Standard Security Does Not Imply
Security Against Selective-Opening

Mihir Bellare, Rafael Dowsley, Brent Waters, Scott Yilek

(UCSD, UCSD, UT Austin, U. of St. Thomas)

Full version on IACR ePrint archive

Commitment Schemes

Message M
> Ciphertext C
Coins R E >
>
Sender Receiver
Commit to M: -
R «5${0,1}"; C «— E(M;R) >
Open M: M, R >
Check that:
C=E(M;R)

Hiding: It is computationally infeasible for the receiver given C to learn anything
more about M than it knows a priori. Formalized via semantic security.

Binding: It is computationally infeasible for the sender to find M, M’, R, R’ such
that: E(M;R)=E(M’;R’) and M= M".

We will call a commitment scheme HB-secure if it satisfies these properties.

Examples of Commitment Schemes

Commitment Schemes are basic and widely used tools, for example for ZK and
other protocols. There are many constructions, for example:

* Let g, h be generators of a prime order group G and let E(M;R)=g"h" [Ped91].

* Let H be a CR hash function and Ext a strong randomness extractor and let

E(M; Ry || R,)=(HI(R,), R, Ext(R,, R,)® M).

Hiding
Challenger, Adversary A

M «5$ D; R «${0,1}"; C «— E(M;R) >

Security means A cannot figure out anything about M. More precisely, anything
more than that M is distributed according to D. Should hold for all D and is
formalized by asking that a simulator denied C does as well as A.

Notation

M, R, C denote vectors.

M = (M[1],..., M[n]) is a vector of messages drawn from a distribution D.

R =(R[1],..., R[n]) is a vector of independently distributed random strings.
Let E(M;R) = (E(M[1];R[1]),..., E(M[n];R[n])).

C=(C[1],..., C[n]) = E(M;R) is a vector of commitments.

SOA-M

Challenger, Adversary A
M <5 D
C

R «${0,1}"; C «— E(M;R) >

I {40 ,n}

=
(M} i1 1)
>

Security means A cannot figure out anything about (M[i] :i ¢ I).
Q: If E is HB-secure then is it SOA-M secure?

A: YES.
The proof crucially exploits that A is not given a proof of correct opening.

This version of SOA is called SOA-M and is not the one where difficulties arise.

SOA-C

Challenger, Adversary A
M <5 D
C
R «${0,1}"; C «— E(M;R) >
I {40 ,n}
=

<M[ii T

Security means A cannot figure out anything about (M[i] :i ¢ I)

Q: If E is HB-secure then is it SOA-C secure?
A: OPEN

* No proof that HB-security implies SOA-C security.
* No counter-example scheme E that is HB-secure but not SOA-C secure.

Our Results

There exists an HB-secure commitment scheme that is not SOA-C secure.

This answers the long-standing open question. But perhaps the counter-example
is artificial. What about “real” schemes?

Stronger: Every HB-secure commitment scheme is SOA-C insecure.
In particular the example schemes we gave earlier are not SOA-C secure.
Given any HB-secure scheme we present an attack breaking SOA-C security.

We also show that there exist IND-CPA PKE schemes that are not SOA-C or SOA-K
secure, including “real” schemes.

SOA-C Security

(hallgsgethes simulation-stylavemstinition 1f SOWelCsgayrity introduced b§ibulade,S
Naor, Reingold and Stockmeyer [DNRSO03].

N
M «5$D M «$ D - >
R «${0,1}™ . I {0 ,n}
_ <€
€ e EMR) o > (Ml i T 1)
I {40, n} >
<€ w
(MI[il, R[N =i T 1) €
>
w
<€
A wins if Rel(w, M, I)=1. S wins if Rel(w, M, 1)=1.

Advg , =Pr[A wins]- Pr[S wins]

E is SOA-C secure if for every PT adversary A there exists a PT simulator S such
that Adv, , s is negligible in the security parameter.

Our Result for Commitment

Theorem: Assume CR hash functions exist. Let E be any binding commitment
scheme. Then there is a PT message distribution D, a PT relation Rel and a PT
adversary A such that for every PT simulator S we have:

Advg , (A) 21 —negl(}A)

Furthermore the messages output by D are uniformly and independently
distributed.

Thus we constructed D, Rel such that we can prove there does not exist a efficient
simulator, meaning A is a successful attack.

We do not assume simulation is black-box.

History

SOA-C security for commitment was first defined and considered by Dwork, Naor,
Reingold and Stockmeyer [DNRSO3].

Hofheinz [Hofl11] shows blackbox negative results which indicate it is hard to
prove the existence of a SOA-C secure commitment using a blackbox reduction to
a standard assumption. This does not say such a scheme doesn’t exist. Potentially
a scheme could be proved secure using a non-blackbox reduction or under non-
standard assumptions.

Our results are not about the difficulty of proofs or reductions for SOA-C. They are
attacks showing secure schemes don’t exist.

Implications

Our results in particular mean that
E(M;R)=g"h"

is not SOA-C if the discrete log problem is hard. Same for other commitment
schemes.

Distribution of Messages

Challengerp g Adversary A
M <«5$D
C
R «$1{0,1}"; C «— E(M;R) >
I {40 ,n}
<
(MI[il, R[N:i T 1)
>
w

A wins if Rellw, M,)=1. <«

It had been thought that the difficulty in achieving SOA-C was due to the
possibility that the messages could be related to each other, but in our attack
they are independently and uniformly distributed.

[DNRSO3] show that hiding implies SOA-C for independent messages for a
restricted version of their main definition where Rel(w, M, I) = (f(M)=w) for some
function f. Our result implies that this will not extend to their full definition.

No contradiction!

RO-model

SOA-C secure commitment is achievable in the programmable ROM:
EF(M;R)=H(R| | M).

Our results show it is impossible in standard and NPROM models.

Previous separation results:

Nielsen [Nie02] showed that non-committing encryption can be efficiently
realized in programmable ROM, but not in standard and NPROM models.

Our separation result is about feasibility, not efficiency.

Dodis, Katz, Smith and Walfish [DKSWQ09] obtained a (feasibility) separation result
for deniable authentication.

Extensions

The definition of SOA-C we have used is for one-shot adversaries and simulators.
Our results extend to the case of adaptive (adversaries and) simulators assuming
the messages have super logarithmic length.

|dea of the Proof

Let H:{0,1}—={0,1}" be a CR hash function. The challenger chooses n=2h uniformly
and independently distributed messages.

Challengery, r, Adversary A
M «5$D
C
R «${0,1}"; C «— E(M;R) > b[1]...b[h] € H(C)

/
 The adversary corrupts h out of the n senders.

 Whether sender 2i-1 or 2i is corrupted depends on the value of b|i]

 The set of corrupted senders is basically an encoding of the hash output.

R T i R B e T R ey A R et

* Hash constraint: Does the set of corrupted senders correspond to the hash
output?

e Opening constraint: Does C[i]=E(MI[i]; R[i]) for all corrupted senders i1 I?

|dea of the Proof

Note that the specified adversary always makes the relation return true.

Challengerp g A Simulator S

- >
I {40 ,n}

From this state, run two executions of the simulator (sampling different message vectors).

First Execution (S;) Challengery, r, Second Execution (S,)
MIil:il | , MTiT:i 1
. {) M, «$D ¢) S
w w’
> =
S, wins if Rel(w, M, 1)=1. S, wins if Rel(w’, M’, 1)=1.

TfHeo threkabitityne fwertasing ddsfugaimey imusb thavexgentoatednalithdyiag different
message vectors is related to the simulator winning probability through the Reset
Cefmraples)collision in the hash function.

C=C"implies a violation of the binding property.

SOA-C for Encryption

SOA first arose in the context of encryption [CFGN96]. It was noticed that at the
heart of the difficulty was the fact that the encryption functions of most
encryption schemes are committing.

Eeaceroryiotion, SOALTAsEcuetyrityathievablenbynboilditigtschenmésthat dveanot
comhietiagle schemes based on lossy encryption [BHY09, BY09, HLOV11] or
deniable encryption [FHKW10, BWY11]. The first solutions were based on non-
committing encryption [CFGN96], but these have long keys.

But the basic question remained open:

Is every IND-CPA scheme SOA-C secure? No proof or counter-example.

For example, is EIGamal encryption scheme SOA-C secure?
E(g*,M;R)=(g", Mg*")

No proof or attack.

Our Result for SOA-C Encryption

There exists an encryption scheme that is IND-CPA secure but not SOA-C secure.

Stronger: Every committing encryption scheme is not SOA-C secure.

We give a precise definition of what being committing means for encryption
schemes.

This result includes ElGamal and most standard encryption schemes, so our
counter-examples are not artificial.

Relation to IND

There exists also an indistinguishability-style definition of SOA-security, denoted
IND-SOA-CRS, but it is only defined for efficiently conditionally re-samplable
distributions.

Thm 1
IND-CPA / > SOA-C

[BHY09]
5 ™. because Thm 1 holds for

4 IND-SOA-CRS independent messages

In a subsequent work, Bohl, Hofheinz and Kraschewski [BHK12] further clarified
the relations between the different notions of SOA-security, but the above
guestion remains open.

Our Result for SOA-K Encryption

Challenger, Adversary A
M <«$ D; (PK,SK)<$(KG(A))"
C
R «${0,1}"; C < E(PK,M;R) >
I {0 ,n}

<€
(ML, SKIi:i T 1)
>

We define the notion of decryption verifiability that is a weak form of robustness
[ABN10]. For example, ElGamal encryption scheme is not robust, but it is
decryption-verifiable.

Our result for SOA-K secure encryption: No decryption-verifiable encryption
scheme is SOA-K secure.

Achievability of SOA-K security

Nielsen [Nie02] showed that any PKE scheme achieving non-committing
encryption must have long keys.

So conceivably SOA-K can be achieved with short keys. Not ruled out by our above
result. But we also show:

Theorem: SOA-K security is impossible with short keys.

Note: this result is not in our abstract/online paper.

Summary

Every HB-secure commitment scheme is SOA-C insecure.

* Every committing encryption scheme is SOA-C insecure.

 Schemes specifically designed to achieve SOA-C security are really
necessary.

* Every decryption-verifiable encryption scheme is SOA-K insecure.

* SOA-K security needs long keys.

Thank youl!

