Quelles sont les bonnes pratiques pour optimiser les performances et le coût du stockage AWS S3 ?
Amazon Web Services (AWS
Amazon Web Services (AWS
S3 propose six classes de stockage différentes qui varient en termes de prix, de disponibilité, de durabilité et de vitesse de récupération. En fonction de vos besoins en matière de données, vous pouvez choisir la classe de stockage la plus adaptée à vos données. Par exemple, si vous avez besoin d’un accès fréquent et rapide à vos données, vous pouvez utiliser S3 Standard ou S3 Intelligent-Tiering, qui offrent des performances élevées et une faible latence. Si vous avez besoin de stocker des données rarement consultées ou des données d’archivage, vous pouvez utiliser S3 Standard-Accès peu fréquent (S3 Standard-IA), S3 Une zone - accès peu fréquent (S3 Une zone-IA), S3 Glacier ou S3 Glacier Deep Archive, qui offrent des coûts de stockage inférieurs, mais des frais de récupération plus élevés et des temps de récupération plus longs.
A. Cost: 1/ Use the Right Storage Class and consider transitioning infrequently accessed data to lower-cost storage classes. 2/ Enable Versioning Wisely: Use versioning for critical data but be mindful of storage costs and potential increase in operations. B. Performance: 1/ Distribute requests across multiple prefixes to avoid contention. Use CloudFront for content delivery to improve latency and reduce costs. 2/ Review and Optimize: Use Amazon S3 metrics and CloudWatch alarms to monitor performance. Regularly review and optimize your S3 storage configurations based on changing needs. And finally, always keep an eagle eye on taking advantage of new features and improvements.
Key recommendations: Performance Optimization: Choose the Right Storage Class: Use the appropriate storage class based on data access patterns. For frequently accessed data, use Standard or Intelligent-Tiering. For infrequently accessed data, use Standard-IA For archival data, use Glacier or Glacier Deep Archive. Enable Transfer Acceleration: Use S3 Transfer Acceleration for faster data uploads and downloads by leveraging the CloudFront global content delivery network. Multipart Uploads: For large object uploads, use multipart uploads to improve efficiency and reliability. Use CloudFront for Content Delivery: Integrate S3 with Amazon CloudFront for content delivery.
Analyze storage usage and access patterns using Amazon S3 Storage Lens to optimize costs. Leverage different S3 storage classes like S3 Intelligent Tiering, S3 Standard - Infrequent Access, S3 Glacier according to data access patterns and performance needs. Use S3 Lifecycle policies to automatically transition data to the right storage class based on access patterns, saving costs over time. Parallelize read/write operations across multiple prefixes within or across buckets to scale performance up to thousands of requests per second.
To optimize AWS S3 storage for peak performance and cost efficiency, embrace Amazon S3 Intelligent-Tiering. Imagine an e-commerce platform: hot-selling product images stay in a frequent-access tier, while older inventory gracefully transitions to a more economical storage class. This minimizes costs without compromising retrieval speed. Leverage Amazon S3 Transfer Acceleration for faster data uploads, ensuring swift content delivery. Additionally, implement Lifecycle policies to automate transitions to Glacier for archival, reducing long-term storage expenses. By tailoring storage classes to usage patterns and automating cost-effective transitions, businesses achieve optimal performance and significant AWS S3 storage cost savings.
Addition to four points mentioned - Enable S3 Object Lifecycle Management - delete the expired objects/content automatically - Regular inventory of S3 contents and run automated script to analyze and purge - Use AWS Glue Crawlers to tag/search for missing expiring date objects and address them
Le partitionnement de vos données consiste à les organiser en sous-ensembles logiques en fonction de certains critères, tels que la date, l’heure, la région ou la catégorie. Le partitionnement de vos données peut améliorer les performances et le coût de votre S3 en réduisant la quantité de données analysées, transférées ou traitées par vos requêtes ou applications. Par exemple, si vous utilisez AWS Athena ou AWS Glue pour interroger vos données stockées dans S3, vous pouvez partitionner vos données par date et utiliser une clause WHERE pour filtrer uniquement les partitions pertinentes. De cette façon, vous pouvez économiser du temps et de l’argent en évitant de numériser ou de traiter des données inutiles.
In addition to partitioning other patterns can be utilized either in replacement or in coexistence such as Bucketing, and other patterns dedicated to some file format like ZOrdering in Delta.
In addition to partitioning data, the structure and type of technology you use also impacts performance and cost. For example, storing files in a parquet format allows you to have large volumes in a few megabytes, with the advantage that Athena also supports parquet. You can do a terabyte data recovery using parquet for a few cents or dollars.
Data partitioning has been a game-changer in optimizing query performance and reducing costs. In a data analytics project, we partitioned historical data by date, significantly speeding up query times in AWS Athena and reducing the data scanned. This approach is not just about organizing data; it's about understanding and anticipating the query patterns to optimize data retrieval.
The best practice is to retrieve the most suitable data. The retrieval conditions have to be designed to transfer the best data at the best way.
Partitioning data on S3 is a game-changer. Think of it as organizing a vast library into sections by date, topic, or region. When using tools like AWS Athena or Glue, partitioning by date, for instance, lets you query only the relevant segments, saving time and costs by skipping unnecessary data scans. It's like using a targeted spotlight, focusing resources precisely where needed for efficient analysis and substantial savings.
Les préfixes sont la première partie de la clé d’objet qui identifie vos données dans S3. Par exemple, si votre clé d’objet est sales/2020/01/january.csv, le préfixe est sales/2020/01/. Les préfixes peuvent affecter les performances et le coût de votre S3 en influençant la façon dont vos données sont distribuées et accessibles sur plusieurs serveurs. Pour optimiser les performances et le coût de votre S3, vous devez utiliser des préfixes uniformément répartis et éviter les préfixes séquentiels ou qui se chevauchent et qui peuvent provoquer des points chauds ou des goulots d’étranglement. Vous devez également utiliser des techniques de mise en cache, telles que CloudFront ou S3 Transfer Acceleration, pour réduire les coûts de latence et de bande passante liés à l’accès à vos données à partir de différents emplacements.
In my experience, using multiple prefixes in object names helped maximize performance, as AWS S3 scales automatically to high request rates. If transferring large amounts of data over large distances, enable Amazon S3 Transfer Acceleration. For caching, use Amazon CloudFront, which caches objects closer to the users, thereby reducing latency and increasing load speeds. Manage storage costs effectively by using lifecycle policies to move or expire objects between storage classes as needed. For cost-efficiency, use S3 Intelligent-Tiering, which monitors access patterns and shifts lesser-used objects to a cheaper storage tier. Pre-upload file compression can further reduce storage costs and improve transfer speed and response times.
Optimal use of prefixes and caching mechanisms can significantly impact S3's performance. Organizing data with well-thought-out prefixes avoids hotspots and ensures an even distribution across servers. This strategic distribution prevents bottlenecks and enhances retrieval efficiency. Additionally, leveraging caching, through services like CloudFront or S3 Transfer Acceleration, can dramatically reduce latency and bandwidth costs, especially for geographically dispersed access.
Amazon S3 admite solicitudes paralelas, lo que permite escalar el rendimiento de S3 en función del clúster de cómputo, sin tener que realizar ninguna personalización en la aplicación. El rendimiento se escala en función del prefijo, por lo que puede utilizar tantos prefijos en paralelo como necesite para lograr el rendimiento que haga falta. No existen límites para el número de prefijos. El rendimiento de Amazon S3 admite al menos 3500 solicitudes por segundo para agregar datos y 5500 solicitudes por segundo para recuperarlos. Cada prefijo S3 admite estas tasas de solicitud, lo que simplifica la tarea de incrementar significativamente el rendimiento.
### Using Prefixes in S3 1. Organization: Structure your data logically using prefixes, such as by date (`2024/01/04/datafile.txt`), file type (`images/profile.jpg`), user, or any other relevant category. 2. Performance Optimization: Be cautious with prefixes to avoid creating "hot spots" with many accesses focused on a single prefix. ### Caching to Improve Performance 1. Client-Side Caching: Set cache headers when uploading files to S3. Use HTTP headers like `Cache-Control` to control how browsers and proxies cache your files. 2. Amazon CloudFront: Use CloudFront, AWS's CDN (Content Delivery Network), in conjunction with S3. CloudFront caches files in locations closer to end-users, reducing latency and improving load performance.
Efficient use of prefixes and caching in Amazon S3 enhances performance and cost-effectiveness. Prefixes organize data like folder paths, allowing hierarchical structuring and enabling parallel processing, thus boosting transaction rates. For high-throughput demands, creating multiple prefixes facilitates parallel read/write operations, scaling up request rates significantly. Caching with Amazon CloudFront, ElastiCache, or AWS Elemental MediaStore reduces latency and increases data transfer rates for frequently accessed data. CloudFront caches S3 data globally, ElastiCache uses in-memory storage for quick data retrieval, and MediaStore is optimized for media content, particularly useful for video workflows
La surveillance de votre utilisation est essentielle pour optimiser les performances et le coût de votre S3. Vous devez suivre et analyser des métriques telles que la taille de stockage, le taux de demandes, le taux d’erreur, la latence et le débit. Vous pouvez utiliser des outils tels qu’AWS CloudWatch, AWS CloudTrail ou AWS S3 Storage Lens pour collecter et visualiser vos données d’utilisation S3. Vous pouvez également utiliser AWS Cost Explorer ou AWS Budgets pour gérer et optimiser vos dépenses S3. En surveillant votre utilisation, vous pouvez identifier et résoudre les problèmes de performances ou de coûts, tels que les classes de stockage sous-utilisées ou surévaluées, les requêtes inefficaces ou coûteuses, ou les demandes inattendues ou excessives.
To effectively monitor Amazon S3 storage: 0) Define Objectives: Like every other IT monitoring task, first you have to establish your goals and assign clear monitoring responsibilities. Without this, nothing else matters 😉 About S3 monitoring tools: 1) CloudWatch Alarms: Monitor metrics like storage size, request rate, error rate and throughput with anomalies notifications. You can customize CloudWatch dashboards for targeted monitoring as well 2) AWS CloudTrail: Track detailed actions taken in S3 for auditing and security purposes 3) Server Access Logging: Obtain records of bucket requests for security and access audits 4) AWS Trusted Advisor: Identifies security gaps and ensures best practices in S3 bucket configuration
To optimize AWS S3, regularly check your storage size, how often it's accessed, errors, speed, and data flow using tools like AWS CloudWatch and S3 Storage Lens. Keep an eye on your spending with AWS Cost Explorer and Budgets. This helps you spot and fix issues like using the wrong storage type or spending too much on data access.
It is always almost helpful to monitor all cloud resources for atleast every week to optimize for cost by modifying configuration based on trend data.
Continuous monitoring is vital in optimizing S3 for both performance and cost. Utilizing tools like AWS CloudWatch or AWS S3 Storage Lens provides valuable insights into storage size, request rates, and error rates. Regular analysis of these metrics can uncover potential performance bottlenecks or cost inefficiencies. It's also essential to keep an eye on spending patterns using AWS Cost Explorer or AWS Budgets to ensure that your S3 usage aligns with your budgetary goals.
To avoid unjustified costs for S3, it is important to specify lifecycle rule configuration to delete incomplete multipart uploads after the specified time period. In some cases, this can offer extreme savings.
- Store file with compression, for example when using parquet file you can choose to compress data with algorithms such as gzip, snappy, etc... - Put object versioning only on necessary prefixes & Remove versions of objects that are no more necessary - Define data storage strategies like data depth, data retention depending on the datalake layer - Backup your unsed data using lifecycle strategies or transition to move it to glacier or deep archive.. - Store only a portion of data depending on the Datalake/LakeHouse layer, as instance in medaillon architecture Gold Layer, it possible to only store the depth of data required by the use case - Use lifecycle strategies
Use lifecycle policies to manage storage. This uses combination of rules to transition objects to another storage class, eg. move objects from S3 Standard to S3 IA after 7 days and to Deep Glacier Archive after 30 days. Its is important to also understand the usage patterns to best implement this.
Adopting columnar storage formats like Apache Parquet or ORC, which are optimized for Athena, ensures faster and more efficient queries. Utilizing compression algorithms such as Snappy or GZIP reduces S3 storage costs but also improves read times. Implementing data partitioning and using prefixes effectively. This strategy enables scaling each data segment independently, enhancing data retrieval. Integrating a Glue Data Catalog for efficient metadata storage, which streamlines Athena query performance. Understanding and implementing these best practices are crucial for handling large volumes of data efficiently.
Watch out for data retrieval and transfer costs, in addition to storage expenses. 1. Data retrieval costs: Retrieval costs vary based on the chosen tier class (Standard, Infrequent, Glacier, etc) and volume of requests (SELECT, GET, LIST, POST, COPY, PUT). AWS charges per operation, so opting for the right storage class and minimizing the number of API requests can cut down on charges. 2. Data transfer costs: Data transfer is free into S3 but incurs fees for outbound transfers exceeding 100GB/month. Requesting for accelerated data transfers raises costs even more, so limit unnecessary outbound transfers, consider caching content, and manage data efficiently.
Performance tuning is a combination of multiply strategies, one single approach does help for sure but very limited and in some situation, it may contribute negative impact. Partitioning and cache implemented should base on the statistics of monitoring. data loading and access should be planned well, additional metadata or change file can be implemented on data modification.