Visualization of Evolving Architecture Smells

Sandro Schulze

Anhalt University of Applied Sciences

sandro.schulze@hs-anhalt.de

Abstract

Architecture Smells (AS) have gained importance
in recent past as indicator of bad practices related to
the design of software systems. While AS and their
symptoms show up on a rather abstract level com-
pared to code smells, both share the characteristic
that they evolve over time. This, in turn, may lead
to even more severe smells that manifest themselves
in the system. However, understanding the evolution
of AS and when or how such smells tend to degrade
in an undesirable way is not trivial given just tons
of data from an analysis tool. In this paper, we in-
troduce a visualization based on network graphs that
support developers in understanding the evolution of
three common architecture smells: cyclic dependen-
cies, hub-like dependencies, and unstable dependen-
cies. We also discuss scenarios when this is beneficial
and what are current limitations of our visualization.
keywords software visualization, software evolu-
tion, architecture smells, software quality, software
metrics

1 Introduction

As software evolves, it is likely that changes are made
without adhering to design or coding principles, and
thus, a software system exhibit smells causing quality
degradation over time [4]. As a result, this may lead
to undesired effects (e.g., reduced maintainability, in-
creased bug proneness), commonly described as the
metaphor of technical debt [3]. While there are differ-
ent kinds of smells (e.g., code smells, test smells), in
this work we focus on architecture smells (AS) that
constitute violations against best practices for design-
ing software architecture.

To gain comprehensive understanding of when and
why architecture smells appear. As well as how they
manifest in the system, the evolution of such smells
is of superior interest [2], [B]. However, the plain data
of such evolutionary analysis is of limited use for de-
velopers or software architect for understanding the
origin and impact of architecture smells.

In this paper, we propose different visualizations
that allow developers to investigate such AS in more
depth and in an interactive way, and thus, allow to
reason about birth, life, and death of such smells.
While our visualization currently supports three com-
mon AS, namely cyclic dependencies (CD), hub-

Armin Prlja
TU Braunschweig
arminprlja@hotmail.de

I TP 9 a8k W

Tiny Clique Circle Chain Star Multi-hub Semi-clique

Figure 1: Different topologies for CDs based on Al-
Mutawa et al. [I].

like dependencies (HD), and unstable dependencies
(UD) [6], we only focus on CDs due to space lim-
its.Particularly, we present the visualisations and
briefly discuss why we have chosen them and which in-
formation they convey. Moreover, a preliminary study
based on cognitive walkthrough indicates the useful-
ness of our visualization, even though a more profound
empirical evaluation is required and planned for fu-
ture.

2 Background

We briefly introduce CDs and concepts that we devel-
oped to investigate their evolution [2].

Cyclic Dependencies exist between two or more com-
ponents, if these components mutually depend on
each other, and thus, increase the risk of ripple ef-
fects [6]. Such smells can exist on class-level as well as
package-level (assuming Java and programming lan-
guage). Moreover, CDs can differ in their shape, with
more complex shapes indicating a higher negative im-
pact on the overall system’s quality [2]. In Figure
we we show the different shapes as proposed by Al-
Mutawa et al. [I].

We introduced the notion of intra-version smells
and inter-version smells to distinguish between a
smell of one particular version and smells that ex-
ist over a certain period of time. More precisely, an
intra-version smell is a smell in one particular version,
whereas an inter-version smell is a set of related intra-
version smells over multiple versions of a system.

Moreover, we consider merging and splitting in the
evolution of CDs. In a nutshell, due to adding or re-
moving dependency edges, CDs can merge together,
resulting in a larger CD, or split, resulting in two
smaller CDs. This concept allows us to perform novel
analyses and identify possible situations that are crit-
ical wrt AS evolution.

3 Architecture Smell Visualization

For visualizing inter-version CD smells (see Figure
for an example), we have chosen a graph-based visual-

LISF

Software version to visualize:

Project folder path: Smell type:

Intra-version

hibernate-0.8.1 v O Inter-version

Browse... 981 files selected.

hibernate

Choose smell type to visualize: Cyclic Dependency (class level) ~

Severity score
- -
0.0104.208.812.817.1

€ Back

Smell-ID

1372
S , 7 Lifespan in versions @

i { ? 8000

Lifespan in time units ®

3224

Version-oriented relative lifespan @

075

Time-oriented relative lifespan ®

076

Present in last version ®

true

Toggle additional smell properties v

Figure 2: An example for an inter-version smell in hibernate with merging, splitting, and changes of shapes.

ization using network graphs with vertices represent-
ing an intra-version smell in a particular version and
edges representing transitions between. This graph-
based visualization allows us to visualize the different
concepts such as merging/splitting, change of shapes,
detailed information about participating intra-version
smells, but also the time aspect to visualize the evo-
lution over several versions. Next, we briefly explain
how different kind of information is visualized.
Merging & Splitting. We use parallel (sub)graphs
for indicating CD families that are subject to merg-
ing/splitting. In case that such CDs merge, multiple
vertices exhibit an outgoing edge to the same succes-
sor vertex. In contrast, if a split occurs, this is vi-
sualized by one vertex from which multiple outgoing
edges have different successor vertices.

Change of Shapes. During evolution, inter-version
smells can change their shape, e.g., from a star-like
shape to a multi-hub. In our visualization, we indi-
cate such a change by a collared edge that addition-
ally is annotated with an exclamation mark. When
hovering over this exclamation mark, a tool tip pro-
vides information about the the source and the target
shape.

Details of Intra-Version Smells. AS inter-
version smells consist of a set of related intra-version
smells, it may be of interest to inspect a particular
intra-version smell. We support this kind of explo-
ration; by just clicking on an intra-version smells, in-
formation shows up by means of metrics such as size,
order, or severity score. As future work, we also want
to allow users to seamlessly witch to the detailed vi-
sualization of the intra-version smell.

Metrics. Eventually, we provide various character-
istics of inter-version smells either explicitly or im-
plicitly to the user. For instance, the size of the ver-

tices corresponds to the size of an intra-version smell
,2that is, the number of classes/modules that form the
intra-version smell of a particular version. Addition-
ally, the color of a vertex corresponds to its severity
score with a red note indicating a higher severity score.
Finally, we provide additional metrics for the shown
inter-version smell, such as lifetime, in a menu on the
right-hand side.

References

[1] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and
C. McCartin. On the shape of circular depen-
dencies in Java programs. In Proceedings of

the Australian Software Engineering Conference
(ASWEC), pages 48-57. IEEE, 2014.

[2] P. Gnoyke, S. Schulze, and J. Kriiger. An evo-
lutionary analysis of software-architecture smells.
In Proceedings of the International Conference on
Software Maintenance and FEvolution (ICSME),
pages 413-424. TEEE, 2021.

[3] P. Kruchten, R. L. Nord, and I. Ozkaya. Techni-
cal debt: From metaphor to theory and practice.
[EEE Software, 29(6):18-21, 2012.

[4] D.L. Parnas. Software aging. In Proceedings of the
International Conference on Software Engineering

(ICSE), pages 279-287. IEEE, 1994.

[5] D. Sas, P. Avgeriou, and U. Uyumaz. On the evo-
lution and impact of architectural smells: An in-
dustrial case study. Empirical Software Engineer-
ing, 27(4), 2022.

[6] G. Suryanarayana, G. Samarthyam, and
T. Sharma. Refactoring for Software Design
Smells: Managing Technical Debt. Elsevier, 1

edition, 2014.

	Introduction
	Background
	Architecture Smell Visualization

