
Private Stream Search at the Same Communication
Cost as a Regular Search: Role of LDPC Codes

Matthieu Finiasz
CryptoExperts

Kannan Ramchandran
UC Berkeley

Abstract—Private Stream Search allows users to perform
keyword-based queries to a database without revealing any
information about the keywords they are searching. Using
homomorphic encryption, Ostrovsky and Skeith proposed a
computationally secure solution to this problem in 2005. However,
their solution requires the server to send an answer of size
O(mS logm) bits when m documents of S bits match the
query, while a non-private query only requires mS bits. In this
work we propose two new communication optimal constructions,
both allowing a communication expansion factor (compared
to a non-private query) asymptotically equal to 1 when m
and S increase. More precisely, our first scheme requires
m(S +O(log t)) bits (where t is the size of the database) and
our second scheme m(S+C) where C is a constant depending
on the chosen computational security level.

I. INTRODUCTION

The goal of Private Stream Search (PSS) is to be able to
perform keyword-based search queries to a server, without
disclosing any information about the keywords in the queries.
For the moment, PSS is not widely used in practice, but it
could play a key role in privacy protection. Compared to a
standard non-private search, there is no fundamental reason
for PSS to have a much higher latency (response time),
bandwidth usage (response size) or to be less reliable (miss
some matching documents). The main focus of this article is
to show that, apart from the cost of the required cryptographic
operations, PSS can indeed be as efficient as a normal search.

Previous Works: The first private stream search algorithm
was introduced in 2005 by Ostrovsky and Skeith [1] and makes
clever use of homomorphic encryption to hide the content of
the query. This scheme requires the use of a public dictionary
of possible keywords and is restricted to OR queries. We do
not address these restrictions here, but any improvement to
the original Ostrovsky-Skeith scheme in these domains will
almost certainly also apply to the new schemes presented here.
Following Ostrovsky and Skeith’s work, some improvements
have been proposed independently by Bethencourt, Song and
Waters [2] and by Danezis and Dı́az [3]. These improved
schemes have the same structure as the original scheme and
are focused mainly on improving the size of the response from
the server (one of the main issues in the original proposal) and
the reliability of the scheme. However, they are suboptimal in
some aspects.

Our Work: The main contribution of this paper is the
proposal of two new private stream search algorithms that
are centered on the Ostrovsky and Skeith construction. Both

This research was funded by the NSF grant CCF-0964018.

constructions are founded on coding theory, resulting in a
fundamental decomposition of the communication component
of the PSS problem, thus allowing for state of the art results
that improve significantly on current schemes. Our first scheme
uses Reed-Solomon codes [4] and allows for a zero-error
guarantee, while offering optimal communication rates. It can
however be computationally heavy at the server. Our second
scheme is based on irregular LDPC codes [5], [6] and is
asymptotically optimal, thus interesting when a large number
of documents (in practice, a few hundreds) match the query.
We also propose an offline-online scheme, with a higher offline
computational cost, but which allows the online step to be as
efficient as a standard non-private search: the response suffers
no latency and the communication overhead remains minimal.

II. DESCRIPTION OF THE ORIGINAL SCHEME

A. Homomorphic Encryption: the Paillier Cryptosystem

All known PSS schemes require the use of homomorphic
encryption, that is, encryption schemes for which some com-
putations can be performed on ciphertexts and have a meaning
for the corresponding plaintext. The most famous example
of homomorphic encryption is the Paillier cryptosystem [7]
which allows to compute linear combinations of plaintexts by
multiplying the associated ciphertexts. More precisely, if we
denote by E and D the encryption and decryption functions,
the Paillier cryptosystem has the following properties:

• D(E(M1)× E(M2)) = M1 +M2,
• D(E(M1)

c) = c×M1.
This scheme is a public key encryption scheme (anyone can
encrypt data, but only the legitimate key owner can decrypt it)
and offers semantic security (it is computationally infeasible
to distinguish between E(0) and E(1)). Semantic security is a
necessary property for PSS, but it also implies that encryption
should be randomized and, as such, induce a message expan-
sion. In the case of Paillier’s cryptosystem, documents are
elements of ZN (integers modulo a large composite number
N) and ciphertexts belong in ZN2 , inducing an expansion
factor of 2. For larger documents, the Damgård-Jurik exten-
sion [8] allows documents in ZNs with ciphertexts in ZNs+1

(for any integer s), meaning the document is expanded by a
constant number of bits logN , depending only on the security
parameter N (typically of 1024 bits).

B. The Original Ostrovsky-Skeith Scheme

A PSS scheme works in three steps: first the user builds a
query and sends it to the server, then the server executes the

2012 IEEE International Symposium on Information Theory Proceedings

978-1-4673-2579-0/12/$31.00 ©2012 IEEE 2566

query which outputs a result that it sends back to the user,
finally the user extracts the queried documents from the result
he received. Here is the description of these three algorithms
for the original Ostrovsky-Skeith scheme.

1) Query Construction: Let Ω = {w1, . . . , w|Ω|} be the
dictionary of possible keywords and K ⊆ Ω the set of
keywords the user wants to query. The query is Q =
{q1, . . . , q|Ω|}, where qj = E(1wj∈K) and E denotes a Paillier
encryption and 1 denotes the indicator function. The user thus
sends an encrypted bit for each element in the dictionary:
this bit is 1 if the keyword is part of the user’s search, 0
otherwise. As each encryption is independently randomized
and due to the semantic security of Paillier’s cryptosystem,
the server cannot tell which encrypted bits are 1 and 0.

As part of the query, the user also sends m, the expected
number of matching documents, and γ, a reliability parameter
(a larger γ gives a better probability of recovering all matching
documents, but increases the communication cost).

2) Query Execution: When receiving the query (Q,m, γ),
the server first creates a buffer B of size ℓ = γm and initializes
each of its positions to the value E(0).

Let us assume the database contains t documents. Then,
for each document fi ∈ ZN in the database, the server
computes the set Wi ⊆ Ω of keywords in the dictionary that
match document fi. It then computes Fi =

(∏
wj∈Wi

qj
)fi

=∏
wj∈Wi

E(1wj∈K)fi . Thanks to the homomorphic property
of E , we also have: Fi = E

(
fi
∑

wj∈Wi
1wj∈K

)
.

Let us define ci =
∑

wj∈Wi
1wj∈K , the number of key-

words of K that match fi. We thus have Fi = E(cifi). The
server then select γ random positions bi = {bi,1, . . . , bi,γ} ⊂
[1,mγ] of the buffer B and updates each of these γ positions
by multiplying its current value by Fi.

After processing all the documents in the database, the
j-th buffer position will be equal to Bj =

∏
i F

1j∈bi
i =

E
(∑

i 1j∈bicifi
)
, that is, the encryption of a linear combi-

nation of documents in the database. This linear combination
is sparse if only few documents match the query K, meaning
most of the ci are equal to 0. The server then sends the buffer
B back to the user.

In practice, everything happens as if the server had a random
binary matrix H of size γm× t with γ ones in each column
and it was computing B = E(H × (cifi)i∈[1,t]).

3) Document Extraction: When receiving the encrypted
buffer B, the user starts by decrypting each buffer position
to get D(Bj) =

∑
i 1j∈bicifi. He then scans the γm de-

crypted buffer positions for what we call singletons: buffer
positions that contain only one file, that is, positions such that
1j∈bici = 0 for all but one value of i. The user discards all
buffer positions that are not singletons and extracts the value
fi of one document from each singleton.

Of course, this operation is only possible if it is possible
to detect singletons and if extracting the value of fi from
a singleton is easy. This is possible by embedding a small
checksum in each document.

4) Asymptotic Cost: The encrypted buffer that is sent
back by the server to the user has size γm. In order for

the user to be able to recover the m matching documents
with a high probability of success, γ must be of the order
of O(logm). If documents are S bits long, the answer is
thus of order O(2mS logm) using Paillier’s cryptosystem,
or O(m(S+1024) logm) using the Damgård-Jurik extension
(with a 1024-bits modulus N). For a large number of matching
documents, this construction is thus not very practical and
some improvements are needed to keep the buffer size linear
in the number of matching documents.

III. TWO NEW PSS CONSTRUCTIONS

Looking at the Ostrovsky-Skeith construction from an in-
formation theory point of view, it appears that the server starts
by computing an encrypted sparse1 vector

(
E(cifi)

)
i∈[1,t]

and optimizing communications consists in “compressing”
this vector before sending it to the user. As this vector is
encrypted, standard compression techniques cannot be applied.
However, the homomorphic property of E makes it possible to
homomorphically multiply it by a matrix: if we consider this
vector as an error pattern, we can compute its syndrome with
respect to any parity check matrix. This is what we propose
to do (with a few additional tweaks) in our new constructions.

A. A Zero-Error Construction Using Reed-Solomon Codes

Our first construction uses Reed-Solomon codes [4] and
exploits their MDS property in the following way:

• Reed-Solomon codes can correct up to m errors using
2m syndromes,

• they can also correct m erasures (errors at a known
position) using only m syndromes.

A direct application of this would consist in multiplying
the E(cifi) vector by the parity check matrix of a Reed-
Solomon code over ZN . Then, recovering the value of any
m documents would be equivalent to correcting m errors with
the code and would only require ℓ = 2m buffer positions. This
gives a PSS scheme with communications linear in the number
of matching documents: 4mS bits have to be sent using the
standard Paillier cryptosystem. However, it is possible to do
better than a factor 4 expansion.

Indeed, this straightforward application allows documents
of logN bits, but also allows a database of up to N elements.
In practice the database is much smaller than N (remember
that for security reasons N will be at least of order 21024),
and using a Reed-Solomon code over ZN is a waste. The
server can encode the values of the ci (and their positions)
as errors in a (smaller) Reed-Solomon code, and then encode
the documents as erasures, which can be efficiently recovered
once the ci are known. Here is how our algorithm works.

1) Query Construction: This step is identical to the original
Ostrovsky-Skeith algorithm, but without a parameter γ.

1The corresponding decrypted vector is of Hamming weight m if there are
m matching documents.

2567

low weight bits

Fig. 1. Embedding of two Reed-Solomon codes and fi inside a element of
ZN .|Ω| is the dictionary size and t the database size: the zero-paddings allow
to avoid overflows when computing linear combinations of f ′

j,i.

2) Query Execution: As in the previous construction, for
each document fi, the server computes the encryption E(ci) of
the number of keywords matching fi. Then, instead of simply
computing E(ci)fi , the server will embed several values in
an integer f ′

j,i ∈ ZN as shown in Fig. 1. This requires two
different Reed-Solomon codes RS and RS′. The code RS will
be used to recover the ci and is defined on Zpt where pt is the
smallest prime greater than the database size t (it should also
be greater than the dictionary size |Ω|) and the coefficients of
its parity check matrix are thus defined as RSj,i = ij mod pt.
Similarly, RS′ will be used to recover the values of fi and is
defined over Zpf

where pf is the largest prime that can fit in
the remaining bits of one Paillier plaintext. We have RS′j,i = ij

mod pf . Thus, for each of the m positions of buffer B, the
server multiplies Bj by E(ci)f

′
j,i .

3) Document Extraction: The user starts by decrypting the
buffer B. He then splits each plaintext he obtains in 3 parts:
the first part corresponding to

∑
i ciRS

′
j,ifi, the second to∑

i ciRS2j,i and the third to
∑

i ciRS2j+1,i. Reducing the
last two elements modulo pt for each j ∈ [1,m], the user
gets 2m syndrome positions in RS of the sparse vector (ci).
This is enough to recover the values and positions of the m
non-zero ci elements using the Reed-Solomon error correcting
algorithm.

Then, the user reduces the first part of each plaintext modulo
pf to obtain m syndrome positions in RS′ of the sparse vector
(cifi). As the non-zero ci elements are known, the positions
of the non-zero cifi are also known, and the user has to solve
an erasure problem. The m syndrome positions are enough to
recover the values of cifi, and thus also of fi.

4) Computational Cost: Compared to the Ostrovsky-Skeith
construction, the use of Reed-Solomon codes has an heavy
impact on the server side computations. As all the lines of
a Reed-Solomon parity check matrix are different, the server
has to compute a modular exponentiation E(ci)f

′
j,i for every

coefficient in the matrix, that is mt exponentiations instead of
t as in the other algorithm.

However, on the user side, the computational cost remains
identical and will be dominated by the buffer decryption step.
Reed-Solomon decoding costs O(m2) multiplications in Zpt

and Zpf
, which can be upper bounded by O(m2(logN)2).

Decryption costs O(m(logN)3), which will dominate as long
as m is smaller than a few thousands.

5) Asymptotic Cost: With this scheme, a buffer of size m is
enough to recover m matching documents, which is optimal.
However, part of each buffer position is reserved for the
recovery of the ci and for zero-padding to avoid overflows. For

each document, an overhead of 5 log t+3 log |Ω| bits has to be
transmitted. The 3 log t+3 log |Ω| padding bits2 are wasted bits
that are due to the structure of the Paillier encryption scheme:
using a different homomorphic encryption scheme could im-
prove this. The remaining 2 log t bits are however necessary to
get a deterministic zero-error algorithm: the user has to solve
an error correction problem, meaning he will have to learn both
the value and the position of the errors, leading to an overhead
of O(log t) bits per document. Overall, for documents of S
bits, this scheme requires 2m(S + O(log t)) bits using the
original Paillier cryptosystem or m(S+1024+O(log t)) using
the Damgård-Jurik extension.

B. An Asymptotically Optimal Construction Using Irregular
LDPC Codes

In order to improve the asymptotic communication cost and
remove any dependency on the database size t, it is necessary
to use a randomized scheme (thus with a non-zero probability
of failure): in that case, it is well known that (irregular)
LDPC codes can offer much better performance than Reed-
Solomon codes. However, the error correction problem also
has to be transformed into an erasure correction problem. This
is possible by combining the following ideas:

• instead of using a fix LDPC matrix, pseudo-randomly
generate its columns from the documents fi,

• use a decoding algorithm similar to the erasure correc-
tion algorithm proposed by Luby and Mitzenmacher for
verification codes [9].

The construction we propose works as follows.
1) Query Construction: This step is the same as for the

Ostrovsky-Skeith construction, but instead of m and γ, the
user sends the desired buffer length ℓ to the server.

2) Query Execution: The server first initializes a buffer B
of size ℓ to E(0) in every position. Then, for each document
fi it proceeds as follows:

• it computes E(cifi) exactly as in the original scheme,
• using a pseudo-random number generator seeded by fi,

it generates a column weight d following a given distri-
bution (the best choice for this distribution is discussed
in Section III-B4) and generates a random binary vector
Hi of length ℓ and Hamming weight d,

• for every non-zero position in Hi, it multiplies the
corresponding positions in buffer B by E(cifi).

In the end, B contains the encrypted syndrome of the (cifi)
vector with respect to an irregular LDPC code (with a chosen
column weight distribution), which the server sends to the user.

3) Document Extraction: As in the original scheme, when
receiving buffer B, the user starts by decrypting it and looks
for singletons. The difference here is that, for every singleton,
the user gets the value of one document fi and can regenerate
(using the same PRNG as the server) the corresponding
column Hi. Knowing Hi it is possible to remove document fi
from the other syndrome positions where it has been added,

2In practice, this can be reduced to 3 logm+3 log |K| bits, but this requires
to modify the scheme depending on m and K which might not be convenient.

2568

TABLE I
MINIMAL EXPANSION RATIOS WHEN USING COLUMNS OF CONSTANT

WEIGHT d

d 2 3 4 5 6 7 8 9
min. ℓ

m
2 1.2218 1.2949 1.4249 1.5697 1.7189 1.8692 2.0192

thus uncovering new singletons, which in turn can reveal new
documents fi. This gives an iterative algorithm which can
be analyzed in the same way as in [6]: knowing the column
and row weight distributions of the parity check matrix it is
possible to analyze the asymptotic behavior of the algorithm
and compute the probability of recovering all documents.

4) Choosing an Optimal Column Weight Distribution: In
order to analyze the decoding algorithm, the matrix H must
be transformed into a bipartite graph. On the left of the graph
are m information nodes and on the right are ℓ parity nodes.
These nodes are connected by edges: each 1 in H is an edge
in the graph, linking an information node to a parity node.
For each edge in the graph, its left degree is the number of
edges connected to its information node and its right degree
the number of edges connected to its parity node. Then the
decoding algorithm consists in repeating the following steps:

• select all edges with right degree 1 (edges connected to
singletons),

• remove these edges from the graph as well as the asso-
ciated left and right nodes,

• remove all other edges that were connected to the left
nodes (no other edges were connected to the right nodes).

Decoding is successful if, at the end, all the edges have been
removed.

Studying the probability of success of this algorithm for
given parameters m and ℓ is difficult, however, as proven
in [10], if the left and right degree distribution of edges
remains constant and m and ℓ tend to infinity, the asymptotic
proportion of edges removed at each step can be computed
quite easily. Let λ(x) =

∑
i λix

i−1 and ρ(x) =
∑

i ρix
i−1,

where λi (resp. ρi) denote the probability that an edge of the
graph has left (resp. right) degree i. Also, let bj denote the pro-
portion of edges of the graph that are still present after step j of
the algorithm. Then b0 = 1 (all the edges are present before the
algorithm starts) and bj+1 = λ(1−ρ(1−bj)). Asymptotically,
the decoding algorithm is successful if bj

j→∞−→ 0, which will
be the case if:

∀x ∈ [0, 1], λ(1− ρ(1− x)) ≤ x. (1)

a) Constant Column Weight: Danezis and Dı́az [3] im-
proved the original Ostrovsky-Skeith scheme by using a sim-
ilar iterative decoding algorithm with constant column weight
d. They do not provide any asymptotic analysis, but their
construction is equivalent to choosing λ(x) = xd−1 and
ρ(x) = exp

(
−md

ℓ (1− x)
)
. The best expansion ratios ℓ

m one
can achieve with constant column weight d (and an asymptotic
probability of recovering all documents of 1) are reported in
Table I. The best choice is d = 3 leading to an expansion of

at least 22% and an asymptotic communication amount of at
least 1.22m(S + 1024) bits for m documents of S bits.

b) Harmonic Distribution: The harmonic distribution of
order D consists in a normalized truncated (at order D) Taylor
series expansion of − ln(1− x). It is given by:

λD(x) =
1

H(D)

D∑
i=2

1

i− 1
xi−1 with H(D) =

D∑
i=2

1

i− 1
.

These λD(x) distributions will satisfy inequality (1) if the
expansion factor ℓ

m is greater than 1 + 1
D . Any expansion

ratio ℓ
m = 1+ ϵ can thus be chosen by the user, and using the

harmonic distribution of order 1
ϵ will asymptotically allow to

recover most documents.
c) Enhanced Harmonic Distribution: A problem of the

plain harmonic distribution is that it contains columns of
weight 2 which have a high probability of producing collisions:
two identical columns Hi leading to a deadlock in the iterative
decoding algorithm. To avoid this, the best solution is to
combine the harmonic and constant weight distributions into
what we call the enhanced harmonic distribution. Each column
of length ℓ is split into a weight 3 column of length ℓ3 and
a harmonic column of length ℓ − ℓ3. Choosing ℓ3 = O(

√
ℓ)

is enough to ensure that (asymptotically) no collisions take
place and the probability of recovering all documents tends to
1, while not modifying the expansion factor ℓ

m . Fig. 2 shows
how the 3 distributions compare for various values of ℓ.

Using the enhanced harmonic distribution, the asymptotic
communication cost of PSS with m matching documents of
S bits becomes 2mS using the standard Paillier cryptosystem
or m(S + 1024) using the Damgård-Jurik extension.

IV. OFFLINE-ONLINE CONSTRUCTION

Using any of our two new schemes, it is possible to reduce
the size of the reply from the server almost to the size of a non-
private search result. However, the size of the query the user
sends remains large compared to a non-private query. The size
of a private query is linear in |Ω| whereas it is logarithmic for
a non-private query. To improve this, we propose an offline-
online scheme, where the linear query is sent offline and a
logarithmic query is sent online.

A. A Single Keyword Scheme

We first focus on queries containing a single keyword. In
this case, any query can be obtained as a “cyclic shift” of any
other query. Our offline-online scheme works as follows:

• offline, the user generates a query Qj = {q1, . . . , q|Ω|}
where qj = E(1) and qi = E(0) otherwise (with j picked
uniformly at random), and sends it to the server,

• offline, the server computes all possible cyclic shifts
of Qj by i ∈ [0, [Ω| − 1] positions and executes the
corresponding queries. It stores each result in a separate
buffer Bi.

• online, the user wants to query the server for the j′-th
keywords and sends j′ − j mod |Ω| to the server,

• online, the server sends Bj′−j to the user and discards
the other Bi,

2569

average ratio of recovered documents

full recovery probability

average ratio of recovered documents

full recovery probability

0.4
0
5000 6000 7000 8000 9000 10000

0.6

0.8

0.9

0.95

0.98
0.99

1

m

full recovery probability

average ratio of recovered documents

0.4
0
500 600 700 800 900 1000

0.6

0.8

0.9

0.95

0.98
0.99

1

m

0.4
0
50 60 70 80 90 100

0.6

0.8

0.9

0.95

0.98
0.99

1

m

0.4
0
50 60 70 80 90 100

0.6

0.8

0.9

0.95

0.98
0.99

1

m

0.4
0
500 600 700 800 900 1000

0.6

0.8

0.9

0.95

0.98
0.99

1

m

0.4
0
5000 6000 7000 8000 9000 10000

0.6

0.8

0.9

0.95

0.98
0.99

1

m

(a) (b) (c)

(d) (e) (f)

enhanced
harmonic

harmonic

weight 3

Distributions:

Fig. 2. Simulation results for the LDPC decoding algorithm for 3 different distributions. The curves represent the average ratio of recovered documents and
the probability of recovering all m documents as a function of the number of matching documents m for different buffer sizes ℓ. In (a) and (d) ℓ = 100 and
ℓ3 = 10, in (b) and (e) ℓ = 1000 and ℓ3 = 40, and in (c) and (f) ℓ = 10000 and ℓ3 = 60.

• the user decrypts/decodes buffer Bj′−j normally.
With this scheme, the online work on the server side is a

simple table lookup and the amount of online communication
is very close to the non-private case: the query is only log |Ω|
bits long, and with the PSS schemes we have presented Bj′−j

can also be small.
The offline amount of communication is still the same

as for the standard scheme, but the amount of computation
on the server side is multiplied by |Ω|. However, as this is
offline work, it can easily be outsourced to distant server
farm and does not have to be run on the “online” low-latency
servers. Of course, if the amount of offline work is too high,
it is also possible to treat the shifted query online as in the
standard scheme: the amount of work the server has to do will
then be the same as in the normal scheme, but most of the
communication will be done offline.

B. Dealing with Multiple Keywords.

One constraint with the previous scheme is that the offline
query the user sends has to be completely random and, at
the same time, it should be possible to modify it into any
other query the user might later want to ask. For a single
keyword, cyclic shifts work well whatever the dictionary size.
However, for several keywords (say k), the user should be
able to transform any random query Qj1,...,jk into any chosen
query Qj′1,...,j

′
k
, by simply giving the index of a permutation.

When k = 2, a solution is to transform each index j into
Aj+B mod |Ω|, where A ∈ [1, |Ω|−1] and B ∈ [0, |Ω|−1]
are the “permutation index” that the user will send to the server
in the online phase. If |Ω| is prime, then any pair j1, j2 can
be transformed into any pairs j′1, j

′
2 by choosing A = j2−j1

j′2−j′1
mod |Ω| and B = Aj1 − j′1 mod |Ω|.

Building such families of permutations for larger values of
k is not always simple, and the number of permutations in the
family will always have to be at least

(|Ω|
k

)
. This means that

the offline work on the server side will be O(|Ω|k) times more

than in the standard online scheme. Values of k larger than 1
or 2 are therefore not very realistic, and for these values the
solutions we presented work fine.

V. CONCLUSION

We presented two new constructions for private stream
search that allow a communication complexity very close to
that of a non-private search. As in all known PSS schemes,
the workload can be quite heavy on the server side but it
remains very small on the user side. In that sense, these
constructions could be practical for many applications where
privacy matters. We also present an offline-online variant of
our construction that can make these schemes practical even if
a delay between the query and the reply cannot be accepted.

REFERENCES

[1] R. Ostrovsky and W. E. Skeith, “Private searching on streaming data,”
in Advances in Cryptology - CRYPTO 2005, ser. LNCS, V. Shoup, Ed.,
vol. 3621. Springer, 2005, pp. 223–240.

[2] J. Bethencourt, D. X. Song, and B. Waters, “New techniques for private
stream searching,” ACM Trans. Inf. Syst. Secur., vol. 12, no. 3, 2009.

[3] G. Danezis and C. Dı́az, “Space-efficient private search with applica-
tions to rateless codes,” in Financial Cryptography 2007, ser. LNCS,
S. Dietrich and R. Dhamija, Eds., vol. 4886. Springer, 2007, pp. 148–
162.

[4] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the SIAM, vol. 8, no. 2, pp. 300–304, Jun. 1960.

[5] R. G. Gallager, “Low-density parity-check codes,” Cambridge, Mas-
sachussets: M.I.T. Press, 1963.

[6] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Analysis of low density codes and improved designs using irregular
graphs,” in Proceedings of the 30th annual ACM Symposium on Theory
of Computing, ser. STOC ’98. ACM, 1998, pp. 249–258.

[7] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology - EUROCRYPT ’99, ser.
LNCS, J. Stern, Ed., vol. 1592. Springer, 1999, pp. 223–238.

[8] I. Damgård and M. Jurik, “A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system,” in PKC 2001,
ser. LNCS, K. Kim, Ed., vol. 1992. Springer, 2001, pp. 119–136.

[9] M. G. Luby and M. Mitzenmacher, “Verification codes,” in Proc.
Allerton Conf. on Communication, Control, and Computing, 2002.

[10] M. G. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of
random processes via and-or tree evaluation,” in SODA, 1998, pp. 364–
373.

2570

