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Abstract

The heterogeneity of data distributions among clients (non-
IID) has been identified as one of the key challenges in feder-
ated learning. In the local training phase, each client model
optimized towards its own local optima instead of solving
the global objective, which results in forgetting the global
knowledge and raises a drift across client updates. Some
previous methods leverage knowledge distillation (KD) to
avoid the federated forgetting, but most of them do not con-
sider the global teacher model’s ability on different categories
and might mislead the local student models’ training conse-
quently. To address this issue, we propose a Class-wise Adap-
tive self-Distillation method for Federated Learning, which is
named FedCAD. Before local training at each round, Fed-
CAD assesses the inference confidence on each category of
the global model using an auxiliary dataset, which is used to
indicate how much the global model should be trusted. Based
on the assessments, a class-wise adaptive weight is used to
dynamically adjust the impact of the global teacher model
on the local training of each category. In this way, the dis-
tilled knowledge from the global teacher can be selectively
learned by the local students to avoid negative impacts. The
extensive experimental results on the public datasets, i.e., CI-
FAR10, CIFAR100 and FEMINST, demonstrate that the pro-
posed FedCAD has better performance in terms of conver-
gence speed and classification accuracy, compared to other
state-of-the-art FL methods.

Introduction
Nowadays, privacy protection has attracted increasing atten-
tion in modern society with the introduction of regulations
such as the General Data Protection Regulation (GDPR).
The data collected by different devices or organizations can-
not be sent to a centralized server according to the require-
ment of privacy protection regulation, forming distributed
database consisting of multiple “data islands”. Federated
learning (FL) is proposed to cope with the “data island”
dilemma, which enables clients to collaboratively train a
generalized and robust model while keeping their local data
decentralized. Most existing FL algorithms follow the pro-
cedure of FedAvg (McMahan et al. 2017). In each commu-
nication round, the server first selects a part of clients and
sends the weights of global model to them to initialize the
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local models. The selected clients then train the local mod-
els using their private local data and transfer the optimized
weights back to the server. Finally, the server aggregates the
local models to update the global model. The above process
repeats until the global model converges.

A key challenge in FL is the heterogeneity of data dis-
tribution among the clients. The local data of each client
can be non-identically distributed (non-IID) in real-world,
which means the local data distributions may differ from the
overall global distribution. The heterogeneity of local data
not only makes the theoretical analysis difficult (Khaled,
Mishchenko, and Richtárik 2020; Li et al. 2020c), but also
leads to the performance degradation and slow convergence
(Zhao et al. 2018; Li et al. 2020a). When each client trains a
local model on the biased local data, its local objective may
deviate from the global objective and result in forgetting the
global knowledge. Therefore, the global model drift from the
optimum of the global objective. (Karimireddy et al. 2020)
called this phenomenon as ”Client-drift”. Many studies have
tried to address the client-drift problem at the local training
phase. FedProx (Li et al. 2020b) directly limits the local up-
dates by adding an additional L2 regularization term to the
local objective function. SCAFFOLD (Karimireddy et al.
2020) uses control variate to correct the client-drift. How-
ever, the effects of these methods are not significant when
the local data is heterogeneous.

Interestingly, Continual Learning (CL) faces an analo-
gous problem: how to learn a task without forgetting another
one learned previously. Some studies in CL apply knowl-
edge distillation to keep the representations of previous data
from drifting too much while learning new tasks. Inspired
by this idea, FedLSD (Lee et al. 2021) and FedGKD (Yao
et al. 2021) train local models with the guidance of global
model’s prediction on local data to preserve global knowl-
edge. More specifically, the local models self-distill the dis-
tributed global model’s prediction on local data.

However, due to the non-IID of the data distribution, the
convergence speed and accuracy of the global model are dif-
ferent among classes. What’s more, the credibility of dis-
tillation knowledge tends to increase with the convergence
of the global model. Hence, it’s not appropriate to use a
constant coefficient to control the distillation loss. When
teacher makes confident mispredictions, especially on hard
classes, distillation can disproportionately harm the perfor-



mance on the classes and amplified by the student (Lukasik
et al. 2021).

The discoveries inspire us to propose a class-wise adap-
tive self distillation mechanism namely FedCAD. FedCAD
utilizes a class-wise adaptive weight to help local models
adaptively control the impact of distillation based on the per-
formance of the global model on each class. When the pre-
diction of global model on the class is credible, local models
learn more from the distilled knowledge. Otherwise, local
models will focus more on the local ground truth labels.

Our main contributions are as follows:

• We analyze the problems of the existing FL algorithm,
which keep a constant ratio of distillation loss during lo-
cal training process, and propose an adaptive adjustment
mechanism of the distillation loss to address them.

• We propose a class-wise adaptive weight, determined by
the performance of the global model on each class of an
auxiliary dataset, to realize the adaptive adjustment of the
distillation loss.

Related Work
Federated Learning
Federated learning (FL) is first proposed by (McMahan et al.
2017) as a distributed machine learning paradigm. A key
challenge in federated learning is that data distribution in
different clients is usually non-identically distributed (non-
IID). Many studies are trying to address the non-IID issue,
which mainly improves two phases: local training phase and
server aggregation phase. Our work belongs to the first one.

As for the studies on improving the local training phase,
most of them use a regularization item to impose constraints
on the update of local models. FedProx (Li et al. 2020b) di-
rectly limits the local updates by adding an additional L2
regularization term to the local objective function. FedNova
(Wang et al. 2020b) introduces weight modifications to Fe-
dAvg using the number of local steps to normalize and scale
the local updates of each client. Motivated by the continual
learning, FedCurv (Shoham et al. 2019) and FedCL (Yao
and Sun 2020) add a penalty term to the local objective func-
tion to prevent the important parameters of the global model
from changing too much. They estimate parameter impor-
tance by the diagonal of the empirical Fisher Information
Matrix, which is inspired by EWC (Kirkpatrick et al. 2017).

As for the studies on improving the server aggregation
phase, several works have proposed a layer-wise aggregation
strategy to adapt to data heterogeneity, applying Bayesian
nonparameterics to match and average the parameters. For
instance, instead of averaging the parameters weight-wise
without considering the meaning of each parameter, PFNM
(Yurochkin et al. 2019) and FedMA (Wang et al. 2020a)
use the Beta-Bernouilli Process for matching parameters.
Specifically, FedMA is an improved version of PFNM which
extends the matching strategy from fully connected layers to
CNNs and LSTMs.

Recently, personalized federated learning has attracted
significant interest from researchers (Deng, Kamani, and
Mahdavi 2020; Chen et al. 2021; Huang et al. 2021), which
tries to train personalized local models for each client. In

this paper, we study the typical federated learning, targeting
at training a single generalized model for all clients.

Knowledge Distillation in FL
Knowledge Distillation(KD) is proposed to transfer knowl-
edge from a large teacher model to a small student model
(Hinton, Vinyals, and Dean 2015), which is widely used for
model compression (Wang et al. 2020c; Sun et al. 2019).
Distillation in federated learning has recently emerged as an
effective approach to track the data heterogeneity. Numer-
ous related works study the ensemble distillation, i.e. dis-
tilling the knowledge from the ensemble of teachers (local
models) to a student (global model). In Federated distilla-
tion(FD) (Jeong et al. 2018; Seo et al. 2020), clients share
the model output parameters(logits) as opposed to the model
parameters(weights or gradients) to reduce the communi-
cation costs. Then, the averaged logits are used to regular-
ize local training. FedMD (Li and Wang 2019) and Cronus
(Chang et al. 2019) use an public dataset to get the aver-
aged logits per sample. FedDF (Lin et al. 2020) use a unla-
beled datasets in the server to aggregated knowledge from all
received local model. Furthermore, the above methods can
deal with the model heterogeneity and each client can de-
sign unique model. Instead of treating the ensembles of local
models as teachers and transfer the knowledge into global
model, FedLSD (Lee et al. 2021) and FedGKD (Yao et al.
2021) regard the global model as teacher and self-distills the
distributed global model’s prediction during the local train-
ing to preserve global knowledge.

Method
Definition and Background
Federated Learning is typically formulated as the following
optimization problem:

min
w

F (w) =

N∑
i=1

qifi(w), qi = |Di|/
N∑
j=1

|Dj | (1)

where the global objective function F (w) is a weighted av-
erage of the local objectives fi(w) over N clients. qi is the
weight of each client, which is typically set as proportional
to the sizes of the local datasets |Di|.

The local datasets D1, D2, ..., DN are usually non-
identically distributed (non-IID) in practice. In this paper,
we focus on label distribution non-IID challenge as catego-
rized in (Kairouz et al. 2019). The label distribution P (y)
may vary across clients, even if P (x|y) is the same. We as-
sume each client only own a partial class set.

Motivation
Under the non-IID data scenarios, local data fail to represent
the overall global data distribution. On certain classes, the
global model extracts better feature representations than the
local models trained on skewed data of clients, so there are
drifts in the local updates (Li, He, and Song 2021). An in-
tuitive fix is to utilize the global model’s prediction on local
data to make local models preserve the knowledge which
the local distributions cannot represent (Lee et al. 2021).



Figure 1: The special confusion matrix of CIFAR-10. We
plot the data distribution on a certain client (first row), per-
class accuracy of the initial global model (second row) and
local model with different algorithms (last three rows).

Distillation can control the drift and bridges the gap be-
tween the representations learned by the local models and
the global model. Then, the problem is to what degree we
should trust the global model. If the global model confi-
dently mis-predicts the samples of some classes, such in-
accuracy may disturb the training of local models.

To confirm our conjecture on global model’s misleading,
we analyze per-class accuracy of the global model and lo-
cal models in the scenario of non-IID data distribution. A
global model is trained for 10 communication rounds us-
ing FedAvg, and distributed to a certain client as an initial
model. Then, we use FedAvg, FedLSD and FedCAD respec-
tively to train local models for 10 epochs. As shown in Fig-
ure 1, FedAvg achieves high accuracy on the local majority
categories but low on minority ones, which means forgetting
the initial global knowledge. Contrastively, FedLSD main-
tains the global view on local data and has low error levels
on categories 0-5. However, the improvement of FedLSD on
categories 7-9 is limited, which is due to the misleading of
the initial model. FedCAD improves the accuracy of local
model on almost all categories, which demonstrates our ap-
proach avoids the misleading of the global model and mean-
while extracts reliable knowledge from it.

Local self distillation

In each communication round t, the local models are ini-
tialized with the global aggregated model and then optimize
their local loss by running SGD for E local epochs. To keep
the global knowledge during local training, the local model
is learned by using a classification loss and a distillation loss.

Suppose client i is conducting the local training. We de-
note the samples in client i as Di = (x, y), y ∈ [0,K],
where K is the total number of classes. We also denote the
output logits of local model and global model as z, zg re-
spectively. The distillation loss Ld is the KL-Divergence loss
between global prediction and local prediction, and it is for-
mulated as follows:

Ld =
∑
x∈Di

K∑
k=1

−pgk(x) log[pk(x)] (2)

Figure 2: The framework of the FedCAD.

pgk(x) =
ez

g
k(x)/T∑K

j=1 e
zg
j (x)/T

, pk(x) =
ezk(x)/T∑K
j=1 e

zj(x)/T

where T is the temperature scalar, which increases the
weight of smaller logit values and encourages the network
to better encode similarities among classes.

The classification loss Lc is the softmax cross-entropy
loss between the local model probability and the onehot la-
bels y, which is computed as follows:

Lc =
∑
x∈Di

K∑
k=1

−y log[pk(x)] (3)

The overall loss is a weighted combination of two objec-
tives as follows:

L = (1− α)Lc + αLd (4)

where α ∈ [0, 1] is a hyper-parameter.

Class-wise adaptive weights
In motivation, we see that distillation causes degradation on
classes where the teacher is inherently inaccurate. An intu-
itive fix is to adapt per-class adaptive weights (α1, ..., αK) ∈
[0, 1]K to rely less on the global model for the classes where
it predicts poorly. We modified the Eq.4 as follows:

L = (1− αy)Lc + αyLd (5)

Then the question is how to decide values for the class-
wise weights αy . In Eq.4, it only needs to tune a single scalar
α and we can use cross-validation to determine the specific
values. However, it is infeasible to attempt a grid search for
αy . Inspired by (Lukasik et al. 2021), We propose the fol-
lowing function to set class-wise weights αy given the global
model’s prediction pg .

αy =
1

2
(γ − β)Ex|y[ϕ(y, p

g(x))] +
1

2
(γ + β) (6)

ϕ(y, pg(x)) = pgy(x)−
K∑

k ̸=y

pgk(x)

where 0 < β < γ < 1 decide the lower and upper bounds of
distillation impact. Concretely, We rely more on the global
model on the classes where its predictions tend to be more



Algorithm 1: FedCAD
Input: N clients’ datasets {Di}Ni=1, total communication
rounds T , local epochs E, learning rate η
, clients sample ratio C. Output: The final global model wT

Server execute:
1: Initialize global model w0 in sever
2: for t = 0, ..., T − 1 do
3: Estimate αy on auxiliary data [Eq. 6]
4: St ← Randomly sample a set of C ·N clients
5: for i ∈ St in parallel do do
6: wt

i ← ClientUpdate(i, wt, αy)
7: end for
8: wt+1 ← 1

|DSt |
∑

i∈St
|Di|wt

i

9: end for
ClientUpdate:(i, wt, αy)

1: wt
i ← wt

2: for epoch e = 1, 2, ...E do
3: for batch b = {x, y} ∈ Di do
4: Lc ← CrossEntropyLoss(z(x), y)

5: Ld ←
∑

x∈Di

∑K
k=1−p

g
k(x) log[pk(x)] [Eq. 2]

6: L← (1− αy)Lc + αyLd [Eq. 5]
7: wt

i ← wt
i − η∇L(wt

i , b)
8: end for
9: end for

10: return wt
i to the server

correct, i.e., the large α. we use the auxiliary data in the
server to estimate the expectation Ex|y[·]. Notice that in the
circumstance of γ = β = 0, our approach is equivalent
to FedAvg. When γ = β = C where C ∈ [0, 1] is some
constant number, our approach degrades to FedLSD. In this
sense, our method is more generalized and robust towards
different amounts of drifts.

The framework of FedCAD is shown in Figure 2. We also
give a detailed description in Algorithm 1. In each commu-
nication round, the server sends the global model and class-
wise weights to the selected clients; receives the trained lo-
cal models from the clients; updates the global model by
weighted averaging and calculates class-wise weights on an
auxiliary data for next communication round. In local train-
ing, each client initializes global model as local model and
then uses SGD to optimize local model with its local data,
while the objective is defined in Eq.5.

Experiments
Experimental Setup
Dataset. We evaluate our method on three benchmark
datasets: CIFAR10, CIFAR100 (Krizhevsky, Hinton et al.
2009) and FEMNIST of LEAF benchmark (Caldas et al.
2018). We conduct two different data partitioning strategies
among clients to simulate the non-IID data distribution on
clients, which is inspired by (Li et al. 2021a). For label
distribution skew, we allocate a proportion of the samples
of each class to each client according to Dirichlet distribu-
tion on CIFAR10 and CIFAR100. Specifically, we sample

qk ∼ Dirichlet(δ) and allocate a qk,i proportion of the
instances of class k to client i, where δ is the concentra-
tion parameter controlling the uniformity between clients.
We set the δ to 0.5 and the number of clients to 10 by de-
fault. For FEMNIST, we randomly divide and assign ap-
proximately 2000 writers into 10 clients by default. An ex-
ample of the data distributions among clients is shown in
Figure 3. The auxiliary data is a small subset of samples
of different classes, which can be acquired from the public
data. In our experiments, we sample auxiliary date accord-
ing to the strategy from (Wang et al. 2021), using only 32
samples for each class.
Models. For CIFAR10, We use the same CNN architecture
as FedAvg: two 5 × 5 convolution layers (the first with 6
channels and the second with 16 channels, each followed
by a ReLU activation and 2 × 2 max pooling), two fully
connected layers with ReLU activation (the first with 120
units and the second with 84 units) and a final softmax out-
put layer. For CIFAR100 and FEMNIST, we use ResNet50
(He et al. 2016) instead. The models are implemented in Py-
Torch (Paszke et al. 2019) and trained on a single RTX 3090
GPU.
Hyper-parameters. In local training, we use the SGD op-
timizer with initial learning rate 0.01 and momentum 0.9.
The local epoch is set to E = 10 and local batch size is set
to B = 64 by default. We run 100 communication rounds
on CIFAR10/100 and 50 rounds on FEMNIST. The default
clients sampling ratio is set as C = 1. For FedLSD, we set
the temperature parameter T to 2 and tune the weight of dis-
tillation loss from {0.1, 0.3, 0.5} like (Lee et al. 2021). For
FedProx, we tune the weight of its proximal term µ from
{0.001, 0.01, 0.1}. For FedCAD, we tune β and γ from {0,
0.3, 0.5, 0.7} respectively and show the best result.

Classification Accuracy
We conduct experiments to validate the effectiveness of Fed-
CAD and compare it with FedAVG (McMahan et al. 2017),
FedProx (Li et al. 2020b) and FedLSD (Lee et al. 2021).
The top-1 test accuracy with the default settings mentioned
above are shown in Table 1. We can observe that the pro-
posed FedCAD ranks first among the compared methods
and outperforms FedLSD by 0.58% and 0.63% on CIFAR10
and CIFAR100 respectively. For FEMNIST, our method also
achieves a high accuracy comparable to other state-of-the-art
methods in the last round.

Moreover, we illustrate the number of communication
rounds to reach the target accuracy in Table 1. Compared
to FedAvg, FedCAD requires only 58.54% and 66.67% of
the communication rounds to reach the accuracy of 65% on
CFIAR10 and 90% on FEMNIST. On CIFAR100, the re-
quired training rounds of FedCAD, FedAvg and FedProx to
achieve 65% accuracy are close and FedCAD achieves the
second place performance on that. The overall results show
that the class-wise weight adaptive distillation mechanism
also helps to accelerate the convergence of the global model.

Adaptive Preservation of Global Knowledge
To evaluate the effectiveness of our method on local training,
we also compute the average test accuracy of local models



(a) CIFAR10 (b) CIFAR100 (c) FEMNIST

Figure 3: The data distribution of each client. The color of each rectangle reflects the number of samples for a class on certain
client.

Algorithm CIFAR10 CIFAR100 FEMNIST
acc ↑ T(65%) ↓ acc ↑ T(65%) ↓ acc ↑ T(90%) ↓

FedAvg 71.29% 41 71.87% 19 94.25% 6
FedProx 71.52% 43 71.58% 20 94.62% 6
FedLSD 72.56% 38 72.64% 29 94.68% 5
FedCAD 73.14% 22 73.27% 20 94.65% 4

Table 1: The top-1 test accuracy (acc) after training the tar-
get rounds and the number of communication rounds (T) to
achieve the target accuracy. The best and the second best
values are highlighted.

on a test dataset obeying the global data distribution. If lo-
cal models preserve the global knowledge after fitting on the
biased local data, the updated local model could be gener-
alized well on the global test data distribution. As shown in
Figure 4(b), the improved speed of local accuracy in Fed-
CAD is almost the same as FedAvg at the beginning. Since
the global model is far from convergence and the class-
wise adaptive weight of distillation loss is small. On the one
hand, FedLSD and FedCAD both achieve better accuracy
levels than FedAvg thanks to the distillation loss after about
10 rounds, which helps local models to preserve the global
knowledge and mitigate the catastrophic forgetting during
local training. On the other hand, the accuracy of FedCAD
exceeds FedLSD after about 30 rounds. The result demon-
strates that, compared with the constant weighting of distil-
lation loss, the class-wise adaptive mechanism makes local
models more generalized on global data distribution.

Effects of Data Heterogeneity
To evaluate the robustness of our method under different
data heterogeneity levels, we compare our method with
other state-of-the-art methods by varying hyper-parameter δ
of Dirichlet distribution on CIFAR-10. A bigger δ indicates a
more uniform distribution. We present the results in Table 2.
We observe that FedCAD outperforms other methods among
different unbalanced levels. When the unbalanced level in-
creases (i.e., δ = 0.1), the performance of FedLSD is worse
than FedAvg, while FedCAD still outperforms other meth-
ods. At such extreme unbalanced level, the guidance of the
global model tends to be less reliable, which makes the ac-
curacy of FedLSD degrade. The experiments demonstrate
the robustness and effectiveness of FedCAD under different

(a) Global accuracy (b) Local average accuracy

Figure 4: The learning curves on CIFAR-10. The global ac-
curacy is the performance of global model on test dataset.
The local average accuracy is the average of the respective
performance of local models on each online client.

Algorithm δ = 0.1 δ = 0.5 δ = 5 δ = 10
FedAvg 61.73% 71.29% 71.56% 72.98%
FedProx 62.85% 71.52% 71.82% 72.26%
FedLSD 61.54% 72.56% 73.43% 73.34%
FedCAD 63.80% 73.14% 74.00% 73.47%

Table 2: The top-1 test accuracy with different levels of data
heterogeneity on CIFAR10.

unbalanced levels.

Analysis of Clients Participation Ratio
To evaluate the scalability of our method, we design the ex-
periments with different number of participating clients at
each communication round on CIFAR10. Specifically, We
partition CIFAR10 training dataset into 100 clients and ran-
domly sample C = 0.1, 0.3, 0.5 of clients to participate in
the training during each round. As shown in Table 3, Fed-
CAD stably outperforms other methods as the participation
ratio growing.

Analysis of Local Epochs
Aggregating local models at different frequencies may af-
fect the learning performance (Li et al. 2021b). Therefore,
We further conduct the experiments to study the effect of
local epochs on the performance of the final global model.



Algorithm C = 0.1 C = 0.3 C = 0.5
FedAvg 57.64% 60.06% 60.76%
FedProx 58.64% 59.96% 60.66%
FedLSD 58.80% 62.28% 61.24%
FedCAD 59.96% 62.59% 62.44%

Table 3: The top-1 test accuracy with different clients sam-
pling ratio on CIFAR10.

Algorithm E = 1 E = 10 E = 20 E = 50
FedAvg 64.19% 70.81% 70.01% 68.40%
FedProx 64.63% 71.52% 72.14% 72.28%
FedLSD 63.96% 72.05% 72.08% 72.35%
FedCAD 65.10% 73.14% 72.63% 72.51%

Table 4: The top-1 test accuracy with different number of
local epochs on CIFAR10.

The results are shown in Table 4. Intuitively, a small E may
increase communication burden and a large E may result in
a low convergence rate. Under the different settings of E,
the accuracy of our method FedCAD exceeds other state-
of-the-art methods. It is also worth noticing that with local
epoch growing, the improvement margin gained from Fed-
CAD increased. The results indicate that FedCAD can ef-
fectively improve the collaborative training on non-IID dis-
tributed data under different settings of E, especially when
each client get trained for more epochs in a round.

Conclusion
In this work, we propose a Federated Learning algorithm
with a class-wise adaptive mechanism to control the im-
pact of distillation loss (FedCAD). The proposed class-wise
adaptive weight is determined by the performance of the
global model on different classes of an auxiliary dataset.
The adaptive distillation loss prevents local models from for-
getting the global knowledge while avoids the misleading
problem of incorrect distillation, especially when the global
model is not reliable enough as a teacher model. We con-
duct extensive experiments on the benchmark datasets to
demonstrate that our method is robust and achieves signif-
icant improvement over state-of-the-art Federated Learning
methods. As FedCAD does not require the inputs to be im-
ages, it can be applied to non-vision problems in the future.
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