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Abstract
In this paper, some strong and �-convergence results are proved for Suzuki
generalized nonexpansive mappings in the setting of CAT (0) spaces using the K
iteration process. We also give an example to show the efficiency of the K iteration
process. Our results are the extension, improvement and generalization of many
well-known results in the literature of fixed point theory in CAT (0) spaces.
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1 Introduction
The well-known Banach contraction theorem uses the Picard iteration process for approx-
imation of fixed point. Numerical computation of fixed points for suitable classes of con-
tractive mappings, on appropriate geometric framework, is an active research area nowa-
days [1–3]. Many iterative processes have been developed to approximate fixed points of
different type of mappings. Some of the well-known iterative processes are those of Mann
[4], Ishikawa [5], Agarwal [6], Noor [7], Abbas [8], SP [9], S∗ [10], CR [11], Normal-S [12],
Picard Mann [13], Picard-S [14], Thakur New [15] and so on. These processes have a wide
rang of applications to general variational inequalities or equilibrium problems as well as
to split feasibility problems [16–19]. Recently, Hussain et al. [20] introduced a new three-
step iteration process known as the K iteration process and proved that it is converging
fast as compared to all above-mentioned iteration processes. They use a uniformly convex
Banach space as a ground space and prove strong and weak convergence theorems. On the
other hand, we know that every Banach space is a CAT(0) space.

Motivated by the above, in this paper, first we develop an example of Suzuki generalized
nonexpansive mappings which is not nonexpansive. We compare the speed of conver-
gence of the K iteration process with the leading two steps S-iteration process and leading
three steps Picard-S-iteration process. Finally, we prove some strong and �-convergence
theorems for Suzuki generalized nonexpansive mappings in the setting of CAT(0) spaces.

2 Preliminaries
For details as regards CAT(0) spaces please see [21]. Some results are recalled here for
CAT(0) space X.
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Lemma 2.1 ([7]) For x, y ∈ X and let ξ ∈ [0, 1], there exists a unique point s ∈ [x, y] where
[x, y] is the line segment joining x and y, such that

d(x, s) = ξd(x, y) and d(y, s) = (1 – ξ )d(x, y). (1)

The notation ((1 – ξ )x ⊕ ξy) is used for the unique point s satisfying (1).

Lemma 2.2 ([13, Lemma 2.4]) For x, y, z ∈ X and ξ ∈ [0, 1], we have

d
(
z, ξx ⊕ (1 – ξ )y

) ≤ ξd(z, x) + (1 – ξ )d(z, y). (2)

Let C be a nonempty closed convex subset of a CAT(0) space X, and let {xn} be a bounded
sequence in X. For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(xn, x).

The asymptotic radius of {xn} relative to C is given by

r
(
C, {xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ C

}
,

and the asymptotic center of {xn} relative to C is the set

A
(
C, {xn}

)
=

{
x ∈ C : r

(
x, {xn}

)
= r

(
C, {xn}

)}
.

Just like in uniformly convex Banach spaces, it is well known that A(C, {xn}) consists of
exactly one point in a complete CAT(0) space.

Definition 2.3 In CAT(0) space X, a sequence {xn} is said to be �-convergent to s ∈ X if
s is the unique asymptotic center of {ux} for every subsequence {ux} of {xn}. In this case
we write �- limn xn = s and call s the �- lim of {xn}.

A point p is called a fixed point of a mapping T if T(p) = p, and F(T) represents the set
of all fixed points of the mapping T . Let C be a nonempty subset of a CAT(0) space X.

A mapping T : C → C is called a contraction if there exists ξ ∈ (0, 1) such that

d(Tx, Ty) ≤ ξd(x, y)

for all x, y ∈ C.
A mapping T : C → C is called nonexpansive if

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C.
In 2008, Suzuki [22] introduced a new condition on a mapping, called condition (C),

which is weaker than nonexpansiveness. A mapping T : C → C is said to satisfy condition
(C) if for all x, y ∈ C, we have

1
2

d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y). (3)
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The mapping satisfying condition (C) is called a Suzuki generalized nonexpansive map-
ping. The following is an example of a Suzuki generalized nonexpansive mapping which
is not nonexpansive.

Example 2.4 Define a mapping T : [0, 1] → [0, 1] by

Tx =

{
1 – x if x ∈ [0, 1

10 ),
x+1

2 if x ∈ [ 1
10 , 1].

We need to prove that T is a Suzuki generalized nonexpansive mapping but not nonex-
pansive.

If x = 1
11 , y = 1

10 we see that

d(Tx, Ty) = |Tx – Ty|

=
∣
∣∣
∣1 –

1
11

–
11
20

∣
∣∣
∣

=
79

220

>
1

110

= d(x, y).

Hence T is not a nonexpansive mapping.
To verify that T is a Suzuki generalized nonexpansive mapping, consider the following

cases:
Case I: Let x ∈ [0, 1

10 ), then 1
2 d(x, Tx) = 1–2x

2 ∈ ( 2
5 , 1

2 ]. For 1
2 d(x, Tx) ≤ d(x, y) we must have

1–2x
2 ≤ y – x, i.e., 1

2 ≤ y, hence y ∈ [ 1
2 , 1]. We have

d(Tx, Ty) =
∣
∣∣
∣
y + 1

2
– (1 – x)

∣
∣∣
∣ =

∣
∣∣
∣
y + 2x – 1

2

∣
∣∣
∣ <

1
10

and

d(x; y) = |x – y| >
∣∣
∣∣

1
10

–
1
2

∣∣
∣∣ =

2
5

.

Hence 1
2 d(x, Tx) ≤ d(x, y) �⇒ d(Tx, Ty) ≤ d(x, y).

Case II: Let x ∈ [ 1
10 , 1], then 1

2 d(x, Tx) = 1
2 | x+1

2 – x| = 1–x
4 ∈ [0, 9

40 ]. For 1
2 d(x, Tx) ≤ d(x, y)

we must have 1–x
4 ≤ |y – x|, which gives two possibilities:

(a). Let x < y, then 1–x
4 ≤ y – x �⇒ y ≥ 1+3x

4 �⇒ y ∈ [ 13
40 , 1] ⊂ [ 1

10 , 1]. So

d(Tx, Ty) =
∣∣∣
∣
x + 1

2
–

y + 1
2

∣∣∣
∣ =

1
2

d(x, y) ≤ d(x, y).

Hence 1
2 d(x, Tx) ≤ d(x, y) �⇒ d(Tx, Ty) ≤ d(x, y).

(b). Let x > y, then 1–x
4 ≤ x – y �⇒ y ≤ x – 1–x

4 = 5x–1
4 �⇒ y ∈ [– 1

8 , 1]. Since y ∈ [0, 1], so
y ≤ 5x–1

4 �⇒ x ∈ [ 1
5 , 1]. So the case is x ∈ [ 1

5 , 1] and y ∈ [0, 1].
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Now x ∈ [ 1
5 , 1] and y ∈ [ 1

10 , 1] is already included in (a). So let x ∈ [ 1
5 , 1] and y ∈ [0, 1

10 ),
then

d(Tx, Ty) =
∣∣
∣∣
x + 1

2
– (1 – y)

∣∣
∣∣

=
∣
∣∣
∣
x + 2y – 1

2

∣
∣∣
∣.

For convenience, first we consider x ∈ [ 1
5 , 7

8 ] and y ∈ [0, 1
10 ), then d(Tx, Ty) ≤ 3

80 and
d(x, y) > 1

10 . Hence d(Tx, Ty) ≤ d(x, y).
Next consider x ∈ [ 7

8 , 1] and y ∈ [0, 1
10 ), then d(Tx, Ty) ≤ 1

10 and d(x, y) > 72
80 . Hence

d(Tx, Ty) ≤ d(x, y). So 1
2 d(x, Tx) ≤ d(x, y) �⇒ d(Tx, Ty) ≤ d(x, y).

Hence T is a Suzuki generalized nonexpansive mapping.

We now list some basic results.

Proposition 2.5 Let C be a nonempty subset of a CAT(0) space X and T : C → C be any
mapping. Then:

(i) [22, Proposition 1] If T is nonexpansive then T is a Suzuki generalized
nonexpansive mapping.

(ii) [22, Proposition 2] If T is a Suzuki generalized nonexpansive mapping and has a
fixed point, then T is a quasi-nonexpansive mapping.

(iii) [22, Lemma 7] If T is a Suzuki generalized nonexpansive mapping, then

d(x, Ty) ≤ 3d(Tx, x) + d(x, y)

for all x, y ∈ C.

Lemma 2.6 ([22, Theorem 5]) Let C be a weakly compact convex subset of a CAT(0)
space X. Let T be a mapping on C. Assume that T is a Suzuki generalized nonexpansive
mapping. Then T has a fixed point.

Lemma 2.7 ([23, Lemma 2.9]) Suppose that X is a complete CAT(0) space and x ∈ X. {tn}
is a sequence in [b, c] for some b, c ∈ (0, 1) and {xn}, {yn} are sequences in X such that, for
some r ≥ 0, we have

lim
n→∞ sup d(xn, x) ≤ r, lim

n→∞ sup d(yn, x) ≤ r and

lim
n→∞ sup d

(
tnxn ⊕ (1 – tn)yn, x

)
= r;

then

lim
n→∞ d(xn, yn) = 0.
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Table 1 Sequences generated by K , Picard-S- and S-iteration processes

K Picard-S S

x0 0.9 0.9 0.9
x1 0.9875 0.975 0.95
x2 0.998561026471100 0.994244105884402 0.976976423537605
x3 0.999840932805849 0.998727462446794 0.989819699574350
x4 0.999982839247306 0.999725427956896 0.995606847310338
x5 0.999998178520930 0.999941712669962 0.998134805438786
x6 0.999999808905464 0.999987769949668 0.999217276778764
x7 0.999999980126971 0.999997456252294 0.999674400293643
x8 0.999999997947369 0.999999474526643 0.999865478820511
x9 0.999999999789148 0.999999892043912 0.999944726482773
x10 0.999999999978438 0.999999977920327 0.999977390415280
x11 0.999999999997803 0.999999995501064 0.999990786179471
x12 0.999999999999777 0.999999999086208 0.999996257108584
x13 0.999999999999977 0.999999999814902 0.999998483680543
x14 0.999999999999998 0.999999999962595 0.999999387160191
x15 1 0.999999999992457 0.999999752825556
x16 1 0.999999999998482 0.999999900490241
x17 1 0.999999999999695 0.999999960003588
x18 1 0.999999999999939 0.999999983947466
x19 1 0.999999999999988 0.999999993565774
x20 1 0.999999999999997 0.999999997424076

Let n ≥ 0 and {ξn} and {ζn} be real sequences in [0, 1]. Hussain et al. [20] introduced a
new iteration process namely the K iteration process, thus:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0 ∈ C,
zn = (1 – ζn)xn + ζnTxn,
yn = T((1 – ξn)Txn + ξnTzn),
xn+1 = Tyn.

(4)

They also proved that the K iteration process is faster than the Picard-S- and S-iteration
processes with the help of a numerical example. In order to show the efficiency of the K it-
eration process we use Example 2.4 with x0 = 0.9 and get Table 1. A graphic representation
is given in Fig. 1. We can easily see the efficiency of the K iteration process.

3 Convergence results for Suzuki generalized nonexpansive mappings
In this section, we prove some strong and �-convergence theorems of a sequence gener-
ated by a K iteration process for Suzuki generalized nonexpansive mappings in the setting
of CAT(0) space. The K iteration process in the language of CAT(0) space is given by

x0 ∈ C,

zn = (1 – ζn)xn ⊕ ζnTxn,

yn = T
(
(1 – ξn)Txn ⊕ ξnTzn

)
,

xn+1 = Tyn.

(5)

Theorem 3.1 Let C be a nonempty closed convex subset of a complete CAT(0) space X and
T : C → C be a Suzuki generalized nonexpansive mapping with F(T) �= ∅. For arbitrarily
chosen x0 ∈ C, let the sequence {xn} be generated by (5) then limn→∞ d(xn, p) exists for any
p ∈ F(T).
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Figure 1 Convergence of iterative sequences generated by K (red line), Picard-S (blue line) and S (green line)
iteration process to the fixed point 1 of the mapping T defined in Example 2.4

Proof Let p ∈ F(T) and z ∈ C. Since T is a Suzuki generalized nonexpansive mapping,

1
2

d(p, Tp) = 0 ≤ d(p, z) implies that d(Tp, Tz) ≤ d(p, z).

So by Proposition 2.5(ii), we have

d(zn, p) = d
((

(1 – ζn)xn ⊕ ζnTxn
)
, p

)

≤ (1 – ζn)d(xn, p) + ζnd(Txn, p)

≤ (1 – ζn)d(xn, p) + ζnd(xn, p)

= d(xn, p). (6)

Using (6) we get

d(yn, p) = d
((

T(1 – ξn)Txn ⊕ ξnTzn
)
, p

)

≤ d
((

(1 – ξn)Txn ⊕ ξnTzn
)
, p

)

≤ (1 – ξn)d(Txn, p) + ξnd(Tzn, p)

≤ (1 – ξn)d(xn, p) + ξnd(zn, p)

≤ (1 – ξn)d(xn, p) + ξnd(xn, p)

= d(xn, p). (7)

Similarly by using (7) we have

d(xn+1, p) = d(Tyn, p)

≤ d(yn, p)

≤ d(xn, p). (8)
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This implies that {d(xn, p)} is bounded and non-increasing for all p ∈ F(T). Hence
limn→∞ d(xn, p) exists, as required. �

Theorem 3.2 Let C, X, T and {xn} be as in Theorem 3.1, where {ξn} and {ζn} are sequences
of real numbers in [a, b] for some a, b with 0 < a ≤ b < 1. Then F(T) �= ∅ if and only if {xn}
is bounded and limn→∞ d(Txn, xn) = 0.

Proof Suppose F(T) �= ∅ and let p ∈ F(T). Then, by Theorem 3.1, limn→∞ d(xn, p) exists
and {xn} is bounded. Put

lim
n→∞ d(xn, p) = r. (9)

From (6) and (9), we have

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = r. (10)

By Proposition 2.5(ii) we have

lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(xn, p) = r. (11)

On the other hand by using (6), we have

d(xn+1, p) = d(Tyn, p)

≤ d(yn, p)

= d
((

T(1 – ξn)Txn ⊕ ξnTzn
)
, p

)

≤ d
(
(1 – ξn)Txn ⊕ ξnTzn, p

)

≤ (1 – ξn)d(Txn, p) + ξnd(Tzn, p)

≤ (1 – ξn)d(xn, p) + ξnd(zn, p)

= d(xn, p) – ξnd(xn, p) + ξnd(zn, p).

This implies that

d(xn+1, p) – d(xn, p)
ξn

≤ d(zn, p) – d(xn, p).

So

d(xn+1, p) – d(xn, p) ≤ d(xn+1, p) – d(xn, p)
ξn

≤ d(zn, p) – d(xn, p)

implies that

d(xn+1, p) ≤ d(zn, p).

Therefore

r ≤ lim inf
n→∞ d(zn, p). (12)
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From (10) and (12) we get

r = lim
n→∞ d(zn, p)

= lim
n→∞ d

((
(1 – ζn)xn ⊕ ζnTxn

)
, p

)
. (13)

From (9), (11), (13) and Lemma 2.7, we have limn→∞ d(Txn, xn) = 0.
Conversely, suppose that {xn} is bounded and limn→∞ d(Txn, xn) = 0. Let p ∈ A(C, {xn}).

By Proposition 2.5(iii), we have

r
(
Tp, {xn}

)
= lim sup

n→∞
d(xn, Tp)

≤ lim sup
n→∞

(
3d(Txn, xn) + d(xn, p)

)

≤ lim sup
n→∞

d(xn, p)

= r
(
p, {xn}

)
.

This implies that Tp ∈ A(C, {xn}). Since X is uniformly convex, A(C, {xn}) is a singleton
and hence we have Tp = p. Hence F(T) �= ∅. �

The proof of the following �-convergence theorem is similar to the proof of [24, Theo-
rem 3.3].

Theorem 3.3 Let C, X, T and {xn} be as in Theorem 3.2 with F(T) �= ∅. Then {xn} �-
converges to a fixed point of T .

Next we prove the strong convergence theorem.

Theorem 3.4 Let C, X, T and {xn} be as in Theorem 3.2 such that C is compact subset
of X. Then {xn} converges strongly to a fixed point of T .

Proof By Lemma 2.6, we have F(T) �= ∅ and so by Theorem 3.1 we have limn→∞ d(Txn, xn) =
0. Since C is compact, there exists a subsequence {xnk } of {xn} such that {xnk } converges
strongly to p for some p ∈ C. By Proposition 2.5(iii), we have

d(xnk , Tp) ≤ 3d(Txnk , xnk ) + d(xnk , p) for all n ≥ 1.

Letting k → ∞, we get Tp = p, i.e., p ∈ F(T). By Theorem 3.1, limn→∞ d(xn, p) exists for
every p ∈ F(T) and so the xn converge strongly to p. �

A strong convergence theorem using condition I introduced by Senter and Dotson [25]
is as follows.

Theorem 3.5 Let C, X, T and {xn} be as in Theorem 3.2 with F(T) �= ∅. If T satisfies con-
dition (I), then {xn} converges strongly to a fixed point of T .
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Proof By Theorem 3.1, we see that limn→∞ d(xn, p) exists for all p ∈ F(T) and so
limn→∞ d(xn, F(T)) exists. Assume that limn→∞ d(xn, p) = r for some r ≥ 0. If r = 0 then
the result follows. Suppose r > 0, from the hypothesis and condition (I),

f
(
d
(
xn, F(T)

)) ≤ d(Txn, xn). (14)

Since F(T) �= ∅, by Theorem 3.2, we have limn→∞ d(Txn, xn) = 0. So (14) implies that

lim
n→∞ f

(
d
(
xn, F(T)

))
= 0. (15)

Since f is a nondecreasing function, from (15) we have limn→∞ d(xn, F(T)) = 0. Thus, we
have a subsequence {xnk } of {xn} and a sequence {yk} ⊂ F(T) such that

d(xnk , yk) <
1
2k for all k ∈N.

So using (9), we get

d(xnk+1 , yk) ≤ d(xnk , yk) <
1
2k .

Hence

d(yk+1, yk) ≤ d(yk+1, xk+1) + d(xk+1, yk)

≤ 1
2k+1 +

1
2k

<
1

2k–1 → 0 as k → ∞.

This shows that {yk} is a Cauchy sequence in F(T) and so it converges to a point p.
Since F(T) is closed, p ∈ F(T) and then {xnk } converges strongly to p. Since limn→∞ d(xn, p)
exists, we have xn → p ∈ F(T). �

4 Conclusions
The extension of the linear version of fixed point results to nonlinear domains has its own
significance. To achieve the objective of replacing a linear domain with a nonlinear one,
Takahashi [26] introduced the notion of a convex metric space and studied fixed point
results of nonexpansive mappings in this framework. This initiated the study of different
convexity structures on a metric space. Here we extend a linear version of convergence
results to the fixed point of a mapping satisfying condition C for the newly introduced K
iteration process [20] to nonlinear CAT(0) spaces.
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