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ON FRACTIONAL MEAN VALUE THEOREMS ASSOCIATED WITH

HADAMARD FRACTIONAL CALCULUS AND APPLICATION

LI MA, CHENGCHENG LIU, RUILIN LIU, BO WANG AND YIXUAN ZHU

(Communicated by M. Duarte Ortigueira)

Abstract. This paper is mainly to establish generalized mean value theorems involved with left
and right Hadamard fractional calculus. In light of suitable absolutely continuous spaces and
auxiliary scaling function, the novel Taylor type mean value theorem and Cauchy type mean
value theorem are demonstrated in the functional space generated by logarithmic basis, respec-
tively. Additionally, several indispensable examples are given to verify the effectiveness of our
theoretical results.

1. Introduction

In recent decades, considerable attention on fractional calculus could be found
in applied mathematics, mechanics of materials, biophysics and other applied science,
such as in anomalous transport [1], system control [2], stability and chaos in fractional
systems [3, 4], fractional Brownian motion [5]. In [6], they extend the typical Gray-
Scott model by using of variable-order fractional differential equations. In [7], the
authors investigate the numerical solutions of a class of fractional partial differential
equations with Riesz fractional settings. More impressive works on this topic, one may
refer [8, 9, 10, 11] and the references cited therein.

As we all know, Rolle mean value theorem, Lagrangemean value theorem, Cauchy
mean value theorem and Taylor mean value theorem play a vital role in classic calcu-
lus. In fact, mean value theorems could build a bridge between the mean value of the
function and its derivative. It is worthy to be mentioned that there exist some literatures
dealing with fractional mean value theorems and bring us many valuable ideas. The
generalized Cauchy’s mean value theorem of Riemann-Liouville fractional derivative is
derived by Pečarić et al, and a general abstract method is also extracted by operator the-
ory [12]. Diethelm proposes a generalized Taylor formula and generalizes the classical
Nagumo theorem for first-order differential equations [13] shortly after the Riemann-
Liouville type fractional order mean value theorem is proposed. Guo et al. successfully
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construct the generalized fractional mean value theorems in sense of Riemann-Liouville
and Caputo [14]. By using of the Taylor series expansion, a new model for the Boussi-
nesq equation of fractional order is well established [15]. Nwaeze establishes the Rolle
mean value theorem of fractional order of Benkhettou-Hassani-Torres type, and con-
cludes that when the fractional order is equal to 1, it can degenerate into the classic
Rolle mean value theorem [16]. The above mentioned mean value theorems with frac-
tional order are all about Riemann-Liouville or Caputo type.

In fact, there is another important fractional version called Hadamard fractional
calculus, which is first proposed by Hadamard in 1892. Some fundamental proper-
ties/dynamic behaviours on Hadamard fractional calculus/Hadamard fractional differ-
ential equations have been established in [17, 18, 19, 20, 21, 22, 23], and the references
cited therein. As be reported, Hadamard fractional calculus has been widely applied
into the problems of many mechanics and engineering, one may refer to [24, 25]. To
the best of our knowledge, there are no reports on the mean value theorems on the
Hadamard fractional calculus.

In this paper, new fractional mean value theorems are constructed for solving the
problems related to Hadamard fractional calculus. And the remaining parts of this pa-
per is organized as follows. Section 2 reviews some basic definitions of Hadamard
fractional calculus including left and right sides, also introduces some related conclu-
sions. In Section 3, several vital mean value theorems are stated and proved. Illustrative
examples are presented in Section 4 which could be verify our main results well. Be-
sides, the last section is the conclusion of our paper.

2. Preliminaries

In the sequel, several fundamental concepts and conclusions on Hadamard frac-
tional calculus are introduced firstly [9].

DEFINITION 2.1. The left-sided Hadamard fractional integral of f (x) with order
α > 0 is defined by

HD−α
a+ f (x) =

1
Γ(α)

∫ x

a

(
log

x
τ

)α−1
f (τ)

dτ
τ

. (1)

DEFINITION 2.2. The right-sided Hadamard fractional integral of f (x) with or-
der α > 0 is defined by

HD−α
b− f (x) =

1
Γ(α)

∫ b

x

(
log

τ
x

)α−1
f (τ)

dτ
τ

. (2)

DEFINITION 2.3. The left-sided Hadamard fractional derivative of f (x) with or-
der α > 0 is defined by

HDα
a+ f (x) = δ n(HD−(n−α)

a+ f (x)), (3)

where x > a , δ = x d
dx , n−1 < α � n ∈ Z+ .
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DEFINITION 2.4. The right-sided Hadamard fractional derivative of f (x) with
order α > 0 is defined by

HDα
b− f (x) = (−δ )n(HD−(n−α)

b− f (x)), (4)

where x > a , δ = x d
dx , n−1 < α � n ∈ Z+ .

LEMMA 2.1. Set −∞ < a < b < ∞ , for a finite closed interval [a, b] , and let
AC[a, b] be the space of absolutely continuous functions f on [a, b] . One admits that
AC[a, b] coincides with the space of primitives of Lebesgue summable functions,

f (x) ∈ AC[a, b] ⇔ f (x) = c+
∫ x

a
ψ(t)dt, (5)

where ψ(t) ∈ L(a, b) .

DEFINITION 2.5. Space ACn
δ [a,b] is defined as

ACn
δ [a, b] =

{
h : [a, b] →C|δ n−1[h(x)] ∈ AC[a, b],δ = x

d
dx

}
. (6)

If n = 1, the space AC1
δ [a, b] coincides with AC[a, b] .

LEMMA 2.2. For 0 < a < b < ∞ , let α > 0 , n = �α� . If f (x) ∈ L(a, b) and

HD−(n−α)
a+ f (x) ∈ ACn

δ [a, b] , then

HD−α
a+ HDα

a+ f (x) = f (x)−
n

∑
k=1

[δ n−k(HD−(n−a)
a+ f (x))](a)

Γ(α − k+1)

(
log

x
a

)α−k
. (7)

3. New fractional mean value theorems

In this section, we will establish compatible mean value theorems for left and right
sided Hadamard fractional calculus, respectively.

THEOREM 3.1. For 0 < a< b< ∞ , suppose that α > 0 , n = �α� , f (x)∈ L(a, b) ,
and HDα

a+ f (x) ∈ ACn
δ [a, b]∩C[a, b] . Then

f (x) =
n

∑
k=1

[δ n−k(HD−(n−α)
a+ f (x))](a)

Γ(α − k+1)

(
log

x
a

)α−k
+

[HDα
a+ f (x)](ξ )

Γ(α +1)

(
log

x
a

)α
, (8)

where a � ξ � x .
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Proof. According to Definitions 2.1 and 2.3, we have

HD−α
a+ HDα

a+ f (x) =
1

Γ(α)

∫ x

a

(
log

x
τ

)α−1
[HDα

a+ f (τ)]
dτ
τ

=
[HDα

a+ f (x)](ξ )
Γ(α)

∫ x

a

(
log

x
τ

)α−1 dτ
τ

=
[HDα

a+ f (x)](ξ )
Γ(α +1)

(
log

x
a

)α
,

(9)

where a � ξ � x . Now from Lemma 2.2, one has

HD−α
a+ HDα

a+ f (x) = f (x)−
n

∑
k=1

[δ n−k(HD−(n−α)
a+ f (x))](a)

Γ(α − k+1)

(
log

x
a

)α−k
. (10)

Through the above two formulas, we can get

f (x) =
n

∑
k=1

[δ n−k(HD−(n−α)
a+ f (x))](a)

Γ(α − k+1)

(
log

x
a

)α−k
+

[HDα
a+ f (x)](ξ )

Γ(α +1)

(
log

x
a

)α
. (11)

COROLLARY 3.1. For 0 < a < b < ∞ , suppose that α > 0 , n = �α� , f (x) ∈
L(a, b) , and HDα

a+ f (x) ∈ ACn
δ [a, b]∩C[a, b] . If

f (b) =
n

∑
k=1

[δ n−k(HD−(n−α)
a+ f )](a)

Γ(α − k+1)

(
log

x
a

)α−k|x=b, (12)

then there is at least one point ξ ∈ [a, b] , which makes

[HDα
a+ f (x)](ξ ) = 0. (13)

COROLLARY 3.2. With the same conditions of Theorem 3.1, but let α ∈ (0, 1] .
Then,

f (x) =
[HDα−1

a+ f (x)](a)
Γ(α)

(
log

x
a

)α−1
+

[HDα
a+ f (x)](ξ )

Γ(α +1)

(
log

x
a

)α
, (14)

where x ∈ [a, b] and a � ξ � x .

Proof. α ∈ (0, 1] , so n = 1. From Theorem 3.1, one has

f (x) =
1

∑
k=1

[HD−(1−α)
a+ f (x)](a)

Γ(α)

(
log

x
a

)α−k
+

[HDα
a+ f (x)](ξ )

Γ(α +1)

(
log

x
a

)α

=
[HDα−1

a+ f (x)](a)
Γ(α)

(
log

x
a

)α−1
+

[HDα
a+ f (x)](ξ )

Γ(α +1)

(
log

x
a

)α
,

(15)

where x ∈ [a, b] and a � ξ � x .
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COROLLARY 3.3. Consider α ∈ (0, 1] , and g(x) ∈ L(a, b) such that

HDα
a+

[(
log

x
a

)α−1
g(x)

]
∈ ACn

δ [a, b],

then, for some ξ , we obtain

g(x) = g(a)+
[HDα

a+(log x
a )α−1g(x)](ξ )

Γ(α +1)
log

x
a
, (16)

where a � ξ � x .

Proof. In light of Corollary 3.2, one has

g(x)
(

log
x
a

)α−1
=

[HDα−1
a+ (g(x)(log x

a )α−1)](a)
Γ(α)

(
log

x
a

)α−1

+
[HDα

a+(g(x)(log x
a )α−1)](ξ )

Γ(α +1)

(
log

x
a

)α
.

(17)

Hence,

HDα−1
a+

(
g(x)

(
log

x
a

)α−1) a�η�x
=

g(η)
Γ(1−α)

∫ x

a

(
log

x
τ

)−α(
log

τ
a

)α−1 dτ
τ

. (18)

Moreover, let ρ = log τ
a

log x
a
, we have

1−ρ =
log x

τ
log x

a

, dρ =
1

log x
a

dτ
τ

. (19)

So

HDα−1
a+

(
g(x)

(
log

x
a

)α−1)
(a)

= lim
x→a+

HDα−1
a+

(
g(x)

(
log

x
a

)α−1)

= lim
x→a+,η→a+

g(η)
Γ(1−α)

∫ x

a
(1−ρ)−α

(
log

x
a

)−α
ρα−1

(
log

x
a

)α
dρ

= lim
η→a+

g(η)
1

Γ(1−α)
B(−α +1,α)

= g(a)Γ(α).

(20)

Thus

g(x)
(

log
x
a

)α−1
= g(a)

(
log

x
a

)α−1
+

[HDα
a+(log x

a )α−1g(x)](ξ )
Γ(α +1)

(
log

x
a

)α
. (21)

Consequently, Corollary 3.3 is valid.
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THEOREM 3.2. Let both f (x) and g(x) ∈ L(a, b) , also let both HDα
a+ f (x) and

HDα
a+g(x) ∈ ACn

δ [a, b] . Then there is at least one state ξ ∈ [a, x] for any x ∈ (a, b]
which satisfies

f (x)−
n
∑

k=1

[δ n−k
HD

−(n−α)
a+ f (x)](a)

Γ(α−k+1) (log x
a)α−k

g(x)−
n
∑

k=1

[δ n−k
HD−(n−α)

a+ g(x)](a)
Γ(α−k+1) (log x

a )α−k

=
[HDα

a+ f (x)](ξ )
[HDα

a+g(x)](ξ )
. (22)

Proof. Firstly, we define F and G for any fixed state x in [a, b] as the follows,

F = f (x)−
n

∑
k=1

[δ n−k
HD−(n−α)

a+ f (x)](a)
Γ(α − k+1)

(
log

x
a

)α−k
, (23)

G = g(x)−
n

∑
k=1

[δ n−k
HD−(n−α)

a+ g(x)](a)
Γ(α − k+1)

(
log

x
a

)α−k
. (24)

Further, we ponder the following function,

Z(t) = G · f (t)−F ·g(t). (25)

Due to f and g admit the presence of Theorem 3.1, thus it yields

Z(t)−
n

∑
k=1

[δ n−k
HD−(n−α)

a+ Z(t)](a)
Γ(α − k+1)

(
log

t
a

)α−k
= [HDα

a+Z(t)](ξ )
(log t

a )α

Γ(α +1)
, (26)

where ξ ∈ [a, t] , this gives

G ·
[
f (t)−

n

∑
k=1

[δ n−k
HD−(n−α)

a+ f (t)](a)
Γ(α − k+1)

(
log

t
a

)α−k]

−F ·
[
g(t)−

n

∑
k=1

[δ n−k
HD−(n−α)

a+ g(t)](a)
Γ(α − k+1)

(
log

t
a

)α−k]

=
(log t

a )α

Γ(α +1)
{G · [HDα

a+ f (t)](ξ )−F · [HDα
a+g(t)](ξ )}.

(27)

Then let t = x , it yields to

G ·F −F ·G =
(log x

a )α

Γ(α +1)
{G · [HDα

a+ f (x)](ξ )−F · [HDα
a+g(x)](ξ )}. (28)

Obviously, the left side of (28) vanishes, so

G · [HDα
a+ f (x)](ξ )−F · [HDα

a+g(x)](ξ ) = 0. (29)

Accordingly, we end this proof.
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COROLLARY 3.4. For 0 < α � 1 , let both f (x) and g(x) ∈ L(a, b) , and as-
sume that HDα

a+[(log x
a )α−1 f (x)] and HDα

a+[(log x
a )α−1g(x)] ∈ AC[a, b] , meanwhile,

HDα
a+[(log x

a)α−1g(x)] �= 0 . Then there is ξ ∈ [a, x] for any x ∈ (a, b] which satisfies

f (x)− f (a)
g(x)−g(a)

=
[HDα

a+(log x
a )α−1 f (x)](ξ )

[HDα
a+(log x

a )α−1g(x)](ξ )
. (30)

Proof. From Theorem 3.2, one has

f (x)(log x
a )α−1− [HDα−1

a+ f (x)(log x
a )α−1](a)

Γ(α) (log x
a )α−1

g(x)(log x
a)α−1− [HDα−1

a+ g(x)(log x
a )α−1](a)

Γ(α) (log x
a)α−1

=
f (x)− [HDα−1

a+ f (x)(log x
a )α−1](a)

Γ(α)

g(x)− [HDα−1
a+ g(x)(log x

a )α−1](a)
Γ(α)

=
[HDα

a+(log x
a )α−1 f (x)](ξ )

[HDα
a+(log x

a )α−1g(x)](ξ )

(31)

From Corollary 3.3, we have

HDα−1
a+

[(
log

x
a

)α−1
g(x)

]
(a) = g(a)Γ(α). (32)

Analogously, we have

HDα−1
a+

[(
log

x
a

)α−1
f (x)

]
(a) = f (a)Γ(α). (33)

It yields to

f (x)− [HDα−1
a+ f (x)(log x

a )α−1](a)
Γ(α)

g(x)− [HDα−1
a+ g(x)(log x

a )α−1](a)
Γ(α)

=
f (x)− f (a)
g(x)−g(a)

. (34)

Therefore, the result follows.
Motivated by the left side case, for right Hadamard fractional settings, we could

establish the corresponding mean value theorems as follows. For brevity, we omit the
proofs of them.

THEOREM 3.3. Suppose that α > 0 , n = �α� , 0 < a < b < ∞ , f (x) ∈ L(a, b) ,
and HDα

b− f (x) ∈ ACn
δ [a, b]∩C[a, b] . Then

f (x) =
n

∑
i=1

[(−δ )n−i(HD−(n−α)
b− f (x))](b)

Γ(α − i+1)

(
log

b
x

)α−i
+

[HDα
b− f (x)](ξ )

Γ(α +1)

(
log

b
x

)α
,

(35)
where x � ξ � b.
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COROLLARY 3.5. Suppose that α > 0 , n = �α� , 0 < a < b < ∞ , f (x) ∈ L(a, b) ,
and HDα

b− f (x) ∈ ACn
δ [a, b]∩C[a, b] . If

f (a) =
n

∑
i=1

[(−δ )n−i(HD−(n−α)
b− f )](b)

Γ(α − i+1)

(
log

b
x

)α−i|x=a, (36)

then there is at least one state ξ ∈ [a, b] , such that [HDα
b− f (x)](ξ ) = 0 .

COROLLARY 3.6. With the same assumptions of Theorem 3.3, and let 0 < α � 1 .
Then

f (x) =
[HDα−1

b− f (x)](b)
Γ(α)

(
log

b
x

)α−1
+

[HDα
b− f (x)](ξ )

Γ(α +1)

(
log

b
x

)α
, (37)

where x ∈ [a, b] , x � ξ � b.

COROLLARY 3.7. Let 0 < α � 1 and g(x) ∈ L(a, b) which makes

HDα
b−

[(
log

b
x

)α−1
g(x)

]
∈ ACn

δ [a, b]. (38)

Then, for some ξ , one has

g(x) = g(b)+
[HDα

b−(log b
x )

α−1g(x)](ξ )
Γ(α +1)

log
b
x
, (39)

where x � ξ � b.

THEOREM 3.4. Let both f (x) and g(x)∈L(a, b) , also let HDα
b− f (x) and HDα

b−g(x)
∈ ACn

δ [a, b] . Then there is at least one state ξ ∈ [x, b] for any x ∈ [a, b) , such that

f (x)−
n
∑
i=1

[(−δ )n−i
HD−(n−α)

b− f (x)](b)
Γ(α−i+1) (log b

x )
α−i

g(x)−
n
∑
i=1

[(−δ )n−i
HD

−(n−α)
b− g(x)](b)

Γ(α−i+1) (log b
x )

α−i

=
[HDα

b− f (x)](ξ )
[HDα

b−g(x)](ξ )
. (40)

COROLLARY 3.8. Consider 0 < α � 1 and both f (x) , g(x) ∈ L(a,b) , such that
HDα

b− [(log b
x )

α−1 f (x)] and HDα
b− [(log b

x )
α−1 f (x)] ∈ AC[a, b]. If

HDα
b−

[(
log

b
x

)α−1
f (x)

]
�= 0,

then for any x ∈ [a, b) , there exists ξ ∈ [x, b] such that

f (x)− f (b)
g(x)−g(b)

=
[HDα

b−(log b
x )

α−1 f (x)](ξ )

[HDα
b−(log b

x )
α−1g(x)](ξ )

. (41)
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4. Illustrative examples

In this section, two examples are provided to verify the effectiveness of our theo-
retical results well.

EXAMPLE 1. Suppose that α ∈ (1, 2) , 0 < a < b < ∞ , f (x) ∈ L(a, b) and both
HDα

a+ f (x) and HDα
b− f (x)∈AC2

δ [a, b]∩C[a, b] . If [HDα−2
a+ f (x)](a)= [HDα−2

b− f (x)](b)=
0, then there are ξ and η which satisfy a � ξ �

√
ab � η � b such that

|δ [HDα−2
a+ f (x)](a)+δ [HDα−2

b− f (x)](b)| � log b
a

2α
(|[HDα

a+ f (x)](ξ )|+ |[HDα
b− f (x)](η)|).

Proof. By using of Theorem 3.1, one has

f (x) =
δ [HDα−2

a+ f (x)](a)
Γ(α)

(
log

x
a

)α−1
+

[HDα−2
a+ f (x)](a)
Γ(α −1)

(
log

x
a

)α−2

+
[HDα

a+ f (x)](ξ )
Γ(α +1)

(
log

x
a

)α
,

(42)

where ξ ∈ [a, x] .
Then using Theorem 3.3, one has

f (x) =
−δ [HDα−2

b− f (x)](b)
Γ(α)

(
log

b
x

)α−1
+

[HDα−2
b− f (x)](b)
Γ(α −1)

(
log

b
x

)α−2

+
[HDα

b− f (x)](η)
Γ(α +1)

(
log

b
x

)α
, x � η � b.

(43)

Now choose x =
√

ab , it yields

f (
√

ab)=
δ [HDα−2

a+ f (x)](a)
Γ(α)

(1
2

log
b
a

)α−1
+

[HDα
a+ f (x)](ξ )

Γ(α +1)

(1
2

log
b
a

)α
,a � ξ �

√
ab.

(44)

f (
√

ab)=
−δ [HDα−2

b− f (x)](b)
Γ(α)

(1
2

log
b
a

)α−1
+

[HDα
b− f (x)](η)

Γ(α +1)

(1
2

log
b
a

)α
,
√

ab� η � b.

(45)
It immediately gets

δ [HDα−2
a+ f (x)](a)+ δ [HDα−2

b− f (x)](b)
Γ(α)

(1
2

log
b
a

)α−1

=
[HDα

b− f (x)](η)− [HDα
a+ f (x)](ξ )

Γ(α +1)

(1
2

log
b
a

)α
(46)

Thus

|δ [HDα−2
a+ f (x)](a)+ δ [HDα−2

b− f (x)](b)| = log b
a

2α
|[HDα

b− f (x)](η)− [HDα
a+ f (x)](ξ )|,

(47)
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where a � ξ �
√

ab � η � b .
Consequently, we have

|δ [HDα−2
a+ f (x)](a)+ δ [HDα−2

b− f (x)](b)| � log b
a

2α
(|[HDα

a+ f (x)](ξ )|+ |[HDα
b− f (x)](η)|),

(48)
where a � ξ �

√
ab � η � b .

EXAMPLE 2. Let f (x) admits the conditions of Corollary 3.4 and Corollary 3.8,
for α ∈ (0, 1) , f (a) = f (b) , then one has

[HDα
a+

(
log x

a

)α−1
f (x)](ξ )

(log ξ
a )−α

=
[HDα

b−(log b
x )

α−1 f (x)](η)

(log b
η )−α

,

where a � ξ �
√

ab � η � b .

Proof. First we suppose g(x) = (log x
a )1−α , from Corollary 3.4, then it holds

f (x)− f (a)
g(x)−g(a)

=
[HDα

a+(log x
a )α−1 f (x)](ξ )

[HDα
a+(log x

a )α−1g(x)](ξ )

⇒ f (x)− f (a)
(log x

a )1−α =
[HDα

a+(log x
a )α−1 f (x)](ξ )

1
Γ(1−α) (log ξ

a )−α
,

(49)

where ξ ∈ [a, x] .
Then we assume h(x) = (log b

x )
1−α , from Corollary 3.8, it holds

f (x)− f (b)
h(x)−h(b)

=
[HDα

b−(log b
x )

α−1 f (x)](η)

[HDα
b−(log b

x )
α−1h(x)](η)

⇒ f (x)− f (b)
(log b

x )
1−α

=
[HDα

b−(log b
x )

α−1 f (x)](η)
1

Γ(1−α) (log b
η )−α

,

(50)

where η ∈ [x, b] .
Due to f (x)− f (a) = f (x)− f (b) , we can get

[HDα
a+(log x

a )α−1 f (x)](ξ )

(log ξ
a )−α(log b

x )
1−α

=
[HDα

b−(log b
x )

α−1 f (x)](η)

(log b
η )−α(log x

a )1−α
. (51)

Now taking x =
√

ab , thus one has

[HDα
a+(log x

a )α−1 f (x)](ξ )

(log ξ
a )−α

=
[HDα

b−(log b
x )

α−1 f (x)](η)

(log b
η )−α

, (52)

where a � ξ �
√

ab � η � b .
All this ends our proof.
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REMARK 1. In effect, the above constructive examples only deal with the problem
associated with both left and right sided Hadamard fractional calculus, so one may
consider more complicated cases by using of our main theorems.

Conclusion. Our paper originates from the observation of fractional calculus and
various typical mean value theorems, and establishes several extended mean value the-
orems involved with Hadamard fractional calculus. It is also found that the logarithmic
series expansion is well compatible with Hadamard fractional operators well. Besides,
our results could be applied into numerical and theoretical analysis of fractional dif-
ferential equations associated with Hadamard settings conventionally, such as for the
evaluation of the scale of solution to Hadamard fractional systems.

Conflict of interest. We declare that we don’t have any associative or commercial
interest that represents a conflict of interest in connection with the work submitted.

RE F ER EN C ES

[1] R. METZLER, J. KLAFTER, The restaurant at the end of the random walk: recent developments in the
description of anomalous transport by fractional dynamics, Journal of Physics A-Mathematical and
General, 2004, 37 (31): R161–R208.

[2] R. SAKTHIVEL, N. I. MAHMUDOV, J. J. NIETO, Controllability for a class of fractional-order neutral
evolution control systems, Applied Mathematics and Computation, 2012, 218 (20): 10334–10340.

[3] E. KASLIK, S. SIVASUNDARAM,Nonlinear dynamics and chaos in fractional-order neural networks,
Neural Networks, 2012, 32: 245–256.

[4] S. MONDAL, N. BAIRAGI, G. M. N’GUEREKATA, Global stability of a Leslie-Gower-type fractional
order tritrophic food chain model, Fractional Differential Calculus, 2019, 9 (1): 149–161.

[5] M. MAGDZIARZ, A. WERON, K. BURNECKI, J. KLAFTER, Fractional brownian motion versus the
continuous-time random walk: A simple test for subdiffusive dynamics, Physical Review Letters, 2009,
103 (18): 180602.

[6] A. CORONEL-ESCAMILLA, J. F. GOMEZ-AGUILAR, L. TORRES, R. F. ESCOBAR-JIMENEZ, A nu-
merical solution for a variable-order reaction-diffusion model by using fractional derivatives with
non-local and non-singular kernel, Physica A-Statistical Mechanics and its Applications, 2018, 491:
406–424.

[7] Q. YANG, F. W. LIU, I. TURNER, Numerical methods for fractional partial differential equations
with Riesz space fractional derivatives, Applied Mathematical Modelling, 2010, 34 (1): 200–218.

[8] I. PODLUBNY, Fractional Differential Equations, San Diego, Academic Press, 1999.
[9] A. A. KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO, Theory and Applications of Fractional Differ-

ential Equations, Amsterdam, Elsevier, 2006.
[10] B. TONI, K. WILLIAMSON, N. GHARIBAN, D. HAILE, Z. F. XIE, Bridging Mathematics, Statistics,

Engineering and Technology, New York, Springer, 2012.
[11] S. BLASZCZYK, R. JACHOWICZ, P. DUCH, M. LASKI, A. WULKIEWICZ, P. OSTALCZYK, D.

SANKOWSKI, Application of fractional-order derivative for edge detection in mobile robot system,
Singapore, World Scientific Publishing Company, 2014.
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