
the same time generates hypothesis for each postulated rule for
good or bad quality. We argue that this quality model enables
research to both argue more clearly about their results, but also
conduct better studies, with a clearer research focus.

REFERENCES
[1

—

ISO/IEC/IEEE, “Systems and software engineering — Life cycle processes —
Requirements engineering,” International Organization for Standardization,
Geneva, Switzerland, ISO/IEC/IEEE 29148:2011(E), 2011.

[2] H. Femmer, J. Mund, and D. Méndez Fernandez, “It’s the activities,

stupid!: A new perspective on RE quality,” in International Workshop on

Requirements Engineering and Testing (RET), 2015.

K. Pohl, Requirements engineering: fundamentals, principles, and tech-

niques. Springer Publishing Company, Incorporated, 2010.

[4] H. Femmer, D. Méndez Ferndandez, S. Wagner, and S. Eder, “Rapid quality
assurance with requirements smells,” Journal of Systems and Software,
2016.

[5S] A. Vogelsang, H. Femmer, and M. Junker, “Characterizing implicit

communal components as technical debt in automotive software systems,”

in Working Conference on Software Architecture (WICSA), 2016.

B. Hauptmann, M. Junker, S. Eder, C. Amann, and R. Vaas, “An expert-

based cost estimation model for system test execution,” in International

Conference on Software and System Process (ICSSP), 2014.

J. Eckhardt, A. Vogelsang, H. Femmer, and P. Mager, “Challenging

incompleteness of performance requirements by sentence patterns,” in

International Requirements Engineering Conference (RE), 2016.

J. Eckhardt, A. Vogelsang, and H. Femmer, “An approach for creating

sentence patterns for quality requirements,” in International Workshop on

Requirements Patterns (RePa), 2016.

[9] H. Femmer, J. Kucera, and A. Vetro, “On The Impact of Passive Voice

Requirements on Domain Modelling,” in International Symposium on

Empirical Software Engineering and Measurement (ESEM), 2014.

3

—_

[6

[t

[7

—

[8

—



	Motivation and Context
	Proposed Solution
	So What?
	Conclusions
	References

