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Commit to M: 

Open M: 
Check that: 
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C=E(M;R) 

Hiding: It is computationally infeasible for the receiver given C to learn anything 
more about M than it knows a priori. Formalized via semantic security. 

Binding: It is computationally infeasible for the sender to find M, M’, R, R’ such 
that: E(M;R)=E(M’;R’) and M≠M’. 

 

$ {0,1}r; C E(M;R) 

We will call a commitment scheme HB-secure if it satisfies these properties. 



E(M; R1|| R2) = ( H(R2), R1, Ext(R1, R2) 

Commitment Schemes are basic and widely used tools, for example for ZK and 
other protocols. There are many constructions, for example: 

• Let g, h be generators of a prime order group G and let E(M;R)=gMhR [Ped91]. 

• Let H be a CR hash function and Ext a strong randomness extractor and let 

Examples of Commitment Schemes 

ÅM ). 



Hiding 

C 

ChallengerD Adversary A 

Security means A cannot figure out anything about M. More precisely, anything 
more than that M is distributed according to D. Should hold for all D and is 
formalized by asking that a simulator denied C does as well as A. 
 

M $ D; R $ {0,1}r; C E(M;R) 



Notation 

M = (M[1],…, M[n]) is a vector of messages drawn from a distribution D. 

M, R, C denote vectors.  

R = (R[1],…, R[n]) is a vector of independently distributed random strings.  

C = (C[1],…, C[n]) = E(M;R)  is a vector of commitments. 

Let E(M;R) = (E(M[1];R[1]),…, E(M[n];R[n])).  



ChallengerD Adversary A 

Ì {1,… ,n}

Security means A cannot figure out anything about  

Q: If E is HB-secure then is it SOA-M secure? 

A: YES. 

The proof crucially exploits that A is not given a proof of correct opening. 

This version of SOA is called SOA-M and is not the one where difficulties arise. 

SOA-M 
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M[i]  : Ïi  I . 
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M[i], R[i]  : Î

Q: If E is HB-secure then is it SOA-C secure? 

A: OPEN 

• No proof that HB-security implies SOA-C security. 
• No counter-example scheme E that is HB-secure but not SOA-C secure. 

ChallengerD Adversary A 

Ì {1,… ,n}

Security means A cannot figure out anything about  

SOA-C 
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Stronger: Every HB-secure commitment scheme is SOA-C insecure. 

Given any HB-secure scheme we present an attack breaking SOA-C security. 

This answers the long-standing open question. But perhaps the counter-example 
is artificial. What about “real” schemes? 

We also show that there exist IND-CPA PKE schemes that are not SOA-C or SOA-K 
secure, including “real” schemes. 

Our Results 

There exists an HB-secure commitment scheme that is not SOA-C secure. 

In particular the example schemes we gave earlier are not SOA-C secure. 



A wins if Rel(w, M, I)=1.  

SOA-C Security 

w 

Simulator S 

^

E is SOA-C secure if for every PT adversary A there exists a PT simulator S such 
that AdvE,A,S is negligible in the security parameter. 

AdvE,A,S=Pr[A wins]- Pr[S wins] 

M[i], R[i]  : Î
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S wins if Rel(w, M, I)=1.  
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We use the simulation-style definition of SOA-C security introduced by Dwork, 
Naor, Reingold and Stockmeyer [DNRS03]. 



Our Result for Commitment 

Theorem: Assume CR hash functions exist. Let E be any binding commitment 
scheme. Then there is a PT message distribution D, a PT relation Rel and a PT 
adversary A such that for every PT simulator S we have: 

Furthermore the messages output by D are uniformly and independently  
distributed. 

Thus we constructed D, Rel such that we can prove there does not exist a efficient  
simulator, meaning A is a successful attack. 

We do not assume simulation is black-box. 

AdvE,A,S(λ) ≥ 1 – negl(λ)  



SOA-C security for commitment was first defined and considered by Dwork, Naor, 
Reingold and Stockmeyer [DNRS03].  

Hofheinz [Hof11] shows blackbox negative results which indicate it is hard to 
prove the existence of a SOA-C secure commitment using a blackbox reduction to 
a standard assumption. This does not say such a scheme doesn’t exist. Potentially 
a scheme could be proved secure using a non-blackbox reduction or under non-
standard assumptions. 
 
Our results are not about the difficulty of proofs or reductions for SOA-C. They are 
attacks showing secure schemes don’t exist. 

History 



Our results in particular mean that 

is not SOA-C if the discrete log problem is hard. Same for other commitment 
schemes.  

Implications 

E(M;R)=gMhR 



Distribution of Messages 

It had been thought that the difficulty in achieving SOA-C was due to the 
possibility that the messages could be related to each other, but in our attack 
they are independently and uniformly distributed. 

[DNRS03] show that hiding implies SOA-C for independent messages for a 
restricted version of their main definition where Rel(w, M, I) = (f(M)=w) for some 
function f. Our result implies that this will not extend to their full definition. 

M[i], R[i]  : Î
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A wins if Rel(w, M, I)=1.  
w 

 No contradiction! 



SOA-C secure commitment is achievable in the programmable ROM: 
EH(M;R)=H(R||M). 

Our results show it is impossible in standard and NPROM models. 

RO-model 

Previous separation results: 

Our separation result is about feasibility, not efficiency.  

Dodis, Katz, Smith and Walfish [DKSW09] obtained a (feasibility) separation result 
for deniable authentication.  

Nielsen [Nie02] showed that non-committing encryption can be efficiently 
realized in programmable ROM, but not in standard and NPROM models. 



The definition of SOA-C we have used is for one-shot adversaries and simulators. 
Our results extend to the case of adaptive (adversaries and) simulators assuming 
the messages have super logarithmic length. 

Extensions 



Adversary A 

Idea of the Proof 

C 

w 

b[1]…b[h]H(C) 

Computes I 

Let H:{0,1}*     {0,1}h be a CR hash function. The challenger chooses n=2h uniformly 
and independently distributed messages. 

w(C, R[I]) 

Rel computes b[1]…b[h]H(C) and checks: 

 

 
• Hash constraint: Does the set of corrupted senders correspond to the hash 

output? 

• Opening constraint: Does C[i]=E(M[i]; R[i]) for all corrupted senders i    I? 

   

I 

M[i], R[i]  : Î

ChallengerD,Rel 

M $ D 

R $ {0,1}rn; C E(M;R) 

i  I • The adversary corrupts h out of the n senders. 

 
• Whether sender 2i-1 or 2i is corrupted depends on the value of b[i] 

 • The set of corrupted senders is basically an encoding of the hash output. 

 

Î



: Î

Idea of the Proof 

Note that the specified adversary always makes the relation return true. 

Simulator S ^

S1 wins if Rel(w, M, I)=1.  

w’ 

ChallengerD,Rel 
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M, M’ $ D 
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From this state, run two executions of the simulator (sampling different message vectors). 

Second Execution (S2) 
First Execution (S1) 

w 

M[i]  : Îi  I 

ChallengerD,Rel 

S2 wins if Rel(w’, M’, I)=1.  

The probability of winning the game in both executions and having different 
message vectors is related to the simulator winning probability through the Reset 
Lemma [BP02]. 

If both executions were successful, they must have generated valid C, C’. 

 
C≠C’ implies a collision in the hash function. 

 
C=C’ implies a violation of the binding property. 

 



SOA first arose in the context of encryption [CFGN96]. It was noticed that at the 
heart of the difficulty was the fact that the encryption functions of most 
encryption schemes are committing. 

 

 
Lead to focus on SOA-C security for commitment, that we showed here is 
unachievable.  

 

 

For encryption, SOA-C security is achievable by building schemes that are not 
committing: schemes based on lossy encryption [BHY09, BY09, HLOV11] or 
deniable encryption [FHKW10, BWY11]. The first solutions were based on non-
committing encryption [CFGN96], but these have long keys. 

SOA-C for Encryption 

But the basic question remained open: 

 
Is every IND-CPA scheme SOA-C secure? No proof or counter-example. 

 

 
For example, is ElGamal encryption scheme SOA-C secure? 

 

No proof or attack. 

E(gx,M;R)=(gR, MgxR) 



Stronger: Every committing encryption scheme is not SOA-C secure. 

This result includes ElGamal and most standard encryption schemes, so our 
counter-examples are not artificial. 

Our Result for SOA-C Encryption 

There exists an encryption scheme that is IND-CPA secure but not SOA-C secure. 

We give a precise definition of what being committing means for encryption 
schemes. 



IND-CPA 

IND-SOA-CRS 

SOA-C 

Thm 1 

? 
because Thm 1 holds for 
independent messages 

There exists also an indistinguishability-style definition of SOA-security, denoted 
IND-SOA-CRS, but it is only defined for efficiently conditionally re-samplable 
distributions. 

In a subsequent work, Böhl, Hofheinz and Kraschewski [BHK12] further clarified 
the relations between the different notions of SOA-security, but the above 
question remains open. 

Relation to IND 

[BHY09] 



: ÎM[i], SK[i]  

We define the notion of decryption verifiability that is a weak form of robustness 
[ABN10]. For example, ElGamal encryption scheme is not robust, but it is 
decryption-verifiable. 

Our result for SOA-K secure encryption: No decryption-verifiable encryption 
scheme is SOA-K secure. 

Our Result for SOA-K Encryption 
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Achievability of SOA-K security 

Nielsen [Nie02] showed that any PKE scheme achieving non-committing 
encryption must have long keys. 

NCE SOA-K 

? 

So conceivably SOA-K can be achieved with short keys. Not ruled out by our above 
result. But we also show: 

Theorem: SOA-K security is impossible with short keys. 

Note: this result is not in our abstract/online paper. 



• Every HB-secure commitment scheme is SOA-C insecure. 

 

• Every decryption-verifiable encryption scheme is SOA-K insecure. 

Summary 

• Every committing encryption scheme is SOA-C insecure. 

• Schemes specifically designed to achieve SOA-C security are really 
necessary. 

• SOA-K security needs long keys. 



Thank you! 


