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Abstract. As ocean general circulation models (OGCMs)
move into the petascale age, where the output of single sim-
ulations exceeds petabytes of storage space, tools to analyse
the output of these models will need to scale up too. La-
grangian ocean analysis, where virtual particles are tracked
through hydrodynamic fields, is an increasingly popular way
to analyse OGCM output, by mapping pathways and con-
nectivity of biotic and abiotic particulates. However, the cur-
rent software stack of Lagrangian ocean analysis codes is
not dynamic enough to cope with the increasing complex-
ity, scale and need for customization of use-cases. Further-
more, most community codes are developed for stand-alone
use, making it a nontrivial task to integrate virtual particles at
runtime of the OGCM. Here, we introduce the new Parcels
code, which was designed from the ground up to be suffi-
ciently scalable to cope with petascale computing. We high-
light its API design that combines flexibility and customiza-
tion with the ability to optimize for HPC workflows, fol-
lowing the paradigm of domain-specific languages. Parcels
is primarily written in Python, utilizing the wide range of
tools available in the scientific Python ecosystem, while gen-
erating low-level C code and using just-in-time compilation
for performance-critical computation. We show a worked-out
example of its API, and validate the accuracy of the code
against seven idealized test cases. This version 0.9 of Parcels
is focused on laying out the API, with future work concen-
trating on support for curvilinear grids, optimization, effi-
ciency and at-runtime coupling with OGCMs.

1 Introduction

Lagrangian ocean analysis, whereby virtual particles are
tracked within the flow field of hydrodynamic models, has
over the last two decades increasingly been used by physi-
cal oceanographers and marine biologists alike (Van Sebille
et al., 2018). The particles can represent passive parcels of
seawater (e.g. Döös, 1995; Blanke and Raynaud, 1997) or
its constituent tracers such as nutrients (e.g. Jönsson et al.,
2011; Qin et al., 2016), as well as particulate matter such
as microbes (e.g. Hellweger et al., 2014; Doblin and van
Sebille, 2016), larvae (e.g. Cowen et al., 2006; Paris et al.,
2005; Teske et al., 2015; Cetina-Heredia et al., 2015), pumice
(e.g. Jutzeler et al., 2014), plastic litter (e.g. Lebreton et al.,
2012), or icebergs (e.g. Marsh et al., 2015). The trajectories
of the virtual particles can be used to analyse the flow within
ocean general circulation models (OGCMs) and other veloc-
ity fields for dispersion characteristics (e.g. Beron-Vera and
LaCasce, 2016), Lagrangian coherent structures (e.g. Haller,
2015), water mass pathways and transit times (e.g. Rühs
et al., 2013), Lagrangian stream functions (e.g. Döös et al.,
2008) and biological connectivity between regions (e.g. Kool
et al., 2013). See Van Sebille et al. (2018) for an extensive re-
view on Lagrangian ocean analysis.

There are currently three main community codes available
to calculate the trajectories of virtual particles in OGCMs:
Ariane (Blanke and Raynaud, 1997), TRACMASS (Döös
et al., 2013, 2017), and the Connectivity Modeling System
(CMS; Paris et al., 2013). These codes, being open-source
and having excellent support teams, have served the wider
community very well over the past decades. However, it is
not clear that these three codes will be able to scale up easily
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to the petascale age of computing, where particle trajectory
codes will need to be able to deal with potentially petabytes
of hydrodynamic field data and gigabytes of particle tra-
jectory data. Exploring advanced optimization strategies to
overcome these big-data challenges, such as coupled (online)
execution with the host OGCM or reducing the volume of hy-
drodynamic data by selectively filtering data regions based
on particle locations, will require a flexible execution model
that can dynamically be adapted to complement the respec-
tive data and execution formats of various host OGCMs.

Furthermore, the current stack of codes is mostly built for
the tracking of water parcels or passive particulates. While
the CMS and TRACMASS do support the addition of dif-
fusive processes through Markovian stochastic models (e.g.
Griffa, 1996), it is non-trivial to incorporate “behaviour” of
particulates to these codes. Effortless incorporation of be-
haviour such as sinking, fragmentation, or even swimming
to particulates would simplify exploration of the dynamics
of particulates such as fish, icebergs, and marine debris.

Here, we describe a novel framework for computing La-
grangian particle trajectories, named Parcels (“Probably A
Really Computationally Efficient Lagrangian Simulator”).
Being developed from the ground up with scalability and per-
formance in mind, we hope that this Parcels framework will
be able to keep up with OGCM development for the com-
ing decades, particularly by being scalable and efficient at
reading in hydrodynamic data. We have furthermore focused
on flexibility and customizability of the particle dispersion
schemes, so that it is relatively straightforward to add new
functionality such as active particle behaviours.

We have decided to brand this version of Parcels as v0.9,
signalling that while in principle it is feature-complete, the
code is not nearly as fast and efficient as we envision it to be
in the future. Improving performance will be the main pri-
ority as we work towards v1.0. We invite all interested re-
searchers to contribute to the development by starting to use
the code.

While development efforts of Parcels focus on oceano-
graphic applications, the Parcels framework should in princi-
ple also be adaptable to atmospheric particle tracking simu-
lations. Models such as FLEXPART (Stohl and James, 2005)
and the MetOffice NAME model (Jones et al., 2007) are state
of the art and have an excellent track record in the field of
atmospheric dispersion modelling, but perhaps some of the
ideas presented here could be incorporated or used in these
models too.

This paper is structured as follows: in the next section,
we will describe the philosophy behind the Parcels code.
We then present a worked-out example of an application of
Parcels for an actual scientific experiment in Sect. 3. Follow-
ing that, we evaluate the accuracy of the code in Sect. 4, by
comparison to analytical solutions in idealized test. We pro-
vide a future outlook in Sect. 5, before concluding in Sect. 6.

2 Prototype design and philosophy

A key contribution of the new Parcels v0.9 framework is to
define a set of interfaces and composable abstractions that
encapsulate the various processes required to create dynamic
and extensible Lagrangian models that feature direct interac-
tions between particles and an associated OGCM grid. The
design follows modern scientific software engineering prac-
tices, providing high levels of modularity and flexibility with
a clear intent to further specialize various sub-components at
a later stage. The interfaces provided in Parcels are therefore
intended to capture the general domain-specific challenges
posed by particle tracking for Lagrangian ocean analysis.
The overall design philosophy, as well as the structure of the
code, is driven by three major design considerations:

Extensibility While the core algorithm of Lagrangian parti-
cle models is concerned with the advection and disper-
sion of passive particles that constitute infinitely small
point parcels, practical oceanographic applications of-
ten require more complex behaviour of the particles. Po-
tential extensions towards individual-based modelling
of particulates to simulate biological species or marine
debris will require extensions to particle data definitions
and programmable behavioural customization at a per-
particle level.

Compatibility Particle tracking in oceanography requires
the close coupling of computational particles to veloc-
ity data that define the hydrodynamic flow field. Parcels
aims to make as few assumptions about the nature and
structure of the hydrodynamic fields as possible, so as
to be compatible with various types of OGCMs and
data formats. While the focus in this v0.9 is on utilizing
offline data, this includes considerations for at-runtime
coupling with OGCMs in the future.

Dynamic data Particle data are sparse in nature and can, de-
pending on application context, exhibit very dynamic
data access patterns where new particles are inserted
and deleted from the active set at runtime. For this
reason, structured compile-time performance optimiza-
tions and parallelization strategies are insufficient, and
just-in-time scheduling is required to handle the amor-
phous data parallelism inherent in dynamic particle ap-
plications (Pingali et al., 2011).

The above list of requirements suggests that a static
compile-time approach is likely to provide insufficient flex-
ibility to adjust to the various scientific contexts in which
oceanographic particle tracking might be utilized. For this
reason Parcels is based on the domain-specific languages
paradigm, which aims to decouple the problem definition as
defined by the scientific modeller from the implementation
that is ultimately executed on a particular hardware architec-
ture. This approach is based on automated code generation at
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runtime and creates a separation of concerns between domain
scientists and computational experts that allows hardware-
specific performance optimization and thus greater flexibil-
ity with respect to advances in high-performance computing
resources.

Since the prototype of the Parcels framework presented
here provides a conceptual blueprint for future versions, we
define a clear set of abstractions for the following three soft-
ware layers:

User-facing API The primary objective of Parcels is to pro-
vide a user-friendly, clear, and concise API for scientists
to perform oceanographic particle tracking experiments
with very little effort, while leaving room for customiza-
tions that go beyond traditional configuration files. For
this reason Parcels provides a high-level Python API
that enables users to define a complete model in a small
number of lines of code (see examples in Sect. 3). For
more advanced models, the API also provides enough
scope to fully control the variable layout of particles in
memory, as well as to define custom behaviour via indi-
vidual kernel operations.

Execution layer The transient nature of Lagrangian parti-
cles implies that many practical oceanographic applica-
tions rely on particle sets that may grow and shrink dy-
namically, while also relying on external hydrodynamic
field data that might be sampled at a time step much dif-
ferent from the primary particle loop. This complex pa-
rameter variability entails that the core loop that updates
individual particle states needs to be highly dynamic
and flexible, as well as highly optimized for large-scale
applications. Parcels aims to encapsulate the core pa-
rameters of the particle update loop so as to establish an
interface for integration with a variety of external host
OGCMs, and leaves enough scope for more advanced
performance optimizations in the future.

Data layout The two fundamental types of data involved in
Lagrangian particle tracking algorithms constitute field
data provided by the external OGCM, as well as data
on the particle state. Since the data layout for particle
data might change with future performance optimiza-
tions, and the memory layout of field data depends on
the OGCM implementation, Parcels provides high-level
abstractions for both types of data, allowing the actual
data layout in memory to change.

The abstractions shown in Fig. 1 comprise the core func-
tionalities provided by the framework. The primary input in
the user layer consists of generic definitions of the particle
variables for individual types of particles, alongside an in-
terface to define the computation kernels. Parcels’ core ex-
ecution loop uses this information to update particle data
given external parameters, such as time-stepping constraints,
and interpolated hydrodynamic field data. Thus, given a sta-
ble user-level API and a highly modular code structure, it is
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Figure 1. Conceptual abstractions (dark) and functionalities encap-
sulated in the Parcels prototype in relation to external components
(light).

possible to implement various applications and experiments
without committing to a particular implementation, while
leaving enough scope for further development and future per-
formance optimization “under the hood”.

2.1 Programmable user interface

The prototype presented in this paper provides a highly flex-
ible user API that allows users to define complete models via
the Python programming language. The user hereby manages
creation, execution, and customization of individual sets of
particles, as well as combinations of computational kernels
to update the particle state. In contrast to traditional configu-
ration files, this approach provides the user with native com-
patibility with the open-source libraries and tools available in
the scientific Python ecosystem.

The key components of Parcels’ overall class struc-
ture are depicted in Fig. 2. The definition of the vari-
ables that constitute a single particle is hereby encapsulated
in the Particle class, while container objects of type
ParticleSet provide the runtime handling and manage-
ment of particle data. Python descriptor objects are used
to generically define the compound data type underlying
each type of particle, leaving allocation and memory layout
choices to the particular implementation of the data container
structure.

The computational behaviour of particles is encapsulated
through the Kernel. Parcels provides a set of pre-defined
advection methods, as well as allowing users to define cus-
tom behaviour programmatically. Multiple kernels can be
concatenated, allowing users to incrementally build complex
behaviour from individual components.

2.1.1 Advection algorithm

At its core, computing Lagrangian particle trajectories is
equivalent to solving the following equation:

X(t +1t)=X(t)+

t+1t∫
t

v(x,τ )dτ +1Xb(t), (1)
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Figure 2. Class diagram of the Parcels v0.9 prototype implementation. Classes are depicted in blue, methods in green. Note that not all
methods and classes are shown in this diagram.

where X is the three-dimensional position of a particle,
v(x, t) is the three-dimensional velocity field at that loca-
tion from an OGCM, and1Xb(t) is a change in position due
to “behaviour”. The latter can itself be an integration of a
(three-dimensional) velocity field, for example when a parti-
cle sinks downward because of a negative buoyancy force.

In Parcels, the trajectory Eq. (1) is by default time-stepped
using a fourth-order Runge–Kutta scheme, although schemes
for Euler-forward and adaptive Runge–Kutta–Fehlberg inte-
gration (RKF45, e.g. Alexander, 1990) are also provided. In
principle, the Parcels framework should be flexible enough
to also implement integration using the discrete analytical
streamtube method (Blanke and Raynaud, 1997; Döös et al.,
2017).

2.1.2 Custom kernels

Lagrangian particle tracking in the ocean often involves
more complex displacement schemes than simple velocity-
driven advection. For example, in the presence of turbu-
lence, a random walk kernel or Brownian motion is required,
while ocean ecology models often include active locomo-
tion. Parcels therefore allows users to create generic ker-
nel functions by providing native Python functions that ad-
here to the function signature KernelName(particle,
fieldset, time, dt). Within these kernel functions,
users can access built-in particle state variables, such as
particle.lat and particle.lon, or user-defined
ones. Access to field data from within kernels is pro-
vided through the fieldset object, which provides fields
as named properties, for example fieldset.U for the
zonal velocity. Interpolation of field data is implemented
via overloaded member access on the field object (square
bracket notation), allowing a user to express field sam-

pling as fieldset.fieldname[time, lon, lat,
depth].

In addition to kernels that update the internal state of par-
ticles, Parcels’ execution engine also enables users to cus-
tomize the behaviour of particles under various error condi-
tions. For this, a similar type of kernel function can be created
and passed to the execution call, mapped to a particular error
type that might be triggered during the main particle update,
for example OutOfBoundsError.

2.2 Execution and JIT compilation

The update of the internal state of particles is facilitated by
a dynamic loop, which applies a user-defined combination
of kernels to each particle in a ParticleSet. The pri-
mary particle update loop can either be run with a forward
time stepping, or in a time-backward mode to enable inverse
modelling. For this central update loop, Parcels provides two
modes of execution:

Scipy mode A pure Python mode that utilizes
interpolator objects provided by the Scien-
tific Python package (SciPy) to perform interpolation
of field data. This mode is primarily intended as a
debug option due to the performance penalty of running
kernels in the Python interpreter itself.

JIT mode Runtime code generation and just-in-time com-
pilation (JIT) are utilized to generate low-level C code
that performs the particle state update and field data in-
terpolation. The code generation engine hereby primar-
ily translates a restricted subset of the Python language
into equivalent C code, while a set of utility modules
provides auxiliary functionality such as random number
generation or mathematical utilities (math.h).
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The execution mode of the particle update loop is de-
termined by the type of the particle (ScipyParticle or
JITParticle) used to create the ParticleSet. De-
velopment of new features in the current Parcels prototype
is strongly driven by the fact that both modes are intended
to be semantically equivalent. This means that new features
can rapidly be developed using the full flexibility of the
Python interpreter, providing a template implementation and
test case for implementation in the computationally more ef-
ficient JIT mode.

Parcels’ dynamic update loop also provides an
interval keyword to impose a secondary sub-time-
stepping that allows for direct coupling with a host OGCM
in the future. The dynamic composition of multiple time-
stepping intervals might also be used for future data and
performance optimization strategies, for example directed
prefetching of regional field data. Such strategies, as well as
requiring a potentially more intricate execution engine, have
to be explored carefully to successfully tackle the big-data
challenges facing Lagrangian tracking codes in the petascale
age.

2.3 Interpolation

The interaction of particles with their enclosing fields is cur-
rently limited to interpolating field data onto the current par-
ticle position. In the SciPy debug mode this is facilitated by
scipy.interpolate.RegularGridInterpolator
objects and supports linear and nearest-neighbour interpo-
lation. Equivalent low-level C routines are also included in
the Parcels source code as macros that can be inlined into
the generated C kernel code by the code generation engine.
More advanced interpolation methods, such as quadratic,
cubic, or spline interpolation, may easily be added in future
releases if a fast C implementation can be provided with
Parcels’ internal header files.

One of key performance advantages of using runtime code
generation is the ability to inline bespoke grid interpolation
methods with the user-defined kernels in Parcels to avoid
the Python interpreter overhead of repeatedly calling native
Python interpolation functions. This overhead can be quite
significant due to the high frequency at which the associ-
ated field data need to be sampled. This can be illustrated
using the “Steady-state flow around a peninsula” test case
discussed in Sect. 4.2.4, where 100 particles are advected for
20 h with a time-step size of 30 s. While the sequential execu-
tion time of the pure Python implementation runs in 305.92 s,
the auto-generated JIT kernels can run the same experiment
in 1.74 s, a speedup of over 150 times.

2.4 External field data

Parcels v0.9 supports external field data from NetCDF files,
with a configurable interface to describe the input data and
variable structure. The data are encapsulated in individual

Field objects, which are accessible from within particle
kernels via provided interpolation routines. Individual fields
are stored in a FieldSet container class, which may also
provide global metadata to the kernel execution engine at
runtime.

Currently, only linear interpolation schemes are imple-
mented in Parcels, both in space and in time. In space, Parcels
can currently only work on regular grids (i.e. where the grid
dimensions are functions of only longitude, only latitude, or
only depth). However, support for unstructured grids is a pri-
ority for the next release of the code, Parcels v1.0.

3 A worked-out example: tracking virtual foraminifera
in the Agulhas region

To highlight some of the prototype design and philosophies
of the Parcels API, we here present a worked-out example
code of a previously published scientific experiment. This ex-
ample follows the experimental design of Van Sebille et al.
(2015), where the goal was to investigate the temperatures
that planktic foraminifera experience during their lifespan as
they drift with the currents in the upper ocean. In particu-
lar, that study looked at the variability of lifespan-averaged
temperatures of foraminifera that all end up on one single lo-
cation on the ocean floor (e.g. Peeters et al., 2004; Katz et al.,
2010).

Figure 1b of Van Sebille et al. (2015) depicted the origin
of virtual planktic foraminifera that end up on a site just off
the coast of Cape Town (17.3◦ E, 34.7◦ S), at 2440 m water
depth. The virtual particles were released at that site and then
tracked in time-backward mode. There were two phases to
the experiment: in the sinking phase, the foraminifera were
tracked back as they sunk at 200 m per day to the ocean floor,
while being advected by the (deep) ocean circulation. In the
lifespan phase, the particles were then tracked further back-
ward in time as they were advected by the horizontal circu-
lation at their 50 m dwelling depth. During this last phase,
temperature along their trajectory was recorded at daily in-
terval.

While the original experiment was computed with the
CMS (Paris et al., 2013), here we have re-coded it using the
Parcels API. This experiment setup is a fitting one, as it com-
bines a number of the API highlights of Parcels: custom ker-
nels, NetCDF I/O, and field sampling. The full Python code
for this experiment in Parcels is available at https://doi.org/
10.5281/zenodo.823994. Below, we emphasize some of the
key statements in the Python script.

3.1 Reading the FieldSet

The hydrodynamic fields that carry the foraminifera come
from the OFES model (Masumoto et al., 2004) and
can be accessed from http://apdrc.soest.hawaii.edu/datadoc/
ofes/ncep_0.1_global_3day.php. Three-dimensional veloci-
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ties and temperature are available on 1/10◦ horizontal reso-
lution, on 54 vertical levels, and are stored as 3-day averages.
The bash script get_ofesdata_agulhas.sh provided
at https://doi.org/10.5281/zenodo.823994 was used to down-
load snapshot numbers 3165 to 3289, covering the year 2006,
in a subdomain around the core site off Cape Town (note, the
total file size is 6 GB).

While the 6 GB file size for this example is not excessively
large and could in principle be loaded into memory all at
once, this will not be possible for FieldSets with larger
regional domains or longer time series. Hence, Parcels pro-
vides a system to read in hydrodynamic fields during particle
integration, at any time storing only three consecutive time
slices (e.g. Paris et al., 2013). See also Sect. 3.4.

After the first 3 days of hydrodynamic
fields are read in through a call to the user-
defined set_ofes_fieldset function (see the
example_corefootprintparticles.py script
for the exact formulation of this function, which requires
as input a set with filenames, provided as a list of arbitrary
length), three global constants are added to the FieldSet:
fieldset.add_constant(’dwellingdepth ’, 50.)

fieldset.add_constant(’sinkspeed ’, 200./86400)

fieldset.add_constant(’maxage ’, 30.*86400)

These constants will be used later in the custom kernels
controlling the movement of the particles.

3.2 Defining the ParticleSet

Apart from information on their location and time,
the virtual foraminifera particles will need two extra
Variables: the seawater temperature at their present
location, and their age. Therefore, we define a new particle
class, which inherits from the standard JITParticle:
class ForamParticle(JITParticle ):

temp = Variable(’temp’, dtype=np.float32 ,

initial=np.nan)

age = Variable(’age’, dtype=np.float32 ,

initial =0.)

We then define a ParticleSet containing a single
particle as
pset = ParticleSet(fieldset=fieldset ,

pclass=ForamParticle , lon =[17.3] ,

lat=[-34.7], depth =[2440] ,

time=fieldset.U.time [-1])

3.3 Defining the custom kernels

We need to define four custom kernels: one that causes the
particle to sink after it dies, one that keeps track of its age
and deletes it once it reaches its maximum age, one that sam-
ples the temperature at its location, and one that deletes the
particle when it reaches a boundary of the domain (since
we only have hydrodynamic data in a subset of the global
OFES domain). Note that while in principle the first three
could be written in one kernel, here we write three sep-

arate kernels and then concatenate these with the built-in
AdvectionRK4_3D kernel.

The first kernel, controlling the sinking of the particle after
it died (i.e. the first 12 days in our reverse-time experiment),
can be written as
def Sink(particle , fieldset , time , dt):

if particle.depth > fieldset.dwellingdepth:

particle.depth = particle.depth + \

fieldset.sinkspeed * dt

else:

particle.depth = fieldset.dwellingdepth

The second kernel, which keeps track of the age and deletes
the particle when it reaches maxage, can be written as
def Age(particle , fieldset , time , dt):

if particle.depth <= fieldset.dwellingdepth:

particle.age = particle.age + math.fabs(dt)

if particle.age > fieldset.maxage:

particle.delete ()

The third kernel, which samples the temperature, can be
written as
def SampleTemp(particle , fieldset , time , dt):

particle.temp = fieldset.temp[time , particle.lon ,

particle.lat ,

particle.depth]

These three kernels are then concatenated with the
AdvectionRK4_3D kernel as
kernels = pset.Kernel(AdvectionRK4_3D) + \

Sink + SampleTemp + Age

where at least one of the kernels needs to be cast into a
Kernel object for the overloading of the+ operator as a
kernel concatenator to work.

Finally, the kernel that deletes a particle if it
reaches one of the lateral boundaries and which will
be invoked through the error recovery execution is
def DeleteParticle(particle , fieldset , time , dt):

particle.delete ()

3.4 Executing the ParticleSet

The ParticleSet can now be integrated with a call to
pset.execute(). This method requires as input the list
of kernels, the start time of the execution loop, the runtime
of the execution loop, the Runge–Kutta integration time step
(here taken to be 5 min), the interval at which output is writ-
ten (here once per day), and the recovery kernel that gets
called when a particle crosses the boundary of the regional
domain.

As mentioned in Sect. 3.1, only three time slices are held
in memory at any one time. The loading of new fields is
controlled by the fieldset.advancetime() method,
which replaces the oldest time slice with a new one (held in
this case in [snapshots[s]]). This also means that the
executing of the ParticleSet has to be done within a loop:
for s in range(len(snapshots)-5, -1, -1):

pset.execute(kernels , starttime=pset [0].time ,

runtime=delta(days=3),

dt=delta(minutes =-5),

interval=delta(days=-1),

recovery ={ ErrorCode.ErrorOutOfBounds:

DeleteParticle })

fieldset.advancetime(set_ofes_fieldset ([ snapshots[s]]))
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There is another reason to call the pset.execute method
within a loop: it allows for a new particle to be released every
3 days (the frequency with which hydrodynamic data is
available). This happens within the for-loop through a call to
pset.add(ForamParticle(lon =[17.3] , lat =[ -34.7],

depth =[2440] ,

fieldset=fieldset ))

3.5 Saving and plotting the output

The Parcels framework allows for storing of the lo-
cations of the particle to disk on-the-fly in NetCDF
files, following the Discrete Sampling Geometries sec-
tion of http://cfconventions.org/cf-conventions/v1.6.0/
cf-conventions.html#discrete-sampling-geometries, and
is hence CF-1.6-compliant. Storing of the particle tra-
jectories and properties such as age and along-track
temperature happens in the for-loop through calls

to pfile.write(pset , pset [0]. time)

Since particles are continually added to and deleted
from the ParticleSet, the ParticleFile needs to
be stored in “indexed” format, where for each vari-
able all particle states are written in one long vector:
pfile = ParticleFile(outfile , pset , type="indexed")

These long vectors in Indexed format, however, are not
very easy to work with, so Parcels provides the utility script
convert_IndexedOutputToArray to convert an
Indexed NetCDF file to array format.

The particle trajectories can then be plotted using the
matplotlib and Basemap libraries – see Fig. 3. This fig-
ure shows the temperature recorded on each day during the
lifespan of all virtual particles. It highlights that foraminifera
that end up on the ocean floor off Cape Town travel hun-
dreds to thousands of kilometres during their lifespan, and
that while some originate from the Agulhas Current as far
north as 27◦ S, others originate from the much colder South-
ern Ocean south of 40◦ S.

4 Model evaluation

Evaluation of a codebase’s accuracy and performance is a
key component of its validation and roll-out. For this Parcels
v0.9, performance and speed are not a priority; these will be
the focus for the v1.0 release (see also Sect. 5). Instead, in
developing Parcels v0.9 we have concentrated on accuracy.

4.1 Unit tests and continuous integration

Following best practices in software engineering, we have
incorporated Unit testing and continuous integration into the
development cycle of Parcels. Every push of code changes to
GitHub automatically triggers a validation of the entire code-
base (an important component of the Continuous Integration
paradigm), through the www.travis-ci.org web service.

40° S

30° S

10° E 20° E 30° E

[ C]

12

14

16

18

20

Figure 3. Footprints of virtual foraminifera ending up on the ocean
floor just off Cape Town in the Agulhas region. This experiment
is a Parcels implementation of the study described in Van Sebille
et al. (2015), and this figure can be compared to Fig. 1b in that
paper. The magenta dot is the location of the sediment core, from
which virtual particles are first tracked back until they reach their
50 m dwelling depth (black dots), and then further tracked back for
their 30-day lifespan. Temperatures (in Celsius) are recorded each
day throughout their lifespan and shown as colours. The code for
this experiment and plotting is available at https://doi.org/10.5281/
zenodo.823994.

The validation of the codebase is done through so-called
unit tests; small snippets of code that test individual compo-
nents of the codebase. Parcels v0.9 has over 150 of these unit
tests, which check the integrity and consistency of the code-
base. Where relevant, these unit tests are run in both Scipy
and JIT mode, to test both modes of executing the kernels.

The following Python snippet shows a typical ex-
ample of a unit test for Parcels (as included in the
test_particle_sets.py file). It performs the test
that Particles in a ParticleSet indeed get their
assigned longitudes and latitudes. While this may seem a
trivial test, these kinds of unit tests can help prevent bugs:
@pytest.mark.parametrize(’mode’, [’scipy ’, ’jit’])

def test_pset_create_lon_lat(fieldset , mode ,

npart =100):

lon = np.linspace(0, 1, npart , dtype=np.float32)

lat = np.linspace(1, 0, npart , dtype=np.float32)

pset = ParticleSet(fieldset , lon=lon , lat=lat ,

pclass=ptype[mode])

assert np.allclose ([p.lon for p in pset], lon ,

rtol=1e-12)

assert np.allclose ([p.lat for p in pset], lat ,

rtol=1e-12)

Ideally, the full set of unit tests means that no change of the
code can ever break another part of the code, since some
of the unit tests would then fail. Of course, in reality the
completeness of the unit tests can never be guaranteed, but
during Parcels development we have attempted to provide
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unit tests for a broad spectrum of the Parcels functionality
and code.

4.2 Idealized and analytic test cases

Following the list of standard tests of particle tools, as de-
scribed in Sec. 6 of Van Sebille et al. (2018), we have val-
idated the accuracy of Parcels v0.9 against seven idealized
and analytical test cases. In this section we will describe the
results in detail. All test cases are run with Runga–Kutta4
(RK4) integration and in JIT mode. In each case, the hydro-
dynamic velocities are generated within the Python scripts
and converted directly to a FieldSet (i.e. without first stor-
ing these fields in NetCDF format). The Python code for
all test cases is available at https://doi.org/10.5281/zenodo.
823994.

4.2.1 Radial rotation with known period

The first test case is that of a simple counter-clockwise solid-
body rotation with a period of 24 h. Velocities are defined
on a (20 × 20) km Arakawa A grid centred at the origin
with a 100 m horizontal resolution. Solid-body radial veloci-
ties (u,v)= (−ωr sin(φ),ωr cos(φ)), with r and φ the radius
and angle from the origin and ω = 2π/86 400 s the angular
frequency, are then computed on that grid.

Four particles are started at x = 0 km and
y = (1000,2000,3000,4000) km and then advected for
24 h, using an RK4 time step of 5 min, and with particle
positions stored every hour (Fig. 4a). All four particles
indeed follow the flow for the full circle. The maximum
distance error after this 24 h advection is less than 3 mm, on
path lengths of more than 5 km.

4.2.2 Longitudinal shear flow

The second test case tests the ability of the Parcels code to
convert between spherical longitude/latitude space and lo-
cal flat Euclidian space. When defining a FieldSet on a
spherical mesh, Parcels automatically performs this conver-
sion under the hood. To test its accuracy, an idealized flow on
a sphere at 1◦ horizontal resolution is created, with a uniform
zonal velocity of 1 m s−1 and no meridional velocity. A total
of 31 particles are then released on a north–south line, with
a meridional spacing of 3◦. These particles are advected for
57 days, using an RK4 time step of 5 min and output saved
every day (Fig. 4b). The main panel shows trajectories in pla-
nar projection, with the inset showing the same trajectories in
orthographic projection.

At a speed of 1 m s−1, the particles travel 4.9×106 m in
the 57 days. At the Equator, this amounts to almost 45◦ of
longitude, but because of the cosine dependence of zonal dis-
tance with latitude, particles closer to the poles travel farther
in degrees (main panel in Fig. 4b). Nevertheless, the inset of
Fig. 4b shows that in an orthographic projection, all particles
travel the same distance.

4.2.3 Advection due to a time-oscillating zonal flow

The third test case tests the ability of Parcels to cope with
simple time-varying flow. The flow in this case is a uniform
meridional flow of v = A= 0.1 m s−1, and an oscillating
zonal flow with u(t)= Acos(ωt) where ω = 2π/T and the
period is T = 1 day. The time resolution of the FieldSet
is 5 min, and since the flow is constant in space there are only
two grid cells in each of the horizontal directions. A total of
20 particles are then released on a zonal line at y = 0 km and
advected for 4 days, using an RK4 time step of 5 min and
storing output every 3 h (Fig. 4c).

The analytical flow for the paths of these particles is
y(t)= At and x(t)= x0+A/ω sin(ωt)whereω = 2π/T and
x0 is the zonal start location of the particle. Indeed, all parti-
cles follow these analytical pathways very closely (Fig. 4c),
with largest positional errors after 4 days being 6 cm in the
zonal direction and 4 mm in the meridional direction.

4.2.4 Steady-state flow around a peninsula

The test case of steady-state flow around a peninsula follows
a description by Ådlandsvik et al. (2009) and was also used
as a validation test case in the article describing the CMS
(Paris et al., 2013). Starting from the analytical expression
for a stream function9 of a steady-state flow around a penin-
sula, analytical expressions of the zonal and meridional com-
ponent of velocity are solved on a (1◦ × 0.5◦) Arakawa A
grid at 1/100◦ horizontal resolution. A set of 20 particles is
seeded just off the western edge of the domain, and then ad-
vected with the flow for 24 h using an RK4 time step of 5 min
and particle positions stored every hour (Fig. 4d, where the
brown semi-circle is the peninsula).

Since the particles should follow streamlines, a compari-
son of the interpolated stream function value at t = 24 h to
that at t = 0 h gives an estimate of the error. The largest error
is 0.008 m2 s−1, which corresponds to a positional error of
10−5◦, or 1 m. Indeed, Fig. 4d shows that the particle trajec-
tories closely follow the dashed streamlines.

4.2.5 Steady-state flow in a Stommel gyre and western
boundary current

The test case of the Stommel gyre follows a description in
Fabbroni (2009), and provides an analytical solution to the
stream function field of a Stommel gyre and western bound-
ary current. Here, we compute the meridional and zonal
central derivatives of this stream function field to generate
zonal and meridional velocities, respectively, on a (10000 ×
10000) km Arakawa A grid at 50 km horizontal resolution.
A set of four particles is seeded on a line crossing the west-
ern boundary, at y = 5000 km, and then advected for 50 days
with an RK4 time step of 5 min and the particle positions
stored every 24 h (Fig. 4e).
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(a) Radial rotation with known period
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(b) Longitudinal shear flow
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(c) Advection due to a time-oscillating zonal flow
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(d) Steady-state flow around a peninsula
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(e) Steady-state flow in a Stommel gyre and western boundary current
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(f) Damped inertial oscillation on a geostrophic flow
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(g) Brownian motion with a uniform Kh
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Figure 4. Evaluation of trajectory accuracy in Parcels v0.9, following the seven idealized and analytical test case described in Sect. 6 of
Van Sebille et al. (2018): (a) radial rotation with known period; (b) longitudinal shear flow; (c) advection due to a time-oscillating zonal
flow; (d) steady-state flow around a peninsula; (e) steady-state flow in a Stommel gyre and western boundary current; (f) damped inertial
oscillation on a geostrophic flow; and (g) Brownian motion with a uniform Kh. In the upper six panels, the coloured lines are the particle
trajectories and the black dashed lines are the analytical solutions. In panel (g), the colouring shows the density of particles, and the contours
show the probability density function of the equivalent analytical solution (a two-dimensional Gaussian).

Since the particles should follow streamlines, the deviation
of particles from the streamlines is a measure of the accuracy
of the method. Figure 4e shows that all four particles stay
close to their streamline throughout the 50-day advection pe-
riod. The largest error is 0.05 m2 s−1, which corresponds to a
positional error of less than 5 km.

4.2.6 Damped inertial oscillation on a geostrophic flow

The test case of a damped inertial oscillation on a geostrophic
flow follows Fabbroni (2009) and Döös et al. (2013). In this
test case, the velocity varies over the entire domain, follow-
ing an analytical time-dependent equation. Here, we use a
time resolution of 5 min for the velocity field. A particle is
then seeded at the origin and advected for 4 days, with a RK4
time step of 5 min and output stored every hour (Fig. 4f). Af-

ter four days of advection, the positional error of the particle,
as compared to the analytical solution, is less than 5 cm.

4.2.7 Brownian motion with uniform Kh

The test case of Brownian motion with uniform Kh tests for
the accuracy and implementation of the random number gen-
erator. Here, a total of 100 000 particles are seeded at the
origin of a (60 × 60) km grid centred around the origin with
zero velocities, and then diffused using a normal variate ran-
dom number distribution with Kh = 100 m2 s−1. The parti-
cles are diffused for 1 day with a time step of 5 min (Fig. 4g).
The two-dimensional normalized histogram agrees very well
with the analytical solution of this Brownian motion: a two-
dimensional Gaussian with a mean at the origin and standard
deviation of σ =

√
2Kh1t = 4.16 km.
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5 Future outlook

As mentioned before, Parcels v0.9 is a prototype. The core
contributions of this paper are both the API and the design
philosophy which enables a wide range of valuable future
improvements of the framework. Below, we discuss some of
the conceptual ideas for these planned improvements.

5.1 Performance optimization

The primary performance optimization in version 0.9 of
Parcels is the automated generation of C kernel code to al-
low inlining of field evaluation routines. However, several
future optimizations have been planned during the design of
the code, based around considerations for irregular data pro-
cessing. Since dynamic addition and deletion of particles is
a common feature of many oceanographic use cases, no as-
sumptions about data layout or iteration protocol have been
made in the high-level API of particle sets, allowing more op-
timized implementations in the future. The use of dynamic
code generation at runtime also enables further automated
specialization of kernel code, while allowing us to define a
clear initial interface for kernel customization.

In addition to optimizing the execution of particle kernels,
the extensive interaction with hydrodynamic field data con-
stitutes a considerable cost of the overall computation – a
cost that is likely to dominate overall execution if large sets
of hydrodynamic field data are to be read from files. Multiple
potential approaches can be considered in future versions of
Lagrangian particle tracking codes:

– Directly coupled (online) runs within the host OGCM
can completely avoid the bandwidth bottlenecks im-
posed by reading dense field data from disk, at the ex-
pense of additional computation. For simulations at lo-
cal scales with a high particle density, this trade-off
might prove beneficial, for example for regional stud-
ies on marine ecology.

– For global-scale models that require offline hydrody-
namic field data but feature a low particle density with
high localization, the total volume of data read from
disk might be drastically reduced by explicitly prefetch-
ing local subsets of field data based on particle loca-
tions. Such a mechanism would require the use of addi-
tional geospatial indexing methods, for example via oc-
trees or r-trees (Isaac et al., 2015; Schubert et al., 2013),
that decompose the grid into individual sub-regions and
provide fast indexing methods. Using explicit prefetch
directives in the dynamic execution loop might also en-
able overlapping of asynchronous file reads with effec-
tive computation to further amortize file I/O overheads.

The modularity of Parcels’ internal abstractions, as well
as the composability of kernels and the flexibility provided
by the dynamic execution loop, should facilitate extensive

experimentation and exploration with such advanced opti-
mization techniques, without the need for users to change any
high-level algorithmic definitions. The use of advanced data
handling and task-scheduling libraries, such as Dask (Rock-
lin, 2015) or Xarray (Hoyer and Hamman, 2017), might also
be utilized to quickly achieve efficient out-of-core data man-
agement in Parcels.

5.1.1 Towards parallelization

The current version of Parcels is not in itself parallel due to
two restrictions:

– The primary input format of field data in the v0.9 pro-
totype is NetCDF-based field data, so that paralleliza-
tion requires an explicit domain decomposition and a
parallel file reader. The current version of the netcdf
Python package does not provide these features. Al-
ternative implementations of the NetCDF file format,
such as Xarray, might be leveraged in future versions
of Parcels to provide parallel data management.

– Exchanging particle information between parallel pro-
cessors is currently not supported, although it is deemed
a critical feature for the next release (v1.0).

5.2 Community building and kernel sharing

One of the key ideas between the development of Parcels is
for it to be a flexible and extendable codebase, where particle
behaviour can easily be customized. The worked-out exam-
ple in Sect. 3 shows that many types of behaviour (sinking,
aging, etc) can be coded in a few lines of Python code.

The customizability of Parcels enables a multitude of
oceanographic modelling, from water parcels to plankton to
plastic litter to fish. We therefore envision an active commu-
nity of Parcels users who share and discuss kernel develop-
ment. We encourage anyone who wishes to share their cus-
tom kernels to upload them onto GitHub, and we will provide
a properly referenced library of user-contributed kernels for
others to reuse on www.oceanparcels.org.

5.3 Towards runtime integration with OGCMs

Although the current version of Parcels primarily uses off-
line field data, the overall design of the particle execution en-
gine is designed to be compatible with a variety of OGCMs
for directly coupled (at-runtime) simulations. In particular,
the current Field interface can easily be extended to pro-
vide interpolation routines for various types of field data, for
example based on unstructured meshes, while the primary
particle update loop provides a mechanism for host models
to dictate a model time-step size that varies from that of the
particle update. Moreover, the explicit generation of C code
allows Parcels kernel code to be easily injected into existing
ocean modelling frameworks, while the provision of error-
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recovery kernels can guarantee progression of the coupled
model.

6 Conclusions

Here, we have introduced a new framework for Lagrangian
ocean analysis that focuses on customizability, flexibility,
and ease of use. This v0.9 of Parcels is very much a proto-
type, providing a proof of concept of the API and showcasing
how it can be used to create high-level Python code for fully
fledged scientific experiments. We also assess the accuracy of
the current implementation, with the idea to provide a bench-
mark for future versions. Future development will focus on
increasing efficiency of the framework, and also towards pro-
viding easy tools to port the generated C code of Parcels ex-
periments to at-runtime integration within OGCMs.

Code availability. The code for Parcels is licensed under the
MIT licence and is available through GitHub at www.github.com/
OceanParcels/parcels. The version 0.9 described here is archived at
Zenodo at https://doi.org/10.5281/zenodo.823562. More informa-
tion is available on the project webpage at www.oceanparcels.org.
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