
Who Guards the Guards?
On the Validation of Test Case Migration

Ivan Jovanovikj, Enes Yigitbas, Anthony Anjorin, Stefan Sauer
Paderborn University, Germany

Zukunftsmeile 1, 33102 Paderborn
{ivan.jovanovikj|enes.yigitbas|anthony.anjorin|sauer}@upb.de

Abstract
Software migration, as a well-established strategy to
reuse software, results in a software system that runs
in a new environment but exhibits the same behavior
as before the migration. To ensure behavioral preser-
vation, existing test cases can be used to safeguard
the software migration. This implies two things: test
cases have to be co-migrated with the system and, after
the migration, they have to be validated as well. Simi-
larly as for system migration, behavioral preservation
is a must for test case migration, i.e., the migrated test
cases still have to assert the same expected system be-
havior as the old test cases. Despite the importance
of validating test case migration, the area is not yet
well researched. In this paper, we analyze the chal-
lenges in validating test case migration and propose
mutation analysis as a suitable validation technique.

1 Introduction
Software migration is a well-established approach for
transferring old software system to a new environ-
ment. A crucial requirement to be fulfilled by the
migrated system is the behavioral equivalence with
the old system. Asserting a system’s behavior can
be done by applying software testing. As testing is
costly and time-consuming, reusing test cases, when-
ever is possible, is highly desired. Reusing test cases
means co-migrating them together with the system.
This means transferring them to a new environment
without changing their "functionality", i.e., without
changing the expected behavior the test cases assert.

As such migrated test cases are used as safeguards
for the system migration, their correct migration is
crucial. But, test case migration is far from trivial
as several challenges have to be addressed [1]. Ad-
ditionally, the test case migration is tightly coupled
with the system migration which makes its validation
especially challenging. This area, to the best of our
knowledge, is currently not yet sufficiently researched.
It is still unclear which techniques can be used, and
what their potential and limitations are. The follow-
ing question is thus still open for investigation: What
is the safeguard for test case migration?

Validating test case migration is similar to validat-
ing test case refactoring as both activities tend to keep
asserted behavior unchanged. Mutation analysis has
been applied to safeguard test refactoring and this ac-
tually inspired us to apply this technique to validate
test case migration as well.

In this paper, we discuss the challenges involved in
applying mutation analysis as a validation technique
in this context, sketch our solution idea, and explain
how it addresses the identified challenges.

2 Validation of Test Case Migration
and Involved Challenges

Refactoring is defined as the process of improving the
internal structure of a system without changing its ob-
servable behavior. Similarly, test case refactoring can
be seen as improving the internal structure of a test
case without changing its "observable behavior", i.e.,
without changing the behavior that it asserts. Re-
garding system refactoring, a set of test cases with
adequate coverage can be used as a safeguard. En-
suring the correctness of test case refactoring is, how-
ever, a bit more challenging. A refactored test case
still has to pass after the refactoring as it is being
executed against a correct system (assuming the test
cases passed before refactoring). However, one should
additionally ensure that it still properly detects in-
correct system behavior. This is known as a prob-
lem of false negatives and false positives. A test case
should only fail when a problem exists (true positive)
and pass when a certain problem does not exist (true
negative). Mutation analysis has been seen as a so-
lution to this problem, as it measures the capability
of test cases to properly detect unwanted system be-
havior. Mutation analysis is a technique used for the
creation of new test cases as well as for quality evalu-
ation of existing test cases [2]. It involves the mod-
ification (mutation) of an existing system by making
small syntactic changes to create mutants. In other
words, small faults are seeded in the system and then
existing test cases are executed against the mutants.
In general, there are two possible outcomes: (i) at
least one test case “detects” the change introduced in
the mutant, i.e., the mutant was killed or (ii) no test
case “detects” the change, i.e, the mutant survived. A
mutant survived because: (i) it is an equivalent mu-
tant, or (ii) the test cases were not able to detect the
seeded fault. A mutation score (the ratio of the total
number of killed mutants to the total number of non-
equivalent mutants) indicates the quality of the test
cases.Applying mutation analysis in test migration in-
volves additional challenges, however, due to the fun-
damental difference between refactoring and migrat-
ing test cases; When refactoring tests the system does
not change, while when co-migrating tests both the

tests and the system are changed. In the following,
we identify these challenges:

(C1) Compared to refactoring, where the refac-
tored test cases are executed against the same sys-
tem, the migrated test cases after are executed against
the migrated system. There is no guarantee that the
system’s behavior was correctly preserved. (C2) The
test cases must be changed as part of the migration,
as they have to be adapted to the migrated system
and the new testing environment. There is no guar-
antee that their behavior is correctly preserved. (C3)
The object under mutation can be chosen from a wide
range of artifacts or activities depending on the con-
crete context. The decision which what should be
mutated is important as it can influence the effective-
ness and efficiency of the complete validation method.
(C4) Once applied, mutation analysis results in a mu-
tation score which should be an indicator for the cor-
rectness of the test case migration. This score has
to be interpreted carefully to show the eventual weak
points of the test case migration.

3 Solution Idea
Inspired by the application of mutation analysis in
test case refactoring, we performed an initial analysis
on applying the same solution to test case migration.
As shown in Figure 1, we have analyzed a simple con-
stellation of test case and system migration which are
performed together. Depending on what is being mu-
tated, we have identified 6 different scenarios in total.
Each scenario has an assumption part (e.g., that a
certain mutation framework exists) and an indication
part, where the results of applying mutation analysis
are discussed. From a mutation analysis perspective,
typical scenarios are when the system under test is
mutated. As both the migrated and old system can
be mutated in our case, we have two such scenarios,
namely Scenario 1 and Scenario 2 (Figure 1). In Sce-
nario 3, the system migration is mutated which can
be considered as an indirect mutation of the migrated
system. Furthermore, mutation analysis can also be
used to mutate test cases. In Scenario 4 and Scenario
5, migrated test cases and old test cases are mutated.
The last scenario, Scenario 6, is the mutation of the
test case migration, a variant of Scenario 4, as it is an
indirect mutation of the migrated test cases.

The challenges C1, C2, and C3 are addressed
by the different scenarios which we have introduced.
Each scenario is suitable for a specific context which
is matched by the assumption part. Analogously to
the general case of mutation analysis [2], we assume
that the programmers (in this case the migration spe-
cialists) are competent and that they tend to imple-
ment migration transformations that are already close
to the correct migration transformations. This as-
sumption is important when addressing C1 and C2.
Regarding C3, one can consider which mutation sce-
nario is the best by, for example, comparing the avail-

Old Test Cases Migrated
Test Cases

Old System Migrated
System

Test Case Migration

System Migration

Old System
Mutant

Migrated
System
Mutant

Mutant Reverse
Engineering

System

Migration

Execution

System
Mutant

Mutant
Generation

Reverse
engineered

Mutant

 Test Cases

Figure 1: Mutation of Migrated System.

able mutation frameworks. In the following, we focus
on Scenario 2, shown in Figure 1, in which the mi-
grated system is being mutated. We assume that a
suitable mutation framework for the migrated system
exists. Additionally, we assume that it is possible to
derive old system mutants from migrated system mu-
tants via reverse engineering. The migrated test cases
are executed against the mutant of the migrated sys-
tem. There are two possible outcomes for each mu-
tant: a mutant is either killed or not. In the follow-
ing we briefly show how challenge C4 is addressed by
discussing the mutation score. We firstly analyze the
case when the migrated system mutant is killed. If
a corresponding old system mutant, obtained via re-
verse engineering, is killed as well, then this represents
the expected case that increases trust in the test case
migration. If the obtained old system mutant was not
killed, then it is either equivalent or non-equivalent.
If it is equivalent, then there are no indications. If it
is non-equivalent, then it means that we have an er-
roneous old system not detected by the old test cases.
Revisiting Scenario 1 could help fixing the old test
suite, by augmenting them with new test cases. The
other half of the analysis deals with the case when
the migrated system mutant is not killed. If the re-
verse engineered old system mutant is killed, it sug-
gests that at least one migrated test case is a false
negative. If the reverse engineered old system mutant
is not killed and it is equivalent, than no indications
can be derived. If the reverse engineered old system
mutant is not equivalent, then the quality of the old
test cases has to be checked.

Our results show that mutation analysis can pro-
vide useful information, i.e., indications about even-
tual problems in test case and system migration.

References
[1] I. Jovanovikj, M. Grieger, and E. Yigitbas. To-

wards a model-driven method for reusing test cases
in software migration projects. Softwaretechnik-
Trends, 2016.

[2] R. J. Lipton and F. G. Sayward. Hints on test
data selection: Help for the practicing program-
mer. Computer, 1978.

	Introduction
	Validation of Test Case Migration and Involved Challenges
	Solution Idea

