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We present a new flow-based formulation for identical parallel machine scheduling with a regular objective

function and without idle time. The formulation is constructed with the help of a decision diagram that

represents all job sequences that respect specific ordering rules. These rules rely on a partition of the planning

horizon into, generally non-uniform, periods and do not exclude all optimal solutions, but they constrain

solutions to adhere to a canonical form. The new formulation has numerous variables and constraints, and

hence we apply a Dantzig-Wolfe decomposition in order to compute the linear programming relaxation

in reasonable time; the resulting lower bound is stronger than the bound from the classical time-indexed

formulation. We develop a branch-and-price framework that solves three instances from the literature for

the first time. We compare the new formulation with the time-indexed and arc-time-indexed formulation by

means of a series of computational experiments.
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1. Introduction

We study a scheduling problem where a set J = {1, . . . , n} of n jobs with processing

time pj ∈N \ {0} for each j ∈ J needs to be processed by a set M = {1, . . . ,m} of m iden-

tical parallel machines without pre-emption. The problem is to find an assignment of jobs

to machines and a sequence of the jobs on each machine such that some objective function∑
j∈J fj(Cj) is minimized, where Cj is the completion time of j ∈ J . We focus on parallel

machine scheduling with a regular objective function, i.e., for which fj is non-decreasing

for all j ∈ J . Moreover, we require that there exists an optimal solution without idle time

between the jobs on each machine. Scheduling with weighted completion-time objective

Pm||
∑

wjCj is such a problem, where each job j has a weight wj. For this objective the

sequencing on each machine is easy (there exists a canonical sequence that can be fol-

lowed), so that the difficulty only resides in finding an optimal division of the jobs over
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the machines. Another common scheduling objective is the weighted tardiness, where each

job j also has a due date dj and the cost fj(Cj) associated with job j is wjTj with Tj =

max{0,Cj−dj}. Since the one-machine case 1||
∑

wjTj is strongly NP-hard (Lawler, 1977),

unless P = NP there is no canonical order of jobs on a machine such that the weighted

tardiness scheduling problem could reduce to partitioning jobs over the machines, and a

different approach is needed. In the remainder of the paper, we only consider this weighted

tardiness objective, but the developed method will be generic and other regular objective

functions without idle time can be treated analogously.

The main goal of this paper is to introduce a new flow-based formulation for

Pm||
∑

wjTj. We first discuss some related work in Section 2. Our formulation is based on

a time discretization of the planning horizon that was introduced by Baptiste and Sadykov

(2009), which we summarize in Section 3. To the best of our knowledge, we are the first

to apply a formulation with a coarser time discretization than the classical time-indexed

formulation (TIF) to a parallel machine scheduling problem. The formulation itself is pre-

sented in Section 4, and is derived from a binary decision diagram (BDD) that represents

all the possible job sequences on a machine. We show that the LP relaxation of this new

integer linear formulation yields a stronger lower bound than the TIF.

Our new formulation has many variables and constraints, which renders the compu-

tation of the LP bound inefficient; we apply a Dantzig-Wolfe (DW) decomposition to

resolve this issue. This reformulation is discussed in Section 5. We also need to overcome

some convergence problems in the column generation (CG) phase, which is achieved using

the stabilization technique of Wentges (1997) and by variable fixing by reduced cost as

described in Pessoa et al. (2010). The running times of the CG phase for the new formu-

lation are much lower than those for the arc-time-indexed formulation (ATIF), which was

introduced independently by Sourd (2009), Pessoa et al. (2010), and Tanaka et al. (2009).

At the same time, we find the quality of the lower bounds from the new formulation to be

very similar to that of the ATIF in our experiments.

In Section 6 we develop a branch-and-price (B&P) algorithm to find optimal integer

solutions, in which we use an aggressive strong branching strategy to establish optimality

of primal solutions. We report on a series of computational experiments in Section 7,

including a comparison with the current state-of-the-art procedure of Oliveira and Pessoa

(2020). We conclude the paper in Section 8.



Kowalczyk et al.: A flow-based formulation for parallel machine scheduling using decision diagrams 3

2. Related work

The most popular exact methods for single and parallel machine scheduling use Dynamic

Programming (DP), Branch-and-Bound (B&B) including Mixed-Integer Programming

(MIP) formulations that are solved by a solver, or a mix of those two techniques. The

most popular MIP formulations in the literature are based on completion variables, (arc-)

time-indexed variables, linear ordering variables, and positional and assignment variables.

Below, we discuss formulations with time-indexed and arc-time-indexed variables. For an

extensive introduction to other formulations, we refer to Queyranne and Schulz (1994).

2.1. Time-indexed formulation TIF

The TIF has been thorougly studied by, among others, Dyer and Wolsey (1990), Sousa

and Wolsey (1992), and van den Akker et al. (1999b). With integer processing times pj, a

sufficiently large planning horizon T can be discretized into periods of unit length. Binary

variables yjt are defined for each job j ∈ J and each period t∈ {1, . . . , T} to decide whether

job j starts at the beginning of period t or not, where period t starts at time t− 1 and

ends at t. The model can be used to represent many different single and parallel machine

scheduling problems (esp. with min-sum objective) by adjusting the cost parameters c̃jt.

minimize
∑
j∈J

T−pj+1∑
t=1

c̃jtyjt (1a)

subject to

T−pj+1∑
t=1

yjt = 1 ∀j ∈ J (1b)

∑
j∈J

t∑
s=max{1,t−pj+1}

yjs ≤m ∀t∈ {1, . . . , T} (1c)

yjt ∈ {0,1} ∀j ∈ J, t∈ {1, . . . , T} (1d)

With Constraints (1b) we ensure that every job starts exactly once, while Constraints (1c)

impose that at most m jobs can be processed in any period. Extra constraints such as

release times rj for each job j ∈ J can be easily modeled by deleting the variables for

which t ∈ {1, . . . , rj}. Solutions to Constraints (1c) and (1d) can be represented as a flow

in a directed acyclic graph (DAG) where the nodes are associated to the starting period t

of the jobs and the edges (t, t + pj) are associated to a job j that starts in period t and

ends in period t + pj − 1. A unit flow from the root node (first period) to the terminal
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Figure 1 An integral solution to the TIF represented as two paths in the DAG

Table 1 Job data for
the example instance

job j pj dj wj

1 2 4 6
2 6 6 3
3 4 8 2
4 4 8 5

node (last period) is called a pseudo-schedule. A flow satisfies the last two constraint sets

((1c) and (1d)) but not necessarily the assignment constraints (1b) and hence there can be

pseudo-schedules where two or more edges associated to the same job are chosen. In Fig-

ure 1 we provide an optimal integral solution to an instance with n = 4 and m = 2, and

with the job data given in Table 1. For problem Pm||
∑

wjTj the time horizon T can be

chosen as ⌈(
∑

j∈J pj − pmax)/m⌉+ pmax without losing all optimal solutions, where pmax is

the maximum processing time (see, for instance, Pessoa et al., 2010). In this way we obtain

T = 11 as a safe upper bound for the time horizon of the instance.

The TIF is known to have a strong LP bound (Dyer and Wolsey, 1990), but this strength

comes at a cost: the length of the planning horizon is pseudo-polynomial in the size of

the instance input, i.e., the number of constraints and variables depends on the number

of jobs and on the processing times. Hence, the TIF is less applicable for instances with

many jobs and large processing times, and one cannot always compute the LP relaxation

in a reasonable amount of time. Many specialized techniques have been developed to over-

come this issue; van den Akker et al. (2000), for instance, use CG to compute the LP

relaxation of the TIF. Even using CG, solving the LP relaxation can be slow, because

the CG phase can suffer from the heading-in effect (when the first iterations of the CG

produce irrelevant columns and bad dual bounds because of the bad dual information),

and extreme degeneracy (multiple optimal solutions in the dual and hence the solution of
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the restricted master remains constant over several iterations). To cope with this problem,

various approaches were proposed; we refer to Bigras et al. (2008), Pan and Shi (2007),

Sadykov and Vanderbeck (2013), and Pessoa et al. (2018). We also note that the TIF can

still leave a large duality gap and hence exact algorithms may need to explore a large B&B

tree. Many polyhedral studies of the TIF were therefore performed, see for instance Crama

and Spieksma (1996), Sousa and Wolsey (1992), and van den Akker et al. (1999b).

2.2. Arc-time-indexed formulation ATIF

The ATIF can be seen as an extended formulation of the TIF. The number of variables is

a factor of n larger than in TIF. Let xt
ij ∈ {0,1} be variables for each pair of jobs i, j ∈ J+,

with i ̸= j, J+ = {0,1, . . . , n} and p0 = 0, and each t∈ {0, . . . , T}. The variables xt
ij indicate

whether or not job i completes and job j starts at time t on some machine. Let cjt be the

cost of starting job j at time t (so cjt = c̃j,t+1).

minimize
∑
i∈J+

∑
j∈J\{i}

T−pj∑
t=pi

cjtx
t
ij (2a)

subject to
∑

i∈J+\{j}

T−pj∑
t=pi

xt
ij = 1 ∀j ∈ J (2b)

∑
j∈J+\{i}
t−pj≥0

xt
ji−

∑
j∈J+\{i}

t+pi+pj≤T

xt+pi
ij = 0 ∀i∈ J, t∈ {0, . . . , T − pi} (2c)

∑
j∈J+

t−pj≥0

xt
j0−

∑
j∈J+

t+pj+1≤T

xt+1
0j = 0 ∀t∈ {0, . . . , T − 1} (2d)

∑
j∈J+

x0
0j = m (2e)

xt
ij ∈N ∀i∈ J+, j ∈ J+ \ {i},

t∈ {pi, . . . , T − pj} (2f)

xt
00 ∈N ∀t∈ {0, . . . , T − 1} (2g)

Equations (2c), (2d), and (2e) together with the redundant equation∑
i∈J+

xT
i0 = m (3)

model a network flow of m units over a layered DAG. Since each flow over this network

has the same source and destination node, we can decompose any integral solution into a
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Figure 2 Example of an integral solution of the ATIF represented as paths in the DAG, where each edge from

job i to job j that arrives in column t corresponds to variable xt
ij

set of m paths that correspond to pseudo-schedules. Constraint (2d) models the possibility

of idle time in the solution. With Constraint (2b) we impose that each job has to be

visited by exactly one path and as a result, each job is assigned to exactly one machine.

Sourd (2009), Tanaka et al. (2009), and Pessoa et al. (2010) proposed this formulation

independently. Pessoa et al. (2010) develop a branch-cut-and-price algorithm to solve the

ATIF, so as to handle the large number of variables, and point out that the ATIF is almost

isomorphic to the arc-capacity formulation for the Vehicle Routing Problem and hence

many inequalities for the latter formulation could be transposed. Pessoa et al. show that

these valid inequalities can reduce the gap between a heuristic solution and the LP bound

provided by the relaxation of the ATIF. They also show that the ATIF is stronger than

the TIF, which mainly stems from the fact that direct repetitions of jobs are forbidden by

excluding variables xt
jj. One can easily project every solution x̄ of the linear relaxation of

ATIF onto a solution ȳ of the linear relaxation of TIF by setting ȳjt =
∑

i∈J+\{j} x̄
t−1
ij for

j ∈ J and t ∈ {1, . . . , T − pj + 1}. Moreover, simple dominance rules can be applied to the

DAG by omitting the variables xt
ij if permuting jobs i and j at time t decreases the overall

cost. Oliveira and Pessoa (2020) continued and refined the work of Pessoa et al. (2010),

and their procedure constitutes the current state-of-the-art benchmark for Pm||
∑

wjTj.

An example of the network for the ATIF corresponding to the instance described in

Table 1 is given in Figure 2. The paths in this solution correspond to schedules (2,1,0,0,0)

and (4,3,0,0,0) on one machine, where each 0 stands for a unit of idle time. In terms of

the variables xt
ij of the ATIF, this solution corresponds with x0

02 = x0
04 = x4

43 = x6
21 = x8

10 =

x8
30 = 1, x9

00 = x10
00 = x11

00 = 2, and the other variables equal 0.
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3. Discretization of the time horizon

To cope with the large number of variables in formulations based on a discretization of the

time horizon as encountered by TIF and ATIF, one can resort to a coarser discretization

of time. This is the underlying idea behind the models that were proposed by Baptiste and

Sadykov (2009) and Boland et al. (2016) for single machine scheduling.

Boland et al. (2016) introduced the bucket-indexed formulation (BIF). Like the TIF,

this formulation partitions the planning horizon into periods of equal lengths but the length

of the periods in the BIF is a parameter, and can be as long as the processing time of the

shortest job. The BIF is equivalent to the TIF if the length of the shortest job is one, but

the number of variables can reduce significantly if the length is larger than 1. For a good

comparison between the BIF and TIF for single machine scheduling, we refer to Boland

et al. (2016).

Another formulation that uses a coarser time discretization is the interval-indexed model,

which was introduced for single machine scheduling by Baptiste and Sadykov (2009), who

partition the planning horizon into time intervals that are defined by a proper superset

of the release dates, due dates, and deadlines of all jobs. Baptiste and Sadykov show that

there exists an optimal schedule where the jobs assigned to a time interval are sequenced

according to a modified weighted shortest-processing-time rule. In the remainder of this

section, we describe the results from Baptiste and Sadykov (2009) in more detail. All

definitions in this section are borrowed from this reference.

Let a partition I of order q of the time horizon be a set of time intervals Ir = (er−1, er]

with e0 = 0, eq = T , and r ∈Q = {1, . . . , q}. A partition is based on due dates if every dj

equals some er, i.e., {d1, . . . , dn} ⊆ {er}r∈Q. A job j is assigned to interval Ir if its completion

time Cj is in Ir. A job j is on time in interval Ir if dj ≥ er and late if dj ≤ er−1.

Next, we define for each interval Ir of I a permutation σr of {1, . . . , n}, and let σ be the

set of all permutations σr with r ∈Q. We say that σ is an appropriate set of permutations

for I if there exists an optimal schedule in which, for any interval Ir ∈ I and any two

jobs i, j ∈ J assigned to the same machine and the same interval Ir, job i is sequenced

before job j when σr(i) < σr(j). For the problem Pm||
∑

wjCj, for example, there exists

a partition of order 1 with I1 = (0, T ], where the appropriate permutation σ1 corresponds

to Smith’s rule, i.e., the jobs are sequenced in non-increasing order of the ratios
wj

pj
. Other

problems with a similar priority rule are Pm||
∑

wjUj and Pm||
∑

wjVj, where function Uj
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indicates whether job j is late or not, while Vj = min{pj,max{0,Cj − dj}} represents the

portion of work of job j that is performed after its due date (see van den Akker et al.,

1999a).

We say that a partition I is appropriate if it is possible to compute an appropriate set of

permutations for the partition in polynomial time. Baptiste and Sadykov (2009) show how

to find an appropriate partition for a large number of single machine problems, and the

same approach can be applied to parallel machines because we need canonical sequences

on each machine separately. We follow Baptiste and Sadykov (2009) for the construction of

an appropriate partition of the time horizon. Since we consider Pm||
∑

wjTj, our partition

is based on the due dates dj. Denote by σ a set of permutations for such a partition.

We will make a distinction between long and short jobs of an interval Ir. A job j is long

in interval Ir if pj ≥ er − er−1, and short if pj < er − er−1. We demand that all long jobs

of interval Ir appear first in σr, meaning that if pi ≥ er − er−1 and pj < er − er−1 then

σr(i) <σr(j); note that at most one long job can effectively be assigned to Ir.

Baptiste and Sadykov (2009) devise the following set of rules. For each pair of short jobs

i, j of interval Ir we require:

• if job i is late in Ir and job j is on time in Ir then σr(i) <σr(j),

• if jobs i and j are on time and pi > pj then σr(i) <σr(j),

• if jobs i and j are late and pi
wi

<
pj
wj

then σr(i) <σr(j),

• if jobs i and j are late, pi
wi

=
pj
wj

, and pi > pj then σr(i) <σr(j).

For the short jobs, σ will satisfy an adaptation of the Weighted Shortest Processing Time

(WSPT) and Longest Processing Time (LPT) rule: first all the late jobs are processed

following WSPT (Smith’s) rule and then all the on-time jobs are processed according to the

LPT rule. All the late jobs with the same WSPT ratio are ordered according to the LPT

rule (which is merely a tie-breaker). These rules for each partition are “almost” enough to

be an appropriate set of permutations for a partition based on due dates: there is always

an optimal solution that satisfies the rules in Ir for each r ∈ {1, . . . , q} except for maybe

one job j, and this exception takes place only if the job j is late in Ir and is completed

first in Ir. Based on this observation, Baptiste and Sadykov (2009) construct an algorithm

that finds an appropriate partition for single machine problems. The procedure starts with

a partition I for which e0 = 0, {d1, . . . , dn} = {e1, . . . , eq−1}, and eq = T , in other words,

a partition based on due dates with the smallest number of intervals. If T < dn then we
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stop at T and do not create further intervals; value eq−1 is then the largest due date less

than T , and eq = T . By subsequently dividing some intervals, a partition can be obtained

that satisfies the conditions of Theorem 1.

Theorem 1 (Baptiste and Sadykov, 2009). A partition I = {Ir}r∈Q is appropriate if,

for each r ∈ Q and each pair of jobs i, j ∈ J such that σr(i) < σr(j), at least one of the

following conditions holds:

er ≤ er−1 + pj (4)

er−1 ≥ di +

⌈
wjpi
wi

⌉
− pi (5)

Clement (2015) later showed that the algorithm provided in Baptiste and Sadykov (2009)

provides an appropriate partition but not always a partition with a minimum number of

intervals. Clement (2015) presents a method to construct an appropriate partition with a

minimum number of intervals; we use his procedure in our implementation.

For the instance in Table 1, an appropriate partition is given by I1 = (0,4], I2 = (4,6],

I3 = (6,8], and I4 = (8,11]. The set of permutations σ is σ1 = (2,3,4,1), σ2 = (2,3,4,1),

σ3 = (2,3,4,1), and σ4 = (4,2,3,1). Clearly, none of the intervals contains a “special” pair

of jobs, i.e., a pair that does not satisfy the requirements of Theorem 1.

4. BDD-based formulation for parallel machine scheduling

Baptiste and Sadykov (2009) present a MIP formulation for single machine problems based

on the ideas in the previous section, with binary variables for the assignment of jobs to

intervals, which might also be generalized to parallel machines. In this work we follow a

different approach: we will use the partition of the time horizon described by Baptiste

and Sadykov to develop a new network-flow-based formulation. We will construct a binary

decision diagram (BDD) over which at most m units of flow are pushed; each unit flow

from the root node to the terminal node will represent a pseudo-schedule.

4.1. Introduction to BDDs

BDDs are data structures that allow one to represent and manipulate families of sets that

can be linearly ordered. BDDs were introduced in Lee (1959) and Akers (1978) as DAGs

that are obtained by reducing binary decision trees that represent a Boolean function.

Recently, decision diagrams have also been used to solve discrete optimization problems.
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Bergman et al. (2016), for instance, introduce a generic B&B algorithm for discrete opti-

mization, where relaxed BDDs are used to compute relaxation bounds and restricted BDDs

are used to find feasible solutions. Another relevant example is Cire and van Hoeve (2013),

who use multi-valued decision diagrams to solve single machine scheduling problems. We

refer to Castro et al. (2022) for a survey of recent advances in the use of decision diagrams

for discrete optimization.

In the following definition, we follow the common references such as Castro et al. (2022)

but we make some minor changes to suit the setting of our paper. A BDD B is a DAG

(N,A) where the nodes are partitioned into (ordered) layers: N = (N1,N2, . . . ,Nν+1). The

first and the last layer are the singletons N1 = {r} an Nν+1 = {1}, respectively, with r

the root node and 1 the terminal node. Every non-terminal node i ∈N has two outgoing

edges: the high edge, which points to the high child node hi(i), and the low edge, pointing

to the low child node lo(i). Both child nodes of i∈Nk (k = 1, . . . , ν) are located in strictly

higher-indexed layers Nℓ, so ℓ > k. For our purposes, we will also associate with each node i

within the same layer Nk (k = 1, . . . , ν) a unique label t ∈N, and we call the combination

(k, t) a configuration.

A BDD can be used to describe a family of subsets of a ground set V . Such a BDD will

contain at most |V |+ 1 layers, where each element i ∈ V corresponds with at most one

layer in {1, . . . , ν}; let v(i) ∈ V be the element in V corresponding with the layer of node

i ∈ N \ {1}. A path P from r to 1 in such a BDD B then induces a subset SP ⊂ V , as

follows. We start at the root node of B and iteratively add elements of V to SP in the

following way: if a is the current node on the path then if the next edge is the high edge

of a then we add v(a) to SP , otherwise not. Effectively, high edges represent selection and

low edges exclusion of the element corresponding with the layer of their parent node.

One can construct a BDD associated to a family of subsets in different ways. In this

work we use the efficient and generic recursive framework of Iwashita and Minato (2013).

Below we show how to define a restricted family of pseudo-schedules, which is recursively

constructed, based on the interval-indexed model of Baptiste and Sadykov (2009).

4.2. Constructing a BDD that contains all feasible sequences

Let I = {I1, . . . , Iq} be an appropriate partition of the time horizon and σ = {σ1, . . . , σq} the

set of permutations associated to I. Each σr imposes an ordering ≺r of the jobs in inter-

val Ir, and we write this as follows: j1r ≺r . . .≺r j
n
r , meaning that if job j1r is assigned to inter-

val Ir then it is also the first job in interval Ir, otherwise the next job that can be assigned
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Figure 3 A BDD representing all sequences for the instance described in Table 1. Solid lines represent high

edges, while dotted lines represent low edges.
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to interval Ir is job j2r , and so on. This leads to an ordering ≺ over the entire time horizon:

j11 ≺ j21 ≺ . . .≺ jn1 ≺ j12 , . . .≺ jn2 ≺ . . . , j1q ≺ . . .≺ jnq . Obviously, for each j ∈ J and r ∈Q there

is only one i∈ {1, . . . , n} such that jir = j. For a feasible schedule we need to choose for each

job j ∈ J exactly one of its representations (in one of the intervals). We model this using a

BDD to represent suitable subsets of the set {j11 , j21 , . . . , jn1 , j12 , . . . , jn2 , . . . , j1q , . . . , jnq }, while

ensuring that each representation jir is completed in the corresponding interval.
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The BDD will follow the same ordering ≺. Figure 3 shows the BDD for the instance

given in Table 1. The intervals I1 to I4 appear from top to bottom, and each layer of the

BDD corresponds with one job occurrence jir, appearing from top to bottom according

to ≺. Each non-terminal node in the BDD corresponds with a configuration (jir, t), which is

a pair consisting of a representation jir of a job j that can only be completed in interval Ir

and the total processing time t of all the job representations that were chosen before jir, so

t is the starting time of job jir. A node with configuration (jir, t) appears in the layer with

jir and has t in the node itself. Note that a (job,time) configuration for a node is sufficient

to uniquely identify the node, because a given job with a given starting time can only be

assigned to one interval.

Each node (jir, t) in the BDD apart from the terminal nodes has two child nodes. The

high edge, representing inclusion of representation jir, leads to (ji
′

r′ , t+ pj), where pj is the

processing time of the job j = jir and ji
′

r′ is the representation of the next job j′ that is

different from job j for which t+pj +pj′ ∈ Ir′. If no such representation ji
′

r′ exists, the high

edge points to the 1-node. For the low edge (exclusion of representation jir), the same holds

but based on the value of t instead of t+ pj. An algorithmic description of the generation

procedure of the BDD is provided in Algorithm 1 in Appendix A.

In conclusion, jobs are assigned to intervals based on their completion times, whereas

the node labels contain the job starting times. In the instance, representation j11 can never

be chosen because job 2 cannot finish in interval I1 since p2 = 6 while I1 = (0,4]. As another

illustration, the node (j22 ,2) = (3,2) decides upon the possible scheduling of job 3 at time 2,

which would imply the completion time 6, which is the reason why this configuration is

associated with interval I2 = (4,6]. The high edge emanating from this node implies that

job 3 is effectively scheduled to start at time 2 and thus to end at time 6; the first job

occurrence after j22 according to the set of permutations described supra for this instance

with starting time 6 and completing within its interval is then j43 = 1. The low edge of

(3,2) does not select job 3 and leads to (4,2), seeing that starting job 4 at time 2 still

allows to end job 4 within I2. It can also be seen that the low edge emanating from (j12 ,0),

corresponding with the non-selection of job 2 at starting time 0, immediately leads to the

terminal node, because possible next jobs would end too early to complete in intervals I2,

I3, or I4, since we do not allow for idle time in the pseudo-schedules.
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Similarly to the ATIF, every path from the root node to node 1 corresponds with a

pseudo-schedule. In the example, the path from the root node leading up to (j12 ,0) and

then on to 1 along the low edge then corresponds with an empty machine schedule, which

also constitutes a valid pseudo-schedule. In Appendix B we show two paths in the BDD of

Figure 3 that together define an optimal two-machine solution to the example instance.

4.3. A new flow-based formulation for parallel machine scheduling

Let B = (N,A) be the DAG that represents the constructed BDD. Each node v of the

graph is associated to a configuration (jir, t) and has two outgoing edges: high edge e1v and

low edge e0v. The high edge e1v has a cost ce1v = wj max{0, t+ pj − dj} with j = jir, while the

cost of low edge e0v is 0. The set of all incoming edges of node v is given by δ−(v). Let A0

and A1 be the set of all low and high edges of B, respectively. Let pB : A→ J be a map

that projects each edge e in A onto the job associated to the head node of e.

A formulation for Pm||
∑

wjTj can now be constructed using a binary variable xe for

each e ∈ A1 to indicate that the edge e is chosen, which means that job j = pB(e) is

completed in interval Ir with completion time Cj = t + pj, where the head node of e has

configuration (pB(e), t). For each e ∈ A0 we define a continuous variable xe to allow all

sequencing decisions to be represented by a flow from the root node of the BDD to the

terminal node 1. The formulation can now be stated as follows:

minimize
∑
e∈A1

cexe (6a)

subject to
∑

e∈A1:pB(e)=j

xe = 1 ∀j ∈ J (6b)

xe1v
+xe0v

=
∑

e∈δ−(v)

xe ∀v ∈N \ {r,1} (6c)

∑
e∈δ−(1)

xe = m (6d)

xe ∈ {0,1} ∀e∈A1 (6e)

xe ≥ 0 ∀e∈A0 (6f)

Equations (6c) and (6d) together with the redundant equation

xe0r
+xe1r

= m (7)
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can be interpreted as a network flow of m units through the BDD from the root node r to

the terminal node 1. Constraints (6b) enforce that for each j ∈ J we must choose exactly

one edge e∈A1 such that pB(e) = j, meaning that we choose exactly one representation of

each job across the intervals. In what follows, we call the new formulation (6) the BDD-

based formulation BDDF. This flow-based formulation has quite some similarities with

the recent work by van Hoeve (2022) on graph coloring with BDDs, where a path in the

BDD corresponds with a subset of vertices of the graph to be colored. The ordering of the

vertices (layers) in the BDD in van Hoeve’s work is flexible, however (and it impacts the

size of the graph), and also the objective (number of subsets) is different.

We now show that the formulation BDDF will yield better bounds than the TIF (1).

We show that every solution x of the LP relaxation of BDDF can be transformed into a

solution y of the LP relaxation of TIF. Consider for this the map qB : A1→{1, . . . , T} that

projects each high edge of the BDD onto the starting period of its head node. For j ∈ J

and t∈ {1, . . . , T − pj + 1} , let

yjt =
∑

e∈A1:pB(e)=j
qB(e)=t

xe.

Since x satisfies the assignment constraints (6b), it follows that y also satisfies the

assignment constraints (1b), and accordingly Constraints (6c) and (6d) for x imply Con-

straint (1c) for y.

We now show that the BDDF can be strictly better than the TIF for Pm||
∑

wjTj.

Consider the instance described in Table 1. An optimal solution for this instance has cost 4

with the job sequences (1,4,3) and (2) on the two machines; this integral solution is also

an optimal solution to the linear relaxation of the BDDF. An optimal solution y of the

LP relaxation of the TIF is y11 = y13 = y31 = y37 = 0.5, y21 = y45 = 1.0, and all the other

variables equal to 0. Clearly, this solution to the LP relaxation of the TIF (1) cannot

be a solution of the LP relaxation of the BDDF (6), because the structure of the BDD

diagram in Figure 3 implies that job 1 can not be assigned to the interval I1 twice. With

c̃11 = c̃13 = c̃21 = c̃31 = c̃45 = 0 and c̃37 = 4, the corresponding objective value equals 2. We

thus obtain:

Proposition 1 The BDDF dominates the TIF.
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The ATIF and the new BDDF are not comparable, however; the LP bound of ATIF can be

either higher or lower than that of BDDF (see Appendix C for an illustration). The benefit

of the BDDF is that within one interval each job can only occur once, even with extra

intermediate jobs. The ATIF, on the other hand, avoids directly repeated jobs regardless

their interval.

5. Solving the LP
5.1. Dantzig-Wolfe decomposition

The BDDF (Formulation (6)) can have many variables and constraints, which makes a

direct application restrictive. Following van den Akker et al. (2000) and Pessoa et al. (2010),

we apply a DW decomposition to the LP relaxation of the BDDF (i.e., when all variables xe

are non-negative reals). This will reduce the number of constraints from |N |+n−1 to n+1,

where |N | is the number of nodes in the BDD. We keep the assignment constraints (6b)

and the bounding constraint (6d) in the formulation, but we recognize that the extreme

points of the polytope formed by the flow constraints (6c) are the paths in the BDD from

the root node to the terminal 1. Denote the set of all these paths by P, and let zpe be a

parameter that is one if edge e belongs to path p and zero otherwise. We introduce a new

variable λp for each p ∈ P, with which the LP relaxation of BDDF can be re-stated as

follows:

minimize
∑
e∈A1

cexe (8a)

subject to
∑

e∈A1:pB(e)=j

xe = 1 ∀j ∈ J (8b)

∑
p∈P

zpeλp = xe ∀e∈A (8c)

∑
e∈δ−(1)

xe = m (8d)

xe ≥ 0 ∀e∈A (8e)

λp ≥ 0 ∀p∈P (8f)

Eliminating the variables xe from the model, we obtain:

minimize
∑
p∈P

(∑
e∈A1

cez
p
e

)
λp (9a)
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subject to
∑
p∈P

 ∑
e∈A1:pB(e)=j

zpe

λp = 1 ∀j ∈ J (9b)

∑
p∈P

 ∑
e∈δ−(1)

zpe

λp =
∑
p∈P

λp = m (9c)

λp ≥ 0 ∀p∈P (9d)

5.2. Column generation

We solve the decomposed model (9) with CG, which implies the iterative solution of a

restricted master problem (RMP), which contains a limited set of columns, and a pric-

ing problem, which checks whether there exists a column with negative reduced cost. If

we assign dual variables πj for j ∈ J with Constraints (9b) and dual variable π0 with

Constraint (9c), the dual of the LP (9) is given by:

maximize
∑
j∈J

πj +mπ0 (10a)

subject to
∑
j∈J

 ∑
e∈A1:pB(e)=j

zpe

πj +π0 ≤
∑
e∈A1

cez
p
e ∀p∈P (10b)

πj ∈R ∀j ∈ J (10c)

π0 ∈R (10d)

At each iteration of the CG algorithm we check if one of the constraints (10b) is violated,

meaning that the reduced cost of the associated column is negative. Recall that a column

is a path from the root node to the terminal 1 in the BDD that was presented in Section 3.

The pricing problem is then to verify whether given current dual prices π, a path p ∈ P
exists such that ∑

e∈A1

cez
p
e −
∑
j∈J

 ∑
e∈A1:pB(e)=j

zpe

πj −π0 < 0. (11)

Inequality (11) can be rewritten as ∑
e∈A1∩p

ce

−π0 < 0, (12)

where ce is equal to ce−πpB(e), which is the reduced cost of high edge e.

A CG algorithm typically needs fewer iterations if one considers constraints that are

strongly violated and hence we will identify paths with the lowest reduced cost. In this way



Kowalczyk et al.: A flow-based formulation for parallel machine scheduling using decision diagrams 17

the pricing problem becomes a shortest path problem in the BDD, where the length of the

high edges e is ce, and the length of the low edges is zero. Since the graph is acyclic and

has only two outgoing arcs per node, the running time of a labeling algorithm for pricing

will be linear in the number of nodes in the BDD (Ahuja et al., 1993).

5.3. Labeling algorithm

In our initial computational experiments we noticed that the pricing algorithm often gen-

erates paths from the root node to the terminal for which the associated pseudo-schedules

contain jobs that are repeated in consecutive positions. The consequence of this is that

the lower bound will tend to be weaker than the bound from the ATIF (but of course still

stronger than the bound from the TIF). In Figure 3, for example, the path corresponding

to the pseudo-schedule (j41 , j
2
2 , j

3
4) = (1,3,3) is allowed, where the path includes the low

edges emanating from (j43 ,6) = (1,6) and (j14 ,6) = (4,6). In Section 4.2 we mentioned that

we avoid two consecutive high edges for the same job, but this does not yet avoid repeated

jobs via intermediate low edges.

In principle, one can impose the condition that no job can be visited by a path more

than once: we can compute the intersection of the family of pseudo-schedules and the

family of paths where each job is visited at most once (see Minato (1993) for a generic

intersection operation on BDDs). In this way, we obtain a BDD that contains exactly all

possible schedules. It would be overly time-consuming to construct such a BDD, however,

and the pricing problem would also become much harder to solve because of the number

of nodes in the resulting BDD.

It is easier to restrict the pseudo-schedules such that all pairs of consecutive jobs are

different. Note that two jobs assigned to the same time interval will always be different, so

if two successive tasks in a pseudo-schedule are the same then they are assigned to different

intervals. Thus, one might say that the BDDF only “remembers” what happens in the

same interval. This implicit memory mechanism is the most fundamental reason why the

flow-based formulation is stronger than the TIF. We therefore devise a labeling algorithm

for pricing that takes into account that two consecutive jobs in the pseudo-schedule cannot

be the same. This restriction will have a significant impact on the quality of the lower

bound, and the running time of the algorithm will still be linear in the number of nodes

in the BDD.
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To avoid that two consecutive jobs in the pseudo-schedule are the same, we need to know

the previous job in the optimal path to avoid that the same job is scheduled consecutively.

We therefore maintain a bucket with two entries at each node in the BDD: each entry

contains a distance label and the identification of the previously selected job to achieve

that distance label. The first entry is the lowest cost to reach the node, and the second

entry is the lowest cost while not passing via the same predecessor job as the first entry.

This modified labeling algorithm can be implemented in a forward or backward fashion.

We have observed in preliminary experiments that the forward labeling algorithm is more

time-consuming than the backward variant because the number of label updates is higher

in that case. In the forward labeling algorithm, we may have to update the labels more

often because the in-degree (the number of incoming edges) of each node can be higher

than the out-degree (the number of outgoing edges), which is at most two. Hence, in

our computational experiments, we use the backward labeling algorithm to find paths

with minimal reduced cost. The forward labeling algorithm is used to remove nodes from

the BDD (N,A) by reduced cost fixing. A more detailed description of the forward and

backward algorithm is provided in Appendix D.

By avoiding identical consecutive jobs, BDDF dominates ATIF in principle because a

job is only selected once at most in each interval, while ATIF cannot guarantee this. This

dominance only holds for a basic implementation of the ATIF, however. In a preprocess-

ing step, extra variables can be removed from ATIF based on pairwise interchange (as

described in Proposition 2 (and 3) of Pessoa et al. (2010)). The logic behind these pairwise

interchanges is embedded into the BDDF only in the ordering within each interval, while

the ATIF benefits from this across the entire time horizon.

5.4. Stabilization

The convergence of the CG algorithm can be slow because of primal degeneracy. This prob-

lem can be circumvented by applying stabilization methods for CG. We apply a smoothing

method that was developed by Wentges (1997), in which we correct the optimal solution

of the dual problem of the RMP based on information from the previous iterations before

plugging it into the pricing problem. For details of this technique and of stabilization in

general, we refer to Pessoa et al. (2018).
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5.5. Reduced cost fixing

In many B&P algorithms, the CG pricing problem consists of computing feasible paths in

a network. Irnich et al. (2010) and Pessoa et al. (2010) explain how to remove some arcs

from the underlying network (fixing variables to zero) without compromising optimality,

and thus improve the convergence of the CG. In our case, we can fix the flow on edge

e∈A1 to 0 (so remove the high edge from the BDD) if

LB + (m− 1)c+χe ≥UB, (13)

where χe is the best reduced cost of a path from the root node to the terminal node 1

that traverses the edge e, c is the reduced cost of the shortest path from the root node

to node 1, LB is the current lower bound of the RMP of (9), and UB is the best known

upper bound of the optimal cost. In this way, we only remove arcs that will not improve

the current best solution. The computation of χe uses the forward and backward distance

labels discussed in Section 5.3.

Fixing edges by reduced cost not only has a beneficial effect on the running time of

the pricing algorithm, but can also speed up the B&B procedure for solving the integer

formulation by making the BDD smaller (as a pre-solving step) and via better lower bounds

(see Irnich et al., 2010; Pessoa et al., 2010). Computationally, we find that applying variable

fixing each time a number of CG iterations has past, performs better than only doing this

at the end of the CG. Concretely, we execute variable fixing at the beginning of the CG,

at the end of the CG phase, and after every 50 CG iterations.

6. Branch and price

In order to find optimal integer solutions for the BDDF, we embed the CG into a B&B

search tree, leading to a B&P procedure. The addition of branching constraints to the

LP has the undesirable effect of increasing the size of the formulation as we progress; a

more efficient way to branch is to change the bounds on variables, and Linderoth and

Savelsbergh (1999) explain how generalized upper bound (GUB) constraints of the form∑
i∈N xi = 1, for some set N of binaries, can be used. The branching scheme GUB dichotomy

is based on a subset N ′ ⊊ N for which the solution of the LP relaxation at a node sat-

isfies 0 <
∑

i∈N ′ xi < 1, where we enforce constraint
∑

i∈N ′ xi = 0 in one child node and

constraint
∑

i∈N\N ′ xi = 0 in the other child node. A clear advantage of branching over
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GUB constraints instead of branching over individual variables is that the tree can be more

balanced.

If there exists a logical ordering of the variables in set N then N is sometimes called a spe-

cial ordered set (SOS). For the assignment constraints (6b) in the BDDF, which require the

selection of one high edge for each job, we can order the edges in Aj = {e∈A1 : pB(e) = j}
in non-decreasing order of the starting time qB(e) for each j ∈ J , so each Aj clearly is an

SOS. Following Linderoth and Savelsbergh (1999), SOS branching can be based on the

subset

A′
j =

e∈Aj | qB(e)≤
∑
ℓ∈Aj

qB(ℓ)x∗
ℓ

 ,

where x∗ is a solution of the linear relaxation and A′
j serves as the set N ′. In other words,

we partition the high edges for job j based on how the implied starting time for j compares

to the “average” starting time in the LP solution. Alternatively, branching can also be

based on the weighted tardiness value ce.

There can still remain multiple branching choices, namely for every j ∈ J we can branch

if the corresponding high edges in Aj are not integral. We first consider the subset of

those jobs with non-zero average tardiness; branching on such edges often allows to quickly

prune nodes in the search tree. If no job with fractional edges and non-zero tardiness exists

then we branch on starting times. We apply strong branching to make good branching

decisions. We take a small set of branching candidates (at most 50) and evaluate the child

nodes heuristically by performing a small number (2m) of CG iterations. This first phase

produces a ranking, and in this order we fully evaluate the child nodes. If for a number of

consecutive full evaluations of the child nodes we do not find better bounds, we terminate

the full evaluations and branch on the best candidate. Concretely, we maintain a counter

of the number of non-improving fully evaluated nodes; we terminate when this counter

exceeds 3, but when there is an improvement the counter is divided by 2, rounded down.

7. Computational experiments
7.1. Implementation details and instances

All algorithms have been implemented in the C++ programming language and compiled

with gcc version 11.2.0 with full optimization pack -O3. We have used and adjusted the

implementation of Iwashita and Minato (2013) that can be found on Github1 to construct

1 https://github.com/kunisura/TdZdd
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the BDDs. All computational experiments were performed on one core of a server with

Intel Xeon E5–4610 at 2.4GHz processors and 64 GB of RAM under a Linux OS. All LPs

are solved with Gurobi 9.1.2 using default settings and only one core. The source code of

the procedures can be retrieved from the Github repository by Kowalczyk et al. (2024).

We use the same instances from the OR-library as Pessoa et al. (2010) and Oliveira

and Pessoa (2020). These instances were generated for the single machine problem with

weighted tardiness objective in Potts and Van Wassenhove (1985). There are 125 instances

for each n ∈ {40,50,100}. The processing time pj for each j ∈ {1, . . . , n} was generated

from the discrete uniform distribution on the integers in [1,100] and the weight wj was

generated similarly from [1,10]. It was observed that the difficulty of 1||
∑

wjTj depends

on two parameters, namely the relative range of due dates RDD, and the tardiness factor

TF . The due dates are generated from the discrete uniform distribution on [P (1− TF −
RDD/2), P (1−TF +RDD/2)], where P =

∑
j∈J pj and TF, RDD ∈ {0.2,0.4,0.6,0.8,1.0}.

For each n ∈ {40,50,100} and each pair (RDD,TF ), five instances were constructed. In

order to obtain reasonable instances for parallel machine scheduling, Pessoa et al. (2010)

transformed the instances of Potts and Van Wassenhove (1985) by dividing the due dates

by the number of machines m. The processing times pj and weights wj are kept the same

for each j ∈ J . For each pair (RDD,TF ) they only retain the first instance; thus there are

25 instances for each n∈ {40,50,100} and each m∈ {2,4}.
In our experiments we also use a primal heuristic. The algorithm creates an initial

solution by iteratively assigning jobs (in descending order of their due dates) to a machine

with the smallest workload. The heuristic then proceeds with a rudimentary iterated local

search mechanism that changes the position of jobs or groups of jobs, or changes their

machine allocation.

The local search consists of 1000 iterations. Within each iteration, several moves are

tried in a fastest-descent fashion; these moves are the insertion or swap of one or a block of

a limited number of jobs (blocks of maximum three jobs); these moves are similar to those

in Kramer and Subramanian (2019). All moves are applied in a random order, and we stay

within the same iteration as long as an improving move can be found; the evaluation of the

effect of a move is efficiently done following Kramer and Subramanian (2019). Subsequently,

we move from one iteration to the next by perturbing the current solution by means of a

random selection of moves (out of the same set of moves; the number is drawn randomly

between 1 and 8).
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Table 2 Size of the graph for TIF, ATIF, BDDFr, and BDDF

TIF ATIF BDDFr BDDF

n m avg size max size avg red avg size max size avg red avg size max size avg red avg red

40 2 40,429.9 48,853 78.1% 790,466.9 954,703 88.7% 126,406.3 171,440 86.1% 85.6%
40 4 21,178.7 25,133 87.4% 395,336.0 467,850 91.2% 71,374.4 88,404 90.1% 89.4%
50 2 63,730.8 73,205 80.4% 1,564,008.6 1,796,148 90.4% 199,107.5 257,220 84.5% 84.2%
50 4 33,066.8 37,605 85.7% 781,463.4 887,636 91.2% 111,098.7 131,976 88.7% 88.2%

100 2 257,888.0 294,297 76.6% 12,770,654.5 14,572,902 90.5% 813,603.8 1,049,008 83.7% 83.4%
100 4 131,364.0 149,197 83.2% 6,379,927.2 7,243,901 91.9% 448,032.2 536,716 85.1% 84.8%

7.2. Comparison of the LP bounds

In this section, we will present computational results of CG for the LP bound computation

of the TIF (1), the ATIF (2), and our new formulation BDDF (6). We have implemented

a CG algorithm for each of these three formulations, with the same enhancements such as

stabilization and reduced cost fixing for all three models. We also incorporate the pairwise-

interchange-based preprocessing rules discussed at the end of Section 5.3 in the ATIF; a

similar interchange argument is implicitly embedded in the BDDF only within each inter-

val, while this can benefit the ATIF over the entire time horizon. In this section, “BDDF”

refers to the formulation with a standard labeling algorithm in the CG phase, which

can generate consecutive repeated jobs, while “BDDFr” stands for CG with the labeling

refinement described in Section 5.3 that avoids identical jobs in consecutive positions in a

pseudo-schedule.

The graphs that represent the ATIF and the BDDF are much larger than those for the

TIF. The number of edges for ATIF is O(n2T ), while this number is O(nT ) for the TIF.

Table 2 provides some empirical evidence for this by comparing the average (avg size)

and maximum (max size) number of edges in all formulations. The graphs for BDDFr

and BDDF are obviously the same, so those columns are not duplicated. We see that the

number of edges in the graph that represents the BDDF falls in between the numbers for

the other two formulations. The column avg red presents the average percentage of edges

that were removed via reduced cost fixing by the end of the CG procedure. We observe

that the ATIF benefits the most from this variable fixing, with around 90% of the high

edges removed for all instance classes, followed by the BDDF, and finally the TIF has

the lowest average reduction, but this still amounts to 76.6% at least across the instance

classes. Model BDDFr is a bit more restrictive than BDDF and benefits slightly more from

variable fixing, but the differences are not very large.
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Table 3 Computation time (in seconds) and number of instances solved at the
root for the LP relaxation of TIF and ATIF

TIF ATIF

n m avg time max time # opt avg time max time # opt

40 2 0.59 1.16 6 2.16 4.09 7
40 4 0.31 0.67 8 0.82 1.50 10
50 2 1.12 3.13 6 5.23 12.34 7
50 4 0.63 1.42 7 1.90 3.69 8

100 2 14.43 35.17 4 90.42 183.96 4
100 4 7.29 16.22 6 26.71 51.46 6

Table 4 Computation time (in seconds) and number of instances solved at the
root for the LP relaxation of BDDFr and BDDF

BDDFr BDDF

n m avg time max time # opt avg time max time # opt

40 2 1.39 2.79 9 1.80 3.89 8
40 4 0.67 1.38 9 0.87 1.77 8
50 2 2.57 3.84 8 3.25 5.83 8
50 4 1.29 2.62 8 1.70 3.52 8

100 2 27.26 52.14 6 36.18 60.49 6
100 4 12.01 20.46 6 15.58 25.21 6

In Tables 3 and 4 we report the runtimes of the CG algorithms for TIF, ATIF, BDDFr,

and BDDF. The columns avg time, max time, and # opt contain the average and the

maximum CPU time of the algorithms (in seconds), and the number of instances solved

at the root node (out of 25), respectively. An instance is said to be solved at the root

node when the linear relaxation can confirm optimality of the primal heuristic described

in Section 7.1; the same initial heuristic is used for all tested models in this Section 7.2.

We find that the average running time of the CG for computing the lower bound with

BDDF is significantly less than with ATIF, and also that the time needed for TIF, in turn,

is a lot lower than with BDDF. These observations are completely in line with the size of

the graphs in which the pricing procedures are executed, which was reported in Table 2.

Avoiding consecutive identical jobs via labeling is beneficial: BDDFr is consistently faster

than BDDF.

The gap between the starting solution and the LP bound of the different formulations

is given in Table 5 (we report both the average (avg) as well as the maximum (max ) gap).

The pattern that arises here is not as clear-cut as in the previous two tables: we see from

Table 5 that, despite the smaller graphs and the lower runtimes than the ATIF, the BDDF

still yields LP bounds that are quite tight, and very close on average to the ones produced
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Table 5 Average and maxium gap from the starting solution for the formulations TIF,
ATIF, BDDFr, and BDDF

TIF ATIF BDDFr BDDF

n m avg max avg max avg max avg max

40 2 1.78% 26.61% 1.73% 26.61% 1.49% 26.61% 1.53% 27.05%
40 4 0.56% 5.03% 0.46% 3.68% 0.49% 4.44% 0.53% 4.83%
50 2 0.62% 4.25% 0.57% 4.25% 0.58% 4.25% 0.59% 4.25%
50 4 0.54% 5.95% 0.51% 5.95% 0.51% 5.95% 0.52% 5.95%

100 2 2.27% 35.29% 1.62% 21.05% 0.79% 14.79% 0.83% 15.82%
100 4 0.54% 8.62% 0.52% 8.62% 0.53% 8.62% 0.53% 8.62%

by ATIF. We conclude that while the BDDF is a formulation that is positioned between the

TIF and the ATIF in terms of runtimes and graph size for CG, the LP bounds produced

by the BDDF are of rather similar quality as the ATIF, which makes the formulation

promising for finding optimal integer solutions.

7.3. Comparison of exact procedures

In this section, we present the computational results of the overall B&P algorithm based

on the BDDF formulation. We compare our algorithm with the currently most competi-

tive procedure in the literature, which is the one by Oliveira and Pessoa (2020). In what

follows, we refer to our new B&P procedure based on the BDDF simply as “BDDF,” and

to the algorithm devised by Oliveira and Pessoa (2020) and which is based on ATIF as

“ATIF.” We incorporate the labeling refinement described in Section 5.3 (which was pre-

viously referred to as BDDFr) into BDDF. Oliveira and Pessoa (2020) feed the solutions

found by the heuristic of Kramer and Subramanian (2019) into their procedure as initial

primal bounds, while BDDF computes an initial solution using the local search procedure

mentioned in Section 7.1.

The processors in our hardware are clearly slower than those used by Oliveira and Pes-

soa (2020): the CPU in Oliveira and Pessoa (2020) has around 30% higher clock speed

(according to benchmarking websites2). Hence, we transform the results of our algorithm

accordingly, namely we multiply our results by factor 0.7. The time limit per instance is

set to 7200 seconds for our computations (without rescaling). It should be clear that this

correction factor can only constitute a rough approximation of the differences due to pro-

cessor speed, operating system, etc., and therefore the results in this section mainly serve

2 See, for instance, https://www.cpubenchmark.net/ for a comparison of the CPUs.
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to provide a rough overall idea of how competitive our new method is, while all conclusions

from the head-to-head comparison between the two algorithms are only indicative.

As a tool for comparing the computational performance of the two procedures, we will

use performance profiles, which were proposed as a tool for benchmarking optimization

software in Dolan and Moré (2002). The idea is to compare the methods by the ratio of

each method’s runtime to the best runtime, per instance. Let rp,s be this ratio for method s

on instance p, and let ρs(τ) be the probability for method s that a performance ratio rp,s

for a given instance p is within a factor τ ∈R of the best possible ratio. The function ρs is

then a performance profile, which can be seen as the (cumulative) distribution function for

the performance ratio over all tested instances. In other words, considering τ as the time

needed by an algorithm normalized with respect to the best algorithm, for each value of τ

a performance profile curve reports the fraction of the data set for which the algorithm

is at most τ times slower than the best algorithm. For a more detailed description of

performance profile curves we refer to Dolan and Moré (2002).

In Figure 4 we plot the performance profiles for BDDF and ATIF for all integer τ =

1,2,3, . . . based on all the instances that were solved by both methods (so this excludes

instances where one of the two methods found a guaranteed optimal solution, but the other

one did not). Oliveira and Pessoa (2020) only provide detailed computational results for

instances that were not “trivial,” i.e., not solved in the root node by merely calculating

the LP relaxation of the formulation without additional cuts. BDDF comes out rather

favorably in this plot: from Figure 4 we can deduce that BDDF is the fastest algorithm for

approximately 65% of the instances, while this is the case for only almost 40% for ATIF

(this can be read for the entry τ = 1 on the horizontal axis, which is where the plot starts).

Algorithm BDDF can solve approximately 90% of the instances within a computing time

not exceeding five times the time for ATIF. Since the details for the trivial instances are

not presented in Oliveira and Pessoa (2020), we do not fully see the effect of the faster CG

phase of BDDF here.

In Figure 5 we present performance profiles per instance class, i.e., per combination

(n,m). Clearly, BDDF outperforms ATIF for all instance sets with m = 4 machines (the

three plots on the right side). Conversely, for instances with two machines (the left plots)

ATIF wins the comparison, although the difference in performance is slightly less pro-

nounced than for the case with four machines.
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Figure 4 Performance profiles over all the instances solved to optimality by both algorithms (s= BDDF, ATIF)
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In Table 6 we summarize the results of the two algorithms. Columns avg time contain

the average running time over all solved non-trivial instances (in seconds), under solved

we report the number of solved instances (out of 25), and in the column avg time all we

display the average time over all solved instances (only for BDDF; in seconds). Algorithm

ATIF solves more instances to optimality; the runtime limit imposed is not clear, however:

some of the instances have taken more than one day to run in Oliveira and Pessoa (2020).

Consequently, a perfect comparison between the two methods is not possible based on this

table. Nevertheless, the overall pattern that was observed in Figure 5 also occurs here:

the runtimes of ATIF are significantly higher than BDDF for m = 4, while the differences

are not that clear-cut for m = 2; only for n = 50 ATIF really dominates BDDF for m = 2.

We conjecture that the cuts that are used by Oliveira and Pessoa (2020) are particularly

helpful in tightening the formulation especially for instances with few machines. Overall,

for BDDF our strong branching mechanism can close the gap relatively quickly for n = 40

and 50, while this is not the case anymore for instances with 100 jobs.

In Appendix E we present the detailed computational results of the B&P procedure

based on the formulation BDDF for every instance. We can also report the optimal solution

of three previously unsolved instances in the instance class with n = 100 and m = 4, namely

those with ID number 16, 31, and 56. The only remaining unsolved instance in the data

set is the one with ID number 91 for n = 100 and m = 2. The instances in the rows with

UB = LB = 0 are trivial instances, for which the starting solution of the primal heuristic
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Figure 5 Performance profiles per instance class (s= BDDF, ATIF)
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b: m= 4 and n= 40
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c: m= 2 and n= 50
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d: m= 4 and n= 50
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e: m= 2 and n= 100
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f: m= 4 and n= 100
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already finds an optimal solution. This happens for the same ID values (namely 51, 76,

101, and 106) across the six tables due to the specific values of RDD and TF for those
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Table 6 Summary of the results for the exact procedures

ATIF BDDF

n m avg time solved avg time solved avg time all

40 2 55.51 25 40.45 25 26.29
40 4 30.16 25 7.60 25 5.00
50 2 18.65 25 56.27 25 40.85
50 4 272.59 25 25.31 25 17.43

100 2 852.23 24 756.88 16 520.94
100 4 7,396.23 22 847.54 19 642.13

instances. We also observe that many instances are solved by one algorithm but not the

other for n = 100: three instances are solved by BDDF and not ATIF for m = 4, and the

number of instances solved by ATIF and not BDDF is eight for m = 2 and six for m = 4. We

conclude that the behavior of the two algorithms (in terms of the difficulty experienced for

solving instances that differ in their due date settings) is very different, and even somewhat

complementary.

7.4. Effect of other algorithmic choices

In this subsection, we first investigate the impact of different initial solutions on the per-

formance and efficiency of our procedure. Our results are summarized in Table 7, where

we compare the standard implementation of the BDDF-based B&P (“standard,” using

the local-search-based primal heuristic described in Section 7.1) with two other choices: in

“KS bounds” we plug in the primal bounds reported by Kramer and Subramanian (2019)

(similarly to Oliveira and Pessoa’s (2020) procedure described in Section 7.3), while “sim-

ple” is the variant where our local search is only allowed to execute one instead of 1000

iterations. The columns labeled solved report the number of instances solved within the

runtime limit, while avg time in Table 7 is the average runtime over all 25 instances. In

this case, we have not rescaled the runtimes, which implies that for “standard” the first

four avg time entries in the table (with all 25 instances solved) equal the BDDF entries

avg time all of Table 6 divided by 0.7.

Clearly, the setting “KS bounds” outperforms the other implementations, and this espe-

cially for m = 4, with lower average runtimes and more instances solved; the differences for

m = 2 are a bit less clear-cut. The “simple” variant does worse than the other two imple-

mentations, with fewer instances solved and higher runtimes. We conclude that a stronger

initial primal bound improves the performance of the B&P procedure; the absence of a

strong heuristic or informed starting point hampers the algorithm’s ability to explore the
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Table 7 Summary of the results of BDDF with different initial solutions and with additional
pairwise-interchange rule (without rescaling of time)

KS bounds standard simple interchange

n m avg time solved avg time solved avg time solved avg time solved

40 2 44.92 25 37.55 25 423.36 24 31.98 25
40 4 6.80 25 7.14 25 441.94 24 7.02 25
50 2 55.42 25 58.35 25 877.09 23 50.01 25
50 4 17.06 25 24.90 25 324.14 25 14.69 25

100 2 3,143.52 16 3,073.28 16 5,309.61 8 2,751.04 17
100 4 1,600.81 23 2,411.63 19 5,218.42 8 1,728.98 22

solution space efficiently. Better bounds will allow to eliminate unpromising regions from

the search space in the B&B process from the outset, and will also have a direct effect on

the variable fixing: the better the bound, the more variables can be fixed, which propagates

throughout the BDD, reducing the size of the BDD and rendering the pricing problem

easier, and probably even strengthening the LP bound in the root node.

Finally, we also briefly report on our attempt to include a pairwise-interchange dom-

inance rule into the procedure (similar to the way in which Pessoa et al., 2010, remove

variables from ATIF). For consecutive high edges, this is easily incorporated into the con-

struction of the BDD (see Section 4.2) by skipping job representations in the choice of the

head node of a high edge. The setting “interchange” in Table 7 contains the results for the

implementation “KS bounds” augmented with this dominance rule. We observe that this

extension has a little effect on the size of the generated graph, but does not consistently

reduce the overall running time of the algorithm (compared to the columns “KS bounds”).

8. Conclusion and further research

In this work, we have introduced a new formulation for Pm||
∑

wjTj based on binary

decision diagrams, which are built using a time discretization from Baptiste and Sadykov

(2009). We show theoretically and experimentally that this formulation is stronger than

the classical time-indexed formulation, and show experimentally that this formulation is

sometimes weaker and sometimes stronger than the arc-time-indexed formulation. The

computation time of the LP lower bound of the new formulation with column generation

is lower than for the bound computation of the arc-time-indexed model. The reason for

this is mainly the size of the graphs that represent the different formulations. We have

also developed a branch-and-price procedure based on the new formulation; this procedure

can solve many instances faster than before, thanks to strong branching together with
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the improved running time of the column generation. Compared with the state-of-the-

art procedure of Oliveira and Pessoa (2020), our new procedure seems to perform better

especially with a larger number of machines.

As a prime avenue for further research, one can examine several techniques from the rich

vehicle routing literature to construct a branch-cut-and-price algorithm for the new flow-

based formulation. Further closing the gap without branching but rather by introducing

cuts seems to be a logical next step for rendering the resulting algorithm more competitive.

Pessoa et al. (2010) considered such a plan of attack for the arc-time-indexed formulation

for single and parallel machine scheduling, and derived robust cuts (which do not destroy

the structure of the pricing problem; see also Poggi de Aragão and Uchoa, 2003). A similar

approach for scheduling on one machine was followed by van den Akker et al. (2000) for the

time-indexed formulation. Potentially, separation for the new formulation could be faster

than for the arc-time-indexed model due to its lower number of variables.

A different interesting alternative for continuing this work is to develop a variant of the

enumeration algorithm devised in Baldacci et al. (2008) for vehicle routing. The algorithm

would iterate over all the paths from the root node to the terminal node in the decision

diagram with a reduced cost that is less than the duality gap. One can then construct a

set-partitioning formulation containing all these paths and hand the resulting formulation

to a general MIP solver. In this case, it may be possible to add non-robust cuts to the

formulation and to do the pricing by inspection if the number of retained schedules is low

enough.

Another attractive option for further work is to examine the extension of our labeling

algorithm that prevents identical consecutive jobs to keep track of (and avoid) the previous

K jobs. Such a more aggressive refinement would require more detailed bookkeeping at each

node in the BDD, but might also have a considerable impact on the quality of the bounds.

Cycle elimination with K = 1 has already been incorporated routinely in earlier routing

research (see, for example, Section 8 of Houck et al., 1978), and cycle elimination with K ≥ 2

has also already been studied; the work by Irnich and Villeneuve (2006), Fukasawa et al.

(2006), and Baldacci et al. (2011) can serve as a valuable starting point for such extensions

in the context of our model. The incorporation of pairwise-interchange dominance rules

into the labelling algorithm is another option that deserves further investigation (such a

rule was tested for consecutive high edges in the creation of the BDD, but not for paths
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with intermediate low edges). Finally, one might also try to leverage van Hoeve’s (2022)

constraint separation to stepwise reduce infeasible columns from the formulation.

As a final opportunity for further work, one can try to extend the new flow-based for-

mulation to parallel machine scheduling problems with other constraints and objective

functions. It would be interesting to examine, for example, whether the formulation can

be adapted to the parallel machine scheduling problem with earliness-tardiness objective,

and whether idle time can be incorporated.

References

Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications.

Prentice-Hall.

Akers, S.B. 1978. Binary decision diagrams. IEEE Transactions on Computers 100 509–516.

Baldacci, R., N. Christofides, A. Mingozzi. 2008. An exact algorithm for the vehicle routing problem based

on the set partitioning formulation with additional cuts. Mathematical Programming 115 351–385.

Baldacci, R., A. Mingozzi, R. Roberti. 2011. New route relaxation and pricing strategies for the vehicle

routing problem. Operations Research 59 1269–1283.

Baptiste, P., R. Sadykov. 2009. On scheduling a single machine to minimize a piecewise linear objective

function: A compact MIP formulation. Naval Research Logistics 56 487–502.

Bergman, D., A.A. Cire, W.J. van Hoeve, J.N. Hooker. 2016. Discrete optimization with decision diagrams.

INFORMS Journal on Computing 28 47–66.

Bigras, L.P., M. Gamache, G. Savard. 2008. Time-indexed formulations and the total weighted tardiness

problem. INFORMS Journal on Computing 20 133–142.

Boland, N., R. Clement, H. Waterer. 2016. A bucket indexed formulation for nonpreemptive single machine

scheduling problems. INFORMS Journal on Computing 28 14–30.

Castro, M.P., A.A. Cire, J.C. Beck. 2022. Decision diagrams for discrete optimization: A survey of recent

advances. INFORMS Journal on Computing 34 2271–2295.

Cire, A.A., W-J. van Hoeve. 2013. Multivalued decision diagrams for sequencing problems. Operations

Research 61 1411–1428.

Clement, R. 2015. Mixed integer linear programming models for machine scheduling. Ph.D. thesis, The

University of Newcastle, Australia.

Crama, Y., F.C.R. Spieksma. 1996. Scheduling jobs of equal length: complexity, facets and computational

results. Mathematical Programming 72 207–227.
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Appendix A: Generation of the BDD (Section 4.2)

Algorithm 1 provides a recursive specification of the decision diagram that contains all the sequences for a

given instance of Pm||
∑

wjTj , as described in Section 4. The root of the BDD has configuration (j11 ,0) (or
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(jir,0) for the first jir with pjir
∈ Ir), and the function CHILD takes as input a configuration (j, t) of a node

and b ∈ {0,1} and outputs the configuration of the b-child of (j, t), where 0 and 1 refer to the low and high

edge, respectively.

Algorithm 1: Recursive specification of the BDD

Function CHILD((jir, t), b)

if b = 1 then

t′← t+ pjir ;

else

t′← t

ji
′

r′←MINJOB(jir, t
′) ;

if ji
′

r′ = nq + 1 then

return terminal node 1 ;

return (ji
′

r′ , t
′) ;

Function MINJOB(jir, t)

if min{ji′r′ ≻ jir|t+ pji
r′
∈ Ir′} exists then

return min{ji′r′ ≻ jir|t+ pji′
r′
∈ Ir′} ;

return nq + 1 ;

Appendix B: Illustration of a two-machine schedule for the example instance of
Section 4.2

The BDD for the example instance depicted in Figure 3 is shown again in Figure 6, where we now include

two paths in bold, which represent the machine schedules (2,3) (in blue) and (1,4) (in red). This constitutes

an optimal schedule, which is different from the optimal solution described in Section 4.3. Job 3 can indeed

be freely scheduled as the last job on any of the two machines; in either case its starting time is 6.

Appendix C: The ATIF and the BDDF are not comparable

We provide an example instance that shows that the polyhedron that represents the solution space of the

linear relaxation of the formulation ATIF is not included in the polyhedron of the BDDF. Table 8 contains

the job data for the instance with n = 7 jobs, and we work with m = 2 machines. The lower bound provided

by the relaxation of the BDDF is 117.333 . . ., while the bound for ATIF is 116.6777 . . . In our experiments

discussed in Section 7.2 we encountered a number of instances where the LP relaxation of the ATIF provides

a tighter bound than the BDDF; for brevity, we do not include such an instance here.
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Figure 6 The BDD of Figure 3 for the example instance, with two paths representing two machine schedules
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Table 8 Job data for
the example instance

job j pj dj wj

1 92 197 5
2 30 114 6
3 47 86 6
4 19 155 1
5 65 136 5
6 78 158 6
7 82 95 1
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Appendix D: Labeling algorithm (Section 5.3)

For each node v in the BDD (N,A) we define a bucket Fv that stores distance labels, representing lengths of

partial paths that end in v. Unlike traditional labeling algorithms for shortest-path problems with resource

constraints, we store only two labels in the bucket Fv for each node v ∈N , namely the label L1
v = (c1v, v, pred

1
v)

for a partial path P 1 leading to v with the best reduced cost c1v, and the label L2
v = (c2v, v, pred

2
v) for a partial

path P 2 with best reduced cost such that jw1 ̸= jw2 , where pred1v = nil or contains a pointer to the label of

the predecessor configuration w1 = (jw1 , tw1) of v in path P 1, and similarly pred2v = nil or a pointer to the

label of predecessor w2 = (jw2 , tw2) in path P 2. The corresponding forward recursion in Algorithm 2 finds a

path P ∈P with minimum reduced cost such that all pairs of consecutive jobs on the machine are different.

After the labeling algorithm, the bucket F1 associated with the terminal node 1 will hold two labels with

paths from the root to the terminal node 1 with the smallest reduced cost and for which the associated

pseudo-schedule is such that consecutive jobs are different. We can retrieve these pseudo-schedules by a

simple backtracking algorithm via the pointers associated to the labels.

As mentioned in Section 5.3, the recursion can alternatively be conducted backwards. In this case the labels

will have the structure (c̃v, v, prevv), with prevv = nil or a pointer to the previously chosen node (successor

node) as part of the partial path, and two labels are stored in a bucket Bv for each node v, one for the best

partial path, and one for a path with the best length but with different successor than the first label. The

backwards labeling algorithm is described in pseudo-code in Algorithm 3.

Appendix E: Detailed computational results for the B&P procedure based on
BDDF

In the following tables (Table 9 to 14) we include the detailed computational results of our B&P procedure

based on BDDF for each tested instance. An instance is solved to guaranteed optimality if and only if

LB = UB . The information provided in the different columns is as follows:

• #id = instance ID number

• UB = best found upper bound (best solution)

• LB root = lower bound in the root node of the B&B search tree

• LB = best found (global) lower bound

• #iter = total number of CG iterations across all nodes in the search tree

• #iter root =number of CG iterations in the root node

• #nodes = number of nodes in the B&B search tree (excluding the root node)

• time LP = CPU time (in seconds) for solving the LPs in all nodes

• time LP root = CPU time (in seconds) for solving the LP in the root node

• time = total CPU time (in seconds)

The CPU times were transformed to be comparable with those obtained by the machine used by Oliveira

and Pessoa (2020), where 7200 seconds on our computer equates with approximately 5040 seconds on the

computer of Oliveira and Pessoa.
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Algorithm 2: Forward labeling algorithm for pricing

Data: BDD (N,A), optimal solution π of the dual program

Result: Pseudo-schedule s with minimum negative reduced cost

L1
v← (∞, v,nil) and L2

v← (∞, v,nil), ∀v ∈N \ {r} ;

L1
r← (−π0,r, nil) and L2

r← (∞,r, nil) ;

for v ∈N \ {1}, with v = (jv, tv), in breadth-first order do

Let lo(v) be the low child of v and hi(v) be the high child of v ;

Lv← best label in Fv for which the predecessor job jw is different from jv ;

Extend label Lv to a label in Fhi(v) if the reduced cost of the new label is smaller

than the current reduced cost of the label, and the labels are constructed in

such a way that the predecessors point to nodes associated with different jobs ;

Extend the labels L1
v and L2

v to labels in Flo(v) if the reduced cost of the new

labels is smaller than the reduced cost of the current labels in Flo(v) ;

Algorithm 3: Backward labeling algorithm for pricing

Data: BDD (N,A), optimal solution π of the dual program

Result: Pseudo-schedule s with minimum negative reduced cost

L1
v← (∞, v,nil) and L2

v← (∞, v,nil), ∀v ∈N \ {1} ;

L1
1← (−π0,1, nil) and L2

1← (∞,1, nil) ;

for v ∈N \ {1}, with v = (jv, tv), in reversed breadth-first order do

First extend the labels of Blo(v) to labels in Bv ;

Let Lv be a candidate label of Bv that is extended from one of labels of Bhi(v)

such that jv is different from the job associated to the pointer of label of one of

the labels in hi(v) ;

If the reduced cost of label Lv is smaller than the current reduced costs of the

labels in Bv then update the labels in Bv appropriately ;
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Table 9 B&P results per instance for m= 2 and n= 40

#id UB LB root LB #iter #iter root #nodes time LP time LP root time

1 606 584 606 484 201 2 3.16 0.65 4.40

6 3,886 3,875 3,886 345 220 2 1.71 0.72 3.83

11 9,617 9,592 9,617 303 237 1 1.13 0.66 2.04

16 38,356 38,277 38,356 4,293 336 10 26.77 1.07 69.35

21 41,048 41,048 41,048 477 477 0 1.22 1.22 1.23

26 87 87 87 151 151 0 0.49 0.49 0.49

31 3,812 3,758 3,812 976 225 3 10.07 1.05 13.76

36 10,713 10,660 10,713 7,232 329 29 31.65 1.42 64.10

41 30,802 30,798 30,802 429 413 1 2.15 1.81 4.22

46 34,146 34,146 34,146 565 565 0 1.49 1.49 1.50

51 0 0 0 1 1 0 0.04 0.04 0.04

56 1,279 1,272 1,279 307 211 1 1.56 0.71 1.96

61 11,488 11,302 11,488 8,546 338 18 52.81 1.29 110.45

66 35,279 35,130 35,279 13,731 364 35 89.80 2.19 229.61

71 47,952 47,935 47,952 739 480 2 5.12 1.93 14.62

76 0 0 0 1 1 0 0.02 0.02 0.03

81 571 451 571 1,785 288 8 19.95 1.69 27.62

86 6,048 5,996 6,048 1,216 407 3 6.05 2.49 11.43

91 26,075 26,075 26,075 482 482 0 2.37 2.37 2.38

96 66,116 66,110 66,116 662 513 1 2.97 2.30 4.61

101 0 0 0 1 1 0 0.02 0.02 0.03

106 0 0 0 1 1 0 0.03 0.03 0.03

111 17,936 17,897 17,936 2,069 400 7 11.66 2.14 31.09

116 25,870 25,764 25,870 4,007 366 8 21.32 2.05 51.32

121 64,516 64,507 64,516 573 460 2 3.30 2.26 7.00
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Table 10 B&P results per instance for m= 4 and n= 40

#id UB LB root LB #iter #iter root #nodes time LP time LP root time

1 439 438 439 186 140 1 0.25 0.17 0.36

6 2,374 2,372 2,374 220 194 1 0.67 0.41 1.18

11 5,737 5,735 5,737 208 189 1 0.42 0.27 0.78

16 21,493 21,484 21,493 1,442 227 17 6.04 0.97 13.41

21 22,793 22,793 22,793 318 318 0 0.46 0.46 0.46

26 88 88 88 113 113 0 0.21 0.21 0.21

31 2,525 2,496 2,525 342 157 1 1.32 0.41 2.05

36 6,420 6,355 6,420 1,044 214 4 5.29 0.43 10.20

41 17,685 17,633 17,685 615 193 2 4.31 1.07 8.97

46 19,124 19,124 19,124 268 268 0 0.75 0.75 0.76

51 0 0 0 1 1 0 0.01 0.01 0.01

56 826 798 826 588 121 5 2.75 0.23 4.42

61 7,357 7,315 7,357 2,738 214 37 15.30 1.28 39.04

66 20,251 20,247 20,251 317 303 1 1.39 1.21 1.97

71 26,740 26,740 26,740 381 381 0 0.99 0.99 1.00

76 0 0 0 1 1 0 0.01 0.01 0.01

81 564 540 564 578 171 8 2.04 0.35 3.79

86 4,725 4,719 4,725 279 216 2 1.42 0.89 2.28

91 15,569 15,557 15,569 392 254 3 2.30 0.82 4.83

96 36,266 36,266 36,266 330 330 0 0.77 0.77 0.77

101 0 0 0 1 1 0 0.01 0.01 0.02

106 0 0 0 1 1 0 0.01 0.01 0.01

111 11,263 11,212 11,263 926 146 5 4.39 0.90 8.08

116 15,566 15,539 15,566 1,113 252 3 4.99 0.74 9.00

121 35,751 35,739 35,751 897 301 6 4.96 0.98 11.29
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Table 11 B&P results per instance for m= 2 and n= 50

#id UB LB root LB #iter #iter root #nodes time LP time LP root time

1 1,268 1,232 1,268 935 220 3 15.37 1.49 19.68

6 14,272 14,261 14,272 627 445 2 5.51 2.42 10.55

11 23,028 23,000 23,028 685 427 1 4.59 1.84 8.69

16 46,072 46,011 46,072 8,638 501 20 50.85 2.67 159.61

21 111,069 111,067 111,069 721 626 1 4.11 3.50 7.76

26 26 26 26 244 244 0 1.51 1.51 1.52

31 5,378 5,289 5,378 1,692 367 6 34.63 2.21 49.74

36 18,956 18,891 18,956 1,574 441 4 12.40 2.93 27.69

41 38,058 37,952 38,058 2,584 524 5 23.06 3.57 62.93

46 82,105 82,084 82,105 3,617 600 4 18.41 3.62 51.26

51 0 0 0 1 1 0 0.04 0.04 0.04

56 761 730 761 622 242 2 8.54 1.72 11.76

61 13,682 13,582 13,682 3,238 402 5 27.69 2.94 49.80

66 40,907 40,907 40,907 781 781 0 4.11 4.11 4.12

71 78,532 78,532 78,532 554 554 0 3.28 3.28 3.29

76 0 0 0 1 1 0 0.05 0.05 0.06

81 542 538 542 575 434 1 5.24 3.59 6.30

86 12,557 12,267 12,557 22,169 547 44 99.21 4.31 287.87

91 47,349 47,293 47,349 3,846 475 10 28.22 3.36 86.36

96 92,822 92,801 92,822 1,258 595 5 9.33 4.01 26.22

101 0 0 0 1 1 0 0.04 0.04 0.05

106 0 0 0 1 1 0 0.05 0.05 0.06

111 15,564 15,543 15,564 1,009 517 3 5.06 3.83 8.47

116 19,608 19,520 19,608 10,005 495 19 48.65 3.99 133.97

121 41,696 41,696 41,696 800 800 0 3.36 3.36 3.36
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Table 12 B&P results per instance for m= 4 and n= 50

#id UB LB root LB #iter #iter root #nodes time LP time LP root time

1 785 777 785 342 173 3 2.15 0.64 4.04

6 8,317 8,298 8,317 481 298 2 2.51 0.73 4.69

11 12,879 12,871 12,879 404 292 2 3.73 1.13 8.02

16 25,376 25,376 25,376 338 338 0 1.51 1.51 1.51

21 59,440 59,440 59,440 450 450 0 1.39 1.39 1.39

26 54 54 54 182 182 0 0.48 0.48 0.48

31 3,061 3,061 3,061 243 243 0 0.74 0.74 0.75

36 10,796 10,794 10,796 288 274 1 1.64 1.27 2.48

41 21,806 21,783 21,806 1,865 370 4 13.01 1.67 28.24

46 44,455 44,452 44,455 448 344 2 4.09 2.77 6.52

51 0 0 0 1 1 0 0.01 0.01 0.01

56 570 538 570 689 180 4 3.57 0.45 5.42

61 7,898 7,850 7,898 8,417 263 37 74.56 2.80 146.32

66 23,138 23,138 23,138 495 495 0 2.81 2.81 2.83

71 42,645 42,625 42,645 2,652 361 9 23.32 2.22 56.51

76 0 0 0 1 1 0 0.02 0.02 0.03

81 495 478 495 282 219 1 1.47 0.77 1.66

86 8,369 8,328 8,369 1,444 321 3 11.76 2.65 24.22

91 26,551 26,546 26,551 463 360 1 4.48 2.90 7.37

96 50,326 50,312 50,326 1,006 321 5 14.07 2.24 36.07

101 0 0 0 1 1 0 0.02 0.02 0.02

106 0 0 0 1 1 0 0.02 0.02 0.02

111 10,069 10,047 10,069 955 313 7 12.21 2.90 29.11

116 11,552 11,519 11,552 1,655 268 7 18.29 2.82 43.54

121 23,792 23,768 23,792 1,371 293 4 11.39 1.97 24.50
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Table 13 B&P results per instance for m= 2 and n= 100

#id UB LB root LB #iter #iter root #nodes time LP time LP root time

1 3,339 3,314 3,339 2,999 549 5 104.77 11.60 156.18

6 30,665 30,644 30,665 9,784 840 13 403.82 21.12 855.91

11 93,894 93,894 93,894 1,134 1,134 0 17.40 17.40 17.42

16 209,100 209,057 209,100 16,470 1,414 8 206.91 31.48 816.28

21 457,836 457,814 457,836 16,402 1,873 10 248.53 28.16 1,096.78

26 92 92 92 391 391 0 8.43 8.43 8.45

31 12,729 12,725 12,729 940 724 1 27.71 19.02 43.98

36 56,671 56,574 56,671 15,383 1,056 17 495.50 29.59 1,435.73

41 237,964 237,770 237,906 40,421 1,395 24 834.62 36.01 5,086.75

46 422,831 422,804 422,831 41,848 1,612 25 666.84 36.06 3,511.15

51 0 0 0 1 1 0 0.14 0.14 0.16

56 5,047 4,983 5,047 2,309 683 4 57.09 15.15 91.75

61 45,573 45,411 45,473 56,982 1,033 34 1,275.14 19.90 5,021.28

66 126,513 126,405 126,430 71,940 1,126 45 1,003.64 25.51 5,070.91

71 327,305 327,300 327,305 2,650 1,905 2 60.02 48.01 154.00

76 0 0 0 1 1 0 0.14 0.14 0.16

81 908 791 908 3,935 1,523 5 110.89 50.68 146.54

86 36,686 36,206 36,209 163,328 1,360 297 1,318.04 46.00 4,981.33

91 129,929 129,588 129,802 52,557 1,259 24 945.45 38.14 5,021.95

96 254,194 254,140 254,145 42,980 1,539 23 608.86 32.32 5,128.69

101 0 0 0 1 1 0 0.24 0.24 0.28

106 0 0 0 1 1 0 0.23 0.23 0.26

111 84,220 84,003 84,055 53,064 1,468 26 909.90 58.55 5,075.99

116 191,205 191,085 191,107 77,643 1,465 41 832.52 36.03 5,039.19

121 242,019 241,954 241,957 67,337 1,706 36 808.76 54.49 5,021.20
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Table 14 B&P results per instance for m= 4 and n= 100

#id UB LB root LB #iter #iter root #nodes time LP time LP root time

1 2,001 1,990 2,001 708 393 3 14.54 4.03 26.54

6 16,893 16,893 16,893 631 631 0 7.54 7.54 7.56

11 50,234 50,196 50,216 101,050 710 393 1,677.41 9.06 4,943.34

16 110,219 110,104 110,219 34,870 713 57 971.12 7.52 2,905.22

21 237,392 237,389 237,392 1,731 1,146 1 30.26 20.16 51.67

26 141 141 141 378 378 0 5.32 5.32 5.34

31 7,130 7,080 7,130 8,102 473 23 442.34 5.81 712.41

36 30,791 30,773 30,791 1,053 696 1 24.25 9.66 45.38

41 126,185 126,130 126,185 10,125 690 22 254.39 14.51 914.88

46 219,536 219,526 219,536 3,448 1,017 4 59.95 17.04 190.07

51 0 0 0 1 1 0 0.10 0.10 0.11

56 3,076 3,021 3,076 2,873 522 7 64.60 8.18 94.04

61 24,863 24,805 24,825 134,520 742 415 1,586.59 7.92 4,976.25

66 67,967 67,947 67,967 39,896 840 119 673.85 17.34 2,242.08

71 170,694 170,674 170,675 70,736 1,109 104 1,233.12 24.32 5,012.55

76 0 0 0 1 1 0 0.10 0.10 0.11

81 819 754 819 1,417 844 3 24.33 14.35 28.48

86 21,282 21,202 21,256 75,623 636 136 1,406.58 21.54 5,025.99

91 70,606 70,582 70,606 35,852 919 74 615.14 15.18 2,357.56

96 133,587 133,571 133,587 24,286 995 42 231.11 26.19 751.82

101 0 0 0 1 1 0 0.13 0.13 0.15

106 0 0 0 1 1 0 0.10 0.10 0.12

111 46,705 46,616 46,658 56,541 776 67 1,223.29 11.38 5,016.42

116 101,571 101,514 101,517 50,825 1,004 86 1,281.40 29.08 5,028.39

121 127,618 127,593 127,618 30,859 1,018 60 521.97 23.93 1,866.95


