
Standard Security Does Not Imply
Security Against Selective-Opening

Mihir Bellare, Rafael Dowsley, Brent Waters, Scott Yilek

(UCSD, UCSD, UT Austin, U. of St. Thomas)

Full version on IACR ePrint archive

Commitment Schemes

E

Message M

C

M, R

Sender Receiver

Commit to M:

Open M:
Check that:

Coins R
Ciphertext C

R

C=E(M;R)

Hiding: It is computationally infeasible for the receiver given C to learn anything
more about M than it knows a priori. Formalized via semantic security.

Binding: It is computationally infeasible for the sender to find M, M’, R, R’ such
that: E(M;R)=E(M’;R’) and M≠M’.

$ {0,1}r; C E(M;R)

We will call a commitment scheme HB-secure if it satisfies these properties.

E(M; R1|| R2) = (H(R2), R1, Ext(R1, R2)

Commitment Schemes are basic and widely used tools, for example for ZK and
other protocols. There are many constructions, for example:

• Let g, h be generators of a prime order group G and let E(M;R)=gMhR [Ped91].

• Let H be a CR hash function and Ext a strong randomness extractor and let

Examples of Commitment Schemes

ÅM).

Hiding

C

ChallengerD Adversary A

Security means A cannot figure out anything about M. More precisely, anything
more than that M is distributed according to D. Should hold for all D and is
formalized by asking that a simulator denied C does as well as A.

M $ D; R $ {0,1}r; C E(M;R)

Notation

M = (M[1],…, M[n]) is a vector of messages drawn from a distribution D.

M, R, C denote vectors.

R = (R[1],…, R[n]) is a vector of independently distributed random strings.

C = (C[1],…, C[n]) = E(M;R) is a vector of commitments.

Let E(M;R) = (E(M[1];R[1]),…, E(M[n];R[n])).

ChallengerD Adversary A

Ì {1,… ,n}

Security means A cannot figure out anything about

Q: If E is HB-secure then is it SOA-M secure?

A: YES.

The proof crucially exploits that A is not given a proof of correct opening.

This version of SOA is called SOA-M and is not the one where difficulties arise.

SOA-M

M
C

M[i]

$ D

R $ {0,1}rn; C E(M;R)

: Îi I

M[i] : Ïi I .

I

M[i], R[i] : Î

Q: If E is HB-secure then is it SOA-C secure?

A: OPEN

• No proof that HB-security implies SOA-C security.
• No counter-example scheme E that is HB-secure but not SOA-C secure.

ChallengerD Adversary A

Ì {1,… ,n}

Security means A cannot figure out anything about

SOA-C

M
C

$ D

R $ {0,1}rn; C E(M;R)

i I

M[i] : Ïi I

I

Stronger: Every HB-secure commitment scheme is SOA-C insecure.

Given any HB-secure scheme we present an attack breaking SOA-C security.

This answers the long-standing open question. But perhaps the counter-example
is artificial. What about “real” schemes?

We also show that there exist IND-CPA PKE schemes that are not SOA-C or SOA-K
secure, including “real” schemes.

Our Results

There exists an HB-secure commitment scheme that is not SOA-C secure.

In particular the example schemes we gave earlier are not SOA-C secure.

A wins if Rel(w, M, I)=1.

SOA-C Security

w

Simulator S

^

E is SOA-C secure if for every PT adversary A there exists a PT simulator S such
that AdvE,A,S is negligible in the security parameter.

AdvE,A,S=Pr[A wins]- Pr[S wins]

M[i], R[i] : Î

ChallengerD,Rel Adversary A

Ì {1,… ,n}

M

C

$ D

R $ {0,1}rn

E(M;R)

i I

I

C

S wins if Rel(w, M, I)=1.

w

ChallengerD,Rel

Ì {1,… ,n}
M $ D

I

M[i] : Îi I

We use the simulation-style definition of SOA-C security introduced by Dwork,
Naor, Reingold and Stockmeyer [DNRS03].

Our Result for Commitment

Theorem: Assume CR hash functions exist. Let E be any binding commitment
scheme. Then there is a PT message distribution D, a PT relation Rel and a PT
adversary A such that for every PT simulator S we have:

Furthermore the messages output by D are uniformly and independently
distributed.

Thus we constructed D, Rel such that we can prove there does not exist a efficient
simulator, meaning A is a successful attack.

We do not assume simulation is black-box.

AdvE,A,S(λ) ≥ 1 – negl(λ)

SOA-C security for commitment was first defined and considered by Dwork, Naor,
Reingold and Stockmeyer [DNRS03].

Hofheinz [Hof11] shows blackbox negative results which indicate it is hard to
prove the existence of a SOA-C secure commitment using a blackbox reduction to
a standard assumption. This does not say such a scheme doesn’t exist. Potentially
a scheme could be proved secure using a non-blackbox reduction or under non-
standard assumptions.

Our results are not about the difficulty of proofs or reductions for SOA-C. They are
attacks showing secure schemes don’t exist.

History

Our results in particular mean that

is not SOA-C if the discrete log problem is hard. Same for other commitment
schemes.

Implications

E(M;R)=gMhR

Distribution of Messages

It had been thought that the difficulty in achieving SOA-C was due to the
possibility that the messages could be related to each other, but in our attack
they are independently and uniformly distributed.

[DNRS03] show that hiding implies SOA-C for independent messages for a
restricted version of their main definition where Rel(w, M, I) = (f(M)=w) for some
function f. Our result implies that this will not extend to their full definition.

M[i], R[i] : Î

ChallengerD,Rel Adversary A

Ì {1,… ,n}

M
C

$ D

R $ {0,1}rn; C E(M;R)

i I

I

A wins if Rel(w, M, I)=1.
w

 No contradiction!

SOA-C secure commitment is achievable in the programmable ROM:
EH(M;R)=H(R||M).

Our results show it is impossible in standard and NPROM models.

RO-model

Previous separation results:

Our separation result is about feasibility, not efficiency.

Dodis, Katz, Smith and Walfish [DKSW09] obtained a (feasibility) separation result
for deniable authentication.

Nielsen [Nie02] showed that non-committing encryption can be efficiently
realized in programmable ROM, but not in standard and NPROM models.

The definition of SOA-C we have used is for one-shot adversaries and simulators.
Our results extend to the case of adaptive (adversaries and) simulators assuming
the messages have super logarithmic length.

Extensions

Adversary A

Idea of the Proof

C

w

b[1]…b[h]H(C)

Computes I

Let H:{0,1}* {0,1}h be a CR hash function. The challenger chooses n=2h uniformly
and independently distributed messages.

w(C, R[I])

Rel computes b[1]…b[h]H(C) and checks:

• Hash constraint: Does the set of corrupted senders correspond to the hash

output?

• Opening constraint: Does C[i]=E(M[i]; R[i]) for all corrupted senders i I?

I

M[i], R[i] : Î

ChallengerD,Rel

M $ D

R $ {0,1}rn; C E(M;R)

i I • The adversary corrupts h out of the n senders.

• Whether sender 2i-1 or 2i is corrupted depends on the value of b[i]

 • The set of corrupted senders is basically an encoding of the hash output.

Î

: Î

Idea of the Proof

Note that the specified adversary always makes the relation return true.

Simulator S ^

S1 wins if Rel(w, M, I)=1.

w’

ChallengerD,Rel

Ì {1,… ,n}

M, M’ $ D

I

M’[i] i I

From this state, run two executions of the simulator (sampling different message vectors).

Second Execution (S2)
First Execution (S1)

w

M[i] : Îi I

ChallengerD,Rel

S2 wins if Rel(w’, M’, I)=1.

The probability of winning the game in both executions and having different
message vectors is related to the simulator winning probability through the Reset
Lemma [BP02].

If both executions were successful, they must have generated valid C, C’.

C≠C’ implies a collision in the hash function.

C=C’ implies a violation of the binding property.

SOA first arose in the context of encryption [CFGN96]. It was noticed that at the
heart of the difficulty was the fact that the encryption functions of most
encryption schemes are committing.

Lead to focus on SOA-C security for commitment, that we showed here is
unachievable.

For encryption, SOA-C security is achievable by building schemes that are not
committing: schemes based on lossy encryption [BHY09, BY09, HLOV11] or
deniable encryption [FHKW10, BWY11]. The first solutions were based on non-
committing encryption [CFGN96], but these have long keys.

SOA-C for Encryption

But the basic question remained open:

Is every IND-CPA scheme SOA-C secure? No proof or counter-example.

For example, is ElGamal encryption scheme SOA-C secure?

No proof or attack.

E(gx,M;R)=(gR, MgxR)

Stronger: Every committing encryption scheme is not SOA-C secure.

This result includes ElGamal and most standard encryption schemes, so our
counter-examples are not artificial.

Our Result for SOA-C Encryption

There exists an encryption scheme that is IND-CPA secure but not SOA-C secure.

We give a precise definition of what being committing means for encryption
schemes.

IND-CPA

IND-SOA-CRS

SOA-C

Thm 1

?
because Thm 1 holds for
independent messages

There exists also an indistinguishability-style definition of SOA-security, denoted
IND-SOA-CRS, but it is only defined for efficiently conditionally re-samplable
distributions.

In a subsequent work, Böhl, Hofheinz and Kraschewski [BHK12] further clarified
the relations between the different notions of SOA-security, but the above
question remains open.

Relation to IND

[BHY09]

: ÎM[i], SK[i]

We define the notion of decryption verifiability that is a weak form of robustness
[ABN10]. For example, ElGamal encryption scheme is not robust, but it is
decryption-verifiable.

Our result for SOA-K secure encryption: No decryption-verifiable encryption
scheme is SOA-K secure.

Our Result for SOA-K Encryption

ChallengerD Adversary A

Ì {1,… ,n}

M
C

$ D; (PK,SK)
 R $ {0,1}rn; C E(PK,M;R)

i I

I

$ (KG(λ))n

Achievability of SOA-K security

Nielsen [Nie02] showed that any PKE scheme achieving non-committing
encryption must have long keys.

NCE SOA-K

?

So conceivably SOA-K can be achieved with short keys. Not ruled out by our above
result. But we also show:

Theorem: SOA-K security is impossible with short keys.

Note: this result is not in our abstract/online paper.

• Every HB-secure commitment scheme is SOA-C insecure.

• Every decryption-verifiable encryption scheme is SOA-K insecure.

Summary

• Every committing encryption scheme is SOA-C insecure.

• Schemes specifically designed to achieve SOA-C security are really
necessary.

• SOA-K security needs long keys.

Thank you!

