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Abstract

We describe a new implementation of the elementary transcendental functions exp,
sin, cos, log and atan for variable precision up to approximately 4096 bits. Compared
to the MPFR library, we achieve a maximum speedup ranging from a factor 3 for cos to
30 for atan. Our implementation uses table-based argument reduction together with
rectangular splitting to evaluate Taylor series. We collect denominators to reduce the
number of divisions in the Taylor series, and avoid overhead by doing all multiprecision
arithmetic using the mpn layer of the GMP library. Our implementation provides
rigorous error bounds.

1 Introduction

Considerable effort has been made to optimize computation of the elementary transcen-
dental functions in IEEE 754 double precision arithmetic (53 bits) subject to various
constraints [6, 5, 11, 13, 18]. Higher precision is indispensable for computer algebra and
is becoming increasingly important in scientific applications [1]. Many libraries have
been developed for arbitrary-precision arithmetic. The de facto standard is arguably
MPFR [12], which guarantees correct rounding to any requested number of bits.

Unfortunately, there is a large performance gap between double precision and arbitrary-
precision libraries. Some authors have helped bridge this gap by developing fast imple-
mentations targeting a fixed precision, such as 106, 113 or 212 bits [26, 19, 14]. However,
these implementations generally do not provide rigorous error bounds (a promising ap-
proach to remedy this situation is [18]), and performance optimization in the range of
several hundred bits still appears to be lacking.

The asymptotic difficulty of computing elementary functions is well understood. From
several thousand bits and up, the bit-burst algorithm or the arithmetic-geometric mean
algorithm coupled with Newton iteration effectively reduce the problem to integer multi-
plication, which has quasilinear complexity [3, 4]. Although such high precision has uses,
most applications beyond double precision only require modest extra precision, say a few
hundred bits or rarely a few thousand bits.

In this “medium-precision” range beyond double precision and up to a few thousand
bits, i.e. up to perhaps a hundred words on a 32-bit or 64-bit computer, there are two
principal hurdles in the way of efficiency. First, the cost of (n×n)-word multiplication or
division grows quadratically with n, or almost quadratically if Karatsuba multiplication is
used, so rather than “reducing everything to multiplication” (in the words of [23]), we want
to do as little multiplying as possible. Secondly, since multiprecision arithmetic currently
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has to be done in software, every arithmetic operation potentially involves overhead for
function calls, temporary memory allocation, and case distinctions based on signs and
sizes of inputs; we want to avoid as much of this bookkeeping as possible.

In this work, we consider the five elementary functions exp, sin, cos, log, atan of a
real variable, to which all other real and complex elementary functions can be delegated
via algebraic transformations. Our algorithm for all five functions follows the well-known
strategy of argument reduction based on functional equations and lookup tables as de-
scribed in section 3, followed by evaluation of Taylor series. To keep overhead at a
minimum, all arithmetic uses the low-level mpn layer of the GMP library [8], as outlined
in section 2.

We use lookup tables in arguably the simplest possible way, storing values of the
function itself on a regularly spaced grid. At high precision, a good space-time tradeoff is
achieved by using bipartite tables. Several authors have studied the problem of construct-
ing optimal designs for elementary functions in resource-constrained settings, where it is
important to minimize not only the size of the tables but also the numerical error and the
complexity of circuitry to implement the arithmetic operations [10], [21], [24]. We ignore
such design parameters since guard bits and code size are cheap in our setting.

While implementations in double precision often use minimax or Chebyshev polyno-
mial approximations, which require somewhat fewer terms than Taylor series for equiva-
lent accuracy, Taylor series are superior at high precision since the evaluation can be done
faster. Smith’s rectangular splitting algorithm [22] allows evaluating a degree-N truncated
Taylor series of suitable type usingO(

√
N) (n×n)-word multiplications whereas evaluating

a degree-N minimax polynomial using Horner’s rule requires O(N) such multiplications.
The main contribution of the paper, described in section 4, is an improved version

of Smith’s rectangular splitting algorithm for evaluating Taylor series, in which we use
fixed-point arithmetic efficiently and avoid most divisions. Section 5 describes the global
algorithm including error analysis.

Our implementation of the elementary functions is part of version 2.4.0 of the open
source arbitrary-precision interval software Arb [16]. The source code can be retrieved
from [15].

Since the goal is to do interval arithmetic, we compute a rigorous bound for the
numerical error. Unlike MPFR, our code does not output a correctly rounded floating-
point value. This more of a difference in the interface than an inherent limitation of
the algorithm, and only accounts for a small difference in performance (as explained in
Section 5).

Our benchmark results in section 6 show a significant speedup compared to the current
version (3.1.2) of MPFR. MPFR uses several different algorithms depending on the preci-
sion and function [25], including Smith’s algorithm in some cases. The large improvement
is in part due to our use of lookup tables (which MPFR does not use) and in part due to
the optimized Taylor series evaluation and elimination of general overhead. Our different
elementary functions also have similar performance to each other. Indeed, the algorithm
is nearly the same for all functions, which simplifies the software design and aids proving
correctness.

While our implementation allows variable precision up to a few thousand bits, it is
competitive in the low end of the range with the QD library [14] which only targets 106
or 212 bits. QD uses a combination of lookup tables, argument reduction, Taylor series,
and Newton iteration for inverse functions.
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2 Fixed-point arithmetic

We base our multiprecision arithmetic on the GMP library [8] (or the fork MPIR [9]),
which is widely available and optimized for common CPU architectures. We use the
mpn layer of GMP, since the mpz layer has unnecessary overhead. On the mpn level,
a multiprecision integer is an array of limbs (words). We assume that a limb is either
B = 32 or B = 64 bits, holding a value between 0 and 2B − 1. We represent a real
number in fixed-point format with Bn-bit precision using n fractional limbs and zero or
more integral limbs. An n-limb array thus represents a value in the range [0, 1−ulp], and
an (n+ 1)-limb array represents a value in the range [0, 2B − ulp] where ulp = 2−Bn.

An advantage of fixed-point over floating-point arithmetic is that we can add numbers
without any rounding or shift adjustments. The most important GMP functions are shown
in Table 1, where X,Y, Z denote fixed-point numbers with the same number of limbs and
c denotes a single-limb unsigned integer. Since the first five functions return carry-out or
borrow, we can also use them when X has one more limb than Y .

Table 1: Fixed-point operations using GMP.
mpn add n X ← X + Y (or X ← Y + Z)
mpn sub n X ← X − Y (or X ← Y − Z)
mpn mul 1 X ← Y × c
mpn addmul 1 X ← X + Y × c
mpn submul 1 X ← X − Y × c
mpn mul n X ← Y × Z
mpn sqr X ← Y × Y
mpn divrem 1 X ← Y/c

The first five GMP functions in Table 1 are usually implemented in assembly code,
and we therefore try to push the work onto those primitives. Note that multiplying two
n-limb fixed-point numbers involves computing the full 2n-limb product and throwing
away the n least significant limbs. We can often avoid explicitly copying the high limbs
by simply moving the pointer into the array.

The mpn representation does not admit negative numbers. However, we can store
negative numbers implicitly using two’s complement representation as long as we only
add and subtract fixed-point numbers with the same number of limbs. We must then
take care to ensure that the value is positive before multiplying or dividing.

We compute bounds for all errors when doing fixed-point arithmetic. For example, if
X and Y are fixed-point numbers with respective errors ε1, ε2, then their sum has error
bounded by |ε1|+ |ε2|, and their product, rounded to a fixed-point number using a single
truncation, has error bounded by

|Y ||ε1|+ |X||ε2|+ |ε1ε2|+ (1 ulp).

If c is an exact integer, then the product X × c has error bounded by |ε1||c|, and the quo-
tient X/c, rounded to a fixed-point number using a single truncation, has error bounded
by |ε1|/|c| + (1 ulp). Similar bounds are used for other operations that arise in the
implementation.

In parts of the code, we use a single-limb variable to track a running error bound
measured in ulps, instead of determining a formula that bounds the cumulative error
in advance. This is convenient, and cheap compared to the actual work done in the
multiprecision arithmetic operations.
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3 Argument reduction

The standard method to evaluate elementary functions begins with one or several argu-
ment reductions to restrict the input to a small standard domain. The function is then
computed on the standard domain, typically using a polynomial approximation such as
a truncated Taylor series, and the argument reduction steps are inverted to recover the
function value [4], [20].

As an example, consider the exponential function exp(x). Setting m = bx/ log(2)c
and t = x−m log(2), we reduce the problem to computing exp(x) = exp(t)2m where t lies
in the standard domain [0, log(2)). Writing exp(t) = [exp(t/2r)]2

r
, we can further reduce

the argument to the range [0, 2−r) at the expense of r squarings, thereby improving the
rate of convergence of the Taylor series. Analogously, we can reduce to the intervals
[0, π/4) for sin and cos, [0, 1) for atan, and [1, 2) for log, and follow up with r further
transformations to reduce the argument to an interval of width 2−r.

This strategy does not require precomputations (except perhaps for the constants π
and log(2)), and is commonly used in arbitrary-precision libraries such as MPFR [25].

The argument reduction steps can be accelerated using lookup tables. If we precom-
pute exp(i/2r) for i = 0 . . . 2r − 1, we can write exp(x) = exp(x − i/2r) exp(i/2r) where
i = b2rxc. This achieves r halvings worth of argument reduction for the cost of just a
single multiplication. To save space, we can use a bipartite (or multipartite) table, e.g.
writing exp(x) = exp(x− i/2r − j/22r) exp(i/2r) exp(j/22r).

This recipe works for all elementary functions. We use the following formulas, in
which x ∈ [0, 1), q = 2r, i = b2rxc, t = i/q, w = x − i/q, w1 = (qx − i)/(i + q), and
w2 = (qx− i)/(ix+ q):

exp(x) = exp(t) exp(w)

sin(x) = sin(t) cos(w) + cos(t) sin(w)

cos(x) = cos(t) cos(w)− sin(t) sin(w)

log(1 + x) = log(1 + t) + log(1 + w1)

atan(x) = atan(t) + atan(w2)

The sine and cosine are best computed simultaneously. The argument reduction for-
mula for the logarithm is cheaper than for the other functions, since it requires (n×1)-word
operations and no (n×n)-word multiplications or divisions. The advantage of using lookup
tables is greater for log and atan than for exp, sin and cos, since the “argument-halving”
formulas for log and atan involve square roots.

If we want p-bit precision and chain together m lookup tables worth r halvings each,
the total amount of space is mp2r bits, and the number of terms in the Taylor series that
we have to sum is of the order p/(rm). Taking r between 4 and 10 and m between 1
and 3 gives a good space-time tradeoff. At lower precision, a smaller m is better.

Our implementation uses the table parameters shown in Table 2. For each function,
we use a fast table up to 512 bits and a more economical table from 513 to 4608 bits,
supporting function evaluation at precisions just beyond 4096 bits plus guard bits. Some
of the tables have less than 2r entries since they end near log(2) or π/4. A few more
kilobytes are used to store precomputed values of π/4, log(2), and coefficients of Taylor
series.

The parameters in Table 2 were chosen based on experiment to give good performance
at all precisions while keeping the total size (less than 256 KiB) insignificant compared to
the overall space requirements of most applications and small enough to fit in a typical L2
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Table 2: Size of lookup tables.
Function Precision m r Entries Size (KiB)

exp ≤ 512 1 8 178 11.125
exp ≤ 4608 2 5 23+32 30.9375
sin ≤ 512 1 8 203 12.6875
sin ≤ 4608 2 5 26+32 32.625
cos ≤ 512 1 8 203 12.6875
cos ≤ 4608 2 5 26+32 32.625
log ≤ 512 2 7 128+128 16
log ≤ 4608 2 5 32+32 36
atan ≤ 512 1 8 256 16
atan ≤ 4608 2 5 32+32 36

Total 236.6875

cache. For simplicity, our code uses static precomputed tables, which are tested against
MPFR to verify that all entries are correctly rounded.

The restriction to 4096-bit and lower precision is done since lookup tables give dimin-
ishing returns at higher precision compared to asymptotically fast algorithms that avoid
precomputations entirely. In a software implementation, there is no practical upper limit
to the size of lookup tables that can be used. One could gain efficiency by using auxiliary
code to dynamically generate tables that are optimal for a given application.

4 Taylor series evaluation

After argument reduction, we need to evaluate a truncated Taylor series, where we are
given a fixed-point argument 0 ≤ X � 1 and the number of terms N to add. In this
section, we present an algorithm that solves the problem efficiently, with a bound for
the rounding error. The initial argument reduction restricts the possible range of N ,
which simplifies the analysis. Indeed, for an internal precision of p ≤ 4608 bits and the
parameters of Table 2, N < 300 always suffices.

We use a version of Smith’s algorithm to avoid expensive multiplications [22]. The
method is best explained by an example. To evaluate

atan(x) ≈ x
N−1∑
k=0

(−1)ktk

2k + 1
, t = x2

with N = 16, we pick the splitting parameter m =
√
N = 4 and write atan(x)/x ≈

[1 − 1
3 t + 1

5 t
2 − 1

7 t
3]

+ [19 − 1
11 t + 1

13 t
2 − 1

15 t
3] t4

+ [ 1
17 − 1

19 t + 1
21 t

2 − 1
23 t

3] t8

+ [ 1
25 − 1

27 t + 1
29 t

2 − 1
31 t

3] t12.

Since the powers t2, . . . , tm can be recycled for each row, we only need 2
√
N full (n ×

n)-limb multiplications, plus O(N) “scalar” operations, i.e. additions and (n × 1)-limb
divisions. This “rectangular” splitting arrangement of the terms is actually a transposition
of Smith’s “modular” algorithm, and appears to be superior since Horner’s rule can be
used for the outer polynomial evaluation with respect to tm (see [4]).
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A drawback of Smith’s algorithm is that an (n×1) division has high overhead compared
to an (n× 1) multiplication, or even an (n× n) multiplication if n is very small. In [17],
a different rectangular splitting algorithm was proposed that uses (n × O(

√
N))-limb

multiplications instead of scalar divisions, and also works in the more general setting
of holonomic functions. Initial experiments done by the author suggest that the method
of [17] can be more efficient at modest precision. However, we found that another variation
turns out to be superior for the Taylor series of the elementary functions, namely to simply
collect several consecutive denominators in a single word, replacing most (n × 1)-word
divisions by cheaper (n× 1)-word multiplications.

We precompute tables of integers uk, vk < 2B such that 1/(2k + 1) = uk/vk and vk
is the least common multiple of 2i − 1 for several consecutive i near k. To generate the
table, we iterate upwards from k = 0, picking the longest possible sequence of terms on a
common denominator without overflowing a limb, starting a new subsequence from each
point where overflow occurs. This does not necessarily give the least possible number of
distinct denominators, but it is close to optimal (on average, vk is 28 bits wide on a 32-bit
system and 61 bits wide on a 64-bit system for k < 300). The k such that vk 6= vk+1 are

12, 18, 24, 29, . . . , 226, 229, . . . (32-bit)

and
23, 35, 46, 56, . . . , 225, 232, . . . (64-bit).

In the supported range, we need at most one division every three terms (32-bit) or every
seven terms (64-bit), and less than this for very small N .

We compute the sum backwards. Suppose that the current partial sum is S/vk+1. To
add uk/vk when vk 6= vk+1, we first change denominators by computing S ← (S×vk+1)/vk.
This requires one ((n+1)×1) multiplication and one ((n+2)×1) division. A complication
arises if S is a two’s complemented negative value when we change denominators, however
in this case we can just “add and subtract 1”, i.e. compute

((S + vk+1)× vk)/vk+1 − vk

which costs only two extra single-limb additions.
Pseudocode for our implementation of the atan Taylor series is shown in Algorithm 1.

All uppercase variables denote fixed-point numbers, and all lowercase variables denote
integers. We write +ε to signify a fixed-point operation that adds up to 1 ulp of rounding
error. All other operations are exact.

Algorithm 1 can be shown to be correct by a short exhaustive computation. We
execute the algorithm symbolically for all allowed values of N . In each step, we determine
an upper bound for the possible value of each fixed-point variable as well as its error,
proving that no overflow is possible (note that S may wraparound on lines 17 and 21
since we use two’s complement arithmetic for negative values, and part of the proof is to
verify that 0 ≤ |S| ≤ 2B − ulp necessarily holds before executing lines 12, 19, 22). The
computation proves that the error is bounded by 2 ulp at the end.

It is not hard to see heuristically why the 2 ulp bound holds. Since the sum is kept
multiplied by a denominator which is close to a full limb, we always have close to a full
limb worth of guard bits. Moreover, each multiplication by a power of X removes most of
the accumulated error since X � 1. At the same time, the numerators and denominators
are never so close to 2B − 1 that overflow is possible. We stress that the proof depends
on the particular content of the tables u and v.
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Algorithm 1 Evaluation of the atan Taylor series

Input: 0 ≤ X ≤ 2−4 as an n-limb fixed-point number, 2 < N < 300

Output: S ≈
∑N−1

k=0
(−1)k
2k+1X

2k+1 as an n-limb fixed-point number with ≤ 2 ulp error

1: m← 2d
√
N/2e

2: T1 ← X ×X + ε . Compute powers of X, n limbs each
3: T2 ← T1 × T1 + ε
4: for (k = 4; k ≤ m; k ← k + 2) do
5: Tk−1 ← Tk/2 × Tk/2−1 + ε
6: Tk ← Tk/2 × Tk/2 + ε

7: S ← 0 . Fixed-point sum, with n+ 1 limbs
8: for (k = N − 1; k ≥ 0; k ← k − 1) do
9: if vk 6= vk+1 and k < N − 1 then . Change denominators

10: if k is even then
11: S ← S + vk+1 . Single-limb addition

12: S ← S × vk . S temporarily has n+ 2 limbs
13: S ← S/vk+1 + ε . S has n+ 1 limbs again
14: if k is even then
15: S ← S − vk . Single-limb addition

16: if k mod m = 0 then
17: S ← S + (−1)kuk . Single-limb addition
18: if k 6= 0 then
19: S ← S × Tm + ε . ((n+ 1)× n)-limb multiplication

20: else
21: S ← S + (−1)kuk × Tk mod m . Fused addmul of n into n+ 1 limbs

22: S ← S/v0 + ε
23: S ← S ×X + ε
24: return S . Only n limbs
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Code to generate coefficients and prove correctness of Algorithm 1 (and its variants
for the other functions) is included in the source repository [15] in the form of a Python
script verify taylor.py.

Making small changes to Algorithm 1 allows us to compute log, exp, sin and cos.
For log, we write log(1 + x) = 2 atanh(x/(x + 2)), since the Taylor series for atanh has
half as many nonzero terms. To sum S =

∑N−1
k=0 X

2k+1/(2k + 1), we simply replace the
subtractions with additions in Algorithm 1 and skip lines 11 and 15.

For the exp series S =
∑N−1

k=0 X
k/k!, we use different tables u and v. For k! < 2B − 1,

uk/vk = 1/k! and for larger k, uk/vk equals 1/k! times the product of all vi with i < k
and distinct from vk. The k such that vk 6= vk+1 are

12, 19, 26, . . . , 264, 267, . . . (32-bit)

and
20, 33, 45, . . . , 266, 273, . . . (64-bit).

Algorithm 1 is modified by skipping line 12 (in the next line, the division has one less
limb). The remaining changes are that line 23 is removed, line 2 becomes T1 ← X, and
the output has n+ 1 limbs instead of n limbs.

For the sine and cosine S1 =
∑N−1

k=0 (−1)kX2k+1/(2k+1)! and S2 =
∑N−1

k=0 (−1)kX2k/(2k)!,
we use the same uk, vk as for exp, and skip line 12. As in the atan series, the table of pow-
ers starts with the square of X, and we multiply the sine by X in the end. The alternating
signs are handled the same way as for atan, except that line 15 becomes S ← S − 1. To
compute sin and cos simultaneously, we execute the main loop of the algorithm twice:
once for the sine (odd-index coefficients) and once for the cosine (even-index coefficients),
recycling the table T .

When computing sin and cos above circa 300 bits and exp above circa 800 bits, we
optimize by just evaluating the Taylor series for sin or sinh, after which we use cos(x) =√

1− [sin(x)]2 or exp(x) = sinh(x) +
√

1 + [sinh(x)]2. This removes half of the Taylor
series terms, but only saves time at high precision due to the square root. The cosine is
computed from the sine and not vice versa to avoid the ill-conditioning of the square root
near 0.

5 Top-level algorithm and error bounds

Our input to an elementary function f is an arbitrary-precision floating-point number
x and a precision p ≥ 2. We output a pair of floating-point numbers (y, z) such that
f(x) ∈ [y− z, y+ z]. The intermediate calculations use fixed-point arithmetic. Naturally,
floating-point manipulations are used for extremely large or small input or output. For
example, the evaluation of exp(x) = exp(t)2m, wherem is chosen so that t = x−m log(2) ∈
[0, log(2)), uses fixed-point arithmetic to approximate exp(t) ∈ [1, 2). The final output is
scaled by 2m after converting it to floating-point form.

Algorithm 2 gives pseudocode for atan(x), with minor simplifications compared to the
actual implementation. In reality, the quantities (y, z) are not returned exactly as printed;
upon returning, y is rounded to a p-bit floating-point number and the rounding error of
this operation is added to z which itself is rounded up to a low-precision floating-point
number.

The variables X,Y are fixed-point numbers and Z is an error bound measured in
ulps. We write +ε to indicate that a result is truncated to an n-limb fixed-point number,
adding at most 1 ulp = 2−Bn error where B = 32 or 64.
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After taking care of special cases, |x| or 1/|x| is rounded to a fixed-point number
0 ≤ X < 1. Up to two argument transformations are then applied to X. The first ensures
0 ≤ X < 2−r1 and the second ensures 0 ≤ X < 2−r1−r2 . After line 21, we have (if |x| < 1)

| atan(x)| = atan
( p1

2r1

)
+ atan

( p2
2r1+r2

)
+ atan(X) + δ

or (if |x| > 1)

| atan(x)| = π

2
− atan

( p1
2r1

)
− atan

( p2
2r1+r2

)
− atan(X) + δ

for some |δ| ≤ Z. The bound on δ is easily proved by repeated application of the fact
that | atan(t+ ε)− atan(t)| ≤ |ε| for all t, ε ∈ R.

The value of atan(X) is approximated using a Taylor series. By counting leading zero
bits in X, we find the optimal integer r with r1 + r2 ≤ r ≤ Bn such that X < 2−r (we
could take r = r1 + r2, but choosing r optimally is better when x is tiny). The tail of the
Taylor series satisfies ∣∣∣∣∣atan(X)−

N−1∑
k=0

(−1)k

2k + 1
X2k+1

∣∣∣∣∣ ≤ X2N+1,

and we choose N such that X2N+1 < 2−r(2N+1) ≤ 2−w where w is the working precision
in bits.

Values of atan(p12
−r1), atan(p22

−r1−r2) and π/2 are finally read from tables with at
most 1 ulp error each, and all terms are added. The output error bound z is the sum
of the Taylor series truncation error bound and the bounds for all fixed-point rounding
errors. It is clear that z ≤ 10 × 2−w where the w is the working precision in bits, and
that the choice of w implies that y is accurate to p bits. The working precision has to
be increased for small input, but the algorithm never slows down significantly since very
small input results in only a few terms of the Taylor series being necessary.

The code for exp, log, sin and cos implements the respective argument reduction
formulas analogously. We do not reproduce the calculations here due to space constraints.
The reader may refer to the source code [15] for details.

Our software [16] chooses guard bits to achieve p-bit relative accuracy with at most
1-2 ulp error in general, but does not guarantee correct rounding, and allows the output
to have less accuracy in special cases. In particular, sin and cos are computed to an
absolute (not relative) tolerance of 2−p for large input, and thus lose accuracy near the
roots. These are reasonable compromises for variable-precision interval arithmetic, where
we only require a correct enclosure of the result and have the option to restart with higher
precision if the output is unsatisfactory.

Correct rounding (or any other strict precision policy) can be achieved with Ziv’s
strategy: if the output interval [y − z, y + z] does not allow determining the correctly
rounded p-bit floating-point approximation, the computation is restarted with more guard
bits. Instead of starting with, say, 4 guard bits to compensate for internal rounding error
in the algorithm, we might start with 4+10 guard bits for a 2−10 probability of having to
restart. On average, this only results in a slight increase in running time, although worst
cases necessarily become much slower.

6 Benchmarks

Table 3 shows benchmark results done on an Intel i7-2600S CPU running x86 64 Linux.
Our code is built against MPIR 2.6.0. All measurements were obtained by evaluating the
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Algorithm 2 Top-level algorithm for atan

Input: x 6∈ {0,±∞,NaN} with sign σ and exponent e such that 2e−1 ≤ σx < 2e, and a
precision p ≥ 2

Output: A pair (y, z) such that atan(x) ∈ [y − z, y + z]
1: if e < −p/2− 2 then
2: return (x,±23e) . atan(x) = x+O(x3)

3: if e > p+ 2 then
4: return (σπ/2, 21−e) . atan(x) = ±π/2 +O(1/x)

5: if |x| = 1 then
6: return (σπ/4, 0)

7: w ← p−min(0, e) + 4 . Working precision in bits
8: if w > 4608 then
9: return Enclosure for atan(x) using fallback algorithm

10: n← dw/Be . Working precision in limbs
11: if |x < 1 then
12: X ← |x|+ ε, Z ← 1
13: else
14: X ← 1/|x|+ ε, Z ← 1

15: If w ≤ 512 then (r1, r2)← (8, 0) else (r1, r2)← (5, 5)
16: p1 ← b2r1Xc . First argument reduction
17: if p1 6= 0 then
18: X ← (2r1X − p1)/(2r1 + p1X) + ε, Z ← Z + 1

19: p2 ← b2r2Xc . Second argument reduction
20: if p2 6= 0 then
21: X ← (2r1+r2X−p2)/(2r1+r2 +p2X) + ε, Z ← Z + 1

22: Compute r1 + r2 ≤ r ≤ Bn such that 0 ≤ X < 2−r

23: N ← d(w − r)/(2r)e
24: if N ≤ 2 then

25: Y ←
∑N−1

k=0
(−1)k
2k+1X

2k+1 + 3ε . Direct evaluation
26: Z ← Z + 3
27: else
28: Y ←

∑N−1
k=0

(−1)k
2k+1X

2k+1 + 2ε . Call Algorithm 1
29: Z ← Z + 2

30: if p1 6= 0 then . First table lookup
31: Y ← Y + (atan(p12

−r1) + ε), Z ← Z + 1

32: if p2 6= 0 then . Second table lookup
33: Y ← Y + (atan(p22

−r1−r2) + ε), Z ← Z + 1

34: if x > 1 then
35: Y ← (π/2 + ε)− Y, Z ← Z + 1

36: return (σY, 2−r(2N+1) + Z2−Bn)
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function in a loop running for at least 0.1 s and taking the best average time out of three
such runs.

The input to each function is a floating-point number close to
√

2 + 1, which is repre-
sentative for our implementation since it involves the slowest argument reduction path in
all functions for moderate input (for input larger than about 264, exp, sin and cos become
marginally slower since higher precision has to be used for accurate division by log(2) or
π/4).

We include timings for the double-precision functions provided by the default libm
installed on the same system (EGLIBC 2.15). Table 4 shows the speedup compared to
MPFR 3.1.2 at each level of precision.

Table 3: Timings of our implementation in microseconds. Top row: time of libm.
Bits exp sin cos log atan

53 0.045 0.056 0.058 0.061 0.072

32 0.26 0.35 0.35 0.21 0.20
53 0.27 0.39 0.38 0.26 0.30
64 0.33 0.47 0.47 0.30 0.34

128 0.48 0.59 0.59 0.42 0.47
256 0.83 1.05 1.08 0.66 0.73
512 2.06 2.88 2.76 1.69 2.20

1024 6.79 7.92 7.84 5.84 6.97
2048 22.70 25.50 25.60 22.80 25.90
4096 82.90 97.00 98.00 99.00 104.00

Table 4: Speedup vs MPFR 3.1.2.
Bits exp sin cos log atan

32 7.9 8.2 3.6 11.8 29.7
53 9.1 8.2 3.9 10.9 25.9
64 7.6 6.9 3.2 9.3 23.7

128 6.9 6.9 3.6 10.4 30.6
256 5.6 5.4 2.9 10.7 31.3
512 3.7 3.2 2.1 6.9 14.5

1024 2.7 2.2 1.8 3.6 8.8
2048 1.9 1.6 1.4 2.0 4.9
4096 1.7 1.5 1.3 1.3 3.1

Table 5 provides a comparison at IEEE 754 quadruple (113-bit) precision against
MPFR and the libquadmath included with GCC 4.6.4. We include timings for the com-
parable double-double (“dd”, 106-bit) functions provided by version 2.3.15 of the QD
library [14]. Table 5 also compares performance at quad-double (“qd”, 212-bit) precision
against MPFR and QD. The timings in Table 5 were obtained on a slower CPU than the
timings in Table 3, which we used due to the GCC version installed on the faster system
being too old to ship with libquadmath.

At low precision, a function evaluation with our implementation takes less than half
a microsecond, and we come within an order of magnitude of the default libm at 53-
bit precision. Our implementation holds up well around 100-200 bits of precision, even
compared to a library specifically designed for this range (QD).

Our implementation is consistently faster than MPFR. The smallest speedup is achieved
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Table 5: Top rows: timings in microseconds for quadruple (113-bit) precision, except QD
which gives 106-bit precision. Bottom rows: timings for quad-double (212-bit) precision.
Measured on an Intel T4400 CPU.

exp sin cos log atan

MPFR 5.76 7.29 3.42 8.01 21.30
libquadmath 4.51 4.71 4.57 5.39 4.32
QD (dd) 0.73 0.69 0.69 0.82 1.08
Our work 0.65 0.81 0.79 0.61 0.68

MPFR 7.87 9.23 5.06 12.60 33.00
QD (qd) 6.09 5.77 5.76 20.10 24.90
Our work 1.29 1.49 1.49 1.26 1.23

for the cos function, as the argument reduction without table lookup is relatively efficient
and MPFR does not have to evaluate the Taylor series for both sin and cos. The speedup
is largest for atan, since MPFR only implements the bit-burst algorithm for this function,
which is ideal only for very high precision. Beyond 4096 bits, the asymptotically fast algo-
rithms implemented in MPFR start to become competitive for all functions, making the
idea of using larger lookup tables to cover even higher precision somewhat less attractive.

Differences in accuracy should be considered when benchmarking numerical software.
The default libm, libquadmath, and QD do not provide error bounds. MPFR provides
the strongest guarantees (correct rounding). Our implementation provides rigorous error
bounds, but allows the output to be less precise than correctly rounded. The 20% worse
speed at 64-bit precision compared to 53-bit precision gives an indication of the overhead
that would be introduced by providing correct rounding (at higher precision, this factor
would be smaller).

7 Future improvements

Our work helps reduce the performance gap between double and multiple precision.
Nonetheless, our approach is not optimal at precisions as low as 1-2 limbs, where rect-
angular splitting has no advantage over evaluating minimax polynomials with Horner’s
rule, as is generally done in libraries targeting a fixed precision.

At very low precision, GMP functions are likely inferior to inlined double-double
and quad-double arithmetic or similar, especially if the floating-point operations are vec-
torized. Interesting alternatives designed to exploit hardware parallelism include the
carry-save library used for double-precision elementary functions with correct rounding
in CR-LIBM [5, 7], the recent SIMD-based multiprecision code [27], and implementations
targeting GPUs [26]. We encourage further comparison of these options.

Other improvements are possible at higher precision. We do not need to compute
every term to a precision of n limbs in Algorithm 1 as the contribution of term k to the
final sum is small when k is large. The precision should rather be changed progressively.
Moreover, instead of computing an (n×n)-limb fixed-point product by multiplying exactly
and throwing away the low n limbs, we could compute an approximation of the high part
in about half the time (unfortunately, GMP does not currently provide such a function).

Our implementation of the elementary functions outputs a guaranteed error bound
whose proof of correctness depends on a complete error analysis done by hand, aided by
some exhaustive computations.

To rule out any superficial bugs, we have tested the code by comparing millions of
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random values against MPFR. We also test the code against itself for millions of random
inputs by comparing the output at different levels of precisions or at different points
connected by a functional equation. Random inputs are generated non-uniformly to
increase the chance of hitting corner cases. The functions are also tested indirectly by
being used internally in many higher transcendental functions.

Nevertheless, since testing cannot completely rule out human error, a formally verified
implementation would be desirable. We believe that such a proof is feasible. The square
root function in GMP is implemented at a similar level of abstraction, and it has been
proved correct formally using Coq [2].
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